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Abstract—Memristor-based crossbars are an attractive plat-
form to accelerate neuromorphic computing. However, process
variations during manufacturing and noise in memristors cause
significant accuracy loss if not addressed. In this paper, we propose
to model process variations and noise as correlated random
variables and incorporate them into the cost function during
training. Consequently, the weights after this statistical training
become more robust and together with global variation com-
pensation provide a stable inference accuracy. Simulation results
demonstrate that the mean value and the standard deviation of the
inference accuracy can be improved significantly, by even up to
54% and 31%, respectively, in a two-layer fully connected neural
network.

I. INTRODUCTION

Memristor-based crossbars are a promising hardware plat-
form to accelerate computation operations in deep neural net-
works due to their high energy efficiency. The structure of
the memristor-based crossbar [1] is shown in Fig. 1, where
memristors sit between the horizontal wordlines and the vertical
bitlines at the crossing points.

In the vector-matrix multiplication executed by a crossbar,
the matrix is represented by the conductance values of the
memristors. In neuromorphic computing, these conductance
values correspond to the weights of a neural network after
training, and should be programmed into the memristors before
the crossbar is used for computation acceleration. In reality, this
programming is challenging, because process variations make
memristors after manufacturing differ from each other and
noise affects the programming accuracy as well. Consequently,
the same programming voltage may lead to different conduc-
tance changes of the memristors inside a crossbar and across
crossbars. A straightforward way to overcome this problem
is to program memristors individually with many reading-
programming cycles. But this method is too time-consuming
for crossbars in large-volume industrial production.

To alleviate the effect of weight deviation in memristors, [2]
trains the weights using Monte Carlo simulation to minimize
the expected value of the cost function. [3] minimizes the corner
cases of the statistical cost function and adjusts the mapping
between the weights and conductance values of the memristors.
In addition, [4] applies iterative training and remapping to
reduce the weight variance for a given crossbar. Furthermore,
[5] exploits skewed weight distribution to reduce wearing
of memristors. These methods, however, either are timing-
consuming or require heavy on-chip tests and redundant mem-
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ristors to counter large variations. More recently, the concept
of statistical neural networks has been proposed in [6], [7], but
the canonical forms there are used to model the correlation in
the inputs and the weights remain constant. In this paper, we
propose a training method for memristor-based crossbars with
statistical weights, which result in a fundamentally different
problem.

In this paper, we introduce a statistical training method
to model process variations and noise as correlated random
variables and incorporate them into weights of neural networks
during training. The cost function during training is modified
to represent the probability of the correct output values, so that
the resulting weights can maintain a good inference accuracy
after being mapped onto memristors under process variations
and noise. In addition, global variation is compensated by
scaling the target programming values according to the average
of variations of memristors in a column. With the techniques
above, the inference accuracy of crossbars after manufacturing
can be well maintained with a narrow distribution despite
process variations and noise.

The rest of this paper is organized as follows. We first
introduce the conventional training method of neural networks
and process variations in Section II. Weight variations under
process variations and noise are described in Section III. The
proposed statistical training and global variation compensation
are then explained in Section IV and Section V, respectively.
Simulation results are presented in Section VI and conclusions
are drawn in Section VIL.

II. BACKGROUND
In this section, we describe the general structure of neural
networks and process variations.

A. Neural Networks

The basic structure of a neural network is shown in Fig. 2,
which consists of an input layer, a hidden layer and an output
layer, where the nodes represent neurons. In the neural network,
the output of a neuron can be expressed as a function of
the input neurons. For example, in Fig. 2, Zl=A(w}; XY+
wi X9+wd X3), where wi;, wi; and wi, are the weights
of the connections from X9, X9, XJ to Zi, respectively.
wh XY+ wd; X9+wid; X§ can be calculated efficiently as the
output of a column in a crossbar such as shown in Fig. 1.
A(+) is the activation function used to introduce non-linearity to
the neural network, such as ReL.U, softplus, tanh, and sigmoid
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Fig. 1. Memristor crossbar archi- Fig. 2. Basic structure of neural
tecture. networks.
functions.

During training, training data are applied to the input neurons
of the neural network. The data at the outputs are compared
with the expected values. The difference is used to construct a
cost function to adjust the weights to improve the computational
quality, i.e., inference accuracy. The cost function can be
expressed as

M
L=) (~Yilog(¥;)—(1-Y;)log(1-Y;)) (1)
i=1

where M is the number of neurons in the output layer, Y; is
the ith output of the neural network, and Y; is the expected
value of the output.

To minimize the cost function L, the weights in the neural
network, denoted as w;, are adjusted according to the gradient
of L to the weights, namely, the gradient descent method [8],
as

oL
Wi <= Wi =7 . @
1
where + is the learning rate and % is the gradient of L with

respect to w;, which can be calculated by back-propagation [9].
After a sufficient number of iterations, the weights can be

determined as L converges. Assume that the ith weight w; in

the neural network is mapped to the conductance g; of the ith

memristor. This mapping can be described as

gizw(wifwmin)“"gmin:awi‘i“ﬁ (3)
Wmaz —Wmin

where ¢4 and ¢, are the maximum and minimum con-

ductance values in the crossbars, respectively; Wy,qx and Wi, in

are the maximum and minimum weights, respectively.

B. Process Variations

Process variations are inherent in the manufacturing process
[10]. After manufacturing, the variations would cause the
physical and electrical properties of memristors to differ from
each other. Consequently, the conductance values of memristors
after programming deviate from their nominal values according
to training. Since process variations are statistical, this conduc-
tance deviation is also statistical.

Process variations consist of global variation and local vari-
ations. The former is shared by all memristors and the latter
are specific to individual memristors. In the manufacturing
process, local variations are correlated. In addition, the shared
global variation also increases the correlation between the
memristors. The overall correlation between the memristors can
be expressed using a covariance matrix R. This matrix can be
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decomposed using principle component analysis (PCA) [11] to
facilitate the computation during training, as

R=V-=.V" )
where X=diag(\1,\2,...,An) contains the eigenvalues of R,
and V=[V1,V4,...,V] contains the corresponding eigenvectors
which are orthogonal to each other.

Assume that the variations of all the memristors are written
together as D. After the decomposition in (4), D can be
expressed as

D=V-x’5.B 5)
where B=[B1,Bs,...,By]| are independent random variables.
The representation in (5) expresses the variations on memristors
as linear combinations of independent random variables. To
reduce computation complexity, the independent random vari-
ables corresponding to small eigenvalues can also be discarded
without affecting the modeling accuracy significantly.

III. WEIGHT VARIATIONS AND THE CANONICAL FORM

Due to process variations, the actual conductance values
programmed into memristors vary from their nominal values.
Assume the conductance values of all the memristors are
expressed as G. The actual conductance values considering
process variations can be expressed as

G=G+F(Go,D)~Go+f(Go)-D (6)
where Gy represents the nominal conductance values.
F(Gy,D) is a function representing the relation between pro-
cess variations and the change of conductance, which can be
approximated by f(Gg)-D due to the relatively small value
of the process variations compared with the nominal values.
f(Gy) can be characterized from device measurement directly.
Together with (5), (6) can be transformed into

G=G+f(G)-V-2°°.B. (7
Besides process variations, programming noise also causes

random drifting of the conductance values [12]. To incorporate
this effect, (7) can be modified as

G=G¢+f(Gy) V-E%5.B+h(G()N ®)
where h(Gy) represents the impact of noise on the conductance
values of memristors and IN contains independent random
variables specific to certain memristors.

According to (8) and the relation between the weights and
the conductance values in (3), the weights can be expressed
as linear combinations of B and N, since Gg and all the
coefficients of B and N are known. Therefore, a weight under
process variations and noise can be expressed in the canonical

form [13] as
N

wi:wi,o+zwi,k3k+wi,nNi 9
k=1
where w; o is the nominal value of the weight, w;; and w;
are constant coefficients. By, are random variables independent
from each other but shared by all the weights. N; is the pure
random variable individual to each weight.
IV. STATISTICAL TRAINING
Since the weights have been expressed as linear combinations
of random variables to incorporate process variations and noise,

1591

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 31,2020 at 01:18:01 UTC from IEEE Xplore. Restrictions apply.



the training of neural networks should also be adapted, in which
the multiplication, addition, activation functions as well as the
cost function should be modified accordingly.

Multiplication At a neuron in Fig. 2, multiplication of the
input value from a previous neuron and the corresponding
weight needs to be conducted. The input value is the result
of previous computation operations, so that it is already in
the canonical form (9). Consequently, the multiplication should
be performed between two expressions in the canonical form.
Assume the input is denoted as a; and the weight to multiply

is denoted as w;, The multiplication can be performed as
N N

ajwi=(a;j0+ Y ajxBetaj.N;)(wio+» wikBetw;nN;)
k=1 k=1
N
:aj,owi,oJrE (aj0wik+ajwio) By
k=1
+ajow; nINi+a; nwi olN;

N N N
+ZZaj,kwi,zBsz-i-Zaj,kwi,anNi
k=1

k=1i=1
N
+ " nwi N Bt a,0wi, N N; (10)
=1
N
~ajowiot Y (40w k+a;kwio) Brt
k=1
+\/(aj,owi,n)2+(aj,nwi,0)2Nk. (11)

The multiplication above produces terms of the second order
and complicates the further propagation of the data across
the neural network. To reduce computational complexity, we
only keep the first-order terms and approximate a;ow; nN;+
ajm’wi’on using \/(aj,owim)2+(aj’nwi’0)2Nk by matching
their variances [13], where N is a new independent random
variable. Consequently, the result of a multiplication can also
be represented in a canonical form and propagated further
through the neural network using the same implementation of
the computation operations.

Addition At a neuron, the results of multiplication operations
from different input neurons should be added together. Assume
that the results of two multiplications are a; and a;, their sum
can be computed as

N
ai—|—aj:(ai,0+ajyo)—|—Z(ai,k+ajyk)Bk—H / a%’n—O—a?me (12)
k=1
where N is a new independent random whose coefficient is
determined by matching variance with a; , N;+a; , N;.
Softplus operation At a neuron, the result of multiplication
and addition needs to be processed by an activation function.
Inside a neural network, the active function used at neurons is
often ReLU y=maz(x,0). However, this function is nondiffer-
entiable at 0, a condition that is needed to expand this function
into Taylor series to allow the propagation of the canonical
form (9) through the neural network. Therefore, we choose
the softplus f(z)=log(1+e*), also called SmoothReLU, as the
activation function.
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Assume the input to the softplus function is in the canon-
ical form (9) and denoted also as z;=z; o+4;, where Z;=
Zi\;lzi_’kBk—k—szi. The softplus function can be expanded
using Taylor series at the mean value z; o and approximated by
discarding terms with an order higher than 1, as

. Zi.0 so < f(l)(zlo) l
al:f(zl):log(l—Fe ” )+1+€Zi,() ZZ_'—ZTZ,L
=2
Zi,0
zlog(1+ezi=‘))+1+ezz,y0 Z. (13)

Note that this linearization of the softplus function adapts
itself according to the mean value of the input data to allow
useful information to be propagated to the next layer.

Sigmoid operation At the outputs of the neural network,
sigmoid function f(x)=1/(1+e~*) may be applied to generate
classification results. Similar to softplus operation, this function
can be expanded into Taylor series and approximated as

, e Fio SO (zi0)

i=f(z)= Zi 4

a;=f(2) 1+e—2i.0 +(1+6_Z“))2 +§ ! ¢
l e_Zi,,O

N +(1+6_2H))2Z1. (14)
Modification of cost function As shown in (1), the cost
function is used to guide the adjustment of the weights. If
the expected value of an output is equal to 1, i.e., Yizl, the
actual value of this output Y; is expected to be close to 1. If Y;
deviates much from 1, L in (1) quickly becomes large, so that
the weights that contribute to this deviation are punished, as
indicated by (2). This mechanism works similarly in the case
when the output Y; is equal to 0.

When process variations and noise are considered, the actual
value at an output is represented in the canonical form (9),
so that the comparison between the actual value and the
expected value, which is either 1 or O for classification, becomes
statistical. To signify that the whole distribution of the output
should be shifted toward the expected value, we use the mean
value vy, of the distribution to replace Y; in the original cost
function (1). In addition, we punish an output if its distribution
is not close to the expected value. If the expected value Y;
is 1 but Y; incorrectly drifts to 0, the probability P(Y;<0.5)
becomes large. Therefore, we also include this probability into
the cost function. Similarly, the case that the expected value
equal to 0 is also adapted. Consequently, the cost function (1)
is transformed as

M
L=Y (=YiP?(Y;<0.5)log(py,)
=1

—(1-Y;) PP(Y;>0.5)log(1—-py;,)) (15)
where p is a power used to magnify the influence of the
probability.

V. COMPENSATION FOR GLOBAL VARIATION
As explained in Section II, global variation is shared by all
the memristors, so that this variation contributes a large part of
the correlation between the process variations. Consequently,
the variations in the conductance values of the memristors also
exhibit a tendency to vary into the same direction. To capture
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TABLE I
ACCURACY OF SNN WITH DIFFERENT TRAINING METHODS
DT VT ST
NN [Acco |p(Acce)|o(Ace)|Aceo|u(Ace)|o(Ace)| Aceo | u(Ace)|o(Ace)
FC1{0.91| 0.87 | 0.10 [0.91] 0.89 | 0.05 [0.91| 0.90 | 0.03
FC2|0.97| 0.32 | 0.33 |0.92| 0.38 | 0.32 [0.92| 0.92 | 0.01

this tendency, memristors in a column in the crossbar as shown
in Fig. 2 can be tested by applying a test voltage U, to all
the wordlines. The current measured at the output of the jth
column can be written as

Li=(91+92j++9r)-Ut (16)
where g1 ;,5;,---,9,; are the actual conductance values of the
memristors in the jth column. Due to process variations and
noise during programming, these conductance values deviate
from the values determined by weights after training. However,
since the random variations experienced by the memristors can
cancel each other out when the conductance values are added
together, this sum can be used to evaluate the overall effect of
global variation.

Since the current with the ideal conductances for these

memristors can be expressed as

Ii=(915+925++9rj)- U (17)
the current deviation caused by global variation on the memris-
tors in this column can be expressed as a ratio R=1]/1;. When
programming memristors, we then adjust the programming
voltage to offset the conductance by 1/R to compensate global
variation in advance to improve the inference accuracy.

VI. SIMULATION RESULTS

The proposed framework was implemented using Tensorflow
[14] and tested with an Intel 3.6 GHz CPU and an Nvidia
GeForce GTX1080Ti graphics card. The standard deviations
of the distribution of process variations and noise were set to
25% and 5% of the nominal values [10], [12]. The covariance
matrix was generated using the method in [15] and the global
variation was set to 60% of the total process variations.

We simulated 2000 chips using Monte Carlo simulation and
tested them with one-layer and two-layer fully-connected neural
networks. The results are shown in Table I, where DT is
the conventional training method with deterministic weights
without considering process variations and noise, VT is the
vortex training method [3] and ST is the method proposed in
this paper. In this experiment, the power p in (15) was set to
2. NN stands for neural network, FC1 and FC2 are one-layer
and two-layer fully-connected neural networks, respectively.
Accy is the accuracy of the ideal case when memristors are
programmed to conductance values equal to the target values
mapped from weights, p(Acc) and o(Acc) are the mean and
standard deviation of the inference accuracy of the simulated
2000 chips, respectively.

As shown in Table I, the proposed ST method has a larger
mean value and a smaller standard deviation in the inference
accuracy compared with VT and DT, indicating that the sim-
ulated chips can achieve a good accuracy with much fewer
failing outliers. The distribution of the inference accuracy of
the simulated chips tested with F'C'1 is shown in Fig. 3, where
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Fig. 3. Accuracy distributions. Fig. 4. Robustness comparison.

the results of ST have more chips concentrated toward high
accuracy.

To verify the robustness of the proposed method, we tested
different ratios of the standard deviation to the mean value of
process variations, denoted as o /pg, using FC1 and FC2.
The results are illustrated in Fig. 4, where the y-axis shows
the mean value of the inference accuracy of the simulated
chips. According to this comparison, the proposed ST method
maintains a stable accuracy as process variations increase, while
the other methods suffer a significant accuracy loss.

VII. CONCLUSIONS

In this paper, a statistical training method has been proposed
for neural networks. By modeling process variations and noise
as random variables and applying global variation compensa-
tion, the inference accuracy can be improved significantly, even
as process variations become large. Future work includes ex-
ploring statistical training on more complex multi-layer neural
networks and convolutional neural networks.
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