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Abstract
RRAM-based crossbars are a promising hardware platform to

accelerate computations in neural networks. Before such a crossbar
can be used as an accelerator for neural networks, RRAM cells
should be programmed to target resistances to represent weights
in neural networks. However, this process degrades the valid range
of the resistances of RRAM cells from the fresh state, called aging
effect. Therefore, after a certain number of programming iterations,
these RRAM cells cannot be programmed reliably anymore, affect-
ing the classification accuracy of neural networks negatively. In
addition, process variations during manufacturing and noise during
programming of RRAM cells also lead to significant accuracy degra-
dation. To solve the problems described above, in this paper, we
introduce a software/hardware codesign framework to reduce the
aging effect in RRAM crossbars. To counter process variations and
noise, we first model them as random variables and then modify
the computations in software training considering these variables.
Simulation results show that the lifetime of RRAM crossbars can be
extended by up to 11 times with the codesign framework and the
mean value and the standard deviation of the inference accuracy
under process variations and noise can be improved significantly.
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1 Introduction
To accelerate the huge number of multiplications and additions

which are required for deep neural networks, various hardware
platforms with emerging devices, e.g, RRAM/memristor[1–4], Mach
Zehnder Interferometer [5–7], spintronics device [8, 9] and Ferro-
electric Field-Effect Transistor [10–13] have been proposed. One
such promising platform is the RRAM-based crossbar. Such a cross-
bar has the advantages of high computing efficiency and low power
consumption. Fig. 1 illustrates the structure of the RRAM-based
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crossbar. Its basic element, an RRAM cell, sits at the crossing point
between a wordline and a bitline [3].

With the crossbar in Fig. 1, multiplications and additions in
neural networks are implemented efficiently due to its analog nature
[14]. Specifically, the multiplication of two values is implemented
by applying a voltage on an RRAM cell. The resulting current is thus
the multiplication of the voltage and the conductance of the RRAM
cell. The sum operation is the natural result of the currents flowing
into the same column. With this analog style of computation, the
power consumption of such RRAM crossbars is much lower than
the counterpart circuits using CMOS logic.

To apply RRAM crossbars to accelerate neural networks, soft-
ware training can be conducted first to determine weights of a
neural network. Afterwards, the resistance levels of RRAM cells are
programmed to implement the corresponding network weights. To
compensate the accuracy loss resulting from quantization, the resis-
tances of RRAM cells are further tuned. Programming and tuning
RRAM cells are implemented by applying a pulse of relatively high
voltage on RRAM cells. This high voltage causes the valid resistance
range of RRAM cells to become narrower than that of their fresh
state, so that the number of available resistance levels decreases.
This phenomenon is also called aging. After the RRAM crossbar
experiences aging, a trained weight might not be mapped correctly
since the programmed resistance might differ from the target re-
sistance, leading to a degradation of the classification accuracy of
neural networks.

In addition to the aging effect, the programming and tuning pro-
cesses are challenging because process variations cause deviations
of the electrical properties of RRAM cells from their nominal val-
ues. In addition, noise affects the programming process randomly.
Therefore, the same programming voltage does not necessarily
cause the same conductance changes of RRAM cells inside a cross-
bar and across crossbars. The method of individual programming
for each RRAM cell is not practical since it requires a huge amount
of programming-reading cycles and thus time-consuming when
crossbars are applied for mass production.

To solve the problems described above, methods of countering
aging, process variations and noises are introduced. Specifically, to
alleviate the aging effect, the resistances of RRAM cells are pushed
towards large values by skewing weights during software training
to reduce currents flowing through RRAM cells. In addition, the ag-
ing status of RRAM crossbars is considered when mapping weights
into resistances of RRAM cells. To counter process variations and
noise, a statistical training method is introduced where process
variations and noise are extracted and modeled as statistical ran-
dom variables. These variables are then incorporated into weights
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Figure 1: The structure of
RRAM crossbar[15].
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Figure 2: The structure of
a 3-layer neural network
[15].

of neural networks. The computations, e.g, multiplication, addition,
activation function and the cost function, are modified based on
statistical weights. In this way, the modified cost function guides
weight updates to maintain good accuracy of a neural network
under process variations and noise.

The rest of this paper is organized as follows. In Section 2, we
describe the background of RRAM-based neuromorphic computing.
In Section 3, we describe the method to counter aging effects. In
Section 4, the method to counter process variations and noise is de-
scribed. Simulation results are shown in Section 5 and Conclusions
are drawn in Section 6.
2 Background of RRAM-based Neuromorphic

Computing
In this section, we describe the fundamentals of neural networks

and the challenges of applying RRAM crossbars to accelerate neural
networks.
2.1 Neural Networks

Fig. 2 illustrates the structure of a neural network with 3 layers:
the input layer, the hidden layer and the output layer. In this neural
network, nodes represent neurons and connections represent the
relations between neurons in different layers. Assume the inputs at
the first layer are X 0

1 , X
0
2 , X
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0
3 . The output of this neuron is Z 1

1 = A(I11 ), where A(·) is
the non-linear activation function, such as ReLU, softplus, tanh, or
sigmoid functions.

To determine the weights in a neural network, the neural net-
work should be trained in a way that data is fed to the input neurons
and the outputs are compared with the expected values. Their differ-
ence is defined as the cost and is used to update weights to improve
the classification accuracy. Specifically, the cost function is defined
as

L =
M∑
i=1

(−Ŷi log(Yi ) − (1 − Ŷi ) log(1 − Yi )) +
N∑
i=1

λ · ∥Wi ∥2 (1)

= C(W) + R(W) (2)
whereM is the number of neurons in the output layer, Yi is the ith
output generated by the neural network. Ŷi is the expected output.
N is the number of layers. Wi are the weights in the ith layer. λ is
the penalty used in L2 regularization.
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Figure 3: The valid resistance range of an RRAM cell de-
creases with programming time [16].

The weights in a neural network should be updated in a way to
minimize the cost function in (1). To achieve this goal, the gradients
of the cost function are used to adjust weights. After a certain
number of training iterations, L converges gradually so that the
weights can be determined. To apply RRAM crossbars to accelerate
a neural network, a weightwi in the neural network can be mapped
linearly to the conductance дi of the ith RRAM cell, expressed as

дi =
дmax − дmin

wmax −wmin
(wi −wmin ) + дmin = αwi + β (3)

whereдmax andдmin are the maximum andminimum conductance
values in the crossbars, respectively;wmax andwmin are the maxi-
mum and minimum weights in the neural network, respectively.
2.2 Challenges of Applying RRAM Crossbars

to Accelerate Neural Networks
2.2.1 Aging of RRAM Crossbars After the target conductances of
RRAM cells are determined with (3), RRAM cells should be pro-
grammed to reach the corresponding target conductances. In prac-
tice, it is difficult to program the conductances of RRAM cells to
exact values. To simplify this process, the resistance range of RRAM
cells is quantized into a given number of levels, e.g., 32[17], and
RRAM cells are programmed to the resistance levels close to their
target resistances. Due to this quantization, the inference accuracy
with RRAM crossbars is lower than that after software training.
To address this problem, RRAM cells are further tuned according
to the results of applying training data on RRAM crossbars, called
online tuning.

As described above, RRAM cells should be programmed itera-
tively to approximate their target resistances. In this process, a
high voltage is applied on RRAM cells and generates currents flow-
ing through them, leading to irrecoverable filament changes inside
RRAM cells. Therefore, over time their valid range becomes nar-
rower than that of their fresh state. This phenomenon is called
aging [18–21]. It is shown in Fig. 3, where RRAM cells have 8 avail-
able resistance levels in their fresh state. The aging effect might
lead to a mapping mismatch of weights to target resistances. For
example, in Fig. 3, at time t , the resistance of an RRAM cell that
should be programmed to Level_7 with a programming voltage can
only reach Level_2. This mismatch degrades the classification ac-
curacy significantly. To improve the accuracy, more programming
iterations are required, which further aggravates the aging effect.



2.2.2 Process Variations and Weight Deviations Process variations
are deviations of process parameters from their nominal specifi-
cations after manufacturing. These deviations cause variability in
electrical properties of RRAM cells. Process variations can be clas-
sified into two categories, global variations and local variations.
Global variations affect all RRAM cells on a crossbar in the same
way. On the contrary, local variations affect each RRAM cell on a
crossbar differently with correlations. Therefore, the conductance
changes of RRAM cells vary diversely even if the same voltage is
applied.

Assume the conductances of all RRAM cells are G, process vari-
ations of all RRAM cells are D and random noise is N. Since D are
correlated among all RRAM cells, we first decompose the corre-
lated D with principal component analysis (PCA). Afterwards, the
real conductances considering process variations and noise can be
written as follows

G = G0 + f(G0) · V · Σ0.5 · B + h(G0)N (4)
where G0 denotes the mean values of conductances. f(G0) is the
influence of process variations on conductances of RRAM cells. Σ
are the eigenvalues of D, V are the corresponding eigenvectors
and B are independent random variables. h(G0) is the influence of
noise on conductances of RRAM cells. N are independent random
variables for RRAM cells.

To derive a weight under process variations and noise, we use
the linear mapping relation between weight and conductance in
(3). The canonical form of a weight [22] is expressed as

wi =wi,0 +
N∑
k=1

wi,kBk +wi,nNi (5)

where wi,0 is the mean value of wi . wi,k and wi,n are constant
coefficients. Bk are independent random variables shared by all
weights. Ni is the independent random variable for each weight.
3 Counter-aging Framework

In this section, a counter-aging frameworkwith software/hardware
codesign is introduced. At the software level, weights are pushed
towards small values to reduce currents flowing through RRAM
cells. At the hardware level, the aging status of RRAM crossbars is
considered when mapping weights to resistance levels.
3.1 Weight Skewness in Software Training

As described in Section 2.2.1, aging effects result from currents
flowing through RRAM cells during programming. To alleviate ag-
ing effects, currents through RRAM cells can be reduced by skewing
the resistances of RRAM cells to large values. This concept is illus-
trated in Fig. 4, where weights are skewed towards small values.
After being mapped to RRAM cells, these small weights lead to
small conductances and thus large resistances. With this weight
skewness, we can reduce currents flowing through RRAM cells, so
that aging effects can be alleviated.

The weight skewness is viable during software training, since
neural networks have much redundancy which allows to adjust
weights to the desired direction. To realize the weight skewness
during software training, the cost function should be modified to
reflect the concentration of weights towards small values. This
modification can be achieved by selecting a reference weight δi in
the original weight range. This concept is shown in Fig. 5, where
the original distribution of weights is illustrated as the solid curve,
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Figure 4: Skewedweightmapping. (a)Weights are skewed to-
wards small values. (b) Resistance distribution correspond-
ing to the skewed weight distribution [16].
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Figure 5: Modification of software training. Wtrained is the
original distribution of the weights. R1(W) and R2(W) are
regularizations that added into the cost function to skew
weights [16].

which is quasi-normal. To shape a skewed weight distribution, on
the left side of δi , weights should be punished strongly to avoid
that they fall into this range. For weights on the right side of δi ,
they should be punished according to the distance to the reference
weight. For example, the larger distance to δi , the stronger weights
are punished. The two dashed lines in Fig. 5 are the regularizations
of the cost functions on both sides of δi .

To realize the weight punishment described above during soft-
ware training, the term R(W) in (2) is expanded into R1(W) and
R2(W), expressed as

L = C(W) + R1(W) + R2(W) (6)

R1(W) =
N∑
i=1

λ1 · ∥Wi − δi ∥2 ,Wi < δi (7)

R2(W) =
N∑
i=1

λ2 · ∥Wi − δi ∥2 ,Wi ≥ δi (8)

where δi is the reference weight. λ1 and λ2 are the penalty values
for weights on the left side and right side of δi . λ1 is larger than λ2
to realize that weights on the left side are punished more strongly
than those on the right side.

The cost function in (6) guides the weight update of a neural
network to the desired direction while meeting the specified clas-
sification accuracy. When software training is finished, a skewed
distribution of weights as in Fig. 4(a) is formed. The new weight
range [w ′

min , w
′
max ] might be different from that in the original

distribution.
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3.2 Hardware Mapping Considering Aging
Status

The valid resistance range of RRAM cells becomes narrower
than that of their fresh state after RRAM cells experience aging. If
weights are mapped on aged RRAM cells, the inference accuracy
of the neural network might be degraded significantly. To solve
this problem, we consider the aging status of RRAM cells during
hardware mapping. Specifically, the programming iterations of
the RRAM cells at the centers of blocks with a certain size are
traced. With this information, the upper and lower bounds of the
resistance ranges are evaluated using the method presented in [16].
Since RRAM cells in a crossbar experience different numbers of
programming iterations, their aging status is also different.

After the aging status of RRAM cells is extracted, we adopt
an iterative selection method to determine the upper and lower
bounds of their resistance range. Fig. 6 illustrates this selection
process for three RRAM cellsM1,M2 andM3. Initially, the upper
bounds of their resistance ranges are the same. After aging, their
upper bounds are reduced by 1, 2 and 3 levels, respectively. To
implement hardware mapping, a common resistance range should
be determined. To achieve this goal, all aged upper bounds of three
RRAM cells between RLaдed,max andRUaдed,max in Fig. 6 are used to
map weights iteratively. The upper bound that achieves the highest
inference accuracy is considered as the new common resistance
range. This new resistance range, however, does not necessarily
cover the aged ranges of all RRAM cells. For example, if the range of
M2 is selected as the new common range, the mapping of weights
to the common upper bound ontoM3 still fails, since this common
upper bound is outside of its upper bound. To compensate for
this inaccuracy, subsequent tuning of RRAM cells is conducted
iteratively until a desired accuracy is achieved.
4 Statistical Training

As described in Section 2.2.2, weights considering process varia-
tions and noise can be expressed as a set of linear combinations of
random variables. Therefore, they are statistical variables instead
of deterministic variables. To incorporate such statistical variables
into software training, the computations in neural networks such as
multiplication, addition, activation functions and the cost function
should be modified accordingly. The concept of statistical neural
networks has been introduced in [23, 24]. However, inputs are mod-
eled as statistical variables while weights still remain deterministic
in their neural networks.

Statistical multiplication In a neural network such as shown
in Fig. 2, the multiplication operation is conducted between the
output result of a previous neuron and the corresponding weight.

Since the output of a neuron is derived by previous computations,
it is a statistical variable as shown in (5). This output result needs
to be multiplied with the weight on the connection to the next
neuron. Since the weight is now expressed in the canonical form
in (5), this multiplication can be performed between two statistical
variables. Assume the output result of a previous neuron and the
correspondingweight are denoted asx j andwi . Their multiplication
can be derived as follows

x j ·wi =(x j,0 +
N∑
k=1

x j,kBk + x j,nNj )(wi,0 +
N∑
k=1

wi,kBk +wi,nNi )

=x j,0wi,0 +
N∑
k=1

(x j,0wi,k + x j,kwi,0)Bk

+ x j,0wi,nNi + x j,nwi,0Nj

+

N∑
k=1

N∑
l=1

x j,kwi,lBkBl +
N∑
k=1

x j,kwi,nBkNi

+

N∑
k=1

x j,nwi,kNjBk + x j,nwi,nNjNi (9)

≈x j,0wi,0 +
N∑
k=1

(x j,0wi,k + x j,kwi,0)Bk+

+

√
(x j,0wi,n )2 + (x j,nwi,0)2Nk . (10)

The statistical multiplication result contains second order terms,
making the data propagation across the neural network complex.
To simplify the result, only the first order terms are maintained
while the second order terms are removed. In addition, x j,0wi,nNi +

x j,nwi,0Nj is approximated using
√
(x j,0wi,n )2 + (x j,nwi,0)2Nk by

maintaining their variances matched [22], where Nk is a new in-
dependent random variable. In this way, the multiplication result
between two statistical variables can be expressed in the canoni-
cal from in (5). This result can be propagated through the neural
network for further computations.

Statistical addition In a neural network, the addition operation
should be performed at a neuron with the multiplication results of
different input neurons. Assume that two multiplication results are
xi and x j . Consequently, their sum can be derived as follows

xi + x j = (xi,0 + x j,0) +
N∑
k=1

(xi,k + x j,k )Bk+
√
x2i,n + x

2
j,nNk (11)

where Nk is a new independent random variable and its coefficient
is evaluated by matching the original variance.

Softplus operation with statistical variables
At a neuron, the addition result of different previous neurons is

the input of this neuron. Its output is determined by processing this
addition result with an activation function. There are various types
of activation functions. Inside a neural network, we use softplus
f (x) = log(1 + ex ), also called SmoothReLU, as the activation
function.

Assume the addition result of a neuron is ai = ai,0 +Ai , where
Ai =

∑N
k=1 ai,kBk +ai,nNi . To process this result with the softplus

activation function, we first expand this function with Taylor series
at the mean value ai,0. During this expansion, the terms with an



order larger than 1 are removed to reduce the complexity. The
addition result after passing through softplus can be expressed as
follows

xi = f (ai ) = log(1 + eai,0 ) +
eai,0

1 + eai,0 Ai +
∞∑
l=2

f (l )(ai,0)
l ! Ali

≈ log(1 + eai,0 ) + eai,0

1 + eai,0 Ai . (12)
The linearization of the softplus function simplifies the non-

linear computation, so that the information can be propagated to
the next layer.

Sigmoid operation with statistical variables In the last layer
of a neural network, usually the sigmoid function f (x) = 1/(1 +
e−x ) is applied to perform the classification task. Similar to the
Taylor series of the softplus function, the sigmoid function can be
approximated as follows

xi = f (ai ) =
1

1 + e−ai,0 +
e−ai,0

(1 + e−ai,0 )2
Ai +

∞∑
l=2

f (l )(ai,0)
l ! Ali

≈ 1
1 + e−ai,0 +

e−ai,0

(1 + e−ai,0 )2
Ai . (13)

Incorporation of statistical information into cost function
During software training, the cost function of a neural network is
minimized to guide the update of weights to improve the inference
accuracy gradually. The cost function when process variations and
noise are not considered is shown in (1). By minimizing the cost
function, if the expected output value is equal to 1, Ŷi = 1, the
corresponding output value generated by the neural network Yi is
pushed to approximate 1, since the value of the cost function is the
smallest value 0 when Yi equals 1. If Yi differs much from 1, the L
in (1) is large, which leads to the adjustment of weights to generate
a smaller cost value. Similarly, the case when Ŷi = 0 also causes the
cost function to push weights towards the correct direction.

Considering process variations and noise, the output of a neu-
ron is a statistical variable instead of a deterministic value. Conse-
quently, the comparison between the expected value, e.g., 1 or 0,
and the real output value also becomes statistical. To reflect this
comparison into the cost function, we try to shift the whole distri-
bution of the output towards the expected value. To achieve this
goal, the mean value µYi of the distribution is used to replace Yi
in (1). In addition, we also incorporate the probability P(Yi ≤ 0.5)
into the cost function to punish weights if its distribution Yi is not
close to the expected value Ŷi = 1. For example, if Yi is far from 1,
the probability P(Yi ≤ 0.5) becomes large. Similarly, the probability
P(Yi ≥ 0.5) is incorporated into the cost function for the case where
Ŷi = 0. Therefore, the cost function is modified as follows

L =
M∑
i=1

( − ŶiP
p (Yi ≤ 0.5) log(µYi )

− (1 − Ŷi )Pp (Yi ≥ 0.5) log(1 − µYi )) (14)
where p is a power used to amplify the relative influence of the
different probabilities in the equation.
5 Simulation Results
5.1 Results of Counter-aging Framework

The effectiveness of the software/hardware codesign is verified
with two different neural networks, LeNet-5 [25] and VGG-16 [26],

Table 1: Comparisons of Accuracy and Lifetime [16]

Accuracy Comparison Lifetime Comparison
NN Dataset w/o Skewed Skewed T+T ST+T ST+AT

LeNet-5 Cifar10 75.44% 73.30% 1× 6× 8×
VGG-16 Cifar100 71.50% 71.76% 1× 7× 11×
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Figure 7: Skewed weight distribution of the third layer of
VGG-16 [16].

onto Cifar10 and Cifar100 [27], respectively. The information of
neural networks and datasets is shown in the first two columns of
Table 1. To realize the weight skewness during software training,
the reference weights δi shown in Fig. 5 for LeNet-5 and VGG-16
are −σi and −0.75σi , respectively. The values of penalty λ1 and λ2
in (7) and (8) for LeNet-5 are 1 and 0.005, respectively. For VGG-
16, the values of λ1 and λ2 are 0.001 and 0.005, respectively. These
parameters are determined according to the results of both inference
accuracy and the weight skewness with various combinations of
parameters.

In Table 1, the third and fourth columns show the accuracy of the
traditional software training and the accuracy with weight skew-
ness during software training. It is clear that the inference accuracy
with weight skewness is slightly lower for LeNet-5 than that with-
out weight skewness. For VGG-16, the inference accuracy with
weight skewness is even higher than the accuracy without weight
skewness. This accuracy comparison shows that neural networks
have redundancy to adjust weights to the desired direction, while
still guaranteeing a high inference accuracy. The software/hardware
codesign method exploits the redundancy to improve the lifetime
of the crossbars.

With weight skewness in software training, weights are pushed
towards small values. The result of weight distribution for VGG-16
is shown in Fig. 7. It is clear that weights after software training
with weight skewness are concentrated at small values.

To demonstrate the lifetime improvement with the counter-aging
framework, we simulated the tuning process for a certain number
of applications for three scenarios, T+T (traditional weight train-
ing and online tuning), ST+T (skewed weight training and online
tuning) and ST+AT (skewed weight training with aging-aware map-
ping and online tuning). The comparison of lifetime improvement
of the three scenarios is shown in the last three columns of Table 1.
With weight skewness, the lifetime of LeNet-5 and VGG-16 have
been improved by 6× and 7×. Combined with hardware mapping
considering aging status, the lifetime can be improved by 8× and
11×.
5.2 Results of Statistical Training

To evaluate the effectiveness of the statistical training, we set
the standard deviations of the distribution of process variations
and noise to be 25% and 5% of the mean values [28, 29]. The global



Table 2: Accuracy with different training methods [15]
DT VT ST

NN Acc0 µ(Acc) σ (Acc) Acc0 µ(Acc) σ (Acc) Acc0 µ(Acc) σ (Acc)
FC1 0.91 0.87 0.10 0.91 0.89 0.05 0.91 0.90 0.03
FC2 0.97 0.32 0.33 0.92 0.38 0.32 0.92 0.92 0.01
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Figure 8: Accuracy distribu-
tions [15].
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variations were set to 60% of the total process variations. The co-
variance matrix of local variations in a crossbar was generated with
the method in [30]. The power p in (14) was set to 2.

To verify the inference accuracy under process variations, 2000
chips were simulated with Monte Carlo simulations by sampling
process variations and noise. These chips were testedwith one-layer
and two-layer fully-connected neural networks, denoted as FC1 and
FC2, on MNIST. Table 2 shows the results for FC1 and FC2. In this
table, DT represents the traditional training method when process
variations and noise are not considered, VT is the training method
in [31] and ST is the statistical training proposed in this paper.Acc0
is the accuracy with ideal programming process where RRAM cells
are programmed exactly to the target resistances. µ(Acc) and σ (Acc)
are the mean and standard deviation of the accuracy distribution
collected from the simulated 2000 chips, respectively.

It is clear from Table 2 that the proposed ST method has a larger
mean value and a smaller standard deviation compared with VT
and DT. Therefore, it achieves a better accuracy distribution under
process variations and noise. The accuracy distribution of simulated
chips tested on FC1 is shown in Fig. 8, where more chips achieve
a high accuracy with ST. To verify the effectiveness of ST under
various process variations, different proportions of the standard
deviation to the mean value were tested with FC1 and FC2. Fig. 9
illustrates the results, where ST still maintains a stable accuracy
with the increase of process variations while the accuracy of DT
and VT degrade significantly.
6 Conclusions

In this paper, we introduce a software/hardware codesign frame-
work to reduce the aging effect in RRAM crossbars. At the software
level, by pushing weights towards small values, the currents flow-
ing through RRAM cells can be reduced to alleviate aging. At the
hardware level, we consider aging status of RRAM cells in mapping
weights into resistance levels. To counter process variations and
noise, we introduce a statistical training method, where process
variations and noise are modeled as random variables. Simulation
results show that the lifetime of RRAM crossbars can be extended
by up to 11 times and the mean value and the standard deviation
of the inference accuracy under process variations and noise can
be improved significantly.
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