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Abstract: Green used an arithmetic analogue of Szemerédi’s celebrated regularity lemma to
prove the following strengthening of Roth’s theorem in vector spaces. For every o > 0, B <
>, and prime number p, there is a least positive integer n,(ct, B) such that if n > n, (o, ),
then for every subset of I'; of density at least ¢ there is a nonzero d for which the density of
three-term arithmetic progressions with common difference d is at least 3. We determine for
p > 19 the tower height of n,(a, ) up to an absolute constant factor and an additive term
depending only on p. In particular, if we want half the random bound (so 8 = &3 /2), then
the dimension n required is a tower of twos of height ® ((log p)loglog(1/c)). It turns out
that the tower height in general takes on different forms in several different regions of o
and f3, and different arguments are used both in the upper and lower bounds to handle these
cases.

1 Introduction

The game Set consists of a deck of cards. Each card has four attributes: color, shape, shading, and number,
and there are three possibilities for each attribute, for a total of 3* = 81 cards. The goal of the game is to
find a “set”, which is a triple of distinct cards in which each attribute is the same or all different on the
three cards. How many cards can there be which contains no set? We can naturally view each card as an
element of Fg‘, and a set is then a line (or, equivalently, a three-term arithmetic progression) in this vector
space. While a seemingly recreational problem, its generalization to higher dimensions is the well-known
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cap set problem, and is related to major open problems in combinatorics, number theory, and computer
science. It asks: what is the maximum size of a subset of 5 which does not contain a line?

Recently, there was a breakthrough on the cap set problem by Croot, Lev, and Pach [18] using the
polynomial method. Building on this breakthrough, Ellenberg and Gijswijt [20] proved that any subset
of I} which does not contain a line has at most O(2.756") elements. In the other direction, an earlier
construction of Edel [19] gives a subset of F5 with Q(2.217") elements that contains no line.

The senior author can add a personal note. His son David, who was six at the time, was playing with
Set cards, and observed that he could find nine cards for which he could make twelve sets among them.
In other words, he found an affine two-dimensional subspace of ‘3‘. This naturally led us to study the
multidimensional cap set problem: what is the maximum size, denoted by r(n,m), of a subset of 4 which
does not contain an affine m-dimensional subspace? One might hope that the polynomial method proof of
the cap set result would naturally extend to give a good bound for the multidimensional cap set problem.
This fails due to the complexity of the linear system defining an affine subspace of dimension m for m > 1.
Nevertheless, there is a simple averaging argument which establishes a multidimensional generalization
using the cap set result and induction on the dimension m of the desired affine subspace, which we next
describe.

The arithmetic triangle removal lemma of the first author and Lovész [21] as discussed in detail later
in the introduction implies a supersaturation extension of the cap set result. This says that any subset
of 5 of density a has three-term arithmetic progression density at least af, where C ~ 13.901 is an
explicit constant. This includes counting trivial three-term arithmetic progressions (those with common
difference zero).

Let A be a subset of F} of size r(n,m) which does not contain an affine m-dimensional subspace, so A
has density o := r(n,m)/N with N := |F%| = 3". From the supersaturation result mentioned above, the
set A has at least €€ N? three-term arithmetic progressions. Let d be a nonzero element of [F% such that the
number of three-term arithmetic progressions in A with common difference d is maximum. As there are
aN trivial arithmetic progressions in A, by averaging, the number of three-term arithmetic progressions
with common difference d is at least (0“N* — aN) / (N — 1), which is asymptotically (1 —o(1))a®N
if oo > N~'/13. Let § be a subspace of [} of dimension n — 1 not containing d. Let A’ be the subset of
S which contains all elements x for which the entire three-term arithmetic progression x,x + d,x + 2d
is in A. We have |A’| > (1 —o0(1))a®N/3, so A’ has density at least (1 —o(1))aC in S. If A’ contains a
(m — 1)-dimensional subspace, then adding 0, d, and 2d to the elements of this affine subspace, we get
a m-dimensional subspace contained in A, a contradiction. Hence, |A’| < r(n—1,m—1). Putting this
together and using induction on m, we easily obtain

r(n,m) < (1+0(1))N'"€",

In the other direction, for m > 1, a random set of density o has probability at most o®" of containing a
particular affine m-dimensional subspace, and there are less than N such subspaces, implying that

I’(l’l, m) > Nl—(m-&-l)}*m .

One can improve on this bound a bit by considering more advanced probabilistic methods (see [4]) such
as the alteration method, the Lovdsz local lemma, or considering the m-dimensional cap set process, but
none of these would improve on the constant 3.
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The lower and upper bounds for (n,m) have the same form N'~é with g, — 0 exponentially fast in
m, but with different exponential constants (3 in the lower bound and C in the upper bound). Is 3, the
lower bound given by considering a random set, the right exponential constant?

Note that the upper bound argument picks the nonzero d for which A has the most three-term arithmetic
progressions with common difference d, while the bound we use only considers the average, which might
be substantially less. Indeed, a result of Green [31] shows that we can find a “popular” d for which the
density of three-term arithmetic progressions with common difference d is arbitrarily close to the random
bound of &3, provided that the dimension of the space is sufficiently large, while the global density of
three-term arithmetic progressions may be substantially smaller.

Theorem 1 (Green [31]). For each prime p, o >0, and B < a3, there is a least positive integer n,(ct, )
such that the following holds. For each n > npy(o,B) and every subset A of I, with density at least
Q, there is a nonzero d in I, such that the density of three-term arithmetic progressions with common
difference d in A is at least 3.

The condition B < & is necessary, as a random set shows that n,(a,B) cannot exist for f > a3, and a
more involved construction also rules out the case B = a°.

Thus, in the upper bound argument for r(n,m), if n > n3(o, B) with B = ("), we could improve
the lower bound on the density of A’ from (1 —o(1))aC to 8, which would imply by induction on m that
3 is the correct exponential constant in r(n,m). The problem with this approach is that n3(ct, 8) may be
much larger than n when o« < N~¢ . The proof of Green [31] uses an arithmetic regularity lemma (an
arithmetic analogue of Szemeredi’s celebrated graph regularity lemma [57]) and gives a tower-type upper
bound for n3(a, B). This is much larger than the bound that would be needed for the approach above in
estimating r(n,m) to work. In the first part [22] of this two-part sequence of papers, we determined that,
for p and o fixed and B = o> — €, the function n,(ct, B) grows as an exponential tower of p’s of height
O(log(1/¢€)) as € — 0. This might suggest that the bound on n3(a, ) is likely too large to be useful in
determining the exponential constant for r(n,m). Still, we allow for a considerably smaller value of f3,
so one might still have hope for this approach. However, the main result in this paper determines the
order of the tower for n,(ct, 8) for p > 19, and the tower height grows for § = a3*°(1), giving stronger
evidence that this approach fails to determine the exponential constant in r(rn,m).

We next describe the growth of n,, (¢, B), which has different behavior depending on the choice of ¢ and
B. We first handle the case B > 0 is sufficiently small as a function of & and p. By supersaturation, the
cap set problem is equivalent to the special case of estimating n,(a, 8) when 8 > 0 is sufficiently small
as a function of & and p. For such B, n,(«, B) is the least integer such that for all n > n,(a, B), every
subset of [, of density at least & contains a nontrivial three-term arithmetic progression. In particular,
for B sufficiently small, we can use the recently established polynomial bound by the first author and
Lovasz [21] on the arithmetic removal lemma to show that n, (o, 8) is logarithmic in 1/c. Precisely,
for 0 < B < a® /2, where C, = O(log p) is an explicit constant, we have n,(c, 8) = O(log(1/a)). The
lower bound follows by considering the largest possible subset of I/, without a nontrivial three-term
arithmetic progression; Alon, Shpilka, and Umans [3] observed that a variant of Behrend’s construction
shows that such a subset has size at least ((p+1)/ 2)"_0(") for p > 3 fixed. To show the upper bound,
assume n > Cplog,(2/a) = O(log(1/a)). By the arithmetic removal lemma, as discussed in the next
paragraph, any subset of I}, of density o has three-term arithmetic progression density (this includes
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those with common difference zero) at least . As the density of three-term arithmetic progressions
with common difference zero is the density & of the set, by averaging, there is a nonzero d for which the

density of three-term arithmetic progressions with common difference d is at least O‘C;npjl_“ > ot /2.

A version of Green’s arithmetic removal lemma in ]FZ from [21] states that for each € > O there is
6 = 6(e) such thatif X = {x;}[*|, Y = {yi}{~|, Z = {z}{~| are subsets of /) with m > ep" and x;,y;, 2
form a three-term arithmetic progression for each i, then there are at least 8 p*" three-term arithmetic
progressions x;,y;,zx. Green’s proof uses the arithmetic regularity lemma and gives an upper bound on
1/8 which is a tower of twos of height £~0()_ Recently, it was observed by Blasiak et al. [8] and Alon
that the recent breakthrough on the cap set problem extends to prove a multicolor sum-free result, and
results of Kleinberg, Sawin, and Speyer [42], Norin [45], and Pebody [46] show that the bound for the
multicolor sum-free result is sharp. Using this result, the first author and Lovész [21] proved 8(g) > €%,
which is essentially tight. Note that taking X =Y = Z = A, we have that any subset A C ) of density a
has three-term arithmetic progression density at least otCr.

It is an interesting problem to understand how n,(c, B) grows as we increase . This function is on the
order of log(1/c) when 0 < B < a®» /2, and is a tower of p’s of height ®(log(1/€)) for « fixed and &
small, where € = &> — .

We determine for p > 19 the tower height of n,, (o, 8) up to an absolute constant factor and an additive
constant depending on p. One of the difficulties in doing this is that the tower height takes a different
form in different regions of @ and f3, and the proofs use additional ideas beyond those in the proof of the
main result in [22] both in the upper and lower bounds.

We first discuss the case when o < 1/2. When 0 < f8 < Oc3+67]33, the discussion above and Theorem
6 together show that n,(ct, ) grows as an exponential tower of constant height (depending on p)
with log(1/a) on top. So we assume f3 > a3t¢™ . This case splits into three cases, depending
on whether or not € is small, in an intermediate range, or large, with respect to & and p, where
¢ = o’ — B. In particular, when € < o /(log(1/a))"°¢?, n,(a, ) grows as a tower of p’s of height
O(log(a®/€)) £ 0,(1).! When &®/(log(1/a))°¢? <& < o*(1 —27878C), n,(ax, B) grows as a tower
of p’s of height (log p)loglog(1/a) =0,(1). When € > &*(1 —27378%) n,(ar, B) grows as a tower of

p’s of height ® <log (1:)(;‘%(23/7[3)) )) +0,(1) with a 1/ on top. This is summarized in the theorem below.
We conjecture these bounds should also hold for p < 19. The upper bounds still hold when p < 19, as
well as the lower bound when € is small. The only issue is the case € is large. In this case, the lower
bound construction fails as it uses bounds on the largest subset of [, without a three-term arithmetic
progression, and the known bounds for this are not good enough to imply the desired estimates in this

case.

Theorem 2. Let p > 19 be prime, 0 < at < 1/2, and &2 > B > o3¢ . Recall that ny(a,B) is the least
positive integer such that for each n > n,(a, B) and every subset A of I, with density at least a., there is
a nonzero d in ¥, such that the density of three-term arithmetic progressions with common difference d
in A is at least B. Let € = a® — .

o Ife <o’/(log(1/a))°¢P, then ny(ar, B) grows as a tower of p’s of height © (log(ct /€)) £0,(1).

Here, and throughout, +0,(1) means up to an additive error which only depends on p.
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o If o /(log(1/a))eP < & < (1 —27878C%), then n,(a,B) grows as a tower of p’s of height
O((log p)loglog(1/a)) £ Op(1).

e Otherwise, € > 0(1 —27873%) and we have ny(a,B) grows as a tower of p’s of height
C) ((logp) log <11>(;g(g3/7ﬁ)))) +0,(1) witha 1/ on top.

A special case of this theorem is that we want a nonzero d for which the arithmetic progression density
with common difference d is at least half the random bound. In this case, for set density o, we get the
dimension we need to guarantee such a common difference grows as a tower of height proportional to
(log p)loglog(1/a) up to an additive error depending on p.

Corrolary 3. The minimum dimension n = np(c, a?/2) needed to guarantee that for any subset of
I, of density at least o, there is a nonzero d for which the density of three-term arithmetic progres-
sions with common difference d is at least half the random bound grows as a tower of p’s of height

O((logp)loglog(1/a)) £ Op(1).

Corollary 3 follows by substituting in 8 = & /2 into the bound in Theorem 2.
If we only want to guarantee a density which is considerably smaller than the random bound, we still
get a tower-type bound by substituting in f = a3 2.

Corrolary 4. Fora <1/2,z< e 133 and of < 278785 the minimum dimension n = ny(a, o*t%) needed

to guarantee that for any subset of F, of density at least o, there is a nonzero d for which the density of

three-term arithmetic progressions with common difference d is at least a>+?

height ©((log p)(log(1/z))) £ 0,(1) with 1/t on top.

grows as a tower of p’s of

The previous results only apply for a < 1/2, and there is a good reason for this. The tower height for
the function n, (¢, B) actually changes behavior for ¢ close to one, as given by the following theorem. It
determines the tower height up to an absolute constant factor and an additive term depending on p. The
proof uses additional ideas both in the upper and lower bounds.

Theorem 5. For a > 1/2, y=1—a, € = &> — f, and € < y%, we have n,(a, B) grows as a tower of p’s
of height ©((loge)/(logy)) = 0,(1) with log,(1/7y) on top.

We remark that when € > 72, a simple argument shows that n,,(t, §) < 3log,(1/y) is not of tower
type.

Organization. We prove the tight upper and lower bounds in Theorem 2 in Sections 2 and 3, respectively.
In Section 4, we discuss the case where the set density « is close to 1, and in particular prove Theorem 5.
In the concluding remarks we discuss many related problems and results.

For the sake of clarity of presentation, we omit floor and ceiling signs where they are not crucial. We
use log to denote the logarithm base 2, and In to denote the natural logarithm. We often use 3-AP as
shorthand for three-term arithmetic progression.

Let Tow(a,k) denote a tower of a’s of height k, and Tow(a,k,r) denote a tower of a’s of height k
and an 7 on top. So Tow(a,0) = 1 and Tow(a,k + 1) = a™*(@¥) for k > 0, and Tow(a,0,r) = r and
Tow(a,k+1,r) = a™V@k") for k > 0.
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2 Upper bound
In [22], we have already proved that
(o, 0 —€) < Tow(p,log((o — &) /&) +5,1/€).

We next give an upper bound on (¢, 8), which tightens the above bound when € = o’ — B is larger
compared to ¢¢. Recall that the exponent C, in the arithmetic removal lemma satisfies C,, = ©(log p). We
assume 3 > a /2 as otherwise we know n,(a, ) = @(log(1/a)) by the discussion in the introduction.

Theorem 6. Let B = o® — € and suppose that B > oS /2. We have the following upper bounds.

1.
ny(et,B) < Tow(p,log((a — a’)/e)+5,1/¢).

2. If27 838G < B <2783, then
np(a, B) < Tow(p,log(B/€) + O ((logp)loglog,(a/B)),1/€),

3. IfB <278 3% 03, then

np(t, B) < Tow (p,o (aogp)log %) ,l/ﬁ) .

We first observe how Theorem 6 implies the claimed upper bound in Theorem 2.
If B >23 8%, as B < a®, we have o > 27474C». So the bound in Theorem 6(1) demonstrates that
in this case n,(ct, B) is at most a tower of p’s of height at most

log((a—a®)/e)+5 <log(a?/e) +2log(1/a) +5 < log(a® /&) + O(log p).

This gives the desired bound when & < a®/(log(1/a))°¢”. When & > o /(log(1/@))"°2?, since « is
bounded below by a constant depending only on p, so is €. Hence, log(c® /€) <log(1/¢) = 0,(1) and
we obtain the desired upper bound in the remaining regions.

So we may assume <23 8%, If £ < a®/(log1/@)°¢P, as B < &, the first term in the sum
in the tower height in the bound in Theorem 6(2) is the largest of the two terms (up to an absolute
constant factor), and we get n,,(t, 8) in this case is at most a tower of p’s of height O(log(o*/¢)). If
a®/(log(1/a))oer < & < a®(1 —27878%), the second term is larger (up to a multiplicative constant and
an additive term depending on p), and as 288 a3 < B < @3, this is O((log p) loglog(1/a)) £ 0, (1).
Otherwise, we have € > o*(1 —27878%) and we can apply Theorem 6(3) to get an upper bound on

n,(a, B) which is a tower of p’s of height O ((logp) log I?gg((gg//%))) with a 1/ on top. In any case, we

get the desired upper bounds in Theorem 2.

A 3-AP with common difference d is an ordered triple (a,b,c) suchthatc—b=b—a=d. A 3-AP is
trivial if the common difference d is zero, i.e., it contains the same element three times. Otherwise, we
call the 3-AP nontrivial.

DISCRETE ANALYSIS, 2019:16, 39pp. 6


http://dx.doi.org/10.19086/da

POPULAR PROGRESSION DIFFERENCES IN VECTOR SPACES II

Let G = I},. We will more generally prove the upper bounds in Theorem 6 for weighted set, given by
a function f : ), — [0, 1]. For each affine subspace H of ), let at(H) = Ecpn[f(x)] be the density of
fin H. Then o/(G) = E,e[f(x)] is the density of f. For a subspace H, the mean cube density b(H) is
defined to be the average of the cube of the density of f in the affine translates of H which partition ). It
is also given by b(H) = Eyeg[at(H +)?], where H +y = {h+y : h € H} is the affine translate of H by y.

We define the density of 3-APs with common difference d of a weighted set f : I, — [0,1] as
Evepn [f(x)f(x+d) f(x+2d)] = #er]lr; [f(x)f(x+d)f(x+2d)]. The density of 3-APs with common
difference d of a set A is the same as that of the characteristic function of A. For a function f : F), — [0, 1],
the 3-AP density of f, which is E, gem[f(x) f(x+d)f(x+2d)], we denote by A(f). For an affine
subspace H, we let Ay (f) denote the density of three-term arithmetic progressions of f in H. That is,

A (f) = IE)c,y,ZEH7 x—2y4+2z=0 [f(x)f(y)f(z)]

We let A (f) denote the density of nontrivial three-term arithmetic progressions of f in H. That is,

A'H (f) = Ex,y,zEH distinct, x—2y+z=0 [f(x)f(Y)f(Z)]
As observed in [22], Ay (f) and Ay (f) are close if H is large,

Au(f)-|H]” = |H| - Exen [f(x)*] Even [f()*]
A = > A — . 1
By averaging the previous inequality over all translates of H and letting E.c[f(x)] = o, we have
Eye |Exerty :
EyMH-s-y(f)] > Ey[AH-s-y(f)] = [ e [f(X) H > Ey[AH-S-y(f)] x 2

|H| H|

The proof of Theorem 6 is by a density increment argument using the mean cube density.

In [22], we proved the following lemma, which shows that if the density of 3-APs with nonzero common
difference in a subspace H is small, then the mean cube density can be increased substantially by passing
to a subspace H’ of bounded codimension.

Lemma 7. If f : ) — [0,1] has density o, H is a subspace of I, of size larger than 4a /€, and
Ey[An1y(f)] < & — €, then there is a subspace H' of H with Codim(H') < Codim(H) + pCodm() .
144/€? such that b(H') — a® > 2(b(H) — &) +€/2.

Lemma 10 below has a similar assumption and conclusion as the previous lemma. However, it assumes
both a stronger hypothesis on the 3-AP density, and has a stronger conclusion, that the ratio of the mean
cube density to the bound on the 3-AP density increases by a factor in the exponent. As before, the proof
uses the weak regularity lemma and counting lemma, but it also uses the tight bound from [21] on the
arithmetic removal lemma to get a larger density increment. For convenience, we restate the statements
of the weak regularity lemma and the counting lemma here.

For G=TF), and f: G — C, define the Fourier transform flx) = ﬁ Yoci f(x)x (x) for characters x € G.
For a subspace H of G, define the average function fy(x) = Eycp4.[f(y)], which is constant on each
affine translate of H and has value equal to the average value of f over that affine translate. A subspace
H is defined to be d-weakly-regular with respect to f if |j?( X) —?];( %) < & for all ¥ € G. Also, two
functions f,g : G — [0, 1] are called 8-close if | f(x) —g(x)| < & forall y € G.
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Lemma 8. (Weak regularity lemma.) For any function f : ¥, — [0, 1], there is a subspace H which is
S-weakly-regular with respect to f such that H has codimension at most § 2.

Lemma 9. (Counting lemma.) Suppose f,g : ', — [0, 1] are 5-close with density a, then |A(f) —A(g)| <
360

As remarked in [22], while stated only for functions on ), the weak regularity lemma and counting
lemma can also be applied to affine subspaces of ).

The following density increment lemma assumes that the mean cube density is significantly larger than
B, and concludes that, in passing to a large subspace, b(H)/f increases by a power.

Lemma 10. Let f : ¥/ — [0,1], and H be a subspace of 7, with |H| > 20/ B and b(H) > 28*5» B, where
Cp, = O(logp) is the exponential constant in the arithmetic removal lemma. If Ey[Ay(f)] < B, then there
is a subspace H' of H with Codim(H') < Codim(H) + p©°¥™H) .36 /B2 and b(H') /B > (b(H)/B) ',
where T, =1/(2C,) = ©((logp)~!) > 0.

Proof. Lety=b(H)/B > 288 > 28 and n = /6. Denote the affine translates of H by H;, where
JEF, /H, so each affine translate of H is labeled by the corresponding element in I, /H. For each affine
translate H; of H, we apply Lemma 8 and Lemma 9, as remarked to apply on affine subspaces, to the
translate H; of H and the restriction of f to H;. We obtain a subspace T; of H with dim(H/T;) < 1>
such that

|AH/(f)_AH](tJ)’ §3(X(Hj)n SST]? 3)
where ¢; : H; — [0, 1] is defined by #;(x) = E;cr,4[f(¢)] for x € H;. We then let

H = ﬂ T;.

JjE€r /H

We next prove that

b(H')/B > (b(H)/B)" .

Denote the affine translates of 7; in H; by Tj; for k € H/T;. Since t; is constant on each translate of 7}

in Hj, we can denote by #;(Tjx) the constant value #;(x) for x € Tj. Let X; be the set of k € H/T; with

ti(Tiy) > Jand let x; = . e arithmetic removal lemma as discussed in the introduction, there
(Tix) > 1) and let x; = M. By the arithmet 1 d d in the introduction, th
y |H /T

is at least a xf” fraction of the ordered triples (ki,k2,k3) that form a 3-AP in H/T; with ki, k>, k3 € X;.

Each 3-AP (ki,k2,k3) in H/T;j with k1, k2, k3 € X; corresponds to three affine translates of 7; in H; that

form a 3-AP of subspaces, where the value of ¢; on each of them is more than O‘y(f}’g' ). Hence,
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Moreover, the mean cube density over H; of 7; is

N\ —(1—x;)/y\/6 3
B (1) 2 (1-x) (552 +xj<a<Hj).1 (1-x)/s )

Xj
1—x; (/0 —14x;)
= a(H;)? Ly !
J ( Y172 2yl

a(H;)? 16 _1+4x;)°
_ ;/2) (1—x,+(y L)), @)

Xj

where the first inequality is by Karamata’s inequality (a generalization of Jensen’s inequality, also known
as the majorization inequality) applied to the convex function i(x) = x>, and a 1 —x ; fraction of the

translates of 7; have density at most “}(ﬁ’g ) < a(Hj).

Since E;[A#,(f)] < B, from (2) and (3), we have

3 o

} < Ej[Ag; ()] <Ej[Au,(f)]+31 <Ej[Ax,(f)] +W+3n < 2B, (5)

c, &(H;)
Ej [xjp Y172

where in the last inequality we use the condition |H| > 2¢ /8 and 1 = /6.

Let a € [0, 1] be a constant to be defined later, A be the set of j such that x; > a, and I(j € A) be the
indicator function which is 1 if j € A and 0 otherwise. From (5), we have

ne(H)] 2B
Ej |:I(] EA) yl/JZ :| < an,
and
a(H;)>] _b(H) _ ¥B
E{ yl/2 ]_ yi/2 :W:yl/zﬁ’
o)
33
E; [I(j§éA) aizjz) ] >y1/2ﬁ—2a_cvﬁ, ©6)

Observe that f(x) =1—x+ (Z%)% =1+ 57; + 3% + 3z is a decreasing function in x for z > 0 and x € [0, 1].
Hence, when x; < a and 7 :y1/6 —1>0,

Eiltj(Ti)’] = Lol (1 —xj+ (y1/6_i+x»3> _ a(H,)® <1—a+ M) )

yi/2 2 = yin a2
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Thus, recalling that H' = ; i Tj, we have

b(H') > EE[t;(Ty)’]
> E;[I(j ¢ A)Ex [t;(Tje)*]]
3 1/6 _ a3
> g e <1/2> | 1—a+(yaz”)>
e

= (az—a3+(yl/6—1+a)3) a’? <y1/2_2a—c,}) B, ®)

where the first inequality follows from Jensen’s inequality applied to the convex function A(x) = x°,

noting that the partition by H’ is a refinement of the partition by 7; in each affine subspace H;. The
second inequality follows since the left hand side is a sum of nonnegative terms and therefore we can
delete some of them and the sum does not increase. The third inequality is by substituting in (4) and (7).
The fourth inequality is by substituting in (6). As y > 2° and a € [0, 1], we have

A=+ (=144 > ("0 —1) >y'?/3. )

Choose a = 2%/Cry=1/(2C) 50 a € [0,1] as y > 16. It follows from (8) and (9) that

1/2 1/2 1
/ Yoo oo 12 YT _ 1 -2
b(H') > g @ (y 2>ﬁ ¢ vB.

Recall 7, = 2%,, > 0. We have

27,

Y
b(H') > 2414/C, B =y7 yB =y"b(H).

4+4/Cp 414/cp
The second inequality above follows from y > 238¢» = 276) =27 % | Hence,

b(H')/B > (b(H)/B)™ - b(H) /B = (b(H)/B)"*™.

Moreover, we have

Codim(H') < Codim(H) + Y dim(H/T))
jeIF;g/H

S COdlm(H)+n_2 Codim(H)
< Codim(H) + pCodimH) .36 /82

Thus, the subspace H' has the desired properties. O
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In [22], we proved the following bound on 7, (¢, o’ — €) by repeated application of Lemma 7. This
bound is tight up to a constant factor in the tower height when & is relatively small.

Theorem 11. For 3 = o’ — &, we have

£

ny(a, B) < Tow (p,5+1og (O‘_“3) ,1/s>.

We next prove the main theorem in this section, Theorem 6, by a similar proof to that of Theorem 11. As
remarked earlier, we will prove the upper bounds in the more general setting of functions f : F)) — [0,1]
instead of subsets. We assume that the function f : ), — [0, 1] has density « and, for each nonzero d, the
density of 3-APs with common difference d is less than 8 < a. Starting from Hy = [, we repeatedly
apply Lemma 7 until we can apply Lemma 10, at each step finding a subspace of substantially larger
mean cube density at the expense of having a larger codimension. As the mean cube density is at most «,
this yields the desired upper bound on the dimension n.

Proof of Theorem 6. Theorem 11 gives the first desired bound in Theorem 6. So we may and will assume
that B <2783 . We assume that f : F, — [0, 1] has density & and, for each nonzero d, the density of 3-
APs with common difference d is less than B = o> — €. Let Hy = [, so b(Hp) = . We define a sequence
of subspaces Hy D H; D --- D H; recursively. Note that this implies b(Hy) < b(H;) < ... < b(H;). Thus,
for any 0 < i <s, b(H;) > b(Hy) = &>, and b(H;) < b({0}) < a where {0} is the trivial subspace
containing only O.

If b(H;) < 283 B and |H;| > 4/, then we apply Lemma 7 to obtain a subspace H; | C H; with

b(Hiy) — o > 2(b(H;) — o)+ €/2

and
Codim(H; 1) < Codim(H;) + pUimH) . 144 /2,

It follows that 2Codim(H;4;) < max (300%™, p>Codim(H;) ). In particular, Codim(H;41) is at most a
tower of p’s of height i with a 300> ~* on top. As long as we applied Lemma 7 to obtain H;, by induction

on i, we have _
b(H;) > o+ (2' = 1)g/2. (10)

Let s; be the minimum nonnegative integer i for which b(H;) > 2388 or |H;| < 4a/e. We have
o’ > 2878 B and 51 = 0, or, by (10),

s1 < log(2'%"%%B /e) = log(B/e) + ©(log p). (11)
/€
As 300%™ < pf”pl , we have
Codim(Hy,) < Tow(p,s1 +3,1/¢).

If |H,| > 4o /e, and |H;| > 2a /P for some i > 51, then we apply Lemma 10 to find a subspace
Hi i\ CH; with

b(Hi1)/B > (b(H;)/B)' ™
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and
Codim(H;; 1) < Codim(H;) 4 p©odimf) . 36/B2.

Here 7, = 1/(2C}). It follows that 2Codim(H;) < max (80?4, pZCOdim(Hi)). Let s, be the number of
times that we apply Lemma 10 before we cannot anymore. Hence, the number of subspaces s we pick
before stopping is s = 51 + 7.

If B <2788% a3, then s; = 0 and we have

a/B > b(H,)/B > (b(Hy,)/B)!" ™" = (a®/B)1+%)7,

from which it follows that

52 <logy o (bg(a/ﬁ)> <0 <(logp) log <m>> :

/B
As 8028~ < p‘”pl , we have
Codim(Hy) < Tow (p,s2+3,1/B).

We also have |H,| < 2at/B. Since p" = |Hy|pCo4im(Hs)  we obtain that 7 is less than Tow(p, s, +4,1/B).
This gives the third desired bound.
If 288G a3 < B <278 8C o, we have

oc/B > b(HS)/B > (b(Hsl)/B)(lJ'_T’))SZ > 2(8+8Cp)(1+17p)527

from which it follows that

log(a/B)

8+ 8C, :@)((logp)loglogp(a/ﬁ)),

52 <log

/e
As 802B* < 807232326 =12 < pP" | we have
Codim(H;) < Tow (p,s2 + 3, max(1/€,Codim(Hj,))) < Tow (p,s1 +s2+6,1/¢€).
We also have |H;| < 4a/€ or |Hy| < 20/B. Since p" = |H,|pCdm) | we obtain that n is less than
Tow (p,s1 +s2+7,1/¢€). This gives the second desired bound. O
3 Lower bound

In this section, a lower bound construction is given which matches the tower height in the upper bound
from the previous section up to an absolute constant factor and an additive constant depending on the
characteristic p.

In [22], we gave a probabilistic construction which proves the following theorem. It matches the upper
bound when &€ is small compared to «.
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Theorem 12. [22] For 0 < oo < 1/2 and 8 < 27161803 there exists A C I, of density at least a,
where n is a tower of p’s of height at least 5 log(o o’ / €), such that for all nonzero d in [, the density of
3-APs with common difference d in A is less than o — €.

We next discuss how to obtain the lower bound in the remaining ranges in Theorem 2. If £ > 27161 p~
as € < &, we have & > 27>*p=3, and it follows from the upper bound that n,(c, ) is at most a constant
depending only on p. So we may suppose £ < 27101p=8 If ¢ < a®/(log1/)'°¢P, then the above
theorem gives the lower bound in the first case of Theorem 2. The other case, when € > o /(log 1/ c)'°¢?,
we will deduce from the following theorem, which gives a lower bound in the case € is large and p > 19.

’

Theorem 13. For p >19,0< a < 1/2, and o>t " < B < o3 min(p_log” p ), there exists a subset

A C I, of density at least o, where n is a tower of p’s of height at least o(logp)In (1:)(?(23/7/3‘))> with an

a? /B on top, such that for each nonzero d € I, the density of 3-APs wzth common difference d in A is
less than B. That is,

n,(a,B) > Tow (p, 310 (logp)In <li)0gg((al3//02)> ,063/B> .

Note that Theorem 13 does not directly apply for B > > min(p~'°¢7_ p=30). Choose a constant C so that
C > max(12, S;r:C ), which is further independent of p (recall that C,, = O(log p)). If a¢ > pCloep,
then o is bounded below by a constant depending only on p, and from Theorem 6, n, (o, 8) is at most a
tower of p’s of constant height (depending on p). Hence, we can assume that ac < p~Clogr (since the
bounds in Theorem 2 are up to additive constants depending on p). By monotonicity of n,(ct,8) in B, as

% < p=Clogr e can apply Theorem 13 with B = a3 p=Cloer ¢ [a3+¢ ™ o min(p~'°¢7 p=3)] to

get the bound

_ 1 log(1/ax)
3 _—Cl Cl
ny(a,B) > ny(o,a’p 0gp)2Tow< 3O(l ogp)ln (10ng1ng , pClogp

> T0w< 30(logp)loglog(l/oc) (logp)loglogp>.

We thus have the following corollary.

Corrolary 14. For B > p=€'°¢Pa3, we have n,(a, B) is at least a tower of p’s of height
50(log p)loglog(1/at) — Op(1).

This corollary gives the lower bound in Theorem 2 when a3(1 —27878%) > ¢ > o /(log(1/a))'02?
as then B > 278 8C g3 > p=Cloerg3, For & > o® (1 —27878%), we can check that the lower bound in
Theorem 2 directly follows from the bound in Corollary 14 when o (1 —27878¢) <& < 3 (1 — p~Clogr)
and from the bound in Theorem 13 when & > &®(1 — p~€1°27), This completes the proof of Theorem 2.
Our goal for the remainder of the section is to prove Theorem 13.
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3.1 From weighted to unweighted

For the construction of the set A in Theorem 13, as in [22], it will be more convenient to work with a
weighted set in [, which is given by a function f: F)) — [0, 1]. The weighted analogue of Theorem 13 is
given below. Note that for the weighted constructions, it will be convenient to normalize and replace € by
eo and B by Ba’.

Theorem 15. Let p > 19 be a prime, a > 0, and ac '’ < B < min(p~1o¢P p=100) " There exists a

function f : % — [0,1] of density &, where n is a tower of p’s of height at least 55 (logp)In <ig§8§g§>

with a 1/ on top, such that for each nonzero d, the density of 3-APs with common difference d of f is
less than Ba?.

As in [22], we can go from the weighted version to the unweighted version by sampling.

n(128) ) /2

N )
then there exists a subset A C ¥ such that the density of A and, for each nonzero d € ¥}, the density of
3-APs with common difference d of A deviate no more than € from those of f.

Lemma 16. If n is a positive integer, p a prime number, f : I, — 0,1, N=p", and e > 2

Using Lemma 16, Theorem 13 follows from Theorem 15.
Proof of Theorem 13: Apply Theorem 15 with o and B’ = (B8/a>)? to obtain n and f satisfying the
conclusion of Theorem 15. Let B = o> *2. In particular, n is at least a tower of p’s of height

L

30 (logp)log(1/z)

1 log(l/a)\ 1
%(logp)ln (1(%(1/[3’)> = %(logp) In(1/(22)) >

with a 1/B’ = =% on top. By the lower bound on n, we have

In(12p)\'?  _
2 <p” ) <p "B <att2=p/6.
We apply Lemma 16 with ¢’ = /6. We obtain a set whose density is in [&¢ — /6, + /6] and such
that the density of 3-APs for each nonzero common difference is less than B'a® + /6 < B /4. Now, we
simply delete or add arbitrary elements to make the set have density a. For each nonzero d, the 3-AP

density with common difference d can change by at most by 33/6, so the density of 3-APs with common
difference d is less than /4 + /2 < B. O

Construction idea

In the next subsection, we prove Theorem 15. The general idea for the construction has some similarities
to the construction we used in [22] to prove Theorem 12. We partition the dimension n = m; +mp +-- - +
my, where m; 1 is roughly exponential in m; for each i, and let n; = m; +my + - - - +m; be the jth partial
sum, so n; = m and n; = n;_| +m; for 2 < i <s. Consider the vector space as a product of smaller
vector spaces: ) = )1 x )2 x - - - x ). In each step i, we determine a partial function f; : I}y — [0,1]
with density c. The function f; has the property that for each nonzero d € I}/, the density of 3-APs with
common difference d of f; is less than fo’.
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For Theorem 15, we let m; = [ 10000 log,(1/ B)| and choose f; to be the characteristic function,
appropriately scaled to have average value & on !, of a maximum subset of I} with no 3-AP.

For i > 2, observe that we can use f;_; to define a function g; : Fj — [0, 1] by letting g;(x) = fi—1(y),
where y is the first n;_; coordinates of x. Thus, g; has constant value f;_;(y) on the copy of [P consisting
of those elements of I’ whose first n;; coordinates equal y. We perturb g; to obtain f; so that it has
several useful properties.

We first describe some of the useful properties f; will have. While g; has constant value f;_;(y) on each
copy of I} whose first n;; coordinates are equal to y, the function f; will not have this property, but will
still have average value f;_;(y) on each of these copies. Another useful property is that for each d € I
such that d is not identically O on the first n;_; coordinates, the density of 3-APs with common difference
d in f; is equal to the density of 3-APs with common difference d* in f;_;, where d* € F,,~' \ {0} is
the first n;_; coordinates of d. Once we have established this property, it suffices then to check that for
each nonzero d € I with the first n;; coordinates of d equal to 0, the density of 3-APs with common
difference d is less than Ba. In order to check this, it now makes sense to explain a little more about
how we obtain f; from g;.

Consider a set B C )" with relatively few three-term arithmetic progressions (considerably less than
the random bound) given its size. In [22], we took B to be the elements whose first coordinate is in an
interval of length roughly 2p/3 in IF,. Here, we take B to be the elements whose first r; coordinates (for
an appropriately chosen r;) are in a maximum subset of [}/ with no 3-AP.

We consider the p"~! copies of ;" in I/}’ where each copy has the first n;— coordinates fixed to some
y € )" For each copy A, we consider a random copy of B in A by taken a random linear transformation
of full rank from )" to A and consider the image of B by this linear transformation, and then scale the
indicator function of the image of B by the constant factor p™ /| B| to keep the average density unchanged
on A. We do this independently for each A where g; is nonzero on A. We show that with high probability,
for every nonzero d € Fj with the first n;_; coordinates of d equal to 0, the density of 3-APs with
common difference d is less than Ba?. One can show this for each such d by observing that the density
of 3-APs with common difference d is just the average of the densities of 3-APs with common difference
d on each of the p"~! copies of ). The densities of 3-APs with common difference d in the perturbed
subspaces are independent random variables that have expected value (appropriately scaled) equal to the
density of 3-APs in B, which is much less than the random bound for a set of this size. We can then use
Hoeffding’s inequality, which allows us to show that the sum of a set of independent random variables
with values in [0, 1] is highly concentrated on its mean, to show that it is very unlikely that the density of
3-APs with common difference d is at least Bc>. Since the probability is so tiny, a simple union bound
allows us to get this to hold simultaneously for all nonzero d. This completes the construction idea.

To compare with the construction in [22], there, we perturb only a sufficient fraction of the affine
subspaces. Here, to account for the large decrease in 3-AP density we need to make in each step (as
¢ is large), we need to perturb all subspaces, and additionally use a perturbation that has significantly
smaller 3-AP density. In the next subsection we present the construction of a set that has significantly few
three-term arithmetic progressions, which serves as a main ingredient in our construction.
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3.2 Subsets with few arithmetic progressions

An important ingredient in our constructions is subsets of ) with significantly few arithmetic progressions.
For this purpose, we will use a set with no nontrivial 3-AP. We let A, , be a subset of I}, of maximum
size with no nontrivial 3-AP. Let (p,n) = |A, »|. Alon, Shpilka, and Umans [3] gave a construction of
a subset of (Z/pZ)" of cardinality [p/2]" " with no 3-AP. More recently, Alon [1] observed that a
variant of the Behrend construction gives an even better bound of the same form. We present Alon’s
construction in the proof of the following lemma.

Lemma 17 (Alon [1]). We have r(p,n) > <p7+1)n/ (1 +n (”21)2>

. n . . . . -1
Proof. Consider the subset of Fp of all points with coordinates in {0, 1,..., pT}

For each point z € {0,1,..., %}”, let C(z) =Y z?. Forall z € {0,1,.., 1’—;1}”, we have C(z) €
2 ptl n
[O,n <pr1) ] . Hence, there exists a value ¢ such that |{z|C(z) = c¢}| > 1((2]7)1)2 Let A = {z|C(z) = c}.
+n( 55—
When viewed as a subset of R?, set A is a subset of the sphere centered at the origin and with radius
V. In R, any line intersects the boundary of a convex set (such as a sphere) in at most two points and
hence cannot contain a 3-AP. So A has no 3-AP when viewed as a subset of R¢. As the coordinates of the
points in A have value between 0 and pT_l, there is no wrap-around when adding two elements of A, and
it follows that any 3-AP in A must also be a 3-AP in R?. Hence, A C [, has no 3-AP and has the desired
size. O

The bound in Lemma 17 for p > 19 and n > 10° gives the bounds in the following corollary.

Corrolary 18. If p > 19 is prime and n > 10°, then r(p,n) > p78" and r(p,n) > ((p+1)/2.0001)"2.

3.3 Proof of Theorem 15
3.3.1 The Construction

Choice of constants. Let s = Lﬁ(logp) In (log(l/a)> —410ng. Observe that s > [8logp]| > 33 as

log(1/B)
B> a¢ " and p > 19. In particular, s > %(logp) In (}gggégg) +3.
We soon recursively define sequences of positive integers my,...,ms and ry,...,r;. Weletn = Y m,

and n; = Z{Zl m; and u; = Z{:] ri be the jth partial sums. Let N; = p"/, R; = p"/, and U; = p"/, so in
these cases we use capital letters to denote p raised to the lower case power. We recall that A, is a
maximum subset of [, that contains no 3-AP. Let u; = {:1 (|1Ap.ri|/Ri).

Let my = [100001og,,(1/B) |, so p~(ITm)/10000 < g < jp=m /10000 Note that as § < p~'®, we have
my > 100, Let y=3/log(p/8). Let r| = my, ry = .7864ry, r3 = 6r1, and r; = (14 y)~3r3 for i > 4. For
i > 2, letm; = Niot (|Ap|/Ri)* 12, B.

The constants above were carefully chosen so as to work in the case p = 19. For larger values of p,
there is more flexibility in the choices of the constants. We collect several useful bounds between the
constants in Appendix A.1.
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We divide the construction process into levels in order, starting with level 1 and ending at level s.

Construction for level 1. Let fi : F)} — [0,1] be defined by fi(a) = a/u fora € Ap,, and fi(a) =0
otherwise. The density of fi is a.

Construction for level i for 2 < <s. At level i, we have already constructed a function f;_; : IF;',"" —
[0, 1] at the previous level such that the density of 3-APs with common difference d of f;_; is less than
Bo? for each nonzero d in F, .

For each x € F, ", choose vectors v (x), ..., vy, (x) € "} such that for any distinct a,b,c € F, ", the
collection J}_;{v;(a),v;(b),v;(c)} of 3r; vectors are linearly independent, and, for each codimension
one affine subspace S of F", the number of x € F," with f;_; (x) # 0 for which {v;(x): 1< j<r} CS
is less than m;. The existence of such a choice of vectors is guaranteed by Lemma 19 below.

For each a € Fgf, with x € Fﬁ"‘l being the first n;_; coordinates of a and y € IFI’Z”' the last m; coordinates

of a, let z, = (y-vi(x),...,y v (x)) € Fi. Define f; : )i — [0, 1] such that fi(a) = ﬁ < fic1(x) if
Za € Apy, and f;(a) = 0 otherwise. This completes the construction for level i. I

When we have finished the construction for level s, let f = f;. It is clear from the construction that
the density of each f; is &, and there are X; := N; Hﬂ': 1 (|Apr|/R;) elements a [y for which fi(a) # 0.
Indeed, at step i, the fraction of points in [}y where f; is nonzero is a proportion |A,, »,|/R; of the fraction
of points in IF?,’" where f;_| is nonzero. Moreover, all the nonzero values of f; are the same, and we
denote this value by o; = ocl"[?z1 (Rj/|Ap.,|)- Note that a; = p1; ' ot and X; = w:N;.

3.3.2 The proof
The following lemma shows that we can choose the vectors v;(x) as specified in the above construction.

Lemma 19. For each i > 2 there exists a choice of v;(x) € F))i for 1 < j <r;and x € Fpy" such that for
any distinct a,b,c € T, the collection UL {vj(a),vj(b),vj(c)} of 3r; vectors are linearly independent,
and for each codimension one affine subspace S of ¥}, the number of x € Fp=" with fi_i(x) # 0 for

which {vj(x): 1 < j<r;} CSis less than m;.

Proof. For 1 < j <r;andx € F;~', choose a random vector v;(x) € F » uniformly so that the choices of
v;(x) are independent. Consider distinct a, b, c € F~'. Label the 3r; vectors in U;le{vj(a), vj(b),vi(c)}
as vi,va,...,v3,. The probability that vi is nonzero is 1 — p~"™. For 2 < j < 3r;, the probability that v; is
not in the span of {vy,...,v;_; } given that {vy,...,v;_ } are linearly independent is 1 — p~""/~!. Hence,
the probability that U7 {v;(a),v;(b),v;(c)} are linearly independent is

3ri—1 3ri—1 p
I_I (1 _pfmri'k) > 1— p*mH»k > 1— p*m,'+3r,'71 > 1— p*mH{’)f’,‘7
k=0 k=0 -1

where in the first inequality we repeatedly used the inequality (1 —y)(1—z) > 1— (y+z) for y,z
nonnegative, and in the second inequality we bounded a finite geometric series by the infinite one.
Thus, by the union bound, the probability that for some distinct a,b,c € F),~', the vectors in the set
U;"Zl {vj(a),vj(b),v;(c)} are not linearly independent is at most

N3

i—1

pmitd — it 3rimmi o p*mi/4 <pl< 1/3, (12)
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where in the first inequality we used m; > 8n;_; and m; > 8r;, which follow from (26) and (27).

Let S be a codimension one affine subspace of )" For each x € [F,;!, the probability that the set
{vj(x) : 1 < j <r}is asubset of Sis p~'i. By the union bound, the probability that the number of
x € Fp~" with fi_y(x) # 0 for which {v;(x): 1 < j <r;} C Sis at least m; is at most (Xr"r;i‘)p*”mi. The

number of codimension one affine subspaces of [ is p”:i:l] < 2p™. Thus, by the union bound, the

probability that there is a codimension one affine subspace S of )i for which at least m; of the x € F
with f;_(x) # O satisfy {v;(x): 1 < j <r;} CSis at most

X'i X.7 m; . N'f mi
1 1 Akt ]

where the second to last inequality is by (29).

As 1/3+1/3 < 1, with positive probability (and hence there exists an instance such that) for all
distinct a,b,c € F,;', the vectors in the set U i{vj(a),vj(b),v;(c)} are linearly independent, and no
codimension one affine subspace S of F is such that m; of the x € Fj;™" with f;_(x) # 0 satisfy
{vj(x) : 1 < j <rj} CS. This completes the proof of the lemma. O

We now prove Theorem 15.

Proof of Theorem 15. We need to prove that for each i, 1 <i <'s, the following holds. For every nonzero
d € I}, the density of 3-APs with common difference d of f; is less than Ba3. We will prove this by
induction on i.

The base case i = 1 follows from the fact that the set where f; is nonzero has no nontrivial 3-AP.
Assume that for / = k and every nonzero d € F, the density of 3-APs with common difference d of f; is
less than Bor®. We next show this for level i = k+ 1.

Let p;(d) be the density of 3-APs with common difference d of f;.

If anonzerod € IF;"“ is 0 in the first n; coordinates, let the last | coordinates of d be d’, which must
be nonzero. If d’ is perpendicular to all v;(x),1 < j < r;, for some x where fi(x) # 0, then the density
of 3-APs with common difference d inside the affine subspace of points where the first n; coordinates
are equal to x is (|Ap.,rk+| |/Rk+1) Oc,f+1 = (Rk+1/|Ap7rk+| |)2 Ot,?; otherwise this density is 0, since A, ., is
3-AP free.

Let  be the number of x in )¢ with f;(x) # 0 such that d’-v;(x) = 0 for all 1 < j < ;. The density of
3-APs with common difference d is

t 2 t 2
Pir1(d) = N (Res1/|Apri ) 0 = N (Res1/|Apri ) e,

where the second equality is by o = 1, Yot Since d’ # 0, we have < my. 1, as the construction requires
that the number of x € F)¥ with fi(x) # 0 such that v;(x),1 < j < ry are contained in the orthogonal
complement of d’ (which has codimension one) is less than my.,, which is guaranteed by Lemma 19.
Hence, as myi1 = Ni (|Ap., |/Rk+])2 -y - B, we have pi1(d) < o

If d € F)*"! is nonzero in the first n; coordinates, letting d* denote the first n; coordinates of d, by
Lemma 20 below, we have py|(d) = px(d*) < Ba’. We have thus proved by induction that for each
nonzero d € I, the density of 3-APs with common difference d of f; is less than Ba’.
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We chose s to ensure that the functions f; take values o; € [0, 1]. Indeed,

0 < a<a<o=pu""a<p®2.0001%a < p2.00010+7 g = p22.000100er)r/3g
< prs/za — p(1+7)s733m1a < peys3m1a < B73-104~e7"a < 17
where we used Corollary 18 to get |A, ;| > p~22.0001~"7|R;| and hence the fourth inequality, Inequality
(21) to get the fifth inequality, the next equality is by the choice of ¥ = 3/log(p/8), the next inequality

is by Inequality (23), the next equality is by the choice of r,, the second to last inequality is by m| <
100001og,(1/B), and the last inequality is by the choice of y and s so that

3 (Y oepn (leg/)N o (leg(l/a)y
S fog(p/8) <11“ ep)l <log(1/ﬁ)> 4 g”)“ <log<1//3>> 2

and hence e” < ¢~12 (k)g(l/a)) <107 (log(l/a)>.

log(1/B) log(1/B)
Now, we estimate the dimension n = n, of our final space. By the definition, we have ng > m;. By (28),

we have mi is at least a tower of p’s of height s — 3 with a m3 on top.
In (25), we observed that m, > pm‘/400 > pzsmgv(l/ﬁ)’l > 1/B. By (26), we have mz > my >
1/B. Hence, the dimension n of our final space is at least a tower of p’s of height at least s — 3 >

z—l()(logp) In (k)g(l/a)) with a 1/ on top. O

log(1/B)

We now provide the proof of Lemma 20, which is very similar to the proof of Lemma 12 in [22] but
requires some modifications. We include it here for completeness.

Lemma 20. Let2 <i<s. Ford €}, letd" € FZ[" be the first n;_y coordinates of d. If d* is nonzero,
then the density of 3-APs with common difference d of f; is the same as the density of 3-APs with common
difference d* of fi—1. That is, if d* is nonzero, then p;(d) = p;—1(d™).

Proof. Since d* is nonzero, for any 3-AP a, b, c with common difference d, the restrictions of a, b, ¢ to
the first n;_; coordinates are distinct. Let a* be the first n;_ coordinates of a. Similarly define b*, c*,d*.
Fix a* = ag,b* = by, c* = cg for any 3-AP (ap,bo,co) in Fj~' with common difference d*, and consider
all 3-APs a,b,c with common difference d such that the first n; | coordinates of a,b, ¢ coincide with
ao, bo, co. Since ag, by, co are distinct, the 3r; vectors v;(ap), vj(bo), vj(co) with 1 < j < r; are linearly
independent. Hence, we can change the basis and view v;(ag), v;(bo), vj(co) for 1 < j <r; as basis
vectors of 7). Let B be a basis of '}!" containing v;(ao), v;(bo), vj(co) for 1 < j <r;. Letd',b',c’,d" be
the restriction of a, b, c,d to the last m; coordinates.

For 1 < j <rletay;,b1j,c1; be any three fixed values in IF,. Let L = p™~>"i. We prove that the number
of 3-APs in I}’ with common difference d, a* = ao and a -vj(ap) = ayj, b* =boand b’ -v;(bo) = by,
c* =cgand ¢’ -vj(co) = c1; is L. Since B is a basis for I, if x,x" € T satisfy x-v =x'-v forall v € B
then by linearity x-v=x"-v forall v € %, in which case x = x'. Since there are p™ elements in [P, and
p™ possible tuples (x-v),ep, each tuple must appear exactly once. The 3-APs with common difference d,
a*=apandd -vj(ag) =aij, b* =boand b'-vj(by) = by, c* =cpand ¢’ -v;(co) = ¢ are given by triples
(d,d +d',a+2d") suchthatd' -vj(ag) = aij,a' -vj(by) =b1j—d -vj(bo),d -vj(co) = c1j—2d"-vj(co).
Hence the number of such 3-APs is equal to the number of @’ € )" such that a’-vj(ag) = a1, @' -v;(bo) =

37’,‘
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bij—d -vj(bo),a -vj(co) = c1;—2d"-vj(co). There is exactly one element of )i such that its dot product
with each vector in the basis B D {v;(ao),vj(bo),vj(co),1 < j < r;} is fixed to an arbitrary value. Since
there are exactly p™i =3 = L ways to choose the value of a’-v forv € B\ {v;(a¢),v;(bo),v;(co),1 < j <ri},
there are exactly L elements a’ € I such that @’ - v;(bo) = b1 —d'-v;(bo), ' -vj(co) = c1;—2d"-vj(co).
Hence, the number of 3-APs (a,b,c) with common difference d, a* = ag and d’ - v;(ag) = a; j, b* = by
and b’ -v;(by) = bi1j, ¢ = co and ¢ - vj(co) = ¢y is exactly L.

For x € F;)™', by definition of f;, we can define i, : 7 — R such that fi(a) = fi-1(a*) +ig(d’ -
vi(ap),...,a" -vy(ap)). Moreover E,er [ix(w)] = 0. The density of 3-APs (a,b,c) with common differ-
ence d of f; such that a* = ag,b* = by, c* = cq is

L Y L(firr(ao) +igg(ar, s arp) - (fim1(bo) + ing (b11, - b1s,)) - (fim1(c0) +igo (11,005 11,))

3r,'
p ayj,brj.c1;€F,

= i,[ Y (fimr(ao) +ig(ar,yair,)) - (fio1(bo) + iy (b1, e b1s)) - (fim1(co) +igy (€11, c11,)

p alj7b1j,C]jE]Fp

= i,i< ) (f,-_l(ao)+ia0(a11,...,a1r,.))> ( ) (f,-_l(bo)+ib0(b11,...,b1,i))>-

P \a)jer, by ;€F,

( Y (f,.l(co)+ic0(cu,..-,cu,-)>>

c1j€Fp
= fi-1(ao) fi-1(bo) fi-1(co)-

Hence,

Pi(d) = Eay by colfi-1(a0) fi-1(bo) fi-1(co)] = pi-1(d*),

which completes the proof. O

4 Popular differences in very dense sets

In Theorem 2, we proved essentially tight bounds on the tower height of n,(a, 8) when o < 1/2 and
p > 19. We next discuss what happens when the set density « is close to one and prove Theorem 5, which
gives a tight bound on the tower height in this regime. No bound on p is needed. Some of this discussion
works for all abelian groups of odd order, so we indicate where we are assuming the group is [';.

Let G be a finite abelian group of odd order and f : G — [0, 1] have density a. Since « is close to one, it
will be convenient to work with the complementary function g : G — [0, 1] given by g(x) = 1 — f(x), which
has density y:= 1 — a. The weight of a 3-AP (a,b,c) is f(a)f(b)f(c) = (1—g(a))(1—g(b))(1—g(c)) >
1 —g(a) —g(b) —g(c). As each element is in exactly three 3-APs with a given common difference, for
every nonzero d, the density of 3-APs with common difference d is at least 1 — 37y. This bound is best
possible in I} if y = 1/3 by considering the characteristic function of the subset which consists of all
elements with 1 or 2 in its first coordinate and the common difference d is nonzero in the first coordinate.
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However, the total density of 3-APs is considerably larger than this bound. Indeed, the density of 3-APs
(a,b,c) is

E[f(a)f(b)f(c)] = E[(1—-g(a))(1—g(b))(1—-g(c))]
= 1-E[g(a)+5(b)+¢
= 1—37+3Y2 Elg(a

(

> 1-37+37 —Elgla)g(b)] =1 =37+27 = o> — (P — ). (14)

It is not difficult to see that this bound is best possible if g is the indicator function for a subgroup of G.
It follows from (14) by taking away the contribution from the trivial arithmetic progressions (those with
d=0)thatn,(a,B) <nif

'
B§a3—y2+af”—a/p”<(a3—72+9f"—a/p")pnp - (15)
Recall that § = &® — &. The above discussion shows that, for € > %, we have n,(a,8) <3 log,(1/7).
We next discuss the proof of Theorem 5. We first prove the upper bound as given in the following
theorem, which improves for « close to 1 the tower height from the bound in Theorem 6(1) by a factor
O(log(1/7)). Note that we may simply apply the bound in Theorem 6(1) for 1/2 < ot < 59/60 to get the
range of & in Theorem 5 not covered by the theorem below.

Theorem 21. Let o > 59/60, y=1— « and € = o* — 3. We have

ny(a,B) < Tow(p,log(e)/log(36y) +9,1/¢).

The only difference between the proofs of Theorem 21 and Theorem 6(1) is that we repeatedly apply
Lemma 22 below instead of Lemma 7. Lemma 22 gives a better density increment at each step than
Lemma 7, giving a factor 14 1/(367) instead of a factor two.

Lemma 22. Let o > 59/60, f : F) — [0, 1] satisfy E[f] = &, and y=1— ot < 1/60. Let H be a subspace
of ¥y with |H| > max(y3,4/€). IfEy[An1y(f)] < 03 —&, then there is a subspace H' of H of codimension

at most Codim(H) + pCoim(H) . 144 /€2 such that b(H') — o® > (1 n %y) (b(H) — &%) + 5.

Proof. The proof begins along the lines of the proof of Lemma 7 with H = IF),. However, we can improve
the bound on the mean cube density by a more careful analysis over simply using Schur’s inequality.
Denote the translates of H by H;, and denote the density of f in H; by a; = a4 9, so E[6;] = 0. Let
D be the number of translates of H By the above discussion in (14) and (15), the density of nontrivial
3-APs in H; is at least

o) —(1— o).
We will use this bound when §; < —57.
We apply the weak regularity lemma, Lemma 8, to each translate H; of H with §; > —57 to obtain an
n-weakly-regular subspace T; of relative codimension at most |12 | in H with 1 = €/12. Denote the
translates of T in H; by Tj fork € H/T;. Let D; = |[H/T;| < pl"). Denote the density of f in Tj; by
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Oji = 0j + Ojk, so, for each j, we have E[6j;] = 0. As in the proof of Lemma 7, the density of 3-APs in
H; with nonzero common difference is at least

E[ajaajbajc} — 61’] = OCJ3- +E[5ja5jb6jc] — 6T],

where the expectations are over all triples of subspaces Tj4, Tjp, Tjc that form a 3-AP, and the equality is
by expanding and using E[d;,] = 0.
Hence,

EyMHer(f)]>;< Z (O‘ - 1_‘1} + Z +E5Ja5jb51c] ))

5_/'<—57 6> =5y
>bH)-D" Y, (1-a;)—6n+D" Y E[6:a838]- (16)
§;<-5y 6;>-5y

We next estimate the terms above. Observe that, for 6 ; < —5¥, we have

6 2
(=P = (-5 < (25) =308 an

Substituting in (17) and n = €/12 into (16),

_ 36
By (F) 2 b(H)~D™" Y, 287 —€/24D7" Y E[8u8p5]
5;<—=5y 6;>-5y
36
> b(H) ~ 3<E}[5; Jl—e/2+D7" Y E[8a65jc].

8;>—5y
‘We have

b(H)— o’ =Ej[(a+8))’] — & =3aE;[57] +E;[5]] > 3o — 1)E,;[57] > 1.95E;[5,]*.

Thus
36/25
Ey[ Aty ()] > o + (1 — 1/95> (b(H)—a’)—e/2+D7" Y E[8a88;c]
’ 8;>—5y
:a3+%(b(H)—a3)—s/2+D*1 Y E[8488]. (18)

8;>—5y

We still need to bound the last term. Observe that Y. 0,050/ = D? E[8;46,0c| as there are D? choices
for the triple (a,b,c) for which Tj,, Tjj, Tjc are translates of 7} in arithmetic progression, because there
are D; choices for each of a and b (which uniquely determine c). By throwing away the nonnegative
terms, we have

Z6j[,6jb6jc > Z 6j06jb6jc.
6ja8jb5jc<0
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The above sum includes terms where all three of §;4, 6, §;c are negative or exactly one is negative
and the other two are positive. Hence,

Y 18iadpSicl < Y 18iadpSicl + Y 181a8jpSicl + Y. 8jadSjcl,

6ja8jb6jc<0 Sja<0 5_/'[;<0 5/'[;<0

as each term in the sums are nonnegative, and each term on the left hand side appears either once or
three times on the right hand side. Thus, at least one of the three sums on the right hand side is at least
%25j615/b5j(7<0 8ja6;16jc|. Without loss of generality, suppose it is the first sum, s0 — Y5, <0[6ja0;sjc| <
%D%E[S a0 0jc]. By the arithmetic mean - geometric mean inequality, we have |6,0,0/c| < |0j4| (6j2b +
5}6) /2. Summing over all triples of subspaces in arithmetic progression, we obtain

1
S DIEI888] > Y, 818, = ( ) 5fa> L3

5j0<0 5ja<0
Asbjg=0tj;— 0 <1—a; <1—a+5Sy=6yforall jwith §; > —57, we have Y5, >0 8;s < 6YD;. As
also E4[8)o] =0, then X5, <9 8j, > —6YD. Hence,

I
3DE8jadpdjc] > (~67D))} &,
b

and so E[6;,6,6;c] > —18}/Eb[5j2b}.
Substituting into (18),

51

Ey[Amiy(f)] > o + @(b(H) —a’)—g/2—-D"" Y 18YE,[67). (19)
’ 0;>—5y
As Ey[An1y(f)] < a® — €, we therefore obtain
_ 51
18yp~" Y E,[83] > Los(b(H) — o) +¢/2. (20)

8;>—5y

Let H' = \;T;. The codimension of H' is at most Codim(H ) + n~2pCodim(H) — 144¢-2 pCodim(H) |
Codim(H). By convexity, we have

b(H') > D! < Y o+ ) Ea[aja]> .
§j<—5y 8;>—5y
By expanding with aj, = o; + 6, and using E[J/,] = 0, we have
Eala,] = 0 +30E4[67,] + Ea[83,] > o + (3o — 1)Ea[67,] > o + 1.95E,[87,].
Thus,

b(H') >E[e]+1.95D" Y Eu[87,] =b(H)+1.95D7" Y E.[5;,].
8;>—5y 8;>—5y

DISCRETE ANALYSIS, 2019:16, 39pp. 23


http://dx.doi.org/10.19086/da

JACOB Fox AND HUY TUAN PHAM
and so 1.957! (b(H') —=b(H)) > D' Lg;>_s5,E4[57,]. Substituting into (20), we obtain
1 51
18y —— (b(H') = b(H)) > ——
8" g5 (b(H') —b(H)) = 1752
Substituting in b(H') —b(H) = b(H') — o — (b(H) — &) and rearranging, we have

(b(H) — o) +€/2.

Sl 1.95 1

b(H') — o’ > <1+18y) (b(H)—OC3)—|—%8 > <1+36y> (b(H) —a®) +

£
20y’
completing the proof. O

We next discuss the proof of the lower bound in Theorem 5. Note that there must be a reason why
Theorem 8 in [22] (the weighted analogue which is used to deduce Theorem 12) does not hold for o
close to one, as the lower bound it claims would be better than the upper bound we just got. We next
discuss where in the proof of Theorem 8 in [22] we relied on & not being close to one, and discuss how
to properly modify it to get the lower bound in Theorem 5. Since the proof is only a minor modification
of Theorem 8 in [22], for brevity we do not repeat the details and only specify the key difference.

We reuse the notations in [22]. The first level of the construction is identical. Observe that in the proof of
Theorem 8 in [22], at each level i > 2 for x € H; we partition the subspace with the first n;,_; coordinates
equal to x into p affine subspaces of relative codimension one (which are translates of each other)
depending on the dot product of the last m; coordinates with v(x), and for some of these codimension
one subspaces we make the value of f; equal to zero, and on the other subspaces we make the value
%(1 +n)a~x %a. The problem with this construction for & close to one is that we would get a density
which is bigger than one on some subspaces, and this is not allowed. So instead of making the values O or
something else (namely %(1 +n)a) to keep the average value to be (1 + 1) on these subspaces, we
make the values 1 (instead of %(1 + 7)) on the denser subspaces and (1 — &)~ ((1+n)a — §) (instead
of 0) on the sparser subspaces, to keep the average value to be (1 + 1)« and all values in [0, 1]. The rest
of the proof is the same, apart from appropriately modifying the parameters. In particular, the exponential
growth of g; (which is the fraction of the space IF, ' that H; takes up) has the base exponential constant
in this version y~°() instead of 90 in order to counteract the smaller decrease in 3-AP density that we
get from the modification described above.

5 Concluding remarks

Arithmetic Progressions in Groups

Green [31] further proved that Theorem 1 holds not just in [, but in any abelian group G of odd order
orin [N] ={1,2,...,N}. In joint work with Zhao [25], we extend Theorem 2 of [22] to the interval
setting. We also generalize the upper bound in Theorem 2 of [22] to general abelian groups of odd order.
A substantial difficulty in this setting is dealing with the possible lack of subgroups. The upper bound
proof uses Fourier analysis on Bohr sets to extend the ideas here. With some additional ideas, the lower
bound can be generalized to cyclic groups which can be written as a product of groups with appropriate
growth in size. The construction however runs into a serious obstruction in the case the group has few
subgroups, for example, when the group is a primal cyclic group.
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A major direction in additive combinatorics in recent years has been to extend results from abelian
groups to all (not necessarily abelian) groups. For example, the Freiman-Ruzsa theorem gives a charac-
terization of subsets in abelian groups that have small doubling, i.e., sets A for which |A +A| = O(|A|).
Breuillard, Green, and Tao [9] have recently extended this to nonabelian groups, which has diverse
applications.

Another important example is Roth’s theorem, which was extended by Bergelson, McCutcheon, and
Zhang [7] to the nonabelian setting. This result says that if G is a group of order N and A C G is without a
nontrivial solution to xy = z? with x, y, z distinct?, then |A| = o(N). This also follows from the arithmetic
triangle removal lemma of Kral’, Serra, and Vena [43] (see also [54]), which was proved through an
application of the triangle removal lemma. However, by using the triangle removal lemma, the proof gives
a weak quantitative estimate. Recently, Sanders [49] used representation theory in order to extend the
standard Fourier proof to the nonabelian setting and give a new proof of this nonabelian Roth’s theorem
with the bound |A| = N/(loglog N)®(!).

Another natural extension of Roth’s theorem to groups states that if G is a group of order N, and A C G
has no triple x,xd,xd”> with d # 1, then |A| = o(N). Pyber [47] proved that every group G of order N has
an abelian subgroup H of order at least 292(VIogN) “which is in general best possible. By applying Roth’s
theorem for abelian groups in the cosets of H, we get this Roth-type theorem in the group G, and with a
reasonable quantitative bound, see Solymosi [54].

We think it would be interesting to know if Green’s theorem, Theorem 1, extends to nonabelian groups.
One version asks: does there exist, for each € > 0, an N;(€) such that for every group G of order at least
Ni(€) and every subset A C G of density o, there is nonidentity element d € G such that the density of
triples x, xd, xd> which are in A is at least &> — &. If G has an abelian subgroup H of index O(1), then
applying the regularity-type upper bound argument, starting with the subgroup H, shows that such a
result holds in this case with a similar bound on N; (€) as in the abelian case.

A variant of this question asks: does there exist, for each € > 0, an N, (€) such that if G is a group of
order at least N»(€) and A C G has density «, then there is a nonidentity element d € G such that the
density of triples x,y,z with xz = y*> and yx~! = d which are in A is at least &> — £? For quasirandom
groups, which were introduced by Gowers [37], it is easy to show that this version holds as the density
of solutions to xz = y*> which are in A is asymptotically &> —o(1). Further, it holds for quasirandom
groups with only a polynomial bound on N;(€), instead of the tower-type bound as in the abelian case.
This shows that, unlike in the abelian case, the quantitative bounds can depend substantially on the group
structure.

One possible approach to proving a nonabelian Green’s theorem is by developing a nonabelian general-
ization of the arithmetic regularity lemma, which would likely have further applications. One would likely
want to develop a nonabelian version of Bohr sets. Maybe some of the ideas on approximate subgroups
in the important work of Breuillard, Green, and Tao [9] or from representation theory as in the work of
Gowers on quasirandom groups [37], [38] could be helpful here.

Four-term arithmetic progressions

Green and Tao [32, 33, 34] proved that for each € > 0 there is n’(€) such that for any n > n’(€) and
any subset of 5 of density «, there is a nonzero d € 5 such that the density of four-term arithmetic

2Here, of course, the group operation is written multiplicatively.
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progressions with common difference d is at least a* — €. Ruzsa [5] proved that an analogous result does
not hold for longer lengths.

We think it would be interesting to estimate n’(€). Does it grow as a tower-type function? It appears the
proof given in [33] with the bound on the inverse Gowers theorem for U? from [36] gives a wowzer-type
upper bound, which is in the next level of the Grzegorczyk hierarchy after the tower function. The lower
bound construction we presented here for three-term arithmetic progressions can be modified to give a
lower bound on n’(€) which is a tower of twos of height ®(log(1/¢)). To get an improved upper bound,
some of the ideas of Green and Tao in the paper [35] might be useful.

Multidimensional generalization of cap sets and popular differences

Recall that the multidimensional cap set problem discussed in the beginning of the introduction asks
to estimate the maximum size r(n,m) of a subset of I; which does not contain a m-dimensional affine
subspace, and N'="+13™ < p(n,m) < (1+0(1))N'=C", where C ~ 13.901 is an explicit constant.

It remains an interesting problem to tighten the bounds on r(n,m). Is the right exponential constant
3, which comes from the random bound, or is it C, which comes from applying the arithmetic triangle
removal lemma, or is it something in between?

We have the following multidimensional generalization of Green’s theorem.

Theorem 23. For every € > 0 and positive integer r, there is a (least) positive integer n(r, €) such that
for every n > n(r,€) and A C I} ofrdensiZy Q, there is a subspace S of dimension r such that the density
of translates of S in A is at least o® — €.

The multidimensional cap set result can be generalized to vector spaces over a fixed finite field, and
Theorem 23 to abelian groups of odd order or to intervals, but we need to replace the notion of subspace
by “box”, also known as a generalized arithmetic progression. A k-box B of dimension r is a set of the
form {ap +i1dy +irdy+---+iyd, : 0<ij <k—1for1 < j<r}. Soak-box of dimension one is just a
k-term arithmetic progression. It is proper if all the elements are distinct, that is, if |B| = k”. We refer to
dy,...,d, as the common differences of the k-box, and aq as the initial term.

Theorem 24. For every € > 0 and positive integer r, there is a (least) positive integer N(r,€) such that
the following holds. For every N > N(r,€), if G is an abelian group of odd order N or G = [N], and
A C G of density «, then there are dy, . .. ,d, such that the 3-boxes of dimension r with common differences
dy,...,d, are proper and the number of them in A is at least (o> — €)N.

The proof of Theorem 24 is by induction on r. The base case r = 1 is simply Green’s theorem.
Suppose we would like to prove it for r > 1. Let A C G with |G| = N sufficiently large and |A| =
oN. We apply the induction hypothesis to A with parameters r — 1 and €/4 to obtain dy,...,d,_
such that the sums i1dy +--- +i,_1d,—; with 0 <i; <2 for 1 < j <r—1 are distinct, the number of
ag € [N] for which {ag +iidy +irdo+---+i_1dr—1 :0<ij <k—1for1 <j<r—1} CAisatleast

<a3H —g/ 4) N, and we let Ag be the set of such initial terms ag. The proof of Green’s theorem shows
that not only is there a single nonzero d which is a popular difference, but in fact a positive constant
fraction (depending on €) of d are popular differences. Applying Green’s theorem to Ag, we get many

choices of d, (more than 5" suffices) such that the number of 3-APs in Ay of common difference d, is

~ 3 ,
at least <<a3r g 8/4) — 8/4> N> ((x3 — 8) N. We can then choose such a d, such that all the sums
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iydy + -+ +1i,d, with 0 < i; <2 for 1 < j < r are distinct. The r-dimensional 3-boxes with common
differences dy, . .., d, are proper and at least (OtSr — 8) N of them are contained in A, completing the proof.
This proof shows that for r fixed, N(r,€) in Theorem 24 grows at most as a tower of twos of height
®,(log(1/€)). A modification to our lower bound constructions shows that this bound is tight over I/, for
each fixed r. For brevity, we leave out the details of the proof.

The proof of Theorem 24 together with the result of Green and Tao [34] for four-term progressions
shows that Theorem 24 also holds with the length 3 replaced by 4.

From Tower to Wowzer

Ron Graham [29] asked if faster growing functions like wowzer-type (the next level in the Grzegorczyk
hierarchy after tower) naturally appear in similar problems. Formally, the wowzer function is defined by
Wow(1) = 2 and Wow(n) = Tow(Wow(n — 1)), where Tow(n) = Tow(2,n) is an exponential tower of
twos of height n.

We first remark that Green’s proof of his theorem, which is obtained by directly applying the arithmetic
regularity lemma and the counting lemma, gives the following strengthening. It is stronger by the fact
that, for a set of density &, the mean cube density of a subspace is at least &> by convexity.

Theorem 25. For each € > 0 and p, there is a least positive integer my(€) such that for every A C I, of
density o, there is a subspace H of ', of codimension at most mp, (&) such that the density of 3-APs with
common difference in H is at least b(H) — €.

The original proof of Theorem 25 using the arithmetic regularity lemma gives an upper bound on 1, (€)
for p fixed which grows as a tower of height e (1), Adapting the upper bound proof from [22] gives a
better upper bound which is a tower of height ®(1/¢). We can get a matching lower bound, so a tower of
height Q(1/¢), by modifying the construction used to give a lower bound in Green’s theorem from [22].
In the lower bound construction in [22], the fraction of subspaces we make perturbations to increases by
a constant factor at each step. To get the lower bound here, after the first level, the fraction of subspaces
we make perturbations to at each step is the same. For brevity, we leave out the details of the proof.

Theorem 26. The function m,(€) defined in Theorem 25 for p fixed grows as a tower of height ©(1/¢).

While the tower height grows faster in the above result than in Green’s theorem, it is still in the same
level of the Grzegorczyk hierarchy. To go to the next level of the Grzegorczyk hierarchy, it is natural
to try to find an extremal problem that essentially encodes an arithmetic strong regularity lemma. The
(graph) strong regularity lemma of Alon, Fischer, Krivelevich, and Szegedy [2] finds a pair of partitions
P and Q, with Q a refinement of P, and the regularity of Q is allowed to depend on the size of P. The
proof of the strong regularity lemma involves applying Szemerédi’s regularity lemma at each step, and so
the bound one gets on the number of parts of Q is iteratively applying the tower function £790) times. In
other words, it is of wowzer-type. That such a bound is necessary was shown by Conlon and the first
author [13] and independently with a weaker wowzer-type by Kalyanasundaram and Shapira [40].

An arithmetic analogue of the strong regularity lemma is as follows. For each function g : Z>¢ — (0,1),
there is M),(g) such that the following holds. If A C F)), then there are subspaces H; C Ho C I, such that
the codimension of H; is at most M,,(g), b(H1) < b(Hy) +g(0), and H; is g(m)-regular, where m is the
codimension of Hy. As long as 1/g(n) grows not too slowly and not too fast with n, which here means
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it is bounded between any constant number of iterations of the logarithmic function and any constant
number of iterations of the exponential function, then the function M, (g) grows as wowzer in ®(1/¢)
where € = g(0).

The next result follows easily from the arithmetic strong regularity lemma and the counting lemma.

Theorem 27. For each function g : Z>o — (0, 1), there is M,,(g) such that the following holds. If A C IF",
then there are subspaces Hy C Hy C ), such that the codimension of H, is at most M;, (g) and the density
of 3-APs with common difference in Hy is in the interval [b(Hy) — g(m),b(Hy) + g(0)], where m is the
codimension of Hy.

Theorem 28. The function M),(g) in Theorem 27 with g(n) = €/(n+ 1) grows as wowzer in ©(1/¢).

The upper bound follows directly from the proof of the arithmetic strong regularity lemma. The lower
bound is by appropriately modifying the lower bound construction for Green’s theorem with modifications
similar to that used in [13] to mimic the upper bound proof of the strong regularity lemma. For brevity,
we leave out the details of the proof.

Monochromatic arithmetic progressions with popular differences

Van der Waerden’s theorem [60] states that, for all positive integers k and r, there exists W (k,r) such
that if N > W (k,r), then every r-coloring of Zy contains a monochromatic k-term arithmetic progression.
Many results in Ramsey theory are of this flavor, that in any finite coloring of a large enough system, there
is a monochromatic pattern. In some instances, a stronger density-type theorem also holds, showing that
any dense set contains the desired pattern. This is the case for van der Waerden’s theorem, as Szemerédi’s
theorem [56] is such a strengthening, implying that the densest of the r color classes will necessarily
contain the desired arithmetic progression. Szemerédi’s theorem states that for each positive integer k
and € > 0, there is S(k, €) such that, if N > S(k, €), then any subset of Zy of size at least €N contains
a k-term arithmetic progression. Note that Roth’s theorem is the case k = 3. By a Varnavides-type
averaging argument, one can further show that a stronger, multiplicity version of van der Waerden’s
theorem (and of Szemerédi’s theorem) holds, which shows that a fraction c(k,r) —o(1) of the k-term
arithmetic progressions must be monochromatic. Observe that a random coloring gives an upper bound on
c(k,r) of r'=k. For r > 2 it is possible to show that there are colorings with relatively few monochromatic
arithmetic progressions, considerably smaller than the random bound. For example, using the Behrend
construction giving a lower bound for Roth’s theorem, one can construct an r-coloring of Z,, such that the
fraction of three-term arithmetic progressions which are monochromatic is only r—(l°g "), which is much
less than the random bound of r~2.

Let G be an abelian group of odd order. Note that, in a random coloring of G, for each nonzero
d, the density of 3-APs with common difference d will likely be concentrated around riz Just like in
the density version, we can get arbitrarily close to the random bound for the most popular difference.
Green [31] proved that, for r fixed, the arithmetic regularity lemma in G extends to r subsets of G (in
particular, for the r color classes in an r-coloring of G), so that the decomposition is regular with respect
to each of the r subsets. Green’s proof of the density theorem on arithmetic progressions with popular
differences extends in a straightforward manner to obtain the following coloring variant. Indeed, using
this extension of the arithmetic regularity lemma and scaling the approximation parameter € by r, as
long as |G| > N(g,r), there is a nonzero d such that, for each color i, the density of 3-APs with common

DISCRETE ANALYSIS, 2019:16, 39pp. 28


http://dx.doi.org/10.19086/da

POPULAR PROGRESSION DIFFERENCES IN VECTOR SPACES II

difference d which are monochromatic with color i is at least Ocl?’ — £, where o is the density of color
i. Summing over all i, we get the density of monochromatic 3-APs with common difference d is at
least YI_ (o —¢/r) >r(1/r)} —e= r% — g, where the inequality uses Jensen’s inequality applied to the
convex function f(x) = x> and the average of the «; is 1/r.

Theorem 29. For each € > 0 and positive integer r, there is N = N(€,r) such that if G is an abelian
group with odd order |G| > N, then for every r-coloring of G, there is a nonzero d € G such that the
density of 3-APs with common difference d that are monochromatic is at least r% —&.

Picking the most popular of the r colors, we have the following corollary.

Corrolary 30. For each € > 0 and positive integer r, there is N' = N'(g,r) such that if G is an abelian
group of odd order with |G| > N', then for every r-coloring of G, there is a nonzero d and a color i such
that the density of 3-APs with common difference d that are monochromatic in color i is at least rl—g —¢&.

For r = 2, these results are actually quite simple to prove and with bounds that are much better than
applying the arithmetic regularity lemma because of the folklore observation that the total number of
monochromatic 3-APs is determined by the size of the first color class. Indeed, if R and B are the two color
classes, so |B| = |G| — |R|, then we can count the number P of three-term arithmetic progressions with a
distinguished pair of elements of the same color in two different ways. First, for each pair of elements there

are three arithmetic progressions containing that pair, so we get P = 3 (‘1; ‘) +3 ('123 ‘). Alternatively, every

three-term arithmetic progression contains one or three such monochromatic pairs, and there are (‘gl)

such three-term arithmetic progressions in G, so we also get P = ('g‘) +2M, where M is the number of

monochromatic three-term arithmetic progressions. We thus get M = 1 (3(‘15') + 3(“23') — ('gl)) = % —
3|R|(/G| — |R|) — 'SL. This is maximized when |R| = @J = (|G| - 1)/2, and we get (|G|> —4|G| +3)/8
monochromatic arithmetic progressions in this case. Thus, the density of monochromatic 3-APs is at least
((IGP* - 4/G| +3)/8) /(1§ =1 - aigr- Hence, aslong as |G| > je™", then the density of monochromatic
3-term APs at least § — ¢, and it follows that N(g,2) < 2&~!. Thus we get a linear upper bound in 1/¢
on N(2,¢€), much smaller than the tower-type bound that comes from applying the arithmetic regularity
lemma.

However, for r > 3, there is no such simple formula for the number of monochromatic 3-APs in a
r-coloring. In fact, we can prove a coloring variant of Theorem 2 in [22], showing that N(g,r) and
N'(g,r) for r > 3 grow as a tower of twos of height ®,(log(1/¢)).

Theorem 31. For r >3 fixed, we have N(&,r) and N'(g,r) grow as a tower of twos of height ®,(log(1/€)).

Further discussion and proofs are contained in [23].

Linear equations

A well known conjecture of Sidorenko [51] and Erdés-Simonovits [52] states that if H is a bipartite
graph, then the random graph with edge density o has in expectation asymptotically the minimum density
of copies of H (which is a¢ (H)y over all graphs with the same number of vertices and edge density. Simple
constructions show that the assumption that H is bipartite is necessary. A stronger conjecture, known as
the forcing conjecture, states that if H is bipartite and contains a cycle, and G is a graph with edge density
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o and H-density a¢) + o(1), then G is quasirandom with edge density . Sidorenko’s conjecture and
the stronger forcing conjecture are still open but are now known to be true for a large class of bipartite
graphs, see [14, 16, 17, 39, 41, 44, 55].

Saad and Wolf [48] began the systematic study of analogous questions for linear systems of equations
in finite abelian groups. While much of this discussion extends to general finite abelian groups, for
simplicity we restrict our attention to FZ Let L(xy,...,x;) = Zf-‘zl a;x; be a linear form with coefficients
a; € Fp\{0}. The linear homogeneous equation L = 0 is called Sidorenko if for every subset A C [, of
density «, the density of solutions to L = 0 which are in A is at least «*, the random bound. We say that
the equation L = 0 is matched if the coefficients of L can be paired up so that each pair sums to zero. It
is a simple application of the Cauchy-Schwarz inequality that if L = O is matched, then it is Sidorenko.
Zhao and the authors [26] recently proved that L = 0 is Sidorenko if and only if it is matched.

The equation L = 0 is called common if for every 2-coloring of ), the density of monochromatic
solutions to L = 0 is at least 2! 7%, the random bound. It is easy to see that if L = 0 is Sidorenko, then it
is common. Cameron et al. [10] observed that if k is odd, then L = 0 is common. Saad and Wolf [48]
conjectured that if & is even, then L = 0 is common if and only if it is matched. Zhao and the authors [26]
also proved this conjecture.

The popular difference property can be generalized to general linear equations. We say that L =0 is
popular if, for each € > 0, if n > ny(¢) and A C IFZ has density ¢, then there are nonzero and distinct
di,...,d;_1 such that the density of solutions to L with x;11 —x; =d; fori=1,...,k— 1 is at least
ok —¢. In particular, when k = 3, and a; = a; = 1 and a3 = —2 (viewed as elements of F,), then
ni(€) = maxqn,(a, o —€). Note that if L = 0 is Sidorenko, then simply by averaging, L = 0 is popular
and furthermore, ny (€) is bounded above by O(log(1/¢€)). We say that the linear homogeneous equation
L =0 is translation invariant if and only if the sum of the coefficients is zero. Theorem 1 can be extended
to show that L = 0 is popular if and only if L = 0O is translation invariant. Indeed, if L = 0 is not
translation invariant, then the affine subspace S of codimension one (so density a = 1/p) consisting of
those elements whose first coordinate is 1 has no solution to L = 0. Hence, it follows that n; (&) does
not exist for € < 1/p*. On the other hand, if L = 0 is translation invariant, then it follows from the
arithmetic regularity lemma proof that there is a regular subspace H, and the counting lemma and Jensen’s
inequality gives that the density of L with x{,...,x; all in the same translate of H is at least almost o¥.
By throwing out the solutions with x; = x; for some i # j (which is of smaller order) and averaging, we
get that there exists nonzero dy,...,dy—; € H for which the density of solutions to L with x;1; —x; = d;
for 1 <i<k—11isatleast a* — &. This proof gives an upper bound on n; (¢) which is a tower of height
£~20)_In fact we can directly adapt the proof of Theorem 2 in [22] to show that ni(€) is bounded above
by a tower of height ®(log(1/¢)), using a density increment argument with the mean k-th power density,
defined as by (H) = E,[fu (x)X].

We note that our construction of the lower bound in Theorem 2 of [22] and the lower bound in Theorem
2 heavily depends on the fact that the equation x; — 2x, 4+ x3 = 0 is not Sidorenko, as a crucial ingredient
of our construction is a model function with low 3-AP density. As mentioned above, if L = 0 is Sidorenko,
then the lower bound on ny(€) is not of tower type, but in fact, only logarithmic in €. However, the
tower-type lower bound in Theorem 2 of [22] does not necessarily hold for a general linear equation
which is not Sidorenko. In fact, we can construct explicit examples of linear homogeneous equations in
2" variables for t > 3 which are not Sidorenko but n(¢) = O(log(¢')). On the other hand, when the
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number of variables in the equation L = 0 is 3 as in the case of 3-APs, we can adapt directly the proof of
Theorem 2 of [22] to show that if an equation L(x;,xz,x3) = 0 is not Sidorenko, then n (&) grows as a
tower of height proportional to log(e~1).

The above discrepancy suggest that it could be very interesting to understand and characterize the
growth rate of ny (€) for linear equations in at least four variables. In fact, we do not know if there are any
linear equations in at least four variables for which ny (&) grows as a tower function.

We refer the reader to [26] for further details and questions.

Beyond the random bound when there are relatively few total arithmetic progressions

We can strengthen Green’s theorem, Theorem 1, as follows. If our space is large enough and the total
density of three-term arithmetic progressions is substantially less than the random bound, then there is
a nonzero d for which the density of three-term arithmetic progressions with common difference d is
substantially larger than the random bound.

Theorem 32. For each o and B < &, there is ¥ > &> such that the following holds. For each § > 0
there is n,(8) such that if n > n,(8) and f : ¥y — [0,1] has 3-AP density at most B, then there is a
nonzero d such that the density of 3-APs with common difference d is at least Y — 8. In particular, we can
always take y= o + (o> — B) /2, and if a® > 28%8C B, then we can take y = (o /B)'/ ) a®, where

C, = O(logp) is the exponential constant in the arithmetic removal lemma.

The proof is as follows. Let Hy = I}, so b(Hp) = . By Lemma 7, there is a subspace H; of bounded
codimension with b(H;) > o + (o — B)/2. If a® > 2873 B, by Lemma 10, we can instead find a
subspace H; of bounded codimension with b(H;) > B(a?/B)' T/ %) = (a3 /B)V/ %) 3. We then
apply the arithmetic regularity lemma to find a subspace H> of H; of bounded codimension which is
&’-regular, where 6’ = /8. That is, all but at most a §’-fraction of the translates of H, are &’-regular,
where an affine subspace S is d-regular if the function f is &’-close to the constant function Ecg[f (x)]
on the subspace. By the counting lemma, Lemma 9, applied to each of the &’-regular translates of H,, the
average density of three-term arithmetic progressions with common difference in H, is at least

Eyer [ f ()] =38 Eyermxf ()] 2 b(Ha) —38' — &' = b(H) —§/2,

Hy+x is 8’ —regular

where we used Eycp,«[f()] < 1 and the density of translates of H, that are not ¢’-regular is at most
¢’. This includes the arithmetic progressions with common difference zero. As long as H, is sufficiently
large, which holds as 7 is sufficiently large to start with, then the 3-AP density with common difference in
H, is negligibly affected by whether the common difference zero arithmetic progressions are included or
not. We thus get the average 3-AP density with nonzero common difference in H, is at least b(H;) — 8,
and hence there is a nonzero d € H, for which the 3-AP density with common difference d is at least
b(H,) — 6. By the lower bound b(H,) > b(H\ ), which holds as H, is a subspace of Hj, this completes
the proof.

Quasirandomness and arithmetic progressions

The study of quasirandomness in graphs and other structures have played an important role in com-
binatorics, number theory, and theoretical computer science. For graphs, Chung, Graham, Wilson [11],
building on earlier work of Thomason [58, 59], discovered many equivalent properties of graphs that
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are all shared (almost surely) by random graphs. Following this work, Chung and Graham [12] studied
quasirandom properties in other combinatorial structures such as hypergraphs, permutations, boolean
functions, and subsets of Zy. Here we focus on I, with p fixed as it is simpler due to the existence of
subspaces, although it can be extended using Bohr sets to general abelian groups.

For a set A C ), we let A : ), — {0, 1} denote the indicator function. That is A(x) = 1 if x € A, and
A(x) = 0 otherwise. We let N = p". We say a set A C I, is €-quasirandom if it satisfies the following

property.
P(€): For every affine subspace H C F”, we have [|[ANH| — |A||H|/N| < eN.

As discovered by Chung and Graham [12] (in the setting of Zy), there are many equivalent properties
up to changing €. For example, the set A having all nonzero Fourier coefficients at most € is such
an equivalent property. Another example is that for all but at most €N elements x € I, the size of
the intersection of A and its translate A + x is within éN of |A|?/N. Yet another such property is that
the Cayley sum graph of A is €-quasirandom. This relates quasirandomness of subsets of ) to the
quasirandomness of an associated graph.

A graph H is forcing if, for every fixed 0 < o < 1, a graph with edge density & and H-density
actH) 4 o(1) is necessarily quasirandom. It is not hard to show that if H is acyclic or not bipartite, then
H is not forcing, and the forcing conjecture is that all other graphs are forcing. However, Simonovits
and S¢6s [53] proved that if H is a fixed graph with at least one edge, and G is a graph on n vertices such
that every vertex subset S has a¢)[S|"() 4 o(n"#)) ordered copies of H, then the graph is necessarily
quasirandom. In particular, if all linear-sized induced subgraphs of a graph have about the same density
of triangles, then the graph is quasirandom. Their proof used Szemerédi’s regularity lemma, and gave a
weak (tower-type) bound on the dependency between the error parameter for this quasirandom property
and the traditional quasirandom properties. They posed the problem of finding a new proof that avoids
using Szemerédi’s regularity lemma and gives a better dependency. This problem was recently solved
by Conlon, Sudakov, and the first author [15], giving a linear dependence for cliques, and a polynomial
bound for other graphs.

Proofs of Roth’s theorem typically begin by observing that if the set is quasirandom, then a counting
lemma shows that the total number of three-term arithmetic progressions is about the random bound.
However, if the total number of three-term arithmetic progressions is about the random bound, then the
set needs not be quasirandom. Motivating by this observation and the results of [53] and [15] in the
case of triangles in graphs, it is natural to ask if there is a natural analogue of the quasirandom property
of hereditary triangle counts in the arithmetic setting and how such a property relates to other notions
of arithmetic quasirandomness quantitatively. In the arithmetic setting, we count three-term arithmetic
progressions instead of triangles, and affine subspaces replace the role of vertex subsets. Indeed, we
can prove that if the number of 3-APs is not much larger than the random bound in any large affine
subspace, then we do get quasirandomness. We have two different versions below. The first involves
counting 3-APs in a single affine subspace, and the second counts 3-APs inside translates of a subspace,
or equivalently, with common difference in the subspace.

Q(e): For every affine subspace H C ), we have

Y AE)A(x+d)A(x+2d) < |AP|H*/N +¢|H|N.
xx+deH
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R(€): For every subspace H C F”, we have

AX)A(x+d)A(x+2d) < |AP|H|/N? 4+ eN>.
x€F).deH

Both Q and R are quasirandom properties, that is, they are equivalent to P up to changing €. In
particular, P(¢) implies Q(8p?¢) and R(8p?¢). Conversely, Q(8) with § = 2-(p/e)?" implies P(¢),
whereas R(8) implies P(€) when 5! grows as a tower of p’s of height ®(log(1/€)). Surprisingly, while
the dependency between the quasirandom parameters of Q and P is only exponential and can be further
improved, the dependency between the quasirandom parameters of R and P is of tower-type, which can
be shown to be tight using the construction in the proof of Theorem 12 in [22]. This shows that, unlike
for hereditary triangle counting where the dependency between the quasirandom parameters turns out to
be linear, for property R, the dependency turns out to be tower-type (of height logarithmic in 1/¢). We
thus address with a somewhat unexpected answer the arithmetic analogue of the Simonovits-Sés problem
[53] (see also [14]) on the dependency between hereditary counts and other quasirandom properties.

Further discussion and proofs are contained in [24].

Popular restricted differences

There is now an extensive literature on strengthenings of Szemerédi’s theorem in which the common
difference lies in a particular set S. An early result of this sort is the Furstenberg-Séarkézy theorem
[50], which guarantees that any dense subset of the integers contains a pair of distinct elements whose
difference is a perfect square. A result of Bergelson and Leibman [6] implies that any dense subset of
the integers contains a k-term arithmetic progression whose common difference is a perfect rth power.
Another result of this type is when S is the set of primes shifted by one, see [27]. Quantitative bounds
have also received much attention, see, e.g., Green [30].

One naturally wonders whether similar strengthenings of Green’s theorem hold, where the popular
nonzero common difference must lie in a particular set S. A simple example in I, is when S is a subspace
of codimension D, where D is fixed. Indeed, such a result follows from the following somewhat stronger
version of Theorem 1.

Theorem 33. For each € > 0, nonnegative integer D and odd prime p, there is 6 = 6,(€,D) > 0 such
that for any subset of ¥, and any subspace Hy of codimension at most D, there is a subspace H of H
with |H| > 8 p" such that the density of 3-APs with common difference in H is at least b(Hy) — €.

The proof of the above theorem can be obtained directly from our quantitative improvement of Green’s
theorem, showing that we can take 0,(€,D) so that 1/3,(€,D) grows as a tower of p’s of height
O(log(1/¢€)) with a D on top. Thus, there is a popular nonzero common difference in S if 7 is larger than
a tower of p’s of height O(log(1/¢€)) with a D on top. We can also modify the lower bound construction
in the proof of Theorem 12 in [22] by starting with the partition into translates of the subspace S, and get
a lower bound showing that this is essentially tight. In particular, in ', with p fixed, if § is a subspace
of codimension D, to guarantee that for any set there is a nonzero d € S for which the density of 3-APs
with common difference d is at least € less than the random bound, the smallest dimension n we need is a
tower of p’s of height ®(log(1/¢€)) with a D on top.

It would be interesting to prove other strengthenings of Theorem 1 with restricted differences. For
example, what if S is a random set with a given density? Even the threshold probability for Roth’s
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theorem with a random restricted difference set is poorly understood (see, e.g., [28]), so this is likely a
challenging problem.

Appendix

A Estimates

A.1 Bounds between constants in the proof of Theorem 15

We collect here several useful bounds on the constants used in the proof of Theorem 15. For i > 3, we
have

i
ui:er:rl+r2+
~ ‘

J

Z(l—l—y)‘%-— Z(1+}/)_jr3 =rn+n+(1+y Hri—y 'n<(1+y Hr Q2D
=0 j=1

We also have rp = .7864m; > .7864-99991og ,(1/B8) > 70001log p, so for i > 3 we have
r,~+1:(1+}/)ri:r,~—|—yrl~2r,~—|—yr2Zri—i—lOOOO, (22)

and it follows by induction on i that
r; > 10000i (23)

for i > 1. Recall that |A,,| > p78% for p > 19 and r > 10°. Hence, |Ap7,j|/R‘,- > RJT'ZIS and u; >
{:1 RS = Uj"218. Therefore,
mi=Ni-1 (|Ap | /Ri)? 11 B > N1 R, U P>B. (24)

For i = 2, this gives
my > N1R2—.436R1—.654p—(m1+1)/10000 _ pml—.436'.7864-m|—.654m1—(m1+1)/10000 > pm1/400’ (25)
We next prove by induction on i that, for i > 2, we have

m; >2-10%,_; >2-10%m;_, (26)

and
m; > 100u; > 10°r;. (27)

Indeed, for i = 2, we have my > pm1/400 > 2-10%n; = 2-10%n;, where we used that m; > 10° and
p > 19. We have uy = r; +ry < 2my, so (26) for i = 2 implies (27) for i = 2.

Next suppose that i > 2 and we have proven (26) and (27) for smaller values. By (24), r; < 10°u;_1,
and the induction hypothesis, we have

m; > pni,17.436r,-7‘654u,-,1ﬁ > pn,»,17105u,»,1ﬁ > p.9n,-,1B > pn,-,l/2 >2. 106ni_] )
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We also have
up=rituiy <107 +uimg < 10%;_1 <my_y <m;/10°,

completing the induction proof of (26) and (27).
By (24) and (27), for i > 4, we have

m; > pni,l—.436r1—.654u,-,1B > pni,l—loﬁui,zﬁ > pmi71+mi72+m1—106ui,zﬁ > pmi,l‘ (28)

Recall that |A, .| > ((p+ 1)/2.0001)"~2 for p > 19 and r > 10°. As R; = p'i, we therefore have
Ri/|Ap.| < p*(2.0001/(1+1/p))7 and so 1/p; < p*(2.0001/(1+1/p))*. Fori > 2, we have

R Ny (|Ay,| /R 13 B R;
mil; _ i 1(| P,"z’/ l) uuz—lﬁ 1 :,ulzBRl ZEPS. (29)
Hi—1Ni—1 Mi—1Ni1

Indeed, for i = 2, we have

p_8(2‘0001/(1 + 1/p))—2u2Bprz > p—8(2‘0001/(1 + l/p))—4.5433r2p—(r1+1)/10000pr2
p (P ((141/p)/2.0001)383)7 > p=9m2/200 > g3,

uBR: >
>

where we used f§ > p~(11+1)/10000

For i > 3, we have

in the second inequality, and we used r; < 2r, in the third inequality.

p74i2‘000172uiﬁpri > p74i2.000172(10gp)r,-/SBpr,- > p74iﬁp.3r,- > p74ipr,-/5
5
ep,

uiBR; >
>

where the last inequality is by (23).
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