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Neutrally buoyant colloids with small Reynolds numbers pose interesting challenges particularly when
they undergo shear thinning and Brownian diffusion. Two basic flows including Poiseuille and Couette
flows accompanying shear-induced particle migration are investigated in this study using direct numerical
simulations (DNSs). A scaled viscosity model of colloidal suspensions considering both the shear rate and
bulk particle volume fraction is employed to describe the shear-thinning behavior of suspensions. The
constitutive diffusion equation proposed by Phillips et al. [Phys. Fluids A 4, 30-40 (1992)] is used to model
the dynamics of suspension flow. We vary the Péclet number Pe, from 102 to 10° for the semi-dilute
and dense suspensions with the bulk particle volume fraction ¢;, ranging from 10% to 50%. It was found
that, in the limit of vanishing inertia, the distribution of volume fraction gradually flattens by increasing
Brownian force. In a Poiseuille flow, the velocity of suspensions decays as the Brownian motion becomes
stronger, leading to the flow rate reduction. For a circular Couette flow, the Brownian diffusion enhances
the velocity of suspensions and increases the friction coefficient at the inner cylinder wall. Our study

reveals that the Brownian motion is more critical for higher volume fraction values.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The flow of particles suspended in a fluid is relevant to a
variety of engineering and scientific applications such as trans-
port of sediments [Snider, O'Rourke and Andrews, 1998], delivery
of biochemical materials (DNA molecules and drugs) [Fan et al.,
2003; Tripathi and Beg, 2014], food processing [Lareo, Fryer and
Barigou, 1997], and composite materials processing [Tucker, 1991;
Petrie, 1999; Nordlund, Fernberg and Lundstrom, 2007]. In particu-
lar, a shear-induced particle migration occurring in either pressure
or shear driven flows such as channel, pipe, and Couette flows has
been a crucial issue because it can affect the flow field leading to a
change of velocity profile of suspensions or induce clogging in the
system [Lyon and Leal, 1998; Miller and Morris, 2006]. The focus of
this work is on the suspensions of very small particles which un-
dergo observable Brownian motion resulting from the collision of
particles. In colloidal and Brownian suspensions, thermally driven
stresses on the particles causing by Brownian motion can signifi-
cantly impact the migration induced by the shear-driven stresses
[Frank et al., 2003; Semwogerere, Morris and Weeks, 2007].

Suspensions have complex rheological behavior, which depends
on the solvent properties, the spatial distribution of particles, and
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the microstructure [Brady and Morris, 1997]. The viscosity 1 of
suspensions of rigid, spherical particles varies with the particle ra-
dius a, the solvent viscosity 7o, the shear rate y, the thermal en-
ergy kT, and the number density n [Krieger, 1963, 1972]. For neu-
trally buoyant suspensions, the relative viscosity nr = n/n, de-
pends on the volume fraction ¢ = 4mwa3n/3, the dimensionless
shear rate (i.e., the Péclet number Pe = 67 n,a®y /kT), and the par-
ticle Reynolds number Re = p,a2y/n, where p, is the solvent
density [Krieger, 1963, 1972; Stickel and Powell, 2005]. In the ab-
sence of inertia (i.e., at very low Reynolds numbers), the relative
viscosity 1, depends only on the particle volume fraction and the
shear rate as 1, = f (¢, Pe). In addition, for non-colloidal sus-
pensions, if the Péclet number is very large (Pe = o), the rel-
ative viscosity can then be expressed as a function of the vol-
ume fraction nr = f (¢) [Stickel and Powell, 2005; Hinch, 2011].
On the other hand, in the case of colloidal suspensions, Pe re-
mains important and the suspensions show non-Newtonian rheo-
logical behaviors including yield stresses at high concentrations, or
they present nonlinear effects such as shear rate sensitive viscosity
(i.e., shear-thinning, and/or shear-thickening behavior) [Stickel and
Powell, 2005; Sato, 1995; Foss and Brady, 2000; Mari et al.,
2015; Marenne et al., 2017]. A dimensional analysis reported in
[Krieger, 1963, 1972] has revealed that suspensions are shear-
thinning when Brownian motion is significant but shear-thickening
when Re is dominant [Semwogerere, Morris and Weeks, 2007].
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Yield stresses have also been observed mostly at very high con-
centrations (¢ > 0.5) [Stickel and Powell, 2005; Heymann, Peukert
and Aksel, 2002].

Based on the dimensional analysis reported in [Stickel and
Powell, 2005], several models have been developed for the vis-
cosity of suspensions to consider the non-Newtonian behavior
of the flow. It was also reported that colloidal suspensions are
shear-thinning in the range of 102 < Pe < 103; thus, the lo-
cal shear rate is strongly related to the viscosity of suspensions
[Stickel and Powell, 2005]. Einstein (1906) in his pioneering work
showed that in the limit of vanishing inertia and for dilute suspen-
sions (i.e., ¢ — 0), the suspension viscosity is a linear function
of particle volume fraction nr = 1 + 2.5¢. Batchelor (1977) ex-
tended Einstein’s first-order equation to a second-order equa-
tion for Brownian suspensions as 1, = 1 + 2.5¢ + 6.2¢2. For
higher volume fractions, however, the viscosity starts to in-
crease faster than a second order polynomial [Stickel and Pow-
ell, 2005]. Cross (1965, 1970) introduced a relationship between
the suspension viscosity and the shear rate for colloidal sus-
pensions of hard spheres revealing the shear-thinning behavior
as

S (1)

nr=77<>o+1+0”-/m

where 7y and 7., are limiting values of viscosity at zero (y = 0)

and infinite shear rates (y = oco), respectively. The constant « is a
rheological fitting parameter and the exponent m depends on poly-
dispersity of the particles [Cross, 1970].

Later on, de Kruif, et al. (1985) scaled the viscosity of colloidal
suspensions as a function of both shear rate and volume fraction
given by

1o — Neo (2)

T =T+ 11 310,03 /KT

They showed that the limiting low and high shear viscosities
are only dependent on the volume fraction and can be expressed
as

no(y — 0) =1+ 250+ (4 + 2)¢? + (42 + 10)¢> (3)
NV = o0) =1+ 250 + (4 £ 2)¢? + (25 £ 7)¢> (4)

They reported that these relations are valid for ¢ ~ 0.35. The
viscosities diverged at ¢ = 0.63 4+ 0.02 for low shear limits (i.e.,
y — 0) and at ¢ = 0.71 £ 0.02 for high shear limits (ie.y —
o0), regardless of the particle size [de Kruif, et al., 1985; van der
Werff and de Kruif, 1989]. For higher volume fractions, correlations
of limiting viscosity were obtained by fitting experimental data
to the empirical formula of Krieger and Dougherty [Krieger and
Dougherty, 1959];

~ ~ ¢ —[n]max
r = (1 ¢max> )

Here, the suggested limiting packing fractions at which the vis-
cosity diverges are ¢max(y — 0) = 0.63 £+ 0.02 and Pmax(y —
o00) = 0.71 £ 0.02 [de Kruif, et al.,, 1985; van der Werff and de
Kruif, 1989].

Several researchers investigated the rheology and its aspects
on colloidal suspensions [Bossis and Brady, 1989; Jones, Leary
and Boger, 1991; Brady, 1993; Brady and Vicic, 1995; Phung,
Brady and Bossis, 1996; Yurkovetsky and Morris, 2008]; how-
ever, there have been few attempts to address the migration
phenomenon of the flow of colloidal suspensions which under-
goes the Brownian motion using constitutive models. In addition,

while a particle migration in the flow of non-colloidal suspen-
sions has been well-documented over the decades both experi-
mentally and theoretically in various geometries by [Leighton and
Acrivos, 1987; Fang et al., 2002; Lyon and Leal, 1998; Phillips, Arm-
strong and Brown, 1992; Fang et al., 2002; Miller and Morris, 2006;
Ahmed and Singh, 2011, and references therein], a particle migra-
tion of the flow of Brownian suspensions in a pressure-driven flow
was studied for the first time by Frank et al. (2003). The authors
observed the shear-induced migration of colloidal particles flowing
through rectangular channels using confocal microscopy. Concen-
tration profiles were measured for various bulk volume fractions
(¢pp= 0.05 ~ 0.34) and bulk Péclet numbers (Peg). They showed
that particles move strongly toward the centerline of the channel
at higher ¢, and Peg. They also developed a constitutive equation
to describe the particle migration using the suspension balance
model (SBM) and existing normal stress models that are functions
of both ¢, and local Péclet number. However, they did not con-
sider a non-Newtonian model for the viscosity of suspensions in
their analysis. Semwogerere, Morris and Weeks (2007) extended
the experiment of Frank et al. (2003) for varying volume fractions
(¢p= 0.1 ~ 0.4) and Péclet numbers (Peg=10 ~ 400) and investi-
gated the influence of Brownian motion on the entrance length,
which is the distance from the inlet where the concentration pro-
file is fully developed. They found that the entrance length signifi-
cantly depends on the Péclet number. For Peg « 100, the entrance
length increases by increasing Peg; however, it reaches a constant
value for larger Peg. Moreover, the authors predicted the migration
and the entrance length using the constitutive modelling proposed
by Frank et al. (2003) and showed an agreement with the trends
of their experiments. Thereafter, Brown et al. (2009) utilized nu-
clear magnetic resonance (NMR) imaging to measure the migra-
tion of particles in a capillary flow of Brownian suspension and
detected the particle migration inward to the capillary center even
in the dilute regime (i.e., ¢, < 0.04). Recently, colloidal suspension
flows were analytically examined by Rebougcas et al. (2016). They
evaluated the shear-thinning effect of colloidal suspensions in a
pressure-driven flow employing the viscosity model proposed by
Cross (1970) (herein, reported in Eq. (1)). They showed that parti-
cles migrate differently at the centerline and near the wall which
flattens the velocity profiles with a higher flow rate. However, to
the best of the authors’ knowledge, the impact of Brownian diffu-
sion, coupled with the shear-thinning behavior of colloidal suspen-
sions, on the flow and particle migration has not yet been analyzed
in detail.

Herein, we study the effect of Brownian motion in the flow
of neutrally buoyant and colloidal hard-sphere suspensions con-
sidering the shear-thinning behavior. A constitutive diffusion equa-
tion proposed by Phillips, Armstrong and Brown (1992) is applied
to model the flow of suspensions. A viscosity model depending
on both local volume fraction and shear rate is introduced to ex-
press the shear-thinning of suspension viscosity. We then couple
these models with conservation equations for the flow and ex-
plore the dynamics of suspension using direct numerical simu-
lations (DNSs). We examine the flow and migration of colloidal
particles induced by the shear and Brownian motion in two ba-
sic flows including pressure-driven and circular Couette flows. Par-
ticle concentration and velocity profiles are presented for vari-
ous volume fractions and Péclet numbers. The relative viscosity of
suspensions determined by local concentration and shear rate is
compared for different values of the Péclet number. Furthermore,
volume flow rates and friction coefficients are evaluated for each
flow.

The paper is organized as follows. Section II describes the
mathematical equations for the flow and suspensions with the
numerical procedure. The results are reported in Sec. IIl. The
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discussion is achieved in Sec. IV and Section V addresses the
conclusion.

2. Mathematical formulation
2.1. Governing equations

The flow of colloidal hard-sphere suspensions to be considered
as a continuum is governed by incompressible continuity and mo-
mentum conservation equations given by

V.ou=0 (6)

p(%ltlﬂ—v-(uu)):—Vp—i—V-(ZnS) (7)

Here, u, p, and p are the velocity vector, pressure and density of
the fluid, respectively. S = %(Vu + Vul) is the strain rate tensor,
and 7 is the viscosity of the suspension.

2.2. Conservation equation for suspensions

To describe the behavior of suspension flows, we employ the
constitutive model, namely the diffusive flux model (DFM) re-
ported in [Phillips, Armstrong and Brown, 1992]. This is due to the
simplicity, low computational cost, and accuracy of DFM, which is
based on the prior work of Leighton and Acrivos (1987). A con-
servation equation for suspensions can be stated in a Lagrangian
frame as

aai(f_i_u.V(P:_V.(Nc—i—N,’-i—Nb) (8)

Here, ¢ is the particle volume fraction, N¢, and N;, are the par-
ticle fluxes caused by spatial variation in the collision frequency
and suspension viscosity, respectively. The particle fluxes can be
expressed as [Phillips, Armstrong and Brown, 1992]

N = K¢V (v ¢) (9)

N, = —K,a’>y¢*V (In n) (10)

where a is the particle radius and y (= +/2S..S) is the local shear
rate. The diffusion coefficients K. and K, are empirical constants
determined by experiments.

The last term N, in Eq. (8) accounts for the Brownian diffu-
sion of suspensions and is defined as N, = —DsV¢. Here, D; is
the relative concentration-dependent diffusion coefficient of sus-
pensions represented by a generalized Stokes-Einstein relation for
finite volume fractions (¢) defined as Ds(¢) = kgTs(¢p)/6mans(¢)
[Mendoza, Santamaria-Holek and Pérez-Madrid, 2015]. Here, kg is
the Boltzmann'’s constant, Ts is the effective temperature, and 7; is
the viscosity coefficient of suspensions. This relationship has been
examined experimentally and numerically ranging from dilute to
highly concentrated colloidal suspensions [van Megen, et al., 1998;
Bonn, 2003; Jabbari-Farouji et al, 2007] and has shown a good
fit with experimental and numerical data [Mendoza, Santamaria-
Holek and Pérez-Madrid, 2015]. It should be noted that the classi-
cal Stokes-Einstein relation, Do = kgT,/6man,, has been deduced
in for dilute suspensions.

The DFM can encounter a difficulty at points where the lo-
cal shear rate (y) becomes zero such as the centerline of chan-
nel or pipe flow [Fang et al., 2002]. The particle volume frac-
tion tends to approach to the maximum value (¢max), causing
a cusp in the profile [Lyon and Leal, 1998; Phillips, Armstrong
and Brown, 1992; Fang et al., 2002]. To resolve this issue, a non-
local stress correction has been employed by [Miller and Mor-
ris, 2006; Ahmed and Singh, 2011] to model the nonlocal suspen-
sion stresses. Herein, we apply the nonlocal stress model proposed

by Miller and Morris (2006) for Poiseuille flow where a small con-
stant nonlocal contribution depending on the particle size, the so-
called yn. = as(e)ys is counted to the local shear rate. as(¢) = ¢
has been chosen by the examination, where & = a/h and h is half
of the height of a channel. y5 = Unax/h has been used for a chan-
nel flow, where Unayx is the centerline velocity for Poiseuille flow
[Ahmed and Singh, 2011]. Thus, the particle fluxes Nc and N;, can
be modified as [Miller and Morris, 2006; Ahmed and Singh, 2011]

N. = —K.2$V[(7 + n) ] (an

N, = K@ (7 + mu)¢*V(nn) (12)

Note that in the present study we used the nonlocal stress
model for particle fluxes only for Poiseuille flow.

2.3. Viscosity of suspensions

In this study, we consider the model proposed by de Kruif
et al. (1985) (i.e., Eq. (2)) for the viscosity of colloidal suspensions
with limiting viscosities determined by fitting data as [de Kruif
et al., 1985]

& ~1.96
No = (1 — % ) where @Pmax= 0.63 (13)
max
& ~1.93
Noo = <l — % > where ¢max = 0.71 (14)
max

Accordingly, the relative viscosity n; is locally calculated by the
local concentration of suspensions ¢(x,t) and the local shear rate
y (X, t) defined as n = n(¢, y).

In addition, we have faced another issue arising from the vis-
cosity model of Eq. (2) at y — 0 where the relative viscosity (7;)
has a large value. In particular, for the high particle volume frac-
tion this leads to a cusp pointed down in the profile of the particle
volume fraction (¢) that results from the V(Inn) term of the parti-
cle flux N;. To overcome this issue, we also introduce the nonlocal
stress model proposed by Miller and Morris (2006) into the viscos-
ity model where a small nonlocal contribution (yy.) is also added
to the function of the relative viscosity given by

o — Neo (15)

T =T ¥ T 310 (7 + ) \KT

We further briefly examine the effect of this modification in the
discussion section (Sec. IV).

2.4. Numerical methods

The governing equations of Eqs. (6)-(8) were discretized us-
ing a finite volume method (FVM). A second-order central differ-
ence scheme was used for spatial discretization of derivatives ex-
cept for the convective term (u - V¢) of the conservation equa-
tion for suspensions (Eq. (8)), which utilized the QUICK (quadratic
upstream interpolation for convective kinematics) scheme for the
discretization. A hybrid scheme was applied for time advancement;
nonlinear terms were explicitly advanced by a third-order Runge-
Kutta scheme, and the other terms were implicitly advanced by the
Crank-Nicolson method [Kang and Yang, 2011, 2012; Kang et al.,
2017a, 2017b]. A fractional-step method was employed for time in-
tegration and the Poisson equation that resulted from the second
stage of the fractional step method was solved by a fast Fourier
transform (FFT) [Kim and Moin, 1985].
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L.

Fig. 1. Schematic diagram of suspensions in a plane Poiseuille flow driven by a
constant pressure gradient (dp/dx).

3. Results
3.1. Migration in a plane Poiseuille flow

First, we consider a plane Poiseuille flow of neutrally buoyant,
colloidal, and Brownian particles suspended in a viscous fluid (see
Fig. 1). The flow of suspensions is driven by a constant pressure
gradient (dp/dx) in a channel with the height 2h. Direct numeri-
cal simulations were carried out on a Cartesian grid system with
64(x) x 192(y) grid points and Ly = 4h. The grid cell was uni-
form in the axial direction (x), while more grid points were allo-
cated near walls in the y-direction with Ay, = 0.005h. The no-
slip condition was imposed on both walls, and the flow was as-
sumed to be periodic in the axial direction (x).

In the DFM, the diffusion coefficients (K. and Kj) are pre-
dicted by fitting to the experimental measurements of the parti-
cle distribution. To determine the coefficients, we compared the
distribution of particle volume fraction for different values of
K¢/K; with the experimental data and theoretical predictions for
colloidal and Brownian suspensions using the SBM reported by
Frank et al. (2003) in Fig. 2. Here, the dimensionless parameter Peg
is given by Peg = 67 1,a3y,,/KT, where Y, = umax/h [Frank et al.,
2003] and umax is the maximum axial velocity of suspensions.
Frank et al. (2003) assumed that the maximum velocity is related
to the bulk velocity as uj(= 2umax/3) for the Poiseuille flow of
pure Newtonian fluid. We then calculated Peg using the mean ve-
locity of suspensions. Most of the studies [Phillips, Armstrong and
Brown, 1992; Lyon and Leal, 1998; Fang et al., 2002; Ahmed and
Singh, 2011] have chosen the coefficients corresponding to K./K; =
0.66 for Poiseuille flow of non-colloidal suspensions. However, as
can be seen in Fig. 2 for the flow of colloidal suspensions consid-
ered here, the prediction of K./K; = 0.3 shows the best fit with
the experimental measurements. The discrepancy with the profile
predicted by the SBM [Frank et al., 2003] near the center of the
channel (y = 0) may in part be due to the application of the non-
local stress model (i) and the viscosity model, which Frank et al.
(2003) did not consider in their normal stress and viscosity mod-
els. It should be noted that comparing the concentration profiles
with the data presented by Frank et al. (2003) might not be suf-
ficient to validate our model and to choose K:/K; = 0.3. This is
because the empirical coefficients for various flux contributions in
the DFM and also the very micron size particles might affect the
collective diffusion coefficient. Nevertheless, we choose the deter-
mined coefficients corresponding to K./K; = 0.3 because of the
lack of available data in the literatures. These need to be addressed
accurately to get the best fit with the experiment.

We quantify the Brownian force with the dimensionless Pé-
clet number Pe = yaZ/Ds. The effective diffusion coefficient Ds
depends on the particle volume fraction as proposed by the

generalized Stokes-Einstein relation [Mendoza, Santamaria-Holek
and Pérez-Madrid, 2015]. Herein, as a first step and simplicity
of the problem we assume that the coefficient is dependent on
the bulk particle volume fraction (¢y), Ds = D, f(¢p), satisfying
Ds(¢p) ns(¢p)/Ts (@) = Dono/To given by the generalized Stokes-
Einstein relation. Finally, Ds is uniform in the suspensions flow.
This allows an equivalent Brownian diffusion for the same value
of Pe in different bulk volume fractions (¢). The velocity U, =
—(dp/dx)h?/3n,, which indicates the mean velocity for Poiseuille
flow of pure Newtonian fluid, is introduced to the definition of
Pe for simplicity. Thus, the shear rate is defined as y = Umax/h
where Unax = 3U,/2. U, is also used as the velocity scale and the
Péclet number is varied in the rage of 102 < Pe < 103, which is
in the typical regime of the shear-thinning to study the effect of
Brownian motion as shown in the dimensional analysis reported
by [Krieger, 1963, 1972; Semwogerere, Morris and Weeks, 2007].
The particle radius ratio of € =1/25 is also used by referring the
experiments of Frank et al. (2003).

Fig. 3(a) and (b) show distributions of particle volume fraction
at varying Pe. When Brownian diffusion is weak (i.e., at high Pe),
particles migrate toward the center of the channel (y/h = 0) which
is the particle behavior of non-colloidal and non-Brownian sus-
pensions (Pe = oo). For Pe > 102, Brownian motion indeed does
not cause a distinct impact on the concentration field. The pro-
files change very little and the flow of suspensions reaches the
non-colloidal regime (Pe = co) where the Brownian effect becomes
negligible. This is consistent with the trend of experimental ob-
servations as reported in [Frank et al., 2003; Semwogerere, Mor-
ris and Weeks, 2007; Brown et al., 2009]. In contrast, the particle
migration toward the centerline weakens progressively as Brown-
ian motion becomes stronger (i.e., as Pe decreases). This leads to
the flatten distribution of local volume fraction at very small Pe
(=1072).

The streamwise velocity profiles are plotted for various Pe in
Fig. 3(c) and (d). It exhibits that the stronger Brownian diffusion
(i.e., decreasing Pe) diminishes the streamwise velocity (u). The
slope of velocity (du/dy) representing the local shear rate also de-
creases by growing Brownian diffusion. These are associated with
the local volume fraction. As can be seen in Fig. 3(a) and (b),
the Brownian force inhibits the migration of particles induced by
the shear toward the centerline of the channel where the local
shear rate is the minimum. This causes higher local volume frac-
tion (¢) near channel walls (y/h = 4 1) for smaller Pe which also
increases the local effective viscosity. As a result, the higher viscos-
ity leads to the large viscous friction near the walls and it reduces
the axial momentum.

Local values of the relative viscosity (7,) calculated by
Eq. (15) are presented for various Pe in Fig. 4. It reveals notice-
able features between two regimes of Pe. As mentioned earlier, for
low Pe (Pe < 101!), the local viscosity near the walls (y/h = +1)
increases with diminishing Pe. At higher ¢, it is more sensitive to
the Brownian motion, but the viscosity near the centerline grows
as Pe increases. These are highly related to variation of the lo-
cal particle volume fraction. The distributions of 7, are consistent
with those of the volume fraction presented in Fig. 3(b). When Pe
is high (i.e., Pe > 10), by increasing Pe, the relative viscosity de-
creases and gradually reaches that of the flow of non-Brownian
suspensions (Pe = co). However, it shows sharper cusps in the cen-
terline (y/h = 0) even for very high Pe or weak Brownian force
(Pe = 10%) in which the profiles of particle volume fraction and
axial velocity are parallel to those of non-Brownian suspensions
(Pe = o). This arises from the local shear rate which becomes very
small near the centerline, since the relative viscosity is determined
by the local shear rate as given in Eq. (15).

In Fig. 3(c) and (d), results confirm that the velocity is dimin-
ished with increasing Brownian motion. To quantify this, we have
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evaluated the volume flow rate (Q) of suspending fluid. The com-
puted values of Q = fudy per unit depth normal to the plane
of the flow are reported in Fig. 5(a). Here, volume flow rates
were normalized by that of the pure Newtonian fluid flow (i.e.,
Qo = —8h3(dp/dx)/12n,) and dashed lines represent the values of
non-Brownian suspensions for each ¢,. As expected, the flow rate
decreases with the increase of both the Brownian diffusion (Pe~1)
and the bulk volume fraction (¢,) showing good agreement with
the velocity profiles plotted in Fig. 3(c) and (d). The effect of Brow-
nian motion on the flow rate is more critical in dense suspension
flows. For higher ¢, the flow rate decays rapidly with the decrease
of Pe as revealed in Fig. 5(b).

3.2. Migration of Brownian suspensions in a circular Couette flow

We then consider the flow of neutrally buoyant, colloidal, and
Brownian suspensions in a circular Couette flow. As depicted in
Fig. 6(a), rigid, spherical particles are suspended in a viscous fluid
contained between two cylinders in which the inner cylinder of
the radius R; rotates at a constant angular velocity (€2) and the
outer one with the radiusR, is stationary. We performed DNS dis-
cretized on a cylindrical coordinate system with 96(r) x 64(9)
(Fig. 6(b)). More grid points were clustered near the wall of cylin-
ders in the radial direction (r) with Ary;, = 0.005d, where d
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Fig. 6. (a) Schematic diagram of suspensions in a circular Couette flow with a wide
gap. (b) Grid system (every other grid point is plotted in the radial direction for
clarity).

(= Ry —R;) is the gap between two cylinders. However, the grid
has a uniform size in the azimuthal direction ().

While numerous experiments and theoretical predictions have
been carried out for non-Brownian suspensions in both con-
centric and eccentric cylindrical Couette cells [Leighton and
Acrivos, 1987; Phillips, Armstrong and Brown, 1992; Tetlow et al.,
1998; Subia et al.,, 1998; Fang et al., 2002; Dbouk et al., 2013;
Mirbod, 2016; Sarabian et al., 2019], to the best of our knowl-
edge the characterization of colloidal and Brownian suspensions
in the circular Couette flow have not been attempted before. To
validate our code, we considered the flow of non-colloidal sus-
pensions (Pe = oo). We revisited the work by Phillips, Armstrong
and Brown (1992) for comparison. We performed the computa-
tions for concentrated suspensions of a particle size € = 0.02836
(= a/R,) contained between two coaxial cylinders of the radius ra-
tio Ri/R, = 0.2689. The parameter K./K; = 0.66 was also used
for the diffusion coefficients of the constitutive equation [Phillips,
Armstrong and Brown, 1992]. Fig. 7 shows the particle concentra-
tion profiles for several ¢, in comparison with those of measure-
ments and predictions reported in Phillips, Armstrong and Brown
(1992). As can be seen, particles migrate toward the outer cylinder
by the shear stress arising from rotation of the inner cylinder. Our
predicted profiles are in good agreement with their data. In partic-
ular, the profiles are in line with their numerical values computed
by the DFM.

The dimensionless Péclet number Pe = ya?/Ds that represents
the quantified Brownian diffusion is defined using the mean shear
rate of the Couette flow as y = R;Q2/d. This shows that Pe is de-
termined by the effective diffusivity of the suspensionsDs, and it
leads to an equivalent Brownian diffusion for a constant Pe and
different ¢,. We adopt the geometrical and numerical parameters
used for the validation in the present study (i.e., R;j/R,= 0.2689,
€ = 0.02836, and K./K; = 0.66). To evaluate the impact of Brow-

T

0.6

Phillips, ArmstmngA
Present and Brown (1992) 4

(Exp.) (DFM) |

[ O e |
0.2 - oo 1
¢ 0,=055 —— O --mm- ]
04 0.6 08 1

Fig. 7. Particle volume fraction (¢) in a circular Couette flow of non-colloidal and
non-Brownian suspensions (i.e., Pe = oo) for € (= a/R,) = 0.02836. Dashed lines,
circles, squares, and triangles correspond to DFM predictions and experiments using
Philips, Armstrong and Brown (1992), respectively.

nian motion, in all our computations we vary the Péclet number
from 10~2 to 103.

Fig. 8(a) and (b) display profiles of particle volume fraction (¢)
for varying Pe at ¢,= 0.1 and ¢,= 0.4. It turns out to be the
critical role of Brownian motion is on the particle distribution. At
high Pe, particles travel toward the outer cylinder wall similar to
the non-colloidal particles. However, as the Brownian diffusion be-
comes stronger (i.e. as Pe diminishes), the local volume fraction in-
creases near the inner wall and decreases near the outer wall. Fi-
nally, at the lowest Pe, the profile of ¢ flattens out with the strong
Brownian motion. Therefore, it could be concluded that the Brow-
nian diffusion limits the shear-induced particle migration toward
the region of the low shear rate and particles will be distributed
evenly within the gap of the Couette cell.

The azimuthal velocity (uy) profiles varying Pe for ¢,= 0.1 and
¢p= 0.4 are presented in Fig. 8(c) and (d). As can be seen, Brown-
ian motion also alters the velocity distribution between two cylin-
ders. The velocity is amplified by increasing Brownian diffusion
(i.e., decrease of Pe). Hence, the slope of velocity profiles near the
inner cylinder (|duy/dr| at r = R;) decays as Pe decreases. The im-
pact of Brownian motion is more significant at higher ¢,. It could
be interpreted as the migrated particle volume fraction. As illus-
trated in Fig. 8, the local particle volume fraction near the inner
cylinder is higher for lower Pe. This causes a larger suspension vis-
cosity, then a stronger viscous drag force acts on the fluid. As a re-
sult, the drag force enhances the velocity of the flow driven by the
shear. Meanwhile, the velocity rises more sharply at highly dense
suspensions.

The local relative viscosities (7,;) given by Eq. (15) at different
Pe for ¢p= 0.2 and ¢,= 0.4 are plotted in Fig. 9. The values are
well correlated with the distribution of particle volume fraction
provided in Fig. 8(a) and (b). In the vicinity of the inner cylinder,
the high concentration induced by the strong Brownian motion re-
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Fig. 8. (a, b) Distributions of particle volume fraction (¢), (c, d) profiles of the azimuthal velocity (uy) normalized by R;S2 for various Pe at ¢,= 0.1 and ¢,= 0.4.
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Fig. 9. Profiles of the local relative viscosity (n,) for various Pe; (a) ¢,= 0.2, (b) ¢,= 0.4.

sults in a large value of suspension relative viscosity. It creates in-
tense viscous drag force in the fluid and larger velocity of the flow
as stated above. The relative viscosity diminishes near the inner
cylinder as the local particle volume fraction decreases with the
weakening of the Brownian diffusion (i.e., increasing of Pe). On the
other hand, n, is rather complicated close to the outer cylinder. It
appears that the function of 7, (Eq. (15)) is very sensitive to high
volume fraction and low shear rate. When Brownian motion im-
pact is low (high Pe), particles migrate toward the outer cylinder
leading to higher concentration of particles in the outer region of
cylinder. Accordingly, this causes the complex behavior of the vis-
cosity depending on the particle volume fraction and local shear
rate; thus, the value of 7, is independent of Pe in the vicinity of
the outer wall.

The friction coefficient Cy;, which is a dimensionless measure
of the torque acting on the inner cylinder, has been evaluated
to identify the influence of Brownian motion on the momentum
transfer. For this study, it can be given by [Kang, Yang and Muta-
bazi, 2015; Guillerm et al., 2015]

M

16
P Q2RE /2 (16)

Cy =

where M is the momentum over the cylindrical surface [Kang, Yang
and Mutabazi, 2015; Guillerm et al., 2015]. The variation of Cy
against Pe for all values of ¢y, is illustrated in Fig. 10. The coef-
ficients were normalized by the friction coefficient for pure fluid

flow Gy, = —ﬁm%"m where e = R;/R, in Fig. 10(a) [Kang, Yang

(a) Pe
8 ; ‘
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oL * s 0=02
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Fig. 10. Normalized friction coefficients (Cy) for different values of ¢, and Pe; (a)
Ci/Cu,» (b) Cv/Cu,. . Cu, is the friction coefficient for pure fluid flow, and Gy is the
value for non-Brownian suspensions (Pe = oo) indicated by dashed lines for each

®p.
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Fig. 12. Comparison of particle fluxes (N;) normalized by R;2 for various Pe and ¢,= 0.3 in a circular Couette flow; (a) Pe = 10!, (b) Pe = 10, (c) Pe = 10", (d) Pe = 102.

and Mutabazi, 2015; Guillerm et al., 2015]. The dashed lines rep-
resent the values for non-Brownian suspensions (Cy,, = Cy(Pe =
00)) at each ¢,,. It can be observed that the concentrated suspen-
sions cause larger friction coefficients, showing Cy /Cy, > 1. As a
matter of fact, a stronger torque is exerted on the inner cylinder
by the suspending fluid. As the Brownian force becomes increas-
ingly dominant and the suspensions become denser, Cy; gradually
rises. However, there is no detectable impact for the flow of dilute
suspensions with very weak Brownian diffusion (i.e., very high Pe).
Furthermore, as can be seen in Fig. 10(b), the effect of Pe is more
critical for higher ¢,. The relative friction coefficient (Gy /Cp..)
grows more sharply as Pe diminishes.

4. Discussion

Fully-developed flows of colloidal, Brownian, neutrally buoyant
suspensions of rigid, spherical particles in both Poiseuille and cir-
cular Couette flow have been considered in this study. A viscosity
model, proposed by de Kruif et al. (1985), as a function of local
particle volume fraction and shear rate has been introduced to ex-
press the shear-thinning effect of colloidal and Brownian suspen-
sions. As stated in Sec. II, we have been confronted with a diffi-
culty when we apply the viscosity model of Eq. (2). Fig. 11 displays
the distributions of particle volume fraction (¢) and local relative
viscosity (7,;) predicted with the viscosity function of Eq. (2), for
various Pe at ¢p,= 0.2 in the plane Poiseuille flow. As mentioned

earlier, sharp cusps pointed down are detected for some cases at
the center (y/h = 0). These features can also be seen in the particle
concentration profiles reported by Reboucas et al. (2016) who con-
sidered the viscosity model of Cross (1970), presented in Eq. (1),
for the flow of colloidal suspensions through a cylindrical tube.
This is linked to the shear rate y, since the local shear rate ap-
proaches to zero (y — 0) near the point and then it causes dis-
continuous cusps in the distribution of the viscosity. Finally, it re-
sults in the discontinuity of concentration profile originated from
the V(Inn) term of the particle flux N, at the center. To im-
prove this difficulty, we have modified the function of the viscosity
model by adopting the nonlocal contribution (yy;) to the model as
given in Eq. (15). The results obtained for both ¢ and n,; are shown
in Figs. 3 and 4.

The particle migration of colloidal particles influenced by Brow-
nian motion has been investigated by varying the Péclet number Pe
in this study. Our result has revealed that the Brownian diffusion
inhabits the shear-induced particle migration. To further analyze
the migration, we have compared the particle fluxes (N;) expressed
in the conservation equation for particles in Eq. (8). Fig. 12 illus-
trates the variation of particle fluxes for several Pe in the circu-
lar Couette flow. The flux N, arising from the varying collision fre-
quency is balanced by the flux N, caused by the spatial variation
of the suspension viscosity (1) and the Brownian diffusive flux Np.
As expected, at low Pe, the contribution of N, to the total flux
is large and it is more dominant compare to the flux N;. How-
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ever, the flux N, and its contribution progressively diminishes with
increasing Pe. For high Pe, the Brownian flux (N,) becomes very
small and negligible compare to other fluxes. This analysis strongly
supports our findings which address the role of the Brownian dif-
fusion on the particle migration.

5. Conclusion

This work provides the first evidence on the shear-thinning be-
havior and Brownian motion effects of the flow of colloidal sus-
pensions in both Poiseuille and circular Couette flow. In summary,
we have numerically examined the flow of colloidal and Brow-
nian suspensions of rigid, spherical particles by considering the
shear-thinning impact of the suspensions. The constitutive equa-
tion modeling of the dynamics of suspensions has been solved
with the flow equations using direct numerical simulations. To de-
scribe the shear-thinning viscosity of suspensions, the scaled vis-
cosity model defined as a function of both local shear rate and
concentration has been used. Pressure-driven and Couette flows of
colloidal and Brownian suspensions have been studied to clarify
the flow phenomena and the shear-induced particle migration in
these flows. We have varied the Péclet number which quantifies
the Brownian diffusion to elucidate the impact of Brownian mo-
tion on the flow and the particle migration.

For Poiseuille flow, our prediction on the particle distribution
shows good agreement with the available experimental data. As
the Brownian motion becomes stronger (i.e., as Pe decreases), the
particle migration caused by the shear toward to the center of
the channel is restricted. The particle distribution flattens out with
very large Brownian diffusion (or at very low Pe). The velocity of
suspensions decays with the stronger Brownian motion, since the
higher concentration close to the channel walls grows the local
viscosity and the viscous friction on the walls. The reduction in
the velocity by the Brownian diffusion effect has been quantified
by evaluating the volume flow rate (Q) of suspending fluid. It has
been shown that increasing both Brownian diffusion and suspen-
sions volume fraction causes the reduction of the flow rate. This
effect is more critical in dense suspension flows (i.e., at high ¢p).

In the circular Couette flow, Brownian motion inhibits the par-
ticle transport toward to the outer cylinder wall by intensifying
the Brownian diffusive flux. The very strong Brownian motion (i.e.,
very low Pe) makes the profile of particle volume fraction flat. Fur-
thermore, it enhances the velocity of suspensions between two
cylinders. The enhancement is more distinct for highly dense sus-
pensions (i.e., at high ¢,). Although the slope of the velocity de-
creases in the vicinity of the inner cylinder wall as Pe reduces, the
viscosity of suspensions grows since the local particle volume frac-
tion increases. As a result, it leads to the rise of the friction co-
efficient (Cy) on the inner cylinder wall. The coefficient rises by
decreasing Pe and increasing ¢,.

This study would also be a framework for the future study of
Brownian suspensions and shed lights on the understanding of col-
loidal suspensions flow in various geometries. A systematic exper-
imental investigation of flow in a circular Couette cell is needed.
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