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a b s t r a c t 

Neutrally buoyant colloids with small Reynolds numbers pose interesting challenges particularly when 

they undergo shear thinning and Brownian diffusion. Two basic flows including Poiseuille and Couette 

flows accompanying shear-induced particle migration are investigated in this study using direct numerical 

simulations (DNSs). A scaled viscosity model of colloidal suspensions considering both the shear rate and 

bulk particle volume fraction is employed to describe the shear-thinning behavior of suspensions. The 

constitutive diffusion equation proposed by Phillips et al. [ Phys. Fluids A 4 , 30–40 (1992)] is used to model 

the dynamics of suspension flow. We vary the Péclet number Pe , from 10 −2 to 10 3 for the semi-dilute 

and dense suspensions with the bulk particle volume fraction φb , ranging from 10% to 50%. It was found 

that, in the limit of vanishing inertia, the distribution of volume fraction gradually flattens by increasing 

Brownian force. In a Poiseuille flow, the velocity of suspensions decays as the Brownian motion becomes 

stronger, leading to the flow rate reduction. For a circular Couette flow, the Brownian diffusion enhances 

the velocity of suspensions and increases the friction coefficient at the inner cylinder wall. Our study 

reveals that the Brownian motion is more critical for higher volume fraction values. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The flow of particles suspended in a fluid is relevant to a

ariety of engineering and scientific applications such as trans-

ort of sediments [ Snider, O’Rourke and Andrews, 1998 ], delivery

f biochemical materials (DNA molecules and drugs) [ Fan et al.,

003 ; Tripathi and B ѐ g, 2014 ], food processing [ Lareo, Fryer and

arigou, 1997 ], and composite materials processing [ Tucker, 1991 ;

etrie, 1999 ; Nordlund, Fernberg and Lundstr ӧm, 2007 ]. In particu-

ar, a shear-induced particle migration occurring in either pressure

r shear driven flows such as channel, pipe, and Couette flows has

een a crucial issue because it can affect the flow field leading to a

hange of velocity profile of suspensions or induce clogging in the

ystem [ Lyon and Leal, 1998 ; Miller and Morris, 2006 ]. The focus of

his work is on the suspensions of very small particles which un-

ergo observable Brownian motion resulting from the collision of

articles. In colloidal and Brownian suspensions, thermally driven

tresses on the particles causing by Brownian motion can signifi-

antly impact the migration induced by the shear-driven stresses

 Frank et al., 2003 ; Semwogerere, Morris and Weeks, 2007 ]. 

Suspensions have complex rheological behavior, which depends

n the solvent properties, the spatial distribution of particles, and
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he microstructure [Brady and Morris, 1997] . The viscosity η of

uspensions of rigid, spherical particles varies with the particle ra-

ius a , the solvent viscosity ηo , the shear rate ˙ γ , the thermal en-

rgy kT , and the number density n [ Krieger, 1963 , 1972 ]. For neu-

rally buoyant suspensions, the relative viscosity ηr = η/ ηo de-

ends on the volume fraction φ = 4 πa 3 n/ 3 , the dimensionless

hear rate (i.e., the Péclet number Pe = 6 πηo a 
3 ˙ γ / kT ), and the par-

icle Reynolds number Re = ρo a 
2 ˙ γ /ηo where ρo is the solvent

ensity [ Krieger, 1963 , 1972 ; Stickel and Powell, 2005 ]. In the ab-

ence of inertia (i.e., at very low Reynolds numbers), the relative

iscosity ηr depends only on the particle volume fraction and the

hear rate as ηr = f (φ, Pe ) . In addition, for non-colloidal sus-

ensions, if the Péclet number is very large ( Pe = ∞ ), the rel-

tive viscosity can then be expressed as a function of the vol-

me fraction ηr = f (φ) [ Stickel and Powell, 2005 ; Hinch, 2011 ].

n the other hand, in the case of colloidal suspensions, Pe re-

ains important and the suspensions show non-Newtonian rheo-

ogical behaviors including yield stresses at high concentrations, or

hey present nonlinear effects such as shear rate sensitive viscosity

i.e., shear-thinning, and/or shear-thickening behavior) [ Stickel and

owell, 2005 ; Sato, 1995 ; Foss and Brady, 20 0 0 ; Mari et al.,

015 ; Marenne et al., 2017 ]. A dimensional analysis reported in

 Krieger, 1963 , 1972 ] has revealed that suspensions are shear-

hinning when Brownian motion is significant but shear-thickening

hen Re is dominant [ Semwogerere, Morris and Weeks, 2007 ].
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Yield stresses have also been observed mostly at very high con-

centrations ( φ > 0.5) [ Stickel and Powell, 2005 ; Heymann, Peukert

and Aksel, 2002 ]. 

Based on the dimensional analysis reported in [Stickel and

Powell, 2005] , several models have been developed for the vis-

cosity of suspensions to consider the non-Newtonian behavior

of the flow. It was also reported that colloidal suspensions are

shear-thinning in the range of 10 -2 ≤ Pe ≤ 10 3 ; thus, the lo-

cal shear rate is strongly related to the viscosity of suspensions

[Stickel and Powell, 2005] . Einstein (1906) in his pioneering work

showed that in the limit of vanishing inertia and for dilute suspen-

sions (i.e., φ → 0), the suspension viscosity is a linear function

of particle volume fraction ηr = 1 + 2 . 5 φ. Batchelor (1977) ex-

tended Einstein’s first-order equation to a second-order equa-

tion for Brownian suspensions as ηr = 1 + 2 . 5 φ + 6 . 2 φ2 . For

higher volume fractions, however, the viscosity starts to in-

crease faster than a second order polynomial [Stickel and Pow-

ell, 2005] . Cross (1965 , 1970 ) introduced a relationship between

the suspension viscosity and the shear rate for colloidal sus-

pensions of hard spheres revealing the shear-thinning behavior

as 

ηr = η∞ 

+ 

η0 − η∞ 

1 + α ˙ γ m 

(1)

where η0 and η∞ 

are limiting values of viscosity at zero ( ̇ γ = 0 )

and infinite shear rates ( ̇ γ = ∞ ), respectively. The constant α is a

rheological fitting parameter and the exponent m depends on poly-

dispersity of the particles [Cross, 1970] . 

Later on, de Kruif, et al. (1985) scaled the viscosity of colloidal

suspensions as a function of both shear rate and volume fraction

given by 

ηr = η∞ 

+ 

η0 − η∞ 

1 + 1 . 31 ηo a 3 ˙ γ / kT 

(2)

They showed that the limiting low and high shear viscosities

are only dependent on the volume fraction and can be expressed

as 

η0 ( ˙ γ → 0) = 1 + 2 . 5 φ + ( 4 ± 2 ) φ2 + (42 ± 10) φ3 (3)

η∞ 

( ˙ γ → ∞ ) = 1 + 2 . 5 φ + ( 4 ± 2 ) φ2 + (25 ± 7) φ3 (4)

They reported that these relations are valid for φ ~ 0.35. The

viscosities diverged at φ = 0 . 63 ± 0 . 02 for low shear limits (i.e.,

˙ γ → 0 ) and at φ = 0 . 71 ± 0 . 02 for high shear limits (i.e., ̇ γ →
∞ ), regardless of the particle size [ de Kruif, et al., 1985 ; van der

Werff and de Kruif, 1989 ]. For higher volume fractions, correlations

of limiting viscosity were obtained by fitting experimental data

to the empirical formula of Krieger and Dougherty [Krieger and

Dougherty, 1959] ; 

ηr = 

(
1 − φ

φmax 

)−[ η] φmax 

(5)

Here, the suggested limiting packing fractions at which the vis-

cosity diverges are φmax ( ̇ γ → 0) = 0 . 63 ± 0 . 02 and φmax ( ̇ γ →
∞ ) = 0 . 71 ± 0 . 02 [ de Kruif, et al., 1985 ; van der Werff and de

Kruif, 1989 ]. 

Several researchers investigated the rheology and its aspects

on colloidal suspensions [ Bossis and Brady, 1989 ; Jones, Leary

and Boger, 1991 ; Brady, 1993 ; Brady and Vicic, 1995 ; Phung,

Brady and Bossis, 1996 ; Yurkovetsky and Morris, 2008 ]; how-

ever, there have been few attempts to address the migration

phenomenon of the flow of colloidal suspensions which under-

goes the Brownian motion using constitutive models. In addition,
hile a particle migration in the flow of non-colloidal suspen-

ions has been well-documented over the decades both experi-

entally and theoretically in various geometries by [ Leighton and

crivos, 1987 ; Fang et al., 2002 ; Lyon and Leal, 1998 ; Phillips, Arm-

trong and Brown, 1992 ; Fang et al., 20 02 ; Miller and Morris, 20 06 ;

hmed and Singh, 2011 , and references therein], a particle migra-

ion of the flow of Brownian suspensions in a pressure-driven flow

as studied for the first time by Frank et al. (2003) . The authors

bserved the shear-induced migration of colloidal particles flowing

hrough rectangular channels using confocal microscopy. Concen-

ration profiles were measured for various bulk volume fractions

 φb = 0.05 ~ 0.34) and bulk Péclet numbers ( Pe B ). They showed

hat particles move strongly toward the centerline of the channel

t higher φb and Pe B . They also developed a constitutive equation

o describe the particle migration using the suspension balance

odel (SBM) and existing normal stress models that are functions

f both φb and local Péclet number. However, they did not con-

ider a non-Newtonian model for the viscosity of suspensions in

heir analysis. Semwogerere, Morris and Weeks (2007) extended

he experiment of Frank et al. (2003) for varying volume fractions

 φb = 0.1 ~ 0.4) and Péclet numbers ( Pe B = 10 ~ 400) and investi-

ated the influence of Brownian motion on the entrance length,

hich is the distance from the inlet where the concentration pro-

le is fully developed. They found that the entrance length signifi-

antly depends on the Péclet number. For Pe B � 100, the entrance

ength increases by increasing Pe B ; however, it reaches a constant

alue for larger Pe B . Moreover, the authors predicted the migration

nd the entrance length using the constitutive modelling proposed

y Frank et al. (2003) and showed an agreement with the trends

f their experiments. Thereafter, Brown et al. (2009) utilized nu-

lear magnetic resonance (NMR) imaging to measure the migra-

ion of particles in a capillary flow of Brownian suspension and

etected the particle migration inward to the capillary center even

n the dilute regime (i.e., φb < 0.04). Recently, colloidal suspension

ows were analytically examined by Rebou ҫas et al. (2016) . They

valuated the shear-thinning effect of colloidal suspensions in a

ressure-driven flow employing the viscosity model proposed by

ross (1970) (herein, reported in Eq. (1) ). They showed that parti-

les migrate differently at the centerline and near the wall which

attens the velocity profiles with a higher flow rate. However, to

he best of the authors’ knowledge, the impact of Brownian diffu-

ion, coupled with the shear-thinning behavior of colloidal suspen-

ions, on the flow and particle migration has not yet been analyzed

n detail. 

Herein, we study the effect of Brownian motion in the flow

f neutrally buoyant and colloidal hard-sphere suspensions con-

idering the shear-thinning behavior. A constitutive diffusion equa-

ion proposed by Phillips, Armstrong and Brown (1992) is applied

o model the flow of suspensions. A viscosity model depending

n both local volume fraction and shear rate is introduced to ex-

ress the shear-thinning of suspension viscosity. We then couple

hese models with conservation equations for the flow and ex-

lore the dynamics of suspension using direct numerical simu-

ations (DNSs). We examine the flow and migration of colloidal

articles induced by the shear and Brownian motion in two ba-

ic flows including pressure-driven and circular Couette flows. Par-

icle concentration and velocity profiles are presented for vari-

us volume fractions and Péclet numbers. The relative viscosity of

uspensions determined by local concentration and shear rate is

ompared for different values of the Péclet number. Furthermore,

olume flow rates and friction coefficients are evaluated for each

ow. 

The paper is organized as follows. Section Ⅱ describes the

athematical equations for the flow and suspensions with the

umerical procedure. The results are reported in Sec. Ⅲ . The
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iscussion is achieved in Sec. Ⅳ and Section Ⅴ addresses the

onclusion. 

. Mathematical formulation 

.1. Governing equations 

The flow of colloidal hard-sphere suspensions to be considered

s a continuum is governed by incompressible continuity and mo-

entum conservation equations given by 

 · u = 0 (6) 

ρ

(
∂u 

∂t 
+ ∇ · ( uu ) 

)
= −∇p + ∇ · ( 2 η S 

)
(7) 

Here, u , p , and ρ are the velocity vector, pressure and density of

he fluid, respectively. S = 

1 
2 (∇u + ∇u 

T ) is the strain rate tensor,

nd η is the viscosity of the suspension. 

.2. Conservation equation for suspensions 

To describe the behavior of suspension flows, we employ the

onstitutive model, namely the diffusive flux model (DFM) re-

orted in [ Phillips, Armstrong and Brown, 1992 ]. This is due to the

implicity, low computational cost, and accuracy of DFM, which is

ased on the prior work of Leighton and Acrivos (1987) . A con-

ervation equation for suspensions can be stated in a Lagrangian

rame as 

∂φ

∂t 
+ u · ∇φ = −∇ ·

(
N c + N η + N b 

)
(8) 

Here, φ is the particle volume fraction, N c , and N η are the par-

icle fluxes caused by spatial variation in the collision frequency

nd suspension viscosity, respectively. The particle fluxes can be

xpressed as [ Phillips, Armstrong and Brown, 1992 ] 

N c = −K c a 
2 φ∇ ( ˙ γ φ

)
(9) 

 η = −K ηa 2 ˙ γφ2 ∇ ( ln η) (10)

here a is the particle radius and ˙ γ (= 

√ 

2 S .. S ) is the local shear

ate. The diffusion coefficients K c and K η are empirical constants

etermined by experiments. 

The last term N b in Eq. (8) accounts for the Brownian diffu-

ion of suspensions and is defined as N b = −Ds ∇φ. Here, D s is

he relative concentration-dependent diffusion coefficient of sus-

ensions represented by a generalized Stokes-Einstein relation for

nite volume fractions ( φ) defined as Ds (φ) = k B T s (φ) / 6 πaηs (φ)

 Mendoza, Santamaría-Holek and Pérez-Madrid, 2015 ]. Here, k B is

he Boltzmann’s constant, T s is the effective temperature, and ηs is

he viscosity coefficient of suspensions. This relationship has been

xamined experimentally and numerically ranging from dilute to

ighly concentrated colloidal suspensions [ van Megen, et al., 1998 ;

onn, 2003 ; Jabbari-Farouji et al., 2007 ] and has shown a good

t with experimental and numerical data [ Mendoza, Santamaría-

olek and Pérez-Madrid, 2015 ]. It should be noted that the classi-

al Stokes-Einstein relation, Do = k B T o / 6 πaηo , has been deduced

n for dilute suspensions. 

The DFM can encounter a difficulty at points where the lo-

al shear rate ( ̇ γ ) becomes zero such as the centerline of chan-

el or pipe flow [Fang et al., 2002] . The particle volume frac-

ion tends to approach to the maximum value ( φmax ), causing

 cusp in the profile [ Lyon and Leal, 1998 ; Phillips, Armstrong

nd Brown, 1992 ; Fang et al., 2002 ]. To resolve this issue, a non-

ocal stress correction has been employed by [ Miller and Mor-

is, 2006 ; Ahmed and Singh, 2011 ] to model the nonlocal suspen-

ion stresses. Herein, we apply the nonlocal stress model proposed
y Miller and Morris (2006) for Poiseuille flow where a small con-

tant nonlocal contribution depending on the particle size, the so-

alled ˙ γNL = a s (ε) ̇ γs is counted to the local shear rate. a s (ε) = ε
as been chosen by the examination, where ε = a/h and h is half

f the height of a channel. ˙ γs = U max /h has been used for a chan-

el flow, where U max is the centerline velocity for Poiseuille flow

Ahmed and Singh, 2011] . Thus, the particle fluxes N c and N η can

e modified as [ Miller and Morris, 2006 ; Ahmed and Singh, 2011 ]

 c = −K c a 
2 φ∇ [ ( ˙ γ + ˙ γNL ) φ] (11)

 η = −K ηa 2 ( ˙ γ + ˙ γNL ) φ
2 ∇ ( ln η) (12)

Note that in the present study we used the nonlocal stress

odel for particle fluxes only for Poiseuille flow. 

.3. Viscosity of suspensions 

In this study, we consider the model proposed by de Kruif

t al. (1985) (i.e., Eq. (2) ) for the viscosity of colloidal suspensions

ith limiting viscosities determined by fitting data as [de Kruif

t al., 1985] 

0 = 

(
1 − φ

φmax 

)−1 . 96 

where φmax = 0 . 63 (13) 

∞ 

= 

(
1 − φ

φmax 

)−1 . 93 

where φmax = 0 . 71 (14) 

Accordingly, the relative viscosity ηr is locally calculated by the

ocal concentration of suspensions φ( x , t ) and the local shear rate

˙ (x , t) defined as η = η( φ, ˙ γ ) . 

In addition, we have faced another issue arising from the vis-

osity model of Eq. (2) at ˙ γ → 0 where the relative viscosity ( ηr )

as a large value. In particular, for the high particle volume frac-

ion this leads to a cusp pointed down in the profile of the particle

olume fraction ( φ) that results from the ∇(ln η) term of the parti-

le flux N η . To overcome this issue, we also introduce the nonlocal

tress model proposed by Miller and Morris (2006) into the viscos-

ty model where a small nonlocal contribution ( ̇ γNL ) is also added

o the function of the relative viscosity given by 

r = η∞ 

+ 

η0 − η∞ 

1 + 1 . 31 ηo a 3 ( ˙ γ + ˙ γNL ) \ kT 

(15) 

We further briefly examine the effect of this modification in the

iscussion section (Sec. Ⅳ ). 

.4. Numerical methods 

The governing equations of Eqs. (6) –(8) were discretized us-

ng a finite volume method (FVM). A second-order central differ-

nce scheme was used for spatial discretization of derivatives ex-

ept for the convective term ( u · ∇φ) of the conservation equa-

ion for suspensions ( Eq. (8) ), which utilized the QUICK (quadratic

pstream interpolation for convective kinematics) scheme for the

iscretization. A hybrid scheme was applied for time advancement;

onlinear terms were explicitly advanced by a third-order Runge-

utta scheme, and the other terms were implicitly advanced by the

rank-Nicolson method [ Kang and Yang, 2011 , 2012 ; Kang et al.,

017a , 2017b ]. A fractional-step method was employed for time in-

egration and the Poisson equation that resulted from the second

tage of the fractional step method was solved by a fast Fourier

ransform (FFT) [Kim and Moin, 1985] . 
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Fig. 1. Schematic diagram of suspensions in a plane Poiseuille flow driven by a 

constant pressure gradient ( dp / dx ). 
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3. Results 

3.1. Migration in a plane Poiseuille flow 

First, we consider a plane Poiseuille flow of neutrally buoyant,

colloidal, and Brownian particles suspended in a viscous fluid (see

Fig. 1 ). The flow of suspensions is driven by a constant pressure

gradient ( dp / dx ) in a channel with the height 2 h . Direct numeri-

cal simulations were carried out on a Cartesian grid system with

64( x ) × 192( y ) grid points and L x = 4 h . The grid cell was uni-

form in the axial direction ( x ), while more grid points were allo-

cated near walls in the y -direction with 
y min = 0 . 005 h . The no-

slip condition was imposed on both walls, and the flow was as-

sumed to be periodic in the axial direction ( x ). 

In the DFM, the diffusion coefficients ( K c and K η) are pre-

dicted by fitting to the experimental measurements of the parti-

cle distribution. To determine the coefficients, we compared the

distribution of particle volume fraction for different values of

K c / K η with the experimental data and theoretical predictions for

colloidal and Brownian suspensions using the SBM reported by

Frank et al. (2003 ) in Fig. 2 . Here, the dimensionless parameter Pe B 
is given by Pe B = 6 πηo a 

3 ˙ γb / kT , where ˙ γb = u max /h [Frank et al.,

2003] and u max is the maximum axial velocity of suspensions.

Frank et al. (2003) assumed that the maximum velocity is related

to the bulk velocity as u b (= 2 u max / 3) for the Poiseuille flow of

pure Newtonian fluid. We then calculated Pe B using the mean ve-

locity of suspensions. Most of the studies [ Phillips, Armstrong and

Brown, 1992 ; Lyon and Leal, 1998 ; Fang et al., 2002 ; Ahmed and

Singh, 2011 ] have chosen the coefficients corresponding to K c /K η =
0 . 66 for Poiseuille flow of non-colloidal suspensions. However, as

can be seen in Fig. 2 for the flow of colloidal suspensions consid-

ered here, the prediction of K c /K η = 0 . 3 shows the best fit with

the experimental measurements. The discrepancy with the profile

predicted by the SBM [Frank et al., 2003] near the center of the

channel ( y = 0) may in part be due to the application of the non-

local stress model ( ̇ γNL ) and the viscosity model, which Frank et al.

(2003 ) did not consider in their normal stress and viscosity mod-

els. It should be noted that comparing the concentration profiles

with the data presented by Frank et al. (2003) might not be suf-

ficient to validate our model and to choose K c /K η = 0 . 3 . This is

because the empirical coefficients for various flux contributions in

the DFM and also the very micron size particles might affect the

collective diffusion coefficient. Nevertheless, we choose the deter-

mined coefficients corresponding to K c /K η = 0 . 3 because of the

lack of available data in the literatures. These need to be addressed

accurately to get the best fit with the experiment. 

We quantify the Brownian force with the dimensionless Pé-

clet number Pe = ˙ γ a 2 /D s . The effective diffusion coefficient D s 

depends on the particle volume fraction as proposed by the
eneralized Stokes-Einstein relation [ Mendoza, Santamaría-Holek

nd Pérez-Madrid, 2015 ]. Herein, as a first step and simplicity

f the problem we assume that the coefficient is dependent on

he bulk particle volume fraction ( φb ), D s = D o f (φb ) , satisfying

 s (φb ) ηs (φb ) /T s (φb ) = D o ηo /T o given by the generalized Stokes-

instein relation. Finally, D s is uniform in the suspensions flow.

his allows an equivalent Brownian diffusion for the same value

f Pe in different bulk volume fractions ( φb ). The velocity U o =
( dp / dx ) h 2 / 3 ηo , which indicates the mean velocity for Poiseuille

ow of pure Newtonian fluid, is introduced to the definition of

e for simplicity. Thus, the shear rate is defined as ˙ γ = U max /h

here U max = 3 U o / 2 . U o is also used as the velocity scale and the

éclet number is varied in the rage of 10 -2 ≤ Pe ≤ 10 3 , which is

n the typical regime of the shear-thinning to study the effect of

rownian motion as shown in the dimensional analysis reported

y [ Krieger, 1963 , 1972 ; Semwogerere, Morris and Weeks, 2007 ].

he particle radius ratio of ε = 1/25 is also used by referring the

xperiments of Frank et al. (2003 ). 

Fig. 3 (a) and (b) show distributions of particle volume fraction

t varying Pe . When Brownian diffusion is weak (i.e., at high Pe ),

articles migrate toward the center of the channel ( y / h = 0) which

s the particle behavior of non-colloidal and non-Brownian sus-

ensions ( Pe = ∞ ). For Pe ≥ 10 2 , Brownian motion indeed does

ot cause a distinct impact on the concentration field. The pro-

les change very little and the flow of suspensions reaches the

on-colloidal regime ( Pe = ∞ ) where the Brownian effect becomes

egligible. This is consistent with the trend of experimental ob-

ervations as reported in [ Frank et al., 2003 ; Semwogerere, Mor-

is and Weeks, 2007 ; Brown et al., 2009 ]. In contrast, the particle

igration toward the centerline weakens progressively as Brown-

an motion becomes stronger (i.e., as Pe decreases). This leads to

he flatten distribution of local volume fraction at very small Pe

 = 10 −2 ). 

The streamwise velocity profiles are plotted for various Pe in

ig. 3 (c) and (d). It exhibits that the stronger Brownian diffusion

i.e., decreasing Pe ) diminishes the streamwise velocity ( u ). The

lope of velocity ( du / dy ) representing the local shear rate also de-

reases by growing Brownian diffusion. These are associated with

he local volume fraction. As can be seen in Fig. 3 (a) and (b),

he Brownian force inhibits the migration of particles induced by

he shear toward the centerline of the channel where the local

hear rate is the minimum. This causes higher local volume frac-

ion ( φ) near channel walls ( y/h = ± 1 ) for smaller Pe which also

ncreases the local effective viscosity. As a result, the higher viscos-

ty leads to the large viscous friction near the walls and it reduces

he axial momentum. 

Local values of the relative viscosity ( ηrl ) calculated by

q. (15) are presented for various Pe in Fig. 4 . It reveals notice-

ble features between two regimes of Pe . As mentioned earlier, for

ow Pe ( Pe ≤ 10 1 ), the local viscosity near the walls ( y/h = ± 1 )

ncreases with diminishing Pe . At higher φb , it is more sensitive to

he Brownian motion, but the viscosity near the centerline grows

s Pe increases. These are highly related to variation of the lo-

al particle volume fraction. The distributions of ηrl are consistent

ith those of the volume fraction presented in Fig. 3 (b). When Pe

s high (i.e., Pe ≥ 10), by increasing Pe, the relative viscosity de-

reases and gradually reaches that of the flow of non-Brownian

uspensions ( Pe = ∞ ). However, it shows sharper cusps in the cen-

erline ( y / h = 0) even for very high Pe or weak Brownian force

 Pe = 10 3 ) in which the profiles of particle volume fraction and

xial velocity are parallel to those of non-Brownian suspensions

 Pe = ∞ ). This arises from the local shear rate which becomes very

mall near the centerline, since the relative viscosity is determined

y the local shear rate as given in Eq. (15) . 

In Fig. 3 (c) and (d), results confirm that the velocity is dimin-

shed with increasing Brownian motion. To quantify this, we have
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Fig. 2. Profiles of particle volume fraction ( φ) in a Poiseuille flow for ε = 1/25 at Pe B ≈ 70; (a) for different values of K c / K η , (b) for φb = 0.22 and φb = 0.34 with K c /K η = 0 . 3 . 
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Fig. 3. (a, b) Distributions of particle volume fraction ( φ), (c, d) profiles of the azimuthal velocity ( u θ ) normalized by U o for various Pe at φb = 0.1 and φb = 0.4. 
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Fig. 4. Local relative viscosity ( ηrl ) for various Pe ; (a) φb = 0.2, (b) φb = 0.4. 
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d  
valuated the volume flow rate ( Q ) of suspending fluid. The com-

uted values of Q = 

∫ 
u dy per unit depth normal to the plane

f the flow are reported in Fig. 5 (a). Here, volume flow rates

ere normalized by that of the pure Newtonian fluid flow (i.e.,

 o = −8 h 3 ( dp / dx ) / 12 ηo ) and dashed lines represent the values of

on-Brownian suspensions for each φb . As expected, the flow rate

ecreases with the increase of both the Brownian diffusion ( Pe −1 )

nd the bulk volume fraction ( φb ) showing good agreement with

he velocity profiles plotted in Fig. 3 (c) and (d). The effect of Brow-

ian motion on the flow rate is more critical in dense suspension

ows. For higher φb , the flow rate decays rapidly with the decrease

f Pe as revealed in Fig. 5 (b). 
.2. Migration of Brownian suspensions in a circular Couette flow 

We then consider the flow of neutrally buoyant, colloidal, and

rownian suspensions in a circular Couette flow. As depicted in

ig. 6 (a), rigid, spherical particles are suspended in a viscous fluid

ontained between two cylinders in which the inner cylinder of

he radius R i rotates at a constant angular velocity ( 
) and the

uter one with the radius R o is stationary. We performed DNS dis-

retized on a cylindrical coordinate system with 96( r ) × 64( θ )

 Fig. 6 (b)). More grid points were clustered near the wall of cylin-

ers in the radial direction ( r ) with 
r min = 0 . 005 d, where d
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Fig. 5. Normalized volume flow rates ( Q ) for various values of φb and Pe ; (a) Q / Q o , (b) Q / Q ∞ . Q o is the volume flow rate for pure fluid flow, and Q ∞ = Q( Pe = ∞ ) is the 

value for non-Brownian and non-colloidal suspensions ( Pe = ∞ ) indicated by dashed lines for each φb . 

Fig. 6. (a) Schematic diagram of suspensions in a circular Couette flow with a wide 

gap. (b) Grid system (every other grid point is plotted in the radial direction for 

clarity). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Particle volume fraction ( φ) in a circular Couette flow of non-colloidal and 

non-Brownian suspensions (i.e., Pe = ∞ ) for ε ( = a / R o ) = 0.02836. Dashed lines, 

circles, squares, and triangles correspond to DFM predictions and experiments using 

Philips, Armstrong and Brown (1992) , respectively. 
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( = R o − R i ) is the gap between two cylinders. However, the grid

has a uniform size in the azimuthal direction ( θ ). 

While numerous experiments and theoretical predictions have

been carried out for non-Brownian suspensions in both con-

centric and eccentric cylindrical Couette cells [ Leighton and

Acrivos, 1987 ; Phillips, Armstrong and Brown, 1992 ; Tetlow et al.,

1998 ; Subia et al., 1998 ; Fang et al., 2002 ; Dbouk et al., 2013 ;

Mirbod, 2016 ; Sarabian et al., 2019 ], to the best of our knowl-

edge the characterization of colloidal and Brownian suspensions

in the circular Couette flow have not been attempted before. To

validate our code, we considered the flow of non-colloidal sus-

pensions ( Pe = ∞ ). We revisited the work by Phillips, Armstrong

and Brown (1992) for comparison. We performed the computa-

tions for concentrated suspensions of a particle size ε = 0.02836

( = a / R o ) contained between two coaxial cylinders of the radius ra-

tio R i /R o = 0 . 2689 . The parameter K c /K η = 0 . 66 was also used

for the diffusion coefficients of the constitutive equation [ Phillips,

Armstrong and Brown, 1992 ]. Fig. 7 shows the particle concentra-

tion profiles for several φb in comparison with those of measure-

ments and predictions reported in Phillips, Armstrong and Brown

(1992) . As can be seen, particles migrate toward the outer cylinder

by the shear stress arising from rotation of the inner cylinder. Our

predicted profiles are in good agreement with their data. In partic-

ular, the profiles are in line with their numerical values computed

by the DFM. 

The dimensionless Péclet number Pe = ˙ γ a 2 /D s that represents

the quantified Brownian diffusion is defined using the mean shear

rate of the Couette flow as ˙ γ = R i 
/d. This shows that Pe is de-

termined by the effective diffusivity of the suspensions D s , and it

leads to an equivalent Brownian diffusion for a constant Pe and

different φb . We adopt the geometrical and numerical parameters

used for the validation in the present study (i.e., R i / R o = 0.2689,

ε = 0.02836, and K c /K η = 0 . 66 ). To evaluate the impact of Brow-
ian motion, in all our computations we vary the Péclet number

rom 10 −2 to 10 3 . 

Fig. 8 (a) and (b) display profiles of particle volume fraction ( φ)

or varying Pe at φb = 0.1 and φb = 0.4. It turns out to be the

ritical role of Brownian motion is on the particle distribution. At

igh Pe , particles travel toward the outer cylinder wall similar to

he non-colloidal particles. However, as the Brownian diffusion be-

omes stronger (i.e. as Pe diminishes), the local volume fraction in-

reases near the inner wall and decreases near the outer wall. Fi-

ally, at the lowest Pe , the profile of φ flattens out with the strong

rownian motion. Therefore, it could be concluded that the Brow-

ian diffusion limits the shear-induced particle migration toward

he region of the low shear rate and particles will be distributed

venly within the gap of the Couette cell. 

The azimuthal velocity ( u θ ) profiles varying Pe for φb = 0.1 and

b = 0.4 are presented in Fig. 8 (c) and (d). As can be seen, Brown-

an motion also alters the velocity distribution between two cylin-

ers. The velocity is amplified by increasing Brownian diffusion

i.e., decrease of Pe ). Hence, the slope of velocity profiles near the

nner cylinder (| ∂ u θ / ∂ r | at r = R i ) decays as Pe decreases. The im-

act of Brownian motion is more significant at higher φb . It could

e interpreted as the migrated particle volume fraction. As illus-

rated in Fig. 8 , the local particle volume fraction near the inner

ylinder is higher for lower Pe . This causes a larger suspension vis-

osity, then a stronger viscous drag force acts on the fluid. As a re-

ult, the drag force enhances the velocity of the flow driven by the

hear. Meanwhile, the velocity rises more sharply at highly dense

uspensions. 

The local relative viscosities ( ηrl ) given by Eq. (15) at different

e for φb = 0.2 and φb = 0.4 are plotted in Fig. 9 . The values are

ell correlated with the distribution of particle volume fraction

rovided in Fig. 8 (a) and (b). In the vicinity of the inner cylinder,

he high concentration induced by the strong Brownian motion re-
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Fig. 10. Normalized friction coefficients ( C M ) for different values of φb and Pe ; (a) 

C M /C M o , (b) C M /C M ∞ . C M o is the friction coefficient for pure fluid flow, and C M ∞ is the 

value for non-Brownian suspensions ( Pe = ∞ ) indicated by dashed lines for each 

φb . 
ults in a large value of suspension relative viscosity. It creates in-

ense viscous drag force in the fluid and larger velocity of the flow

s stated above. The relative viscosity diminishes near the inner

ylinder as the local particle volume fraction decreases with the

eakening of the Brownian diffusion (i.e., increasing of Pe ). On the

ther hand, ηrl is rather complicated close to the outer cylinder. It

ppears that the function of ηrl ( Eq. (15) ) is very sensitive to high

olume fraction and low shear rate. When Brownian motion im-

act is low (high Pe ), particles migrate toward the outer cylinder

eading to higher concentration of particles in the outer region of

ylinder. Accordingly, this causes the complex behavior of the vis-

osity depending on the particle volume fraction and local shear

ate; thus, the value of ηrl is independent of Pe in the vicinity of

he outer wall. 

The friction coefficient C M 

, which is a dimensionless measure

f the torque acting on the inner cylinder, has been evaluated

o identify the influence of Brownian motion on the momentum

ransfer. For this study, it can be given by [ Kang, Yang and Muta-

azi, 2015 ; Guillerm et al., 2015 ] 

 M 

= 

M 

ρπ
2 R 

4 
i 
/ 2 

(16) 

here M is the momentum over the cylindrical surface [ Kang, Yang

nd Mutabazi, 2015 ; Guillerm et al., 2015 ]. The variation of C M 

gainst Pe for all values of φb is illustrated in Fig. 10 . The coef-

cients were normalized by the friction coefficient for pure fluid

ow C M o 
= − 1 

e (1+ e ) 
8 ηo 

ρo R 
d 
where e = R i /R o in Fig. 10 (a) [ Kang, Yang
i 
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Fig. 11. (a) Concentration profiles ( φ) and (b) profiles of the local relative viscosity ( ηrl ) in the plane Poiseuille flow without the non-local contribution ( ̇ γNL ) in Eq. (15) for 
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and Mutabazi, 2015 ; Guillerm et al., 2015 ]. The dashed lines rep-

resent the values for non-Brownian suspensions ( C M ∞ 

= C M 

( Pe =
∞ ) ) at each φb . It can be observed that the concentrated suspen-

sions cause larger friction coefficients, showing C M 

/C M o 
> 1 . As a

matter of fact, a stronger torque is exerted on the inner cylinder

by the suspending fluid. As the Brownian force becomes increas-

ingly dominant and the suspensions become denser, C M 

gradually

rises. However, there is no detectable impact for the flow of dilute

suspensions with very weak Brownian diffusion (i.e., very high Pe ).

Furthermore, as can be seen in Fig. 10 (b), the effect of Pe is more

critical for higher φb . The relative friction coefficient ( C M 

/C M ∞ 

)

grows more sharply as Pe diminishes. 

4. Discussion 

Fully-developed flows of colloidal, Brownian, neutrally buoyant

suspensions of rigid, spherical particles in both Poiseuille and cir-

cular Couette flow have been considered in this study. A viscosity

model, proposed by de Kruif et al. (1985) , as a function of local

particle volume fraction and shear rate has been introduced to ex-

press the shear-thinning effect of colloidal and Brownian suspen-

sions. As stated in Sec. Ⅱ , we have been confronted with a diffi-

culty when we apply the viscosity model of Eq. (2) . Fig. 11 displays

the distributions of particle volume fraction ( φ) and local relative

viscosity ( ηrl ) predicted with the viscosity function of Eq. (2) , for

various Pe at φ = 0.2 in the plane Poiseuille flow. As mentioned
b 
arlier, sharp cusps pointed down are detected for some cases at

he center ( y / h = 0). These features can also be seen in the particle

oncentration profiles reported by Rebou ҫas et al. (2016) who con-

idered the viscosity model of Cross (1970) , presented in Eq. (1) ,

or the flow of colloidal suspensions through a cylindrical tube.

his is linked to the shear rate ˙ γ , since the local shear rate ap-

roaches to zero ( ̇ γ → 0 ) near the point and then it causes dis-

ontinuous cusps in the distribution of the viscosity. Finally, it re-

ults in the discontinuity of concentration profile originated from

he ∇(ln η) term of the particle flux N η at the center. To im-

rove this difficulty, we have modified the function of the viscosity

odel by adopting the nonlocal contribution ( ̇ γNL ) to the model as

iven in Eq. (15) . The results obtained for both φ and ηrl are shown

n Figs. 3 and 4 . 

The particle migration of colloidal particles influenced by Brow-

ian motion has been investigated by varying the Péclet number Pe

n this study. Our result has revealed that the Brownian diffusion

nhabits the shear-induced particle migration. To further analyze

he migration, we have compared the particle fluxes ( N i ) expressed

n the conservation equation for particles in Eq. (8) . Fig. 12 illus-

rates the variation of particle fluxes for several Pe in the circu-

ar Couette flow. The flux N c arising from the varying collision fre-

uency is balanced by the flux N η caused by the spatial variation

f the suspension viscosity ( η) and the Brownian diffusive flux N b .

s expected, at low Pe , the contribution of N b to the total flux

s large and it is more dominant compare to the flux N η . How-
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ver, the flux N b and its contribution progressively diminishes with

ncreasing Pe . For high Pe , the Brownian flux ( N b ) becomes very

mall and negligible compare to other fluxes. This analysis strongly

upports our findings which address the role of the Brownian dif-

usion on the particle migration. 

. Conclusion 

This work provides the first evidence on the shear-thinning be-

avior and Brownian motion effects of the flow of colloidal sus-

ensions in both Poiseuille and circular Couette flow. In summary,

e have numerically examined the flow of colloidal and Brow-

ian suspensions of rigid, spherical particles by considering the

hear-thinning impact of the suspensions. The constitutive equa-

ion modeling of the dynamics of suspensions has been solved

ith the flow equations using direct numerical simulations. To de-

cribe the shear-thinning viscosity of suspensions, the scaled vis-

osity model defined as a function of both local shear rate and

oncentration has been used. Pressure-driven and Couette flows of

olloidal and Brownian suspensions have been studied to clarify

he flow phenomena and the shear-induced particle migration in

hese flows. We have varied the Péclet number which quantifies

he Brownian diffusion to elucidate the impact of Brownian mo-

ion on the flow and the particle migration. 

For Poiseuille flow, our prediction on the particle distribution

hows good agreement with the available experimental data. As

he Brownian motion becomes stronger (i.e., as Pe decreases), the

article migration caused by the shear toward to the center of

he channel is restricted. The particle distribution flattens out with

ery large Brownian diffusion (or at very low Pe ). The velocity of

uspensions decays with the stronger Brownian motion, since the

igher concentration close to the channel walls grows the local

iscosity and the viscous friction on the walls. The reduction in

he velocity by the Brownian diffusion effect has been quantified

y evaluating the volume flow rate ( Q ) of suspending fluid. It has

een shown that increasing both Brownian diffusion and suspen-

ions volume fraction causes the reduction of the flow rate. This

ffect is more critical in dense suspension flows (i.e., at high φb ). 

In the circular Couette flow, Brownian motion inhibits the par-

icle transport toward to the outer cylinder wall by intensifying

he Brownian diffusive flux. The very strong Brownian motion (i.e.,

ery low Pe ) makes the profile of particle volume fraction flat. Fur-

hermore, it enhances the velocity of suspensions between two

ylinders. The enhancement is more distinct for highly dense sus-

ensions (i.e., at high φb ). Although the slope of the velocity de-

reases in the vicinity of the inner cylinder wall as Pe reduces, the

iscosity of suspensions grows since the local particle volume frac-

ion increases. As a result, it leads to the rise of the friction co-

fficient ( C M 

) on the inner cylinder wall. The coefficient rises by

ecreasing Pe and increasing φb . 

This study would also be a framework for the future study of

rownian suspensions and shed lights on the understanding of col-

oidal suspensions flow in various geometries. A systematic exper-

mental investigation of flow in a circular Couette cell is needed. 
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