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Towards the linear arboricity conjecture

Asaf Ferber * Jacob Fox T Vishesh Jain?

Abstract

The linear arboricity of a graph G, denoted by la(G), is the minimum number of edge-disjoint
linear forests (i.e. forests in which every connected component is a path) in G whose union covers
all the edges of G. A famous conjecture due to Akiyama, Exoo, and Harary from 1980 asserts
that la(G) < [(A(G) + 1)/2], where A(G) denotes the maximum degree of G. This conjectured

upper bound would be best possible, as is easily seen by taking G to be a regular graph. In
this paper, we show that for every graph G, la(G) < % + O(A?/3=) for some a > 0, thereby
improving the previously best known bound due to Alon and Spencer from 1992. For graphs
which are sufficiently good spectral expanders, we give even better bounds. Our proofs of these
results further give probabilistic polynomial time algorithms for finding such decompositions into
linear forests.

1 Introduction

A linear forest is a forest in which every connected component is a path. Given a graph G, we
define its linear arboricity, denoted by la(G), to be the minimum number of edge-disjoint linear forests
in G whose union is E(G). This notion was introduced by Harary [15] in 1970 as one of the covering
invariants of graphs, and has been studied quite extensively since then.

It is immediate that la(G) < e(G) as every edge uv (along with the isolated vertices V(G)\{u,v})
forms a linear forest. A less trivial upper bound can be obtained as follows: by a classical theorem
due to Vizing, E(G) can be partitioned into at most A + 1 matchings, where A := A(G) denotes
the maximum degree of GG; observe that each matching is a linear forest, and therefore we get that
la(G) < A+ 1. For a lower bound, note that every linear forest has at most n — 1 edges (and equality
holds if and only if the linear forest is a Hamiltonian path). Therefore, if G is a A-regular graph,
then @) A A
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which implies (recall that la(G) is an integer) that la(G) > [(A + 1)/2]. The following conjecture,

known as the linear arboricity conjecture, of Akiyama, Exoo and Harary [1] asserts that this bound
is the best possible:
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Conjecture 1.1 (The linear arboricity conjecture). Let G be a graph of mazimum degree A. Then,

woy< [221]

Remark 1.2. It is easy to see that every graph G, with maximum degree A(G), can be embedded
into a A(G)-regular graph (perhaps on a greater number of vertices). Therefore, the above conjecture
is equivalent to the statement that for a A-regular graph G we have la(G) = [(A(G) + 1)/2].

The linear arboricity conjecture was shown to be asymptotically correct as A — oo by Alon in
1988 [3]|. He showed that for every A-regular graph G,
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in the same paper, he also proved that the linear arboricity conjecture holds for graphs G with girth
Q(A(G)). The bound for general graphs was subsequently improved by Alon and Spencer in 1992
(see [4]) to:

1a(G) < % +0 <A2/3(log A)1/3) . (1)
Even though this conjecture has received a considerable amount of attention over the years, and has
been proven (i) in special cases (see, e.g., [1, 2, 3, 8, 14, 25, 26]) (ii) for almost all d-regular graphs
of constant degree by McDiarmid and Reed [18], and (iii) for a typical Erdds-Renyi graph with edge-
density either log''"n/n < p = o(1) or p a fixed constant by Glock, Kiihn and Osthus [12], there have
been no asymptotic improvements in the error term (that is, the second summand in the bound (1)
of Alon and Spencer) for general graphs. Our first main result improves this term by a polynomial
factor:

Theorem 1.3. There exist absolute constants o > 0 and C > 0 for which the following holds. For
any A-regular graph G,

la(G) < % + oA

Remark 1.4. In the proof of Theorem 1.3, we make use of Lemma 2.13, the proof of which relies on
a ‘nibbling’ argument. As this argument is well-known but quite lengthy, we have used the results
from [7] as a black box, and we get a bound of (say) e = 1/100. While a more careful analysis of
the nibbling process tailored to our argument may very well give a better bound on «, we have made
no attempt to do so, since we believe that a ‘natural barrier’ for our argument should be o = 1/6
i.e. VA (which is anyway far from Conjecture 1.1), and any further progress towards the conjecture
should require new ideas.

It was shown by Peroche [22] that computing the linear arboricity of a graph is N P-complete;
this is to be contrasted with variants like the arboricity of a graph (i.e. the minimum number of
edge-disjoint forests in G whose union is E(G)) for which polynomial time algorithms are available
[11]. Our proof of Theorem 1.3 gives an algorithm for computing a decomposition of E(G) into
at most % + CAS™ edge-disjoint linear forests, which runs in time polynomial in |V(G)| with
high probability. Since the linear arboricity of a A-regular graph is at least %, we thereby get an
approximation algorithm providing the best-known approximation guarantee (to our knowledge) for
efficiently approximating the linear arboricity of a regular graph.



Corollary 1.5. There exist absolute constants o > 0 and C > 0 for which the following holds. Let
G be a A-regular graph. Then, there is a probabilistic polynomial time algorithm for approzimating

la(G) to within <1 + #) -multiplicative error.

Our second main result deals with (n, A, X)-graphs, which we now define. A A-regular graph G is
said to be an (n, A, \)-graph if |[V(G)| = n and the second largest (in absolute value) eigenvalue of
the adjacency matrix of G is at most A. For all such graphs with A not too large compared to A, we
are able to obtain better bounds on the error than the one coming from Theorem 1.3.

Theorem 1.6. There exist absolute constants 5 > 0 and C > 0 for which the following holds. For
every (n, A, X)-graph G with A < A2/3,

1a(G) < = + C(AA)F P,
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Just like for Theorem 1.3, our proof of Theorem 1.6 also leads to an algorithm for computing such
a decomposition of E(G) in time which is polynomial in |V (G)| with high probability.
1.1 The general proof scheme

Our proof outlines follow and extend ideas from [5]. Let G be a d-regular graph on n vertices.
Consider the following procedure to upper bound la(G): First, find a vertex partitioning V(G) =
ViUVaU. ..UV, where t is an even positive integer to be specified later, with the following properties:

L ||Vi| = |Vj|| <1 for all 4,j € [t], and

1/2
2. d(v,V;) € 2£100 (@) for all v € V(G) and all i € [t].

The existence of such a partitioning is guaranteed by Lemma 2.8, which is proved by a standard
application of Chernoff’s bounds (Lemma 2.1) followed by the Lovasz Local Lemma (Lemma 2.4).

Second, for all i # j, let B;; be the induced bipartite graph G[V;, V;]. By Property 2 and Vizing’s
theorem (Theorem 2.7), one can decompose F(B;;) into at most

1/2
A(Bij) +1 < E +102 <dk;gd> J =5

matchings. Let M;; be any such decomposition into s matchings (it might be the case that a few of

them are empty), and let M := {M,;}i<; be the collection of all such decompositions (that is, one
decomposition for every B;;).

Third, let P := {P,..., P2} be a Hamiltonian path decomposition of Ky; the existence of such
a decomposition is ensured by the fact that ¢ is even and a classical result of Walecki from the
1890s which can be found in [17] and provides an explicit such decomposition. It is easy to see that
using our collection of decompositions 9, one can find a collection Fp of forests, one for every such
Hamiltonian path P = v;,,...,v;, in P, satisfying the following two properties:

e Fp consists of at most s edge-disjoint linear forests;

e Fp contains all the edges ;e p(p) E(Bij)-



Indeed, let P be such a Hamiltonian path; after possibly relabeling the vertices, we may assume
that P =123...t. Observe that by taking one matching from each decomposition M, ;1 we obtain
a linear forest. Therefore, by repeating this procedure s times, since each M; ;1 consists of at most s
matchings, one can build a collection of at most s linear forests for every P. Clearly, such a collection
contains edge-disjoint linear forests whose union consists of all the edges of all the bipartite graphs

{Biit+1}iej—1)-

As there are % Hamiltonian paths in P, the above construction gives us at most

st
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linear forests which cover all the edges in all the bipartite graphs {B;;}izj. Let L :=J'_, E(G[Vi])
be the set of all the edges which have not been covered by these linear forests (we will also identify

L with the graph on V(G) whose edges are L, in which case we will refer to L as the leave graph).
1/2
Since A(L) < % + 100 <@) by Property 2 of the partitioning, Vizing’s theorem shows that L

1/2
can be decomposed into at most A(L) +1 < % + 101 (@) matchings. Since any matching is
manifestly a linear forest, we have thus obtained a decomposition of the edges of G into at most

THAD) 1< g 4 g 4152 (dt log d) /2 @)
linear forests. In order to optimize the error term d/t 4+ 152(dtlog d)l/ 2 we would like to pick t so
that the two summands in the error term are the same. This is achieved by choosing t3 = ©(d/log d),
in which case

la(G) < g + O(d*?1og!/? d).

This is the strategy used in [5] to recover the bound of Alon and Spencer.

Let us now discuss the weak points in the construction and the analysis that we have presented,
along with ideas for improving them. The formal details will be given in subsequent sections.

(i) In the above construction, we decompose the leave graph L into matchings and treat each
matching as a linear forest by itself. This gives us the ©(d/t) error term in the above analysis.
Note, however, that adding a matching contained in some G[V;] to any of the linear forests
obtained from a path P which has ¢ as an endpoint still results in a linear forest. Therefore, it
makes sense to try to ‘swallow’ all the edges of L in our current linear forests. We discuss this in
more detail in Section 2.6, where we also present the key technical lemma (Lemma 2.13) needed
to make this idea work. The upshot of Lemma 2.13 is that it allows us to replace the ©(d/t)
term in the error by © ((d/t)l_v) for some v > 0. Optimizing the error term now results in the
choice t3727 = ©(d'~%7/log d), which gives an error of O(d*?~®) for some a > 0, as desired in
Theorem 1.3.

(i) In the above construction, we take A(B;;)+ 1 matchings in each B;;, whereas ideally, we would
like to take only ‘average degree’ many matchings. This error, summed up for all B;;, gives us

the O(v/dtlogd) term in (2). In the proof of Theorem 1.6, we will show (Lemma 2.10) that if G



satisfies some expansion properties, then we can approximately decompose each B;; into edge-
disjoint perfect (up to divisibility) matchings. If we remove the linear forests generated by these
matchings using the above procedure, then we remove the “correct” number of linear forests,
and the “leave graph” L has much smaller maximum degree. Now, we apply Theorem 1.3 to L.

2 Auxiliary lemmas

In this section, we gather various preliminaries, as well as state and prove the key lemmas needed
for our proofs.

2.1 Probabilistic estimates

Throughout this paper, we will make extensive use of the following well-known bound on the upper
and lower tails of a sum of independent indicators, due to Chernoff (see, e.g., Appendix A in [4]).

Lemma 2.1 (Chernoff’s inequality). Let Xi,..., X, be independent random variables with Pr[X; =
1] =p; and Pr[X; =0l =1 —p; foralli. Let X =", X;, and let E(X) = p. Then

o P[X < (1—a)u] < e M2 for every a > 0;

o P[X > (14 a)u] < e M3 for every 0 < a < 1.

Remark 2.2. If all the p;’s are the same, the obtained bounds are also valid if, instead of taking X

as the sum of i.i.d random variables, we take it to be hypergeometrically distributed with mean u
[16].

Before introducing the next tool to be used, we need the following definition.

Definition 2.3. Let (A;)!"; be a collection of events in some probability space. A graph I' on the
vertex set [n] is called a dependency graph for (A;); if A; is mutually independent of all the events

{4; i ¢ E(T)}.
The following is the so-called Lovasz local lemma in its symmetric version (see, e.g., [4]).

Lemma 2.4 (Lovész local lemma). Let (A;)_; be a sequence of events in some probability space, and
let T be a dependency graph for (A;);. Suppose that Pr[A;] < q for everyi € [n] and eq(A(T)+1) < 1.
Then, Pr[Ni, A;] > 0.

2.2 Algorithmic Lovasz local lemma

The original proof of the Lovasz local lemma in [9] is non-constructive in that it does not provide
any way of finding a point in the probability space avoiding the ‘bad’ events. However, in the case
when the ‘bad’ events (A;)]; are determined by a finite collection of mutually independent random
variables (X;).,, the breakthrough work of Moser and Tardos [21] shows that the following simple
randomized algorithm efficiently computes an assignment to the random variables (Xj);-”:l which
avoids all the ‘bad’ events — start with a random assignment to the variables P, and check whether
some event in A is violated. If so, arbitrarily pick such a violated event, and sample another random
assignment for the values of the variables on which this event depends (this step is called a resampling
of the event). Continue this process until there are no violated events.



Theorem 2.5 ([21]). Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these variables. Consider the dependency graph
I on these events given by adding an edge connecting two events A,B € A if and only if A and
B depend on some common random variable in P. Suppose that Pr[A] < q for every A € A and
eq(A(T') + 1) < 1. Then, there exists an assignment of values to the variables P not violating any of
the events in A. Moreover the randomized algorithm described above resamples an event A € A at
most an expected O(1/A(T")) times before it finds such an evaluation. Thus, the expected total number
of resampling steps is at most | A|/A(T).

Remark 2.6. All the applications of the local lemma in this paper fit the general framework of the
above theorem and seek to avoid at most p1(n) events, where p;(n) is some polynomial in the number
of vertices n := V(G). Moreover, every event in each of our applications can be sampled in time
p2(n), for some polynomial pa(n). It follows that all of our applications of the local lemma can be
performed algorithmically in expected time O(p;(n)p2(n)). Thus, by Markov’s inequality, it follows
that the probability of the algorithm taking more than O(pi(n)p2(n)ps(n)) time is at most 1/p3(n).

2.3 Vizing’s theorem

The chromatic index of a graph G, denoted by x/(G), is the minimum number of colors needed
to color E(G) in such a way that each color class is a matching. It follows immediately from this
definition that x'(G) > A(G); perhaps surprisingly, Vizing [24] proved that this trivial lower bound
is nearly optimal:

Theorem 2.7 (Vizing’s Theorem). FEvery graph G satisfies
X (G) € {A(G), A(G) + 1}

Moreover, the strategy in Vizing’s original proof can be used to obtain a polynomial time algorithm
to edge color any graph G with A(G) + 1 colors (|20]). Note that, as mentioned in the introduction,
Vizing’s theorem immediately gives the bound la(G) < A(G) + 1.

2.4 Random vertex partitioning

Given a d-regular graph with d sufficiently large, the following lemma gives a partition V(G) =
Vi U... UV, for which ‘all the degrees are correct’.

Lemma 2.8. There exists an absolute constant dg for which the following holds. For all d > dy, all
d-regular graphs G, and all integers 1 < t < d/100, there exists a partition V(G) = Vi U ... UV,
satisfying the following two properties:

1. Forall1 <i,j <t |[Vi|-|Vj|| <1.
2. For allv € V(Q) and for all i € [t], the number of edges from v into V;, denoted by dg(v,V;),
1/2
satisfies dg(v, V;) € % + 100 (@)

Proof. Note that for (say) d > log®n, the lemma follows easily by Chernoff’s inequality for the
hypergeometric distribution and the union bound. Since we are also interested in graphs with smaller



degree, we need a slightly more complicated proof where the union bound is replaced by a standard
application of the local lemma (Lemma 2.4).

Let s := [n/t] and let Fi,...,Fs be an arbitrary partition of V(G) such that Fy,..., Fs_q are
of size t each. Let f: V(G) — {1,...,t} be a random function chosen as follows: for each k € [s],
the restriction f|p, is a permutation of [|Fj|] chosen uniformly at random. Given such an f, define
Vi:={v e V(GQ) : f(v) =i}. Observe that for each i € [t], |V;| is either s —1 or s, so that the desired
property 1 of the lemma holds. We wish to show that, with positive probability, there exists an f
such that the corresponding partition V(G) = V3 U --- U V; satisfies property 2 of the lemma.

To this end, fix a vertex v € V(G) and for each k € [s], let py := |Ng(v) N Fy|/|Fg|. Since each
f|F, is chosen uniformly at random from among all permutations of [|Fy|], it follows that for all
i€t

- 1<) pi <Eldg(v, V7)) szg +1.

Therefore, by Chernoff’s bounds (Lemma 2.1),

d [dlog d 1
Pr [dg(v, Vi) ¢ — 100 ; ] < exp (—20001log d) = 72000

Let &, denote the event ‘d(v,V;) ¢ ¢ + 100,/ dlogd’, and note that for all ¢ € [t] and v € V(G),
&i» may depend on an event &, only 1f at least one of the following two conditions hold: u = v; or

u and v have neighbors to the same Fj, for some k. In particular, each event &; , depends on at most
t 4+ d’t < d* events. Finally, since
e(d* +1)

2000 < 1

the local lemma guarantees the existence of an f as desired. O

2.5 Finding dense, regular spanning subgraphs in ‘nice’ bipartite graphs

The next lemma shows that almost-regular balanced bipartite graphs induced by large disjoint
subsets of a good expander contain a spanning regular graph covering almost all the edges. The
proof is similar to the proof of Lemma 2.12 in [10], and is based on the following generalization of
the Gale-Ryser theorem due to Mirsky [19].

Theorem 2.9 ([19]). Let G = (AU B, E) be a balanced bipartite graph with |A| = |B| = m, and let
r be an integer. Then, G contains an r-factor if and only if for all X C A and Y C B

ea(X,Y) 2 r(|X[+[Y]=m).

Lemma 2.10. Let G be an (n,d,\) graph. Let 1 <t < d/100 be some integer such that t | n. Let
A and B be disjoint subsets of V(G) of sizes |A| = |B| = % and consider the bipartite subgraph of

G induced by these sets, denoted by G' := G[A, B]. Assume further that %l — 100 dligd <HGE) <

A(G) < %l + 100 dl‘zgd. Then, G’ contains an r := L% — v]-factor (i.e. an r-regular spanning

subgraph) for v = 104 max{\, dl‘;gd}, provided that v < r/2.




Proof. Since v > 0, the statement is vacuously true whenever » < 0. Hence, we may assume that
r > 0. By Mirsky’s criterion, it suffices to verify that for all X C A and Y C B, we have

co(x)= (§-9) (1x1+71- 7).

We divide the analysis into five cases:
Case 1: | X| + |Y| < %. Since eq(X,Y) > 0, there is nothing to prove in this case.

Case 2: |[X|+ Y| > %, [Y] > |X]| and |X]|]Y°] < )‘dQ , where Y¢ := B\ Y. Suppose for

contradiction that eq(X,Y) < r (\X! + Y| — %) . Then, it must be the case that

ec(X,Y) 2 0(G)|X] — ea(X,Y) > (8(G") — r)|X| + 7]V

On the other hand, we know by the expander mixing lemma that

d
ec(X,Y°) < —| XYY + AVIX[Y ] < 2Av]X[[Y ),

where the second inequality holds since | X||Y¢| < >‘2

. Hence, we must have

20/ | X||Ye| > (8(G) — )| X| + |V

Since both terms on the right hand side are nonnegative, 2\/|X||Y¢| should also be greater than
either of them, for which we must have

4)\2
S[yel.

2

r
— Y <X < —
4>\2| < |_(5(G’)—7‘)

In particular, we must have r(6(G’) —r) < 42, which implies A > r, which violates our assumption
about A.

Case 3: | X|+[Y] > 2, [V| > [X], | X||Y¢] > 22 and | X| < & Ifeq(X,Y) <7 (|X] + Y] - 2),
then by the same argument as above, we must have

d C C
20 X[V = (9(G") = ) X] + Y7l

In particular, we must have \X | > 55, which violates our assumption about |X].

Case 4: |X|+|Y|> %, |Y] > |X| and |X| > 5. By assumption, we have 2|Y'| > n/t, so that
Y| > n/2t. Moreover, since v < r/2, we have that r > d/2t. Therefore, \/|X||Y| > /n?/4t2 >
n/2t. On the other hand, we also have (2n\)/(ty) < (2n7v)/(104ty) < n/50t. Combining these two
inequalities, we see that 2| X||Y| > ”TA V| X||Y]. Therefore, by the expander mixing lemma, it suffices

to verify that
t [d d n
N > (= — — ).
n(t )|X||Y| (t 7><|X|+IY| 2

Dividing both sides by n/t, we see that this is implied by the inequality

where 8 = d%ﬁff}z, z =t X|/n,y =tY|/n,z+y >1,0< 2z <1 and 0 <y < 1. Observe
that the objective function on the left hand side of the desired inequality is bilinear in z and y, and



therefore the minimum will be obtained on the triangular boundary of the region. On this boundary,
the inequality reduces to one of the following: zy > 0; © > Bz; y > By, and is readily verified since
B<1

Case 5: |X| + |Y| > % and Y| < |X]. This is exactly the same as cases (2)-(4) with the roles of
X and Y interchanged. O

Remark 2.11. Under the conditions of the above lemma, an r-factor in G’ can be found efficiently
using algorithmic versions of Mirsky’s criterion based on standard network flow algorithms (see, e.g.,

[6])-

Remark 2.12. In the application of this lemma to Theorem 1.6, we will have to deal with bipartite
graphs as above, except that we are allowed to have |A| = |B| 4 1. In this scenario, it is impossible
to find an r-factor. However, by adding a “fake” vertex to B with suitable edge connections to A,
finding an r-factor in this new graph using the above lemma, decomposing this r-factor into r edge-
disjoint perfect matchings using repeated applications of Hall’s theorem, and finally removing all
edges incident to the “fake” vertex, we see that G’ := G[A, B] contains r-edge disjoint matchings such
that every vertex in AU B is matched in at least » — 1 such matchings.

2.6 Avoiding short cycles

In this section, we introduce our key technical lemma for proving Theorem 1.3. Since the usefulness
of this lemma may not be apparent at first glance, we encourage the reader to refer to this section
only after encountering its application in the proof of Theorem 1.3.

Lemma 2.13. There exist universal constants B, D > 20 for which the following holds. Let G be
a graph with mazimum degree A and minimum degree § such that A — 8 < A6 and A > D. Let
M, ..., May1 be a fized collection of matchings in the complete graph on V(G). Then, there exists
a collection of matchings My, ... 7M/A+1 in G, where some of them may possibly be empty, such that:

1. the graph G', which is obtained from G by deleting all the edges Uz‘e[A+1} E(M]), has mazimum
degree at most A1=V/B;

2. for allv € V(QG), there are at most A indices i € [A+1] for which v lies on a cycle in M! U M;
of length at most A0 where b := % + 2—10.

Moreover, such a collection of matchings may be obtained in poly(V(G)) time with high probability.

The proof of this lemma builds on the proof of the main result in the work of Dubhashi, Grable,
and Panconesi [7]. Since the details are somewhat involved, we defer them to Appendix A.

3 Proofs of main results

In this section, we conclude the proofs of our main results. Since these proofs build on the general
strategy discussed earlier, we encourage the reader to review the construction in Section 1.1 before
proceeding. We start by proving Theorem 1.6 as a warm up since its proof is simpler.



3.1 Proof of Theorem 1.6

Let G be an (n,d,\)-graph and set v = 104 max{}, y/ dligd}. As in the general proof scheme
presented in Section 1.1, we start with a vertex decomposition V(G) = V; U ...V, satisfying the
conclusions of Lemma 2.8, where ¢ < d/100 is a positive even integer which will be specified below.
For all 7 # j, let M;; be a collection of r := L% — 7] edge-disjoint matchings of the bipartite graph
B;j := G[V;, V] as in Remark 2.12 — such a decomposition exists for all sufficiently large d since v < §
holds by our choice of ¢ below, and our assumption that \ < d?/3.

Let P :={Py,... ,Pt/g} be a Hamiltonian path decomposition of K;, and for each P € P, let Fp
be the collection of r edge-disjoint linear forests obtained as in Section 1.1. This gives us a set of %t
edge-disjoint linear forests of G. The key observation here is that the graph L induced by all edges of
G which are not in any such linear forest has maximum degree A(L) < d—(t—1)(r—1) < (y+1)t+r
since each vertex in V; UV} is in at least 7 — 1 of the r edge-disjoint matchings selected in B;;. Our
goal now is to find a decomposition of the edges of L into as few linear forests as possible. The bound
(1) ensures that we can find a decomposition into at most A(L)/2 4+ C(A(L))?/3log'/3(A(L)) linear
forests. Together with the collection of rt/2 edge-disjoint linear forests that we built earlier, this
shows that

(@) < 7+ 2 oA og AL
< 2+ T oA W) 1og Y (A(L)
WD BT oA tog H(AD)
< T oA o (A (L).

_ 1/5
Setting t = © (fj—i) to optimize the error term (in which case v = 104\) shows that la(G) < %l +

O ((d)\)2/ ®), where the tilde hides logarithmic dependence on d. If instead of (1), we use Theorem 1.3
to handle the linear arboricity of L, then we get that

la(G) < 5

for some 3 > 0, as desired.

3.2 Proof of Theorem 1.3

Let G be a d-regular graph on n vertices with d sufficiently large. Let V(G) = V3 U...V; be a
vertex-partition satisfying the conclusions of Lemma 2.8, where ¢ < d/100 is a positive even integer
which will be specified below. As before, let M;; denote a decomposition of the bipartite graph
B;j := G[V;,V;] into at most A(B;;) + 1 matchings, and let 9t = {M;;};+; denote the collection of
such decompositions.

Let P := {P,..., P2} be a Hamiltonian path decomposition of K;, and for each P € P, let Fp
be the collection of at most s edge-disjoint linear forests obtained as in Section 1.1. Fix an arbitrary
labeling Fp = {Fp1,...,Fps} of these forests. Moreover, for each P € P, let sp and tp denote its
endpoints, and observe that all the pairs {sp,tp}pep are disjoint.

10



Next, for each P € P, let Ms, := {Mp,,..., M} } be a decomposition of the edges of G[V;,]
into s matchings; the existence of such a decomposition is guaranteed by Vizing’s theorem. For each

€ [s], let Fp, := Fp; UM}, and observe that Fp := {Fp,..., Fp_} is a collection of edge-disjoint
hnear forests which covers all the edges ;e (py E(Bij) UE(G[Vs,]). For each i € [s], let Mp; be the
set of all pairs {z,y} C V4, for which there exists a path in Fj, of length exactly 2t — 1 with = and y
as its endpoints. Note that such paths correspond precisely to two ‘“full paths’ of length t — 1 in Fp;
whose endpoints in V;, are an edge of M ;ﬁl Since each M ;é’i is a matching, it follows immediately
that each Mp; is a matching of the complete graph on the vertex set V;,,.

For each P € P, consider the graph G} := G[V;,]. By Lemma 2.8, we have

Ap —k < 5(Gp) < A(GH) =: Ap,

where k = 200((dlog d)/t)/?. Below, we will choose t be to less than v/d. Therefore, for d sufficiently

large, Ap > D and k < A‘;/G, so that by applying Lemma 2.13 to G we obtain a collection of Ap+1
matchings M7, ... ’M,Ap—i—l in G, where some of them are possibly empty, such that:

1. the graph G’5, which is obtained from G} by deleting all the edges Uierap+1] E(Mp,;), has

1-1/B

maximum degree at most A}, , and

2. for all v € V(G), there are at most AY indices i € [Ap+1] for which v lies on a cycle in M; UM
of length at most Al/ 40

With this in hand, let Fp, == Fp, UMp, for alli € [Ap + 1], and let Fp :={Fp,..., Fpr, 41}
Since each F ],3,7; is a graph of maximum degree at most 2, it is a disjoint union of cycles, paths
and isolated vertices. We wish to remove one edge from each cycle in each F' ;)Z For the analysis,
it will be convenient to do it in the following manner: for any cycle C' in any F I’D’i of length at

most tAl/ 40, remove an edge arbitrarily from M }371-; on the other hand, for a cycle C in some F ;)71-

of length at least tAl/ 40

respect to a fixed, but otherwise arbitrary ordering of the edges) LA}D/A‘O /2| edges of M/ appearing
in this cycle. Let F'5, denote the (random) linear forest resulting from Fp; after this deletion, and

, delete an edge chosen uniformly at random from among the first (with

let 7 = {F;,l""vF;,Ap+1} be the collection of edge-disjoint linear forests obtained from the
Hamiltonian path P in this manner.

For each v € Vi, let X(v) denote the (random) number of edges in U;eiapi1) £ \ Fp; which
are incident to v. We claim that there is a choice of F}, for which X (v) < 9A39/ 10
For this, fix v € V;, and observe that since v is part of at most Ab cycles of length < Ap
M,; U M/, it follows that v can be a part of at most AII’D cycles in F]’D’i of length < tA}D/‘lO. Hence, the
contribution to X (v) from such cycles is at most AII’D. Moreover, the probability that any cycle of
length at least tA}D/‘lO contributes to X (v) is bounded above by 1/ LA}DMO /2] <3/ A}DMO, since such a
cycle contributes to X (v) only when the edge deleted from it is incident to v, where the edge to be

for all v € V4.

1/40 .
/ m

deleted is chosen uniformly at random from among LA}D/A‘O /2] edges, of which at most one is incident
to v. Since there are at most Ap 4+ 1 cycles containing v to start with, and since deletions from
long cycles are made independently, it follows from Chernoff’s bounds that with probability at least

1 —exp (—A?]’f/m), X(v) < A% + 8A39/40 < 9A39/40. Let &, denote the event that this does not
happen. Note that £, can depend on &, only if v and u are both incident to the first LA}JMO /2| edges
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of M/ in a long cycle. Again, since there are at most Ap + 1 cycles to start with, it follows that any
&y can depend on at most A% other &,’s. Therefore, since A% eXp(—A?I’Dg/ 40) < 1, it follows from the

local lemma that Pr[Myey, €] > 0, which proves the desired claim.

Finally, repeat the above construction for each P € P to obtain a collection of edge disjoint linear
forests § := {F}j} pep, and let L denote the leave graph obtained by deleting from G any edge which
appears in §. Observe that L consists of edges of the following two types:

e edges within V;,, that are not contained in Uie[Aerl}E(MJIDi) i.e. edges in the graph G'p;

e edges in UpepF}, that are not contained in § i.e. edges removed during the deletion process
described above.

Recall from Lemma 2.8 that Ap < s for all P € P. Since the Vs are disjoint, it follows from
the above discussion that A(L) < 9A?}9/40 + A};l/B < 10s'77, where v := min{;, %} Therefore,
by Vizing’s theorem, one can decompose L into at most 10s'~7 + 1 edge-disjoint matchings. These
matchings, together with §, give a decomposition of E(G) into a number of linear forests which is at

1—y
108 41 < g +200< dtlog d + (g) > .

most

2

Optimizing the error term by setting the two summands in the parentheses to be equal gives

i
t= <d12;]) **7 in which case, we get that

la(G) < = + d?/*=,

N

for some o > 0, as desired.
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A Proof of Lemma 2.13

In this appendix, we show how the proof of the main result in [7], which is based on the celebrated
Ro6dl nibble 23], implies Lemma 2.13. The organization of this appendix is as follows: Algorithm 1
records the nibbling algorithm used in [7]; Theorem A.1 and Theorem A.4 record the conclusion of
the analysis in |7]; Corollary A.5 adapts the analysis in [7] for our choice of parameters; Lemma A.6
and Lemma A.7 show that Algorithm 1 produces only a small number of short cycles with respect to
any fixed collection of matchings, and finally, Proposition A.8 proves Lemma 2.13.

Before proceeding to formal details, let us provide a high level overview of what follows. The goal
in [7] is to produce a proper edge-coloring of a A-regular graph G using (1 + €)A colors (here, € is
allowed to depend on A). Their algorithm runs in two phases — the first phase, which is based on the
semi-random ‘nibble’ method of Rodl, is the one relevant to our paper; the second phase actually uses
a trivial algorithm. In the first phase, the algorithm seeks to color ‘most’ of the edges using a palette of
A colors. Starting with the input graph Go := G, the algorithm generates a sequence Gy, Gy, ..., Gy,
of graphs, where Gj; is the graph induced by the edges which are still uncolored at the end of stage
i. In each stage i, each edge has a palette of all ‘available’ colors, where initially, the palette of each
edges is the set {1,...,A}. Each vertex selects an ¢/2-fraction of uncolored edges incident to it, and
each selected edge picks a tentative color from its palette independently and uniformly at random.
If a selected edge has no ‘color-conflicts’ with any neighboring edge, then the corresponding color
becomes the final color of the edge. All the palettes of the remaining edges are updated by deleting
all the final colors of neighboring colored edges. This process is then repeated in the next stage. The
algorithm continues for a number of rounds by the end of which (with high probability) each vertex
has no more than eA uncolored edges incident to it.

As in all nibbling-based arguments, the key idea is that in each stage, the number of edges which
experience color conflicts is only a small fraction of the number of edges selected to be colored at this
stage. The main effort in [7] is spent in showing that this holds true with high probability throughout
the process. They do this by showing inductively — and this is what we will use in our analysis — that
the graphs G; and the color palettes of each edge behave almost like ‘random’ subgraphs and subsets
of the original ones. We now give a formal description of the algorithm and analysis in [7]. Following
this, we will show how to tailor it to our application.

Algorithm 1 is the first phase of the algorithm used in [7] as described above. The analysis of this
algorithm is based on controlling the following three quantities:

e |A;(u)|, the size of the implicit palette of vertex u at the end of stage i, where the implicit
palette A;(u) denotes the set of colors not yet successfully used by any edge incident to w.

o |A;(e)|, the size of the palette A;(e) of edge e at the end of stage i. Note that A;(uv) =
Ai(u) N Ai(v).

° degm(u), the number of neighbors of u which, at the end of stage i, have color v in their
palettes.

Before we discuss their analysis of this algorithm, we need some notation. Define d; and a; as
follows: first, define initial values

do, ag ‘= A

14



Algorithm 1 The Nibble Algorithm
The initial graph Gy := G, the input graph. Each edge e = uwv is initially given the palette Ag(e) =
{1,...,A}. For i =0,...,tc — 1 stages, repeat the following:

o (Select nibble) Each vertex u randomly selects an €/2 fraction of the uncolored edges incident
to itself. An edge is considered selected if either or both of its endpoints selects it.

e (Choose tentative color) Each selected edge e chooses independently at random a tentative color
t(e) from its palette A;(e) of currently available colors.

o (Check color conflicts) Color t(e) becomes the final color of e unless some edge incident to e
has chosen the same tentative color.

e (Update graph and palettes) The graph and the palettes are updated by setting
Git1 = Gi — {e|e got a final color}
and, for each edge e, setting

Air1(e) = Ai(e) — {t(f)|f incident to e, t(f) is the final color of f}.

and then, recursively define

di == (1 - p)di—1 = (1 - pe)'A;
a; = (1 _pe)2ai—1 = (1 —pe)zlA = d?/Av

where

De =€ (1 — i) e~ 2e(1—€/4)

In particular, note that setting
1 4
te == —log —,
Pe €
we have d;, < eA/4. Also, provided that € < 1/100, we have d;, = (1 — pe)icA > e 2Pele A = 2A/16.
Theorem A.1 ([7], Lemmas 9, 12 and 15, and the discussion in Section 5.5). There exist constants

K,D > 0 such that if € < 1/100, €2A > D, and at the end of stage i of Algorithm 1 the following
holds for all vertices u, edges e and colors vy with e; < 1/2:

|A2(u)| = (1 + el)dl
deg; . (u) = (1 e;)a;,
then the following holds for all vertices u, edges e, and colors ~y:
EUAZ-H(U)H = (1 + (1 + Ke)ei)diﬂ
E[lAis1(e)]] = (1 £ (1 + Ke)ei)ain
E[degiﬂﬁ(u)] = (1 + (1 + KE)EZ‘)(IH_L
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Remark A.2. In our case (Lemma 2.13), we have

|[Ao(u)| = [Ao(e)| = A,

and A_s
deg ., = deg(u) = A <1 + T_>
for all vertices u, edges e, and colors . Therefore, we can take
€y = A9 §A_1/6.

In order to show that the above random variables concentrate around their expectation, we will
(as in [7]) use the following concentration inequality due to Grable [13|. The statement of this
inequality uses the notion of the ‘variance of a strategy for determining a random variable’ of the form
Y = f(X1,...,X,), whose definition we reproduce verbatim from [7] for the reader’s convenience. A
querying strategy for Y is a decision tree whose internal nodes designate queries to be made. Each node
of the tree represents a query of the type “what was the random choice of X;?”. A node has as many
children as there are random choices for X;. Every path from the root to a node which goes through
vertices corresponding to Xj,,...,X;, defines an assignment ai,...,a; to these random variables.
We can think of each node as storing the value E[Y'|X;, = ay,...,X;, = ai]. In particular, the leaves
store the possible values of Y, since by then all relevant random choices have been determined. Define
the variance of a query (internal node) ¢ concerning choice X; to be

Vg = Z PrlX; = a]ug,av
acA;

where
tg.a = E[Y|X; = a and all previous queries] — E[Y| all previous queries].

By “all previous queries”, we mean the condition imposed by the queried choices and exposed values
determined by the path from the root of the strategy down to the node ¢. In words, j,, measures
the amount which our expectation changes when the answer to query ¢ is revealed to be a. Also
define the maximum effect of query ¢ as

Cq = ;}ggfi ltg,a — 1qbl-

A way to think about ¢, is the following. Consider the children of node g; ¢, is the maximum difference
between any values E[Y'| all previous queries] stored at the children. A line of questioning £ is a path
in the decision tree from the root to a leaf and the variance of a line of questioning is the sum of the
variances of the queries along it. Finally, the variance of a strategy . is the maximum variance over
all lines of questioning

V(&)= max Z Vg

qel

We are now ready to state Grable’s concentration inequality.

Theorem A.3 ([13]). Let .7 be a strategy for determining a random variable Y, and suppose the
variance of .7 is at most V.. Then, for every 0 < ¢ < V/max cg,

Pr||y —E[Y] > 2\/90_1/] < 2exp(—).
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We note that max cg will always be at most 16 in all the applications of Theorem A.3 that we will
need ([7]).

The next theorem records the bounds on the variance (in the above sense) of various random
variables which we are interested in.

Theorem A.4 (|7], Lemmas 10, 13 and 16, and the discussion in Section 5.5.). Fiz 0 <1i <t.—1. Let
Xy = [Ai(u)| = [Air1 ()|, Ye := [Ai(e)|=[Air1(e)|, and Z, ,, := deg; 4 ,(u). Suppose the assumptions
of Theorem A.1 are satisfied. Then, for any fized u,e,~y, with probability at least 1 — exp(—ed;/10),
there exist strategies Sx ., Syve and Lz~ for determining X, Y. and Z, with the following
variance bounds:

V(yx,u) < 100¢d;
V(#ye) < 10000a;
V(S2u) < 100€a;.

As an immediate application of Theorem A.3 along with these bounds, we obtain the following
corollary, which shows that random variables in the conclusion of Theorem A.1 are indeed sufficiently
well-concentrated around their expectation.

Corollary A.5. Fix 0 < i < t. — 1. Suppose that the assumptions of Theorem A.1 are satisfied.
For any u,e,v, let X, be the event that ||Ai+1( ) — ElAi+1(u |‘ ed?/g, Ve be the event that

||Aiv1(e)| — E[|Aipa(e)]]| > a’®, and Z,. be the event that | deg; 1 (u) — Eldeg;, . (u)]| >

1
5/3
eai/ . Then,

2exp(—d; /3) + exp(—ed;/10)
Pr(Y.] < 2exp(—a;"") + exp(—ed; /10)
<9 /

exp(—a;’”) + exp(—ed;/10).

Proof. The variance bounds from Theorem A.4 hold for any fixed u, e,y except with probability at
most exp(—ed;/10). Whenever these bounds hold, we apply Theorem A.3 with ¢ = d-1/3 (in the

case of X,) or ¢ = a; 1/3 in the case of ), and Z,,). Finally, we use that 2000@4/ 3 ‘-E’/ 3 and
Y = Y, Vs a;

2000d4/3 < d5/3 since 62A > D by assumption. O

The next lemma is tailored for our application. Roughly speaking, we are given matchings
M, ..., Mg in the complete graph on V(G). We wish to design a random procedure to properly
color (most of) the edges of G using s colors in such a way that by considering the matchings
M, ..., M! induced by each color class, the probability of any vertex u becoming part of too many
short cycles in any of the graphs M; U M is sufficiently small.

Lemma A.6. Let My, ..., M be a fized collection of matchings in the complete graph on V(G), where
s:=A+1. Let 0 < 8 < 1/10. For any vertezx u, let C;(u) denote the number of indices v for which
u lies on a cycle of length at most AP/? in M, U Mé by the end of round i of the algorithm. Let C;,,
denote the event that Ciyq(u) — Ci(u) > 1000A° /et Suppose that the assumptions of Theorem A.1
are satisfied. Then,

Pr(C; ] < exp(—AP/et).
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Proof. Fix u € V(QG) as in the statement of the lemma. For each 7 € [s] such that u is not already
lying on a cycle in M., U M,’Y by the end of round i of the algorithm, let P, denote the unique maximal
path (with a fixed, but otherwise arbitrary, orientation) in M, U Mf/ containing u at the end of round
i. Observe that if the first and last edges of P, do not belong to M., then P, cannot be extended to
a cycle in M, U Mfy Let py denote the first vertex of P, and let ¢, denote its last vertex. For any
vertex v € V(G), let v7 denote the unique (if it exists) vertex such that {v,v7} € M,, and let T7
denote the unique (if it exists) vertex such that the edge {v, 77} is colored 7 during the execution of
the algorithm by the end of round i + 1. Finally, for each v € [s], consider the following sequence of
vertices defined inductively: wg 1= py, Woiy1,y 1= Wa; 5" for > 0, and wy; , := wgi_lﬁ for ¢ > 1.

Note that P, closes into a cycle of length at most ¢ = 2[A%/2/2] + 1 in M, U M, during the
(i + 1) round only if one of the vertices wy , w3, w5, ... , Wy~ is g,. In particular, at least one of
the edges {wo, ¢y}, {way, a4y}, - -+, {we—1,4, ¢y} must be tentatively colored by ~y during the (i + 1)
round. Letting E, denote the random variable recording the number of such edges, it follows that
Cit1(u) — Ci(u) < Eve[s} E,. Moreover, since a given edge e is tentatively colored by a given
color v during the (i + 1)* round with probability at most 1/|A;(e)| < 2/a; < 2A/d7 < 512/A€,
and since the tentative colors for different edges are chosen independently, we see that conditioning
on any choice for the collection of vertices {wa, ¢ Py,...,wi_1, ¢ Py}e[s, the random variable
> ejs] B 1s stochastically dominated by the random variable Bin(A™(5/2) 512/ Ae*). Therefore, by
Chernoff’s bound for the binomial distribution followed by the law of total probability to remove the
conditioning, it follows that

Pr(Ci.] < Pr[Bin(AY /2 512/ Ae*) > 1000A° /] < exp(—AF/e*),
which completes the proof. O

The following lemma combines Corollary A.5 and Lemma A.6 to prove the existence of a ‘good’
outcome of a given round of the algorithm.

Lemma A.7. Fiz 0 < i < t. — 1. Suppose that the assumptions of Lemma A.6 are satisfied and
AVE <e< 1/100 for some B > 20. Then with positive probability, the following holds at the end
of stage i + 1 for all vertices u, edges e and colors v simultaneously:

[Ait1(u)] = (1 £ €ip1)din

|Ait1(e)] = (1 £ eiv1)ait

deg; i1 (u) = (1 £ €i41)ait
Cir1(u) — Ci(u) < 1000A° /et

where 0 < 8 < % — % 18 fized, and

eit1 =K (ei + a;1/3> <K <€i + (1 — pe)_iA_l/6> ) (3)
with k = 1+ Ke.

Proof. Let Xy, Ve, 2+, be the events defined in Corollary A.5, and let C,, := C; ,, be the event defined
in Lemma A.6. It suffices to show that

Pr N |0l () Y]n N z.]n| () c]|>o
)

ueV(G) e€E(Q) v€[s],ueV(G) ueV (G
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We will show this using the symmetric local lemma. To this end, we note that two events of the form
E(u,e,v) and E(v,€',7') can depend on each other only if at least one of u or e is within distance
at most (say) 4AP/? from one of u' or €. Since the maximum degree of G is A, it follows that the
dependency graph of the events listed above has maximum degree at most (say) poly(A)A‘lAﬁ/2 <
exp(A?’ﬁ/ 1), where the last inequality holds for all A sufficiently large. Also, by Lemma A.6, events
of the form C, hold with probability at most exp(—A#), whereas by Corollary A.5, the other events
hold with probability at most exp(—ed; /10) + 2exp <—ai€/ 3). Hence, if this latter quantity were
much less than exp(A?’ﬁ/ 1), we would be done. This is indeed true provided that 5 < % — % and A
is sufficiently large. O

Finally, we iterate Lemma A.7 to prove the main result of this appendix.

Proposition A.8. There exist constants B, D > 20 for which the following holds. Let G be a graph
with mazimum degree A and minimum degree § such that A —§ < A%® and A > D. Let M, ..., M,
be a fized collection of matchings in the complete graph on V(G), where s := A+ 1. Then, for any
fized A=YB < e <1074, the following holds with positive probability for the execution of Algorithm 1
on G with parameter € for t. stages: for firted 0 < 8 < 1—10 — %, for all 0 < i <t.—1, and for all
vertices u, all edges e, and all colors 7,

o |Ai(u)| = (1£€)d;

o [Ai(e)l = (1£€)a;

o deg;  (u) = (1£€)a;

o Cii1(u) — C;(u) < 1000475 /€t

In particular, for every vertex u, C, (u) < 1000t AP /e* < AP/eS. Further, the number of uncolored
edges incident to u is at most | Az (u)| < 2d;, < eA/2.

Remark A.9. By taking the matchings M{,..., M4 to be the edges colored (at the end of stage
te) by 1,..., A respectively, it is immediately seen that the above proposition, with € = A-YB
B = 1/20, implies Lemma 2.13.

and

Proof. We view the execution of Algorithm 1 as a branching process, where in each round of the
algorithm, we branch out according to which edges are assigned final colors, and which final colors
are assigned to these edges. Generate this tree for t. levels, and consider any root to leaf path such
that for each intermediate ‘branch’, the endpoint further from the root satisfies the conclusions of
Lemma A.7 given the parameters at its parent. Such a root-to-leaf path is guaranteed to exist by
Lemma A.7. To complete the proof, we track the error introduced by the iterative application of
Lemma A.7, and show that it is no more than what is stated in the proposition.
Setting A := A~'/6 and P := (1 — p.)~!, we get from Equation (3) that

eo < kleg+ Al + kTIP + - 4 kP

for all 0 < ¢ < t.. Since P = (1 — p.)~! is also of the form 1 + K’e for some constant K’ > 0, it
follows that
er < (1+ Le)leg+ £(1 + Le)* A™/6,
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where L = max{K, K'}. By Remark A.2, eg < (A — §)/A < A=1/S. Therefore,
er < 20exp(Let) A6,

The right hand side is maximized when ¢ = t., in which case it is at most

1\ 3L
<_> A6 < 3

€

where the last inequality holds provided we take B > 18(L + 1).
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