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Towards the linear arboricity conjecture

Asaf Ferber ∗ Jacob Fox † Vishesh Jain‡

Abstract

The linear arboricity of a graph G, denoted by la(G), is the minimum number of edge-disjoint
linear forests (i.e. forests in which every connected component is a path) in G whose union covers
all the edges of G. A famous conjecture due to Akiyama, Exoo, and Harary from 1980 asserts
that la(G) ≤ ⌈(∆(G) + 1)/2⌉, where ∆(G) denotes the maximum degree of G. This conjectured
upper bound would be best possible, as is easily seen by taking G to be a regular graph. In
this paper, we show that for every graph G, la(G) ≤ ∆

2
+ O(∆2/3−α) for some α > 0, thereby

improving the previously best known bound due to Alon and Spencer from 1992. For graphs
which are sufficiently good spectral expanders, we give even better bounds. Our proofs of these
results further give probabilistic polynomial time algorithms for finding such decompositions into
linear forests.

1 Introduction

A linear forest is a forest in which every connected component is a path. Given a graph G, we

define its linear arboricity, denoted by la(G), to be the minimum number of edge-disjoint linear forests

in G whose union is E(G). This notion was introduced by Harary [15] in 1970 as one of the covering

invariants of graphs, and has been studied quite extensively since then.

It is immediate that la(G) ≤ e(G) as every edge uv (along with the isolated vertices V (G)\{u, v})
forms a linear forest. A less trivial upper bound can be obtained as follows: by a classical theorem

due to Vizing, E(G) can be partitioned into at most ∆ + 1 matchings, where ∆ := ∆(G) denotes

the maximum degree of G; observe that each matching is a linear forest, and therefore we get that

la(G) ≤ ∆+1. For a lower bound, note that every linear forest has at most n−1 edges (and equality

holds if and only if the linear forest is a Hamiltonian path). Therefore, if G is a ∆-regular graph,

then

la(G) ≥ e(G)

(n− 1)
≥ n∆

2(n− 1)
>

∆

2
,

which implies (recall that la(G) is an integer) that la(G) ≥ ⌈(∆ + 1)/2⌉. The following conjecture,

known as the linear arboricity conjecture, of Akiyama, Exoo and Harary [1] asserts that this bound

is the best possible:
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Conjecture 1.1 (The linear arboricity conjecture). Let G be a graph of maximum degree ∆. Then,

la(G) ≤
⌈

∆+ 1

2

⌉

.

Remark 1.2. It is easy to see that every graph G, with maximum degree ∆(G), can be embedded

into a ∆(G)-regular graph (perhaps on a greater number of vertices). Therefore, the above conjecture

is equivalent to the statement that for a ∆-regular graph G we have la(G) = ⌈(∆(G) + 1)/2⌉.

The linear arboricity conjecture was shown to be asymptotically correct as ∆ → ∞ by Alon in

1988 [3]. He showed that for every ∆-regular graph G,

la(G) ≤ ∆

2
+O

(

∆ log log∆

log∆

)

;

in the same paper, he also proved that the linear arboricity conjecture holds for graphs G with girth

Ω(∆(G)). The bound for general graphs was subsequently improved by Alon and Spencer in 1992

(see [4]) to:

la(G) ≤ ∆

2
+O

(

∆2/3(log∆)1/3
)

. (1)

Even though this conjecture has received a considerable amount of attention over the years, and has

been proven (i) in special cases (see, e.g., [1, 2, 3, 8, 14, 25, 26]) (ii) for almost all d-regular graphs

of constant degree by McDiarmid and Reed [18], and (iii) for a typical Erdős-Renyi graph with edge-

density either log117 n/n ≤ p = o(1) or p a fixed constant by Glock, Kühn and Osthus [12], there have

been no asymptotic improvements in the error term (that is, the second summand in the bound (1)

of Alon and Spencer) for general graphs. Our first main result improves this term by a polynomial

factor:

Theorem 1.3. There exist absolute constants α > 0 and C > 0 for which the following holds. For

any ∆-regular graph G,

la(G) ≤ ∆

2
+ C∆

2

3
−α.

Remark 1.4. In the proof of Theorem 1.3, we make use of Lemma 2.13, the proof of which relies on

a ‘nibbling’ argument. As this argument is well-known but quite lengthy, we have used the results

from [7] as a black box, and we get a bound of (say) α = 1/100. While a more careful analysis of

the nibbling process tailored to our argument may very well give a better bound on α, we have made

no attempt to do so, since we believe that a ‘natural barrier’ for our argument should be α = 1/6

i.e.
√
∆ (which is anyway far from Conjecture 1.1), and any further progress towards the conjecture

should require new ideas.

It was shown by Peroche [22] that computing the linear arboricity of a graph is NP -complete;

this is to be contrasted with variants like the arboricity of a graph (i.e. the minimum number of

edge-disjoint forests in G whose union is E(G)) for which polynomial time algorithms are available

[11]. Our proof of Theorem 1.3 gives an algorithm for computing a decomposition of E(G) into

at most ∆
2 + C∆

2

3
−α edge-disjoint linear forests, which runs in time polynomial in |V (G)| with

high probability. Since the linear arboricity of a ∆-regular graph is at least ∆
2 , we thereby get an

approximation algorithm providing the best-known approximation guarantee (to our knowledge) for

efficiently approximating the linear arboricity of a regular graph.
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Corollary 1.5. There exist absolute constants α > 0 and C > 0 for which the following holds. Let

G be a ∆-regular graph. Then, there is a probabilistic polynomial time algorithm for approximating

la(G) to within
(

1 + C
∆1/3+α

)

-multiplicative error.

Our second main result deals with (n,∆, λ)-graphs, which we now define. A ∆-regular graph G is

said to be an (n,∆, λ)-graph if |V (G)| = n and the second largest (in absolute value) eigenvalue of

the adjacency matrix of G is at most λ. For all such graphs with λ not too large compared to ∆, we

are able to obtain better bounds on the error than the one coming from Theorem 1.3.

Theorem 1.6. There exist absolute constants β > 0 and C > 0 for which the following holds. For

every (n,∆, λ)-graph G with λ ≤ ∆2/3,

la(G) ≤ ∆

2
+ C(λ∆)

2

5
−β.

Just like for Theorem 1.3, our proof of Theorem 1.6 also leads to an algorithm for computing such

a decomposition of E(G) in time which is polynomial in |V (G)| with high probability.

1.1 The general proof scheme

Our proof outlines follow and extend ideas from [5]. Let G be a d-regular graph on n vertices.

Consider the following procedure to upper bound la(G): First, find a vertex partitioning V (G) =

V1∪V2∪ . . .∪Vt, where t is an even positive integer to be specified later, with the following properties:

1.
∣

∣|Vi| − |Vj |
∣

∣ ≤ 1 for all i, j ∈ [t], and

2. d(v, Vi) ∈ d
t ± 100

(

d log d
t

)1/2
for all v ∈ V (G) and all i ∈ [t].

The existence of such a partitioning is guaranteed by Lemma 2.8, which is proved by a standard

application of Chernoff’s bounds (Lemma 2.1) followed by the Lovász Local Lemma (Lemma 2.4).

Second, for all i 6= j, let Bij be the induced bipartite graph G[Vi, Vj ]. By Property 2 and Vizing’s

theorem (Theorem 2.7), one can decompose E(Bij) into at most

∆(Bij) + 1 ≤
⌊

d

t
+ 102

(

d log d

t

)1/2 ⌋

:= s

matchings. Let Mij be any such decomposition into s matchings (it might be the case that a few of

them are empty), and let M := {Mij}i<j be the collection of all such decompositions (that is, one

decomposition for every Bij).

Third, let P := {P1, . . . , Pt/2} be a Hamiltonian path decomposition of Kt; the existence of such

a decomposition is ensured by the fact that t is even and a classical result of Walecki from the

1890s which can be found in [17] and provides an explicit such decomposition. It is easy to see that

using our collection of decompositions M, one can find a collection FP of forests, one for every such

Hamiltonian path P = vi1 , . . . , vit in P, satisfying the following two properties:

• FP consists of at most s edge-disjoint linear forests;

• FP contains all the edges
⋃

ij∈E(P )E(Bij).

3



Indeed, let P be such a Hamiltonian path; after possibly relabeling the vertices, we may assume

that P = 123 . . . t. Observe that by taking one matching from each decomposition Mi,i+1 we obtain

a linear forest. Therefore, by repeating this procedure s times, since each Mi,i+1 consists of at most s

matchings, one can build a collection of at most s linear forests for every P . Clearly, such a collection

contains edge-disjoint linear forests whose union consists of all the edges of all the bipartite graphs

{Bi,i+1}i∈[t−1].

As there are t
2 Hamiltonian paths in P, the above construction gives us at most

st

2
≤ d

2
+ 51 (dt log d)1/2

linear forests which cover all the edges in all the bipartite graphs {Bij}i6=j . Let L :=
⋃t

i=1 E(G[Vi])

be the set of all the edges which have not been covered by these linear forests (we will also identify

L with the graph on V (G) whose edges are L, in which case we will refer to L as the leave graph).

Since ∆(L) ≤ d
t + 100

(

d log d
t

)1/2
by Property 2 of the partitioning, Vizing’s theorem shows that L

can be decomposed into at most ∆(L) + 1 ≤ d
t + 101

(

d log d
t

)1/2
matchings. Since any matching is

manifestly a linear forest, we have thus obtained a decomposition of the edges of G into at most

st

2
+ ∆(L) + 1 ≤ d

2
+

d

t
+ 152 (dt log d)1/2 (2)

linear forests. In order to optimize the error term d/t + 152(dt log d)1/2, we would like to pick t so

that the two summands in the error term are the same. This is achieved by choosing t3 = Θ(d/ log d),

in which case

la(G) ≤ d

2
+ Θ(d2/3 log1/3 d).

This is the strategy used in [5] to recover the bound of Alon and Spencer.

Let us now discuss the weak points in the construction and the analysis that we have presented,

along with ideas for improving them. The formal details will be given in subsequent sections.

(i) In the above construction, we decompose the leave graph L into matchings and treat each

matching as a linear forest by itself. This gives us the Θ(d/t) error term in the above analysis.

Note, however, that adding a matching contained in some G[Vi] to any of the linear forests

obtained from a path P which has i as an endpoint still results in a linear forest. Therefore, it

makes sense to try to ‘swallow’ all the edges of L in our current linear forests. We discuss this in

more detail in Section 2.6, where we also present the key technical lemma (Lemma 2.13) needed

to make this idea work. The upshot of Lemma 2.13 is that it allows us to replace the Θ(d/t)

term in the error by Θ
(

(d/t)1−γ
)

for some γ > 0. Optimizing the error term now results in the

choice t3−2γ = Θ(d1−2γ/ log d), which gives an error of O(d2/3−α) for some α > 0, as desired in

Theorem 1.3.

(ii) In the above construction, we take ∆(Bij)+1 matchings in each Bij , whereas ideally, we would

like to take only ‘average degree’ many matchings. This error, summed up for all Bij , gives us

the Θ(
√
dt log d) term in (2). In the proof of Theorem 1.6, we will show (Lemma 2.10) that if G
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satisfies some expansion properties, then we can approximately decompose each Bij into edge-

disjoint perfect (up to divisibility) matchings. If we remove the linear forests generated by these

matchings using the above procedure, then we remove the “correct” number of linear forests,

and the “leave graph” L has much smaller maximum degree. Now, we apply Theorem 1.3 to L.

2 Auxiliary lemmas

In this section, we gather various preliminaries, as well as state and prove the key lemmas needed

for our proofs.

2.1 Probabilistic estimates

Throughout this paper, we will make extensive use of the following well-known bound on the upper

and lower tails of a sum of independent indicators, due to Chernoff (see, e.g., Appendix A in [4]).

Lemma 2.1 (Chernoff’s inequality). Let X1, . . . ,Xn be independent random variables with Pr[Xi =

1] = pi and Pr[Xi = 0] = 1− pi for all i. Let X =
∑

i Xi, and let E(X) = µ. Then

• P[X < (1− a)µ] < e−a2µ/2 for every a > 0;

• P[X > (1 + a)µ] < e−a2µ/3 for every 0 < a < 1.

Remark 2.2. If all the pi’s are the same, the obtained bounds are also valid if, instead of taking X

as the sum of i.i.d random variables, we take it to be hypergeometrically distributed with mean µ

[16].

Before introducing the next tool to be used, we need the following definition.

Definition 2.3. Let (Ai)
n
i=1 be a collection of events in some probability space. A graph Γ on the

vertex set [n] is called a dependency graph for (Ai)i if Ai is mutually independent of all the events

{Aj : ij /∈ E(Γ)}.

The following is the so-called Lovász local lemma in its symmetric version (see, e.g., [4]).

Lemma 2.4 (Lovász local lemma). Let (Ai)
n
i=1 be a sequence of events in some probability space, and

let Γ be a dependency graph for (Ai)i. Suppose that Pr [Ai] ≤ q for every i ∈ [n] and eq(∆(Γ)+1) < 1.

Then, Pr[
⋂n

i=1 Ai] > 0.

2.2 Algorithmic Lovász local lemma

The original proof of the Lovász local lemma in [9] is non-constructive in that it does not provide

any way of finding a point in the probability space avoiding the ‘bad’ events. However, in the case

when the ‘bad’ events (Ai)
n
i=1 are determined by a finite collection of mutually independent random

variables (Xj)
m
j=1, the breakthrough work of Moser and Tardos [21] shows that the following simple

randomized algorithm efficiently computes an assignment to the random variables (Xj)
m
j=1 which

avoids all the ‘bad’ events – start with a random assignment to the variables P, and check whether

some event in A is violated. If so, arbitrarily pick such a violated event, and sample another random

assignment for the values of the variables on which this event depends (this step is called a resampling

of the event). Continue this process until there are no violated events.
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Theorem 2.5 ([21]). Let P be a finite set of mutually independent random variables in a probability

space. Let A be a finite set of events determined by these variables. Consider the dependency graph

Γ on these events given by adding an edge connecting two events A,B ∈ A if and only if A and

B depend on some common random variable in P. Suppose that Pr[A] ≤ q for every A ∈ A and

eq(∆(Γ) + 1) < 1. Then, there exists an assignment of values to the variables P not violating any of

the events in A. Moreover the randomized algorithm described above resamples an event A ∈ A at

most an expected O(1/∆(Γ)) times before it finds such an evaluation. Thus, the expected total number

of resampling steps is at most |A|/∆(Γ).

Remark 2.6. All the applications of the local lemma in this paper fit the general framework of the

above theorem and seek to avoid at most p1(n) events, where p1(n) is some polynomial in the number

of vertices n := V (G). Moreover, every event in each of our applications can be sampled in time

p2(n), for some polynomial p2(n). It follows that all of our applications of the local lemma can be

performed algorithmically in expected time O(p1(n)p2(n)). Thus, by Markov’s inequality, it follows

that the probability of the algorithm taking more than O(p1(n)p2(n)p3(n)) time is at most 1/p3(n).

2.3 Vizing’s theorem

The chromatic index of a graph G, denoted by χ′(G), is the minimum number of colors needed

to color E(G) in such a way that each color class is a matching. It follows immediately from this

definition that χ′(G) ≥ ∆(G); perhaps surprisingly, Vizing [24] proved that this trivial lower bound

is nearly optimal:

Theorem 2.7 (Vizing’s Theorem). Every graph G satisfies

χ′(G) ∈ {∆(G),∆(G) + 1}.

Moreover, the strategy in Vizing’s original proof can be used to obtain a polynomial time algorithm

to edge color any graph G with ∆(G) + 1 colors ([20]). Note that, as mentioned in the introduction,

Vizing’s theorem immediately gives the bound la(G) ≤ ∆(G) + 1.

2.4 Random vertex partitioning

Given a d-regular graph with d sufficiently large, the following lemma gives a partition V (G) =

V1 ∪ . . . ∪ Vt for which ‘all the degrees are correct’.

Lemma 2.8. There exists an absolute constant d0 for which the following holds. For all d ≥ d0, all

d-regular graphs G, and all integers 1 ≤ t ≤ d/100, there exists a partition V (G) = V1 ∪ . . . ∪ Vt

satisfying the following two properties:

1. For all 1 ≤ i, j ≤ t,
∣

∣|Vi| − |Vj |
∣

∣ ≤ 1 .

2. For all v ∈ V (G) and for all i ∈ [t], the number of edges from v into Vi, denoted by dG(v, Vi),

satisfies dG(v, Vi) ∈ d
t ± 100

(

d log d
t

)1/2
.

Proof. Note that for (say) d ≥ log2 n, the lemma follows easily by Chernoff’s inequality for the

hypergeometric distribution and the union bound. Since we are also interested in graphs with smaller
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degree, we need a slightly more complicated proof where the union bound is replaced by a standard

application of the local lemma (Lemma 2.4).

Let s := ⌈n/t⌉ and let F1, . . . , Fs be an arbitrary partition of V (G) such that F1, . . . , Fs−1 are

of size t each. Let f : V (G) → {1, . . . , t} be a random function chosen as follows: for each k ∈ [s],

the restriction f |Fk
is a permutation of

[

|Fk|
]

chosen uniformly at random. Given such an f , define

Vi := {v ∈ V (G) : f(v) = i}. Observe that for each i ∈ [t], |Vi| is either s− 1 or s, so that the desired

property 1 of the lemma holds. We wish to show that, with positive probability, there exists an f

such that the corresponding partition V (G) = V1 ∪ · · · ∪ Vt satisfies property 2 of the lemma.

To this end, fix a vertex v ∈ V (G) and for each k ∈ [s], let pk := |NG(v) ∩ Fk|/|Fk|. Since each

f |Fk
is chosen uniformly at random from among all permutations of

[

|Fk|
]

, it follows that for all

i ∈ [t],

d

t
− 1 ≤

s−1
∑

i=1

pi ≤ E[dG(v, Vi)] =

s
∑

i=1

pi ≤
d

t
+ 1.

Therefore, by Chernoff’s bounds (Lemma 2.1),

Pr

[

dG(v, Vi) /∈ d

t
± 100

√

d log d

t

]

≤ exp (−2000 log d) =
1

d2000
.

Let Ei,v denote the event ‘d(v, Vi) /∈ d
t ± 100

√

d log d
t ’, and note that for all i ∈ [t] and v ∈ V (G),

Ei,v may depend on an event Ej,u only if at least one of the following two conditions hold: u = v; or

u and v have neighbors to the same Fk for some k. In particular, each event Ei,v depends on at most

t+ d2t ≤ d4 events. Finally, since
e(d4 + 1)

d2000
< 1,

the local lemma guarantees the existence of an f as desired.

2.5 Finding dense, regular spanning subgraphs in ‘nice’ bipartite graphs

The next lemma shows that almost-regular balanced bipartite graphs induced by large disjoint

subsets of a good expander contain a spanning regular graph covering almost all the edges. The

proof is similar to the proof of Lemma 2.12 in [10], and is based on the following generalization of

the Gale-Ryser theorem due to Mirsky [19].

Theorem 2.9 ([19]). Let G = (A ∪ B,E) be a balanced bipartite graph with |A| = |B| = m, and let

r be an integer. Then, G contains an r-factor if and only if for all X ⊆ A and Y ⊆ B

eG(X,Y ) ≥ r(|X|+ |Y | −m).

Lemma 2.10. Let G be an (n, d, λ) graph. Let 1 ≤ t ≤ d/100 be some integer such that t | n. Let

A and B be disjoint subsets of V (G) of sizes |A| = |B| = n
t and consider the bipartite subgraph of

G induced by these sets, denoted by G′ := G[A,B]. Assume further that d
t − 100

√

d log d
t ≤ δ(G′) ≤

∆(G′) ≤ d
t + 100

√

d log d
t . Then, G′ contains an r := ⌊dt − γ⌋-factor (i.e. an r-regular spanning

subgraph) for γ = 104max{λ,
√

d log d
t }, provided that γ < r/2.
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Proof. Since γ ≥ 0, the statement is vacuously true whenever r ≤ 0. Hence, we may assume that

r > 0. By Mirsky’s criterion, it suffices to verify that for all X ⊆ A and Y ⊆ B, we have

eG(X,Y ) ≥
(

d

t
− γ

)

(

|X|+ |Y | − n

t

)

.

We divide the analysis into five cases:

Case 1: |X|+ |Y | ≤ n
t . Since eG(X,Y ) ≥ 0, there is nothing to prove in this case.

Case 2: |X| + |Y | > n
t , |Y | ≥ |X| and |X||Y c| ≤ λ2n2

d2
, where Y c := B \ Y . Suppose for

contradiction that eG(X,Y ) < r
(

|X| + |Y | − n
t

)

. Then, it must be the case that

eG(X,Y c) ≥ δ(G′)|X| − eG(X,Y ) > (δ(G′)− r)|X|+ r|Y c|.

On the other hand, we know by the expander mixing lemma that

eG(X,Y c) ≤ d

n
|X||Y c|+ λ

√

|X||Y c| ≤ 2λ
√

|X||Y c|,

where the second inequality holds since |X||Y c| ≤ λ2n2

d2
. Hence, we must have

2λ
√

|X||Y c| ≥ (δ(G′)− r)|X|+ r|Y c|.

Since both terms on the right hand side are nonnegative, 2λ
√

|X||Y c| should also be greater than

either of them, for which we must have

r2

4λ2
|Y c| ≤ |X| ≤ 4λ2

(δ(G′)− r)2
|Y c|.

In particular, we must have r(δ(G′)−r) ≤ 4λ2, which implies λ ≥ r, which violates our assumption

about λ.

Case 3: |X|+ |Y | > n
t , |Y | ≥ |X|, |X||Y c| > λ2n2

d2
and |X| < nr

2d . If eG(X,Y ) < r
(

|X|+ |Y | − n
t

)

,

then by the same argument as above, we must have

2
d

n
|X||Y c| ≥ (δ(G′)− r)|X|+ r|Y c|.

In particular, we must have |X| ≥ nr
2d , which violates our assumption about |X|.

Case 4: |X| + |Y | > n
t , |Y | ≥ |X| and |X| ≥ nr

2d . By assumption, we have 2|Y | > n/t, so that

|Y | > n/2t. Moreover, since γ < r/2, we have that r > d/2t. Therefore,
√

|X||Y | ≥
√

n2/4t2 ≥
n/2t. On the other hand, we also have (2nλ)/(tγ) ≤ (2nγ)/(104tγ) ≤ n/50t. Combining these two

inequalities, we see that γ
2 |X||Y | ≥ nλ

t

√

|X||Y |. Therefore, by the expander mixing lemma, it suffices

to verify that
t

n

(

d

t
− γ

2

)

|X||Y | ≥
(

d

t
− γ

)

(

|X|+ |Y | − n

t

)

.

Dividing both sides by n/t, we see that this is implied by the inequality

xy − β(x+ y − 1) ≥ 0,

where β = d/t−γ
d/t−γ/2 , x = t|X|/n, y = t|Y |/n, x + y ≥ 1, 0 ≤ x ≤ 1, and 0 ≤ y ≤ 1. Observe

that the objective function on the left hand side of the desired inequality is bilinear in x and y, and
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therefore the minimum will be obtained on the triangular boundary of the region. On this boundary,

the inequality reduces to one of the following: xy ≥ 0; x ≥ βx; y ≥ βy, and is readily verified since

β ≤ 1.

Case 5: |X| + |Y | > n
t and |Y | ≤ |X|. This is exactly the same as cases (2)-(4) with the roles of

X and Y interchanged.

Remark 2.11. Under the conditions of the above lemma, an r-factor in G′ can be found efficiently

using algorithmic versions of Mirsky’s criterion based on standard network flow algorithms (see, e.g.,

[6]).

Remark 2.12. In the application of this lemma to Theorem 1.6, we will have to deal with bipartite

graphs as above, except that we are allowed to have |A| = |B|+ 1. In this scenario, it is impossible

to find an r-factor. However, by adding a “fake” vertex to B with suitable edge connections to A,

finding an r-factor in this new graph using the above lemma, decomposing this r-factor into r edge-

disjoint perfect matchings using repeated applications of Hall’s theorem, and finally removing all

edges incident to the “fake” vertex, we see that G′ := G[A,B] contains r-edge disjoint matchings such

that every vertex in A ∪B is matched in at least r − 1 such matchings.

2.6 Avoiding short cycles

In this section, we introduce our key technical lemma for proving Theorem 1.3. Since the usefulness

of this lemma may not be apparent at first glance, we encourage the reader to refer to this section

only after encountering its application in the proof of Theorem 1.3.

Lemma 2.13. There exist universal constants B,D > 20 for which the following holds. Let G be

a graph with maximum degree ∆ and minimum degree δ such that ∆ − δ ≤ ∆5/6 and ∆ ≥ D. Let

M1, . . . ,M∆+1 be a fixed collection of matchings in the complete graph on V (G). Then, there exists

a collection of matchings M ′
1, . . . ,M

′
∆+1 in G, where some of them may possibly be empty, such that:

1. the graph G′, which is obtained from G by deleting all the edges
⋃

i∈[∆+1]E(M ′
i ), has maximum

degree at most ∆1−1/B;

2. for all v ∈ V (G), there are at most ∆b indices i ∈ [∆+1] for which v lies on a cycle in M ′
i ∪Mi

of length at most ∆1/40, where b := 6
B + 1

20 .

Moreover, such a collection of matchings may be obtained in poly(V(G)) time with high probability.

The proof of this lemma builds on the proof of the main result in the work of Dubhashi, Grable,

and Panconesi [7]. Since the details are somewhat involved, we defer them to Appendix A.

3 Proofs of main results

In this section, we conclude the proofs of our main results. Since these proofs build on the general

strategy discussed earlier, we encourage the reader to review the construction in Section 1.1 before

proceeding. We start by proving Theorem 1.6 as a warm up since its proof is simpler.

9



3.1 Proof of Theorem 1.6

Let G be an (n, d, λ)-graph and set γ = 104max{λ,
√

d log d
t }. As in the general proof scheme

presented in Section 1.1, we start with a vertex decomposition V (G) = V1 ∪ . . . Vt satisfying the

conclusions of Lemma 2.8, where t ≤ d/100 is a positive even integer which will be specified below.

For all i 6= j, let Mij be a collection of r := ⌊dt − γ⌋ edge-disjoint matchings of the bipartite graph

Bij := G[Vi, Vj ] as in Remark 2.12 – such a decomposition exists for all sufficiently large d since γ < r
2

holds by our choice of t below, and our assumption that λ ≤ d2/3.

Let P := {P1, . . . , Pt/2} be a Hamiltonian path decomposition of Kt, and for each P ∈ P, let FP

be the collection of r edge-disjoint linear forests obtained as in Section 1.1. This gives us a set of rt
2

edge-disjoint linear forests of G. The key observation here is that the graph L induced by all edges of

G which are not in any such linear forest has maximum degree ∆(L) ≤ d−(t−1)(r−1) ≤ (γ+1)t+r

since each vertex in Vi ∪ Vj is in at least r − 1 of the r edge-disjoint matchings selected in Bij . Our

goal now is to find a decomposition of the edges of L into as few linear forests as possible. The bound

(1) ensures that we can find a decomposition into at most ∆(L)/2 +C(∆(L))2/3 log1/3(∆(L)) linear

forests. Together with the collection of rt/2 edge-disjoint linear forests that we built earlier, this

shows that

la(G) ≤ rt

2
+

∆(L)

2
+ C(∆(L))2/3 log1/3(∆(L))

≤ rt

2
+

γt+ t+ r

2
+C(∆(L))2/3 log1/3(∆(L))

≤ (⌊dt − γ⌋+ γ)t

2
+

t+ r

2
+ C(∆(L))2/3 log1/3(∆(L))

≤ d

t
+

t+ r

2
+ C(∆(L))2/3 log1/3(∆(L)).

Setting t = Θ̃
(

d3

γ2

)1/5
to optimize the error term (in which case γ = 104λ) shows that la(G) ≤ d

2 +

Õ
(

(dλ)2/5
)

, where the tilde hides logarithmic dependence on d. If instead of (1), we use Theorem 1.3

to handle the linear arboricity of L, then we get that

la(G) ≤ d

2
+O

(

(dλ)
2

5
−β

)

for some β > 0, as desired.

3.2 Proof of Theorem 1.3

Let G be a d-regular graph on n vertices with d sufficiently large. Let V (G) = V1 ∪ . . . Vt be a

vertex-partition satisfying the conclusions of Lemma 2.8, where t ≤ d/100 is a positive even integer

which will be specified below. As before, let Mij denote a decomposition of the bipartite graph

Bij := G[Vi, Vj ] into at most ∆(Bij) + 1 matchings, and let M = {Mij}i6=j denote the collection of

such decompositions.

Let P := {P1, . . . , Pt/2} be a Hamiltonian path decomposition of Kt, and for each P ∈ P, let FP

be the collection of at most s edge-disjoint linear forests obtained as in Section 1.1. Fix an arbitrary

labeling FP = {FP,1, . . . , FP,s} of these forests. Moreover, for each P ∈ P, let sP and tP denote its

endpoints, and observe that all the pairs {sP , tP}P∈P are disjoint.
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Next, for each P ∈ P, let MsP := {M ′′
P,1, . . . ,M

′′
P,s} be a decomposition of the edges of G[VsP ]

into s matchings; the existence of such a decomposition is guaranteed by Vizing’s theorem. For each

i ∈ [s], let F ′′
P,i := FP,i ∪M ′′

P,i, and observe that F ′′
P := {F ′′

P,1, . . . , F
′′
P,s} is a collection of edge-disjoint

linear forests which covers all the edges
⋃

ij∈E(P )E(Bij)∪E(G[VsP ]). For each i ∈ [s], let MP,i be the

set of all pairs {x, y} ⊆ VtP for which there exists a path in F ′′
P,i of length exactly 2t− 1 with x and y

as its endpoints. Note that such paths correspond precisely to two ‘full paths’ of length t− 1 in FP,i

whose endpoints in VsP are an edge of M ′′
P,i. Since each M ′′

P,i is a matching, it follows immediately

that each MP,i is a matching of the complete graph on the vertex set VtP .

For each P ∈ P, consider the graph G∗
P := G[VtP ]. By Lemma 2.8, we have

∆P − k ≤ δ(G∗
P ) ≤ ∆(G∗

P ) =: ∆P ,

where k = 200((d log d)/t)1/2. Below, we will choose t be to less than
√
d. Therefore, for d sufficiently

large, ∆P ≥ D and k ≤ ∆
5/6
P , so that by applying Lemma 2.13 to G∗

P we obtain a collection of ∆P +1

matchings M ′
1, . . . ,M

′
∆P+1 in G∗

P , where some of them are possibly empty, such that:

1. the graph G′
P , which is obtained from G∗

P by deleting all the edges
⋃

i∈[∆P+1]E(M ′
P,i), has

maximum degree at most ∆
1−1/B
P , and

2. for all v ∈ V (G), there are at most ∆b
P indices i ∈ [∆P +1] for which v lies on a cycle in Mi∪M ′

i

of length at most ∆
1/40
P .

With this in hand, let F ′
P,i := F ′′

P,i ∪M ′
P,i for all i ∈ [∆P + 1], and let F ′

P := {F ′
P,1, . . . , F

′
P,∆P+1}.

Since each F ′
P,i is a graph of maximum degree at most 2, it is a disjoint union of cycles, paths

and isolated vertices. We wish to remove one edge from each cycle in each F ′
P,i. For the analysis,

it will be convenient to do it in the following manner: for any cycle C in any F ′
P,i of length at

most t∆
1/40
P , remove an edge arbitrarily from M ′

P,i; on the other hand, for a cycle C in some F ′
P,i

of length at least t∆
1/40
P , delete an edge chosen uniformly at random from among the first (with

respect to a fixed, but otherwise arbitrary ordering of the edges) ⌊∆1/40
P /2⌋ edges of M ′

i appearing

in this cycle. Let F ∗
P,i denote the (random) linear forest resulting from FP,i after this deletion, and

let F∗
P := {F ∗

P,1, . . . , F
∗
P,∆P+1} be the collection of edge-disjoint linear forests obtained from the

Hamiltonian path P in this manner.

For each v ∈ VtP , let X(v) denote the (random) number of edges in
⋃

i∈[∆P+1] F
∗
P,i \ F ′

P,i which

are incident to v. We claim that there is a choice of F∗
P for which X(v) ≤ 9∆

39/40
P for all v ∈ VtP .

For this, fix v ∈ VtP and observe that since v is part of at most ∆b
P cycles of length ≤ ∆

1/40
P in

Mi ∪M ′
i , it follows that v can be a part of at most ∆b

P cycles in F ′
P,i of length ≤ t∆

1/40
P . Hence, the

contribution to X(v) from such cycles is at most ∆b
P . Moreover, the probability that any cycle of

length at least t∆
1/40
P contributes to X(v) is bounded above by 1/⌊∆1/40

P /2⌋ ≤ 3/∆
1/40
P , since such a

cycle contributes to X(v) only when the edge deleted from it is incident to v, where the edge to be

deleted is chosen uniformly at random from among ⌊∆1/40
P /2⌋ edges, of which at most one is incident

to v. Since there are at most ∆P + 1 cycles containing v to start with, and since deletions from

long cycles are made independently, it follows from Chernoff’s bounds that with probability at least

1 − exp
(

−∆
38/40
P

)

, X(v) ≤ ∆b
P + 8∆

39/40
P ≤ 9∆

39/40
P . Let Ev denote the event that this does not

happen. Note that Ev can depend on Eu only if v and u are both incident to the first ⌊∆1/40
P /2⌋ edges
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of M ′
i in a long cycle. Again, since there are at most ∆P + 1 cycles to start with, it follows that any

Ev can depend on at most ∆2
P other Eu’s. Therefore, since ∆2

P exp(−∆
39/40
P ) ≪ 1, it follows from the

local lemma that Pr[∩v∈VtP
Ev] > 0, which proves the desired claim.

Finally, repeat the above construction for each P ∈ P to obtain a collection of edge disjoint linear

forests F := {F∗
P }P∈P , and let L denote the leave graph obtained by deleting from G any edge which

appears in F. Observe that L consists of edges of the following two types:

• edges within VtP that are not contained in ∪i∈[∆P+1]E(M ′
P,i) i.e. edges in the graph G′

P ;

• edges in ∪P∈PF
′
P that are not contained in F i.e. edges removed during the deletion process

described above.

Recall from Lemma 2.8 that ∆P ≤ s for all P ∈ P. Since the V ′
i s are disjoint, it follows from

the above discussion that ∆(L) ≤ 9∆
39/40
P + ∆

1−1/B
P ≤ 10s1−γ , where γ := min{ 1

40 ,
1
B } Therefore,

by Vizing’s theorem, one can decompose L into at most 10s1−γ + 1 edge-disjoint matchings. These

matchings, together with F, give a decomposition of E(G) into a number of linear forests which is at

most
st

2
+ 10s1−γ + 1 ≤ d

2
+ 200

(

√

dt log d+

(

d

t

)1−γ
)

.

Optimizing the error term by setting the two summands in the parentheses to be equal gives

t =
(

d1−2γ

log d

) 1

3−2γ
, in which case, we get that

la(G) ≤ d

2
+ d2/3−α,

for some α > 0, as desired.
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A Proof of Lemma 2.13

In this appendix, we show how the proof of the main result in [7], which is based on the celebrated

Rödl nibble [23], implies Lemma 2.13. The organization of this appendix is as follows: Algorithm 1

records the nibbling algorithm used in [7]; Theorem A.1 and Theorem A.4 record the conclusion of

the analysis in [7]; Corollary A.5 adapts the analysis in [7] for our choice of parameters; Lemma A.6

and Lemma A.7 show that Algorithm 1 produces only a small number of short cycles with respect to

any fixed collection of matchings, and finally, Proposition A.8 proves Lemma 2.13.

Before proceeding to formal details, let us provide a high level overview of what follows. The goal

in [7] is to produce a proper edge-coloring of a ∆-regular graph G using (1 + ǫ)∆ colors (here, ǫ is

allowed to depend on ∆). Their algorithm runs in two phases – the first phase, which is based on the

semi-random ‘nibble’ method of Rödl, is the one relevant to our paper; the second phase actually uses

a trivial algorithm. In the first phase, the algorithm seeks to color ‘most’ of the edges using a palette of

∆ colors. Starting with the input graph G0 := G, the algorithm generates a sequence G0, G1, . . . , Gtǫ

of graphs, where Gi is the graph induced by the edges which are still uncolored at the end of stage

i. In each stage i, each edge has a palette of all ‘available’ colors, where initially, the palette of each

edges is the set {1, . . . ,∆}. Each vertex selects an ǫ/2-fraction of uncolored edges incident to it, and

each selected edge picks a tentative color from its palette independently and uniformly at random.

If a selected edge has no ‘color-conflicts’ with any neighboring edge, then the corresponding color

becomes the final color of the edge. All the palettes of the remaining edges are updated by deleting

all the final colors of neighboring colored edges. This process is then repeated in the next stage. The

algorithm continues for a number of rounds by the end of which (with high probability) each vertex

has no more than ǫ∆ uncolored edges incident to it.

As in all nibbling-based arguments, the key idea is that in each stage, the number of edges which

experience color conflicts is only a small fraction of the number of edges selected to be colored at this

stage. The main effort in [7] is spent in showing that this holds true with high probability throughout

the process. They do this by showing inductively – and this is what we will use in our analysis – that

the graphs Gi and the color palettes of each edge behave almost like ‘random’ subgraphs and subsets

of the original ones. We now give a formal description of the algorithm and analysis in [7]. Following

this, we will show how to tailor it to our application.

Algorithm 1 is the first phase of the algorithm used in [7] as described above. The analysis of this

algorithm is based on controlling the following three quantities:

• |Ai(u)|, the size of the implicit palette of vertex u at the end of stage i, where the implicit

palette Ai(u) denotes the set of colors not yet successfully used by any edge incident to u.

• |Ai(e)|, the size of the palette Ai(e) of edge e at the end of stage i. Note that Ai(uv) =

Ai(u) ∩Ai(v).

• degi,γ(u), the number of neighbors of u which, at the end of stage i, have color γ in their

palettes.

Before we discuss their analysis of this algorithm, we need some notation. Define di and ai as

follows: first, define initial values

d0, a0 := ∆
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Algorithm 1 The Nibble Algorithm

The initial graph G0 := G, the input graph. Each edge e = uv is initially given the palette A0(e) =

{1, . . . ,∆}. For i = 0, . . . , tǫ − 1 stages, repeat the following:

• (Select nibble) Each vertex u randomly selects an ǫ/2 fraction of the uncolored edges incident

to itself. An edge is considered selected if either or both of its endpoints selects it.

• (Choose tentative color) Each selected edge e chooses independently at random a tentative color

t(e) from its palette Ai(e) of currently available colors.

• (Check color conflicts) Color t(e) becomes the final color of e unless some edge incident to e

has chosen the same tentative color.

• (Update graph and palettes) The graph and the palettes are updated by setting

Gi+1 = Gi − {e|e got a final color}

and, for each edge e, setting

Ai+1(e) = Ai(e)− {t(f)|f incident to e, t(f) is the final color of f}.

and then, recursively define

di := (1− pǫ)di−1 = (1− pǫ)
i∆;

ai := (1− pǫ)
2ai−1 = (1− pǫ)

2i∆ = d2i /∆,

where

pǫ := ǫ
(

1− ǫ

4

)

e−2ǫ(1−ǫ/4).

In particular, note that setting

tǫ :=
1

pǫ
log

4

ǫ
,

we have dtǫ ≤ ǫ∆/4. Also, provided that ǫ < 1/100, we have dtǫ = (1− pǫ)
tǫ∆ ≥ e−2pǫtǫ∆ = ǫ2∆/16.

Theorem A.1 ([7], Lemmas 9, 12 and 15, and the discussion in Section 5.5). There exist constants

K,D > 0 such that if ǫ < 1/100, ǫ2∆ ≥ D, and at the end of stage i of Algorithm 1 the following

holds for all vertices u, edges e and colors γ with ei ≤ 1/2:

|Ai(u)| = (1± ei)di

|Ai(e)| = (1± ei)ai

degi,γ(u) = (1± ei)ai,

then the following holds for all vertices u, edges e, and colors γ:

E
[

|Ai+1(u)|
]

= (1± (1 +Kǫ)ei)di+1

E
[

|Ai+1(e)|
]

= (1± (1 +Kǫ)ei)ai+1

E
[

degi+1,γ(u)
]

= (1± (1 +Kǫ)ei)ai+1.
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Remark A.2. In our case (Lemma 2.13), we have

|A0(u)| = |A0(e)| = ∆,

and

deg0,γ = deg(u) = ∆

(

1± ∆− δ

∆

)

for all vertices u, edges e, and colors γ. Therefore, we can take

e0 =
∆− δ

∆
≤ ∆−1/6.

In order to show that the above random variables concentrate around their expectation, we will

(as in [7]) use the following concentration inequality due to Grable [13]. The statement of this

inequality uses the notion of the ‘variance of a strategy for determining a random variable’ of the form

Y = f(X1, . . . ,Xn), whose definition we reproduce verbatim from [7] for the reader’s convenience. A

querying strategy for Y is a decision tree whose internal nodes designate queries to be made. Each node

of the tree represents a query of the type “what was the random choice of Xi?”. A node has as many

children as there are random choices for Xi. Every path from the root to a node which goes through

vertices corresponding to Xi1 , . . . ,Xik defines an assignment a1, . . . , ak to these random variables.

We can think of each node as storing the value E[Y |Xi1 = a1, . . . ,Xik = ak]. In particular, the leaves

store the possible values of Y , since by then all relevant random choices have been determined. Define

the variance of a query (internal node) q concerning choice Xi to be

vq =
∑

a∈Ai

Pr[Xi = a]µ2
q,a,

where

µq,a = E[Y |Xi = a and all previous queries]− E[Y | all previous queries].

By “all previous queries”, we mean the condition imposed by the queried choices and exposed values

determined by the path from the root of the strategy down to the node q. In words, µq,a measures

the amount which our expectation changes when the answer to query q is revealed to be a. Also

define the maximum effect of query q as

cq = max
a,b∈Ai

|µq,a − µq,b|.

A way to think about cq is the following. Consider the children of node q; cq is the maximum difference

between any values E[Y | all previous queries] stored at the children. A line of questioning ℓ is a path

in the decision tree from the root to a leaf and the variance of a line of questioning is the sum of the

variances of the queries along it. Finally, the variance of a strategy S is the maximum variance over

all lines of questioning

V (S ) = max
ℓ

∑

q∈ℓ

vq.

We are now ready to state Grable’s concentration inequality.

Theorem A.3 ([13]). Let S be a strategy for determining a random variable Y , and suppose the

variance of S is at most V . Then, for every 0 ≤ ϕ ≤ V/max c2q ,

Pr
[

|Y − E[Y ]| > 2
√

ϕV
]

≤ 2 exp(−ϕ).
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We note that max c2q will always be at most 16 in all the applications of Theorem A.3 that we will

need ([7]).

The next theorem records the bounds on the variance (in the above sense) of various random

variables which we are interested in.

Theorem A.4 ([7], Lemmas 10, 13 and 16, and the discussion in Section 5.5.). Fix 0 ≤ i ≤ tǫ−1. Let

Xu := |Ai(u)|−|Ai+1(u)|, Ye := |Ai(e)|−|Ai+1(e)|, and Zγ,u := degi+1,γ(u). Suppose the assumptions

of Theorem A.1 are satisfied. Then, for any fixed u, e, γ, with probability at least 1 − exp(−ǫdi/10),

there exist strategies SX,u, SY,e and SZ,γ,u for determining Xu, Ye and Zγ,u with the following

variance bounds:

V (SX,u) ≤ 100ǫdi

V (SY,e) ≤ 10000ai

V (SZ,γ,u) ≤ 100ǫai.

As an immediate application of Theorem A.3 along with these bounds, we obtain the following

corollary, which shows that random variables in the conclusion of Theorem A.1 are indeed sufficiently

well-concentrated around their expectation.

Corollary A.5. Fix 0 ≤ i ≤ tǫ − 1. Suppose that the assumptions of Theorem A.1 are satisfied.

For any u, e, γ, let Xu be the event that
∣

∣ |Ai+1(u)| − E|Ai+1(u)|
∣

∣ ≥
√

ǫd
5/3
i , Ye be the event that

∣

∣ |Ai+1(e)| − E[|Ai+1(e)|]
∣

∣ ≥
√

a
5/3
i , and Zγ,u be the event that

∣

∣ degi+1,γ(u) − E[degi+1,γ(u)]
∣

∣ ≥
√

ǫa
5/3
i . Then,

Pr[Xu] ≤ 2 exp(−d
1/3
i ) + exp(−ǫdi/10)

Pr[Ye] ≤ 2 exp(−a
1/3
i ) + exp(−ǫdi/10)

Pr[Zγ,u] ≤ 2 exp(−a
1/3
i ) + exp(−ǫdi/10).

Proof. The variance bounds from Theorem A.4 hold for any fixed u, e, γ except with probability at

most exp(−ǫdi/10). Whenever these bounds hold, we apply Theorem A.3 with ϕ = d
1/3
i (in the

case of Xu) or ϕ = a
1/3
i (in the case of Ye and Zγ,u). Finally, we use that 2000a

4/3
i ≤ a

5/3
i and

2000d
4/3
i ≤ d

5/3
i since ǫ2∆ ≥ D by assumption.

The next lemma is tailored for our application. Roughly speaking, we are given matchings

M1, . . . ,Ms in the complete graph on V (G). We wish to design a random procedure to properly

color (most of) the edges of G using s colors in such a way that by considering the matchings

M ′
1, . . . ,M

′
s induced by each color class, the probability of any vertex u becoming part of too many

short cycles in any of the graphs Mi ∪M ′
i is sufficiently small.

Lemma A.6. Let M1, . . . ,Ms be a fixed collection of matchings in the complete graph on V (G), where

s := ∆ + 1. Let 0 < β < 1/10. For any vertex u, let Ci(u) denote the number of indices γ for which

u lies on a cycle of length at most ∆β/2 in Mγ ∪M ′
γ by the end of round i of the algorithm. Let Ci,u

denote the event that Ci+1(u) − Ci(u) ≥ 1000∆β/ǫ4. Suppose that the assumptions of Theorem A.1

are satisfied. Then,

Pr[Ci,u] ≤ exp(−∆β/ǫ4).
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Proof. Fix u ∈ V (G) as in the statement of the lemma. For each γ ∈ [s] such that u is not already

lying on a cycle in Mγ ∪M ′
γ by the end of round i of the algorithm, let Pγ denote the unique maximal

path (with a fixed, but otherwise arbitrary, orientation) in Mγ ∪M ′
γ containing u at the end of round

i. Observe that if the first and last edges of Pγ do not belong to Mγ , then Pγ cannot be extended to

a cycle in Mγ ∪M ′
γ . Let pγ denote the first vertex of Pγ and let qγ denote its last vertex. For any

vertex v ∈ V (G), let vγ denote the unique (if it exists) vertex such that {v, vγ} ∈ Mγ , and let vγ

denote the unique (if it exists) vertex such that the edge {v, vγ} is colored γ during the execution of

the algorithm by the end of round i+ 1. Finally, for each γ ∈ [s], consider the following sequence of

vertices defined inductively: w0,γ := pγ , w2i+1,γ := w2i,γ
γ for i ≥ 0, and w2i,γ := wγ

2i−1,γ for i ≥ 1.

Note that Pγ closes into a cycle of length at most ℓ = 2⌈∆β/2/2⌉ + 1 in Mγ ∪ M ′
γ during the

(i+ 1)st round only if one of the vertices w1,γ , w3,γ , w5,γ , . . . , wℓ,γ is qγ . In particular, at least one of

the edges {w0,γ , qγ}, {w2,γ , qγ}, . . . , {wℓ−1,γ , qγ} must be tentatively colored by γ during the (i+1)st

round. Letting Eγ denote the random variable recording the number of such edges, it follows that

Ci+1(u) − Ci(u) ≤ ∑

γ∈[s]Eγ . Moreover, since a given edge e is tentatively colored by a given

color γ during the (i + 1)st round with probability at most 1/|Ai(e)| ≤ 2/ai ≤ 2∆/d2tǫ ≤ 512/∆ǫ4,

and since the tentative colors for different edges are chosen independently, we see that conditioning

on any choice for the collection of vertices {w2,γ /∈ Pγ , . . . , wℓ−1,γ /∈ Pγ}γ∈[s], the random variable
∑

γ∈[s]Eγ is stochastically dominated by the random variable Bin(∆1+(β/2), 512/∆ǫ4). Therefore, by

Chernoff’s bound for the binomial distribution followed by the law of total probability to remove the

conditioning, it follows that

Pr[Ci,u] ≤ Pr[Bin(∆1+(β/2), 512/∆ǫ4) ≥ 1000∆β/ǫ4] ≤ exp(−∆β/ǫ4),

which completes the proof.

The following lemma combines Corollary A.5 and Lemma A.6 to prove the existence of a ‘good’

outcome of a given round of the algorithm.

Lemma A.7. Fix 0 ≤ i ≤ tǫ − 1. Suppose that the assumptions of Lemma A.6 are satisfied and

∆−1/B ≤ ǫ < 1/100 for some B > 20. Then with positive probability, the following holds at the end

of stage i+ 1 for all vertices u, edges e and colors γ simultaneously:

|Ai+1(u)| = (1± ei+1)di+1

|Ai+1(e)| = (1± ei+1)ai+1

degi+1,γ(u) = (1± ei+1)ai+1

Ci+1(u)− Ci(u) ≤ 1000∆β/ǫ4,

where 0 < β < 1
10 − 1

B is fixed, and

ei+1 = κ

(

ei +

√

a
−1/3
i

)

≤ κ
(

ei + (1− pǫ)
−i∆−1/6

)

, (3)

with κ = 1 +Kǫ.

Proof. Let Xu, Ye, Zγ,u be the events defined in Corollary A.5, and let Cu := Ci,u be the event defined

in Lemma A.6. It suffices to show that

Pr









⋂

u∈V (G)

X c
u



 ∩





⋂

e∈E(G)

Yc
e



 ∩





⋂

γ∈[s],u∈V (G)

Zc
γ,u



 ∩





⋂

u∈V (G)

Cc
u







 > 0.
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We will show this using the symmetric local lemma. To this end, we note that two events of the form

E(u, e, γ) and E(u′, e′, γ′) can depend on each other only if at least one of u or e is within distance

at most (say) 4∆β/2 from one of u′ or e′. Since the maximum degree of G is ∆, it follows that the

dependency graph of the events listed above has maximum degree at most (say) poly(∆)∆4∆β/2 ≤
exp(∆3β/4), where the last inequality holds for all ∆ sufficiently large. Also, by Lemma A.6, events

of the form Cu hold with probability at most exp(−∆β), whereas by Corollary A.5, the other events

hold with probability at most exp(−ǫdtǫ/10) + 2 exp
(

−a
1/3
tǫ

)

. Hence, if this latter quantity were

much less than exp(∆3β/4), we would be done. This is indeed true provided that β < 1
10 − 1

B and ∆

is sufficiently large.

Finally, we iterate Lemma A.7 to prove the main result of this appendix.

Proposition A.8. There exist constants B,D > 20 for which the following holds. Let G be a graph

with maximum degree ∆ and minimum degree δ such that ∆− δ ≤ ∆5/6 and ∆ ≥ D. Let M1, . . . ,Ms

be a fixed collection of matchings in the complete graph on V (G), where s := ∆ + 1. Then, for any

fixed ∆−1/B ≤ ǫ < 10−4, the following holds with positive probability for the execution of Algorithm 1

on G with parameter ǫ for tǫ stages: for fixed 0 < β < 1
10 − 1

B , for all 0 ≤ i ≤ tǫ − 1, and for all

vertices u, all edges e, and all colors γ,

• |Ai(u)| = (1± ǫ3)di

• |Ai(e)| = (1± ǫ3)ai

• degi,γ(u) = (1± ǫ3)ai

• Ci+1(u)−Ci(u) ≤ 1000∆β/ǫ4.

In particular, for every vertex u, Ctǫ(u) ≤ 1000tǫ∆
β/ǫ4 ≤ ∆β/ǫ6. Further, the number of uncolored

edges incident to u is at most |Atǫ(u)| ≤ 2dtǫ ≤ ǫ∆/2.

Remark A.9. By taking the matchings M ′
1, . . . ,M

′
∆ to be the edges colored (at the end of stage

tǫ) by 1, . . . ,∆ respectively, it is immediately seen that the above proposition, with ǫ = ∆−1/B and

β = 1/20, implies Lemma 2.13.

Proof. We view the execution of Algorithm 1 as a branching process, where in each round of the

algorithm, we branch out according to which edges are assigned final colors, and which final colors

are assigned to these edges. Generate this tree for tǫ levels, and consider any root to leaf path such

that for each intermediate ‘branch’, the endpoint further from the root satisfies the conclusions of

Lemma A.7 given the parameters at its parent. Such a root-to-leaf path is guaranteed to exist by

Lemma A.7. To complete the proof, we track the error introduced by the iterative application of

Lemma A.7, and show that it is no more than what is stated in the proposition.

Setting A := ∆−1/6 and P := (1− pǫ)
−1, we get from Equation (3) that

eℓ ≤ κℓe0 +A[κℓ + κℓ−1P + · · ·+ κP ℓ−1]

for all 0 ≤ ℓ ≤ tǫ. Since P = (1 − pǫ)
−1 is also of the form 1 + K ′ǫ for some constant K ′ > 0, it

follows that

eℓ ≤ (1 + Lǫ)ℓe0 + ℓ(1 + Lǫ)ℓ∆−1/6,
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where L = max{K,K ′}. By Remark A.2, e0 ≤ (∆− δ)/∆ ≤ ∆−1/6. Therefore,

eℓ ≤ 2ℓ exp(Lǫℓ)∆−1/6.

The right hand side is maximized when ℓ = tǫ, in which case it is at most

(

1

ǫ

)3L

∆−1/6 ≤ ǫ3,

where the last inequality holds provided we take B ≥ 18(L + 1).
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