
ar
X

iv
:1

80
1.

05
03

7v
1 

 [m
at

h.
C

O
]  

12
 Ja

n 
20

18

A FAST NEW ALGORITHM FOR WEAK GRAPH REGULARITY

JACOB FOX, LÁSZLÓ MIKLÓS LOVÁSZ, AND YUFEI ZHAO

Abstract. We provide a deterministic algorithm that finds, in ǫ−O(1)n2 time, an ǫ-regular Frieze–
Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given
graph as a weighted sum of ǫ−O(1) many complete bipartite graphs.

As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an
n-vertex graph G up to an additive error of at most ǫnv(H), in time ǫ−OH(1)n2.

1. Introduction

The regularity method, based on Szemerédi’s regularity lemma [18], is one of the most powerful
tools in graph theory. Szemerédi [17] used an early version in the proof of his celebrated theorem
on long arithmetic progressions in dense subsets of the integers. Roughly speaking, the regularity
lemma says that every large graph can be partitioned into a small number of parts such that the
bipartite subgraph between almost every pair of parts is random-like. One of the main drawbacks
of the original regularity lemma is that it requires a tower-type number of parts, where the height
of the tower depends on an error parameter ǫ. However, for many applications, the full power of
the regularity lemma is not needed, and a weaker notion of Frieze-Kannan regularity suffices.

To state the regularity lemmas requires some terminology. Let G be a graph, andX and Y be (not
necessarily disjoint) vertex subsets. Let e(X,Y ) denote the number of pairs vertices (x, y) ∈ X×Y
that are edges of G. The edge density d(X,Y ) = e(X,Y )/(|X||Y |) between X and Y is the fraction
of pairs in X × Y that are edges. The pair (X,Y ) is ǫ-regular if for all X ′ ⊆ X and Y ′ ⊆ Y with
|X ′| ≥ ǫ|X| and |Y ′| ≥ ǫ|Y |, we have |d(X ′, Y ′) − d(X,Y )| < ǫ. Qualitatively, a pair of parts is
ǫ-regular with small ǫ if the edge densities between pairs of large subsets are all roughly the same.
A vertex partition V = V1 ∪ . . . ∪ Vk is equitable if the parts have size as equal as possible, that is
we have ||Vi| − |Vj || ≤ 1 for all i, j. An equitable vertex partition with k parts is ǫ-regular if all but
ǫk2 pairs of parts (Vi, Vj) are ǫ-regular. The regularity lemma states that for every ǫ > 0 there is a
(least) integer K(ǫ) such that every graph has an ǫ-regular equitable vertex partition into at most
K(ǫ) parts.

To state Frieze-Kannan regularity precisely, first, we extend the definition of e(X,Y ) and d(X,Y )
to weighted graphs. Below by weighted graph we mean a graph with edge-weights. Given two sets
of vertices X and Y , we let e(X,Y ) denote the sum of the edge-weights over pairs (x, y) ∈ X × Y
(taking 0 if a pair does not have an edge). Let d(X,Y ) = e(X,Y )/(|X||Y |) as earlier. Recall that
the cut metric d� between two graphs G and H on the same vertex set V = V (G) = V (H) is
defined by

d�(G,H) := max
U,W⊆V

|eG(U,W )− eH(U,W )|
|V |2 ,
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and this extends to graphs with weighted edges, and can be adapted to bipartite graphs (with given
bipartitions). Given any edge-weighted graph G and any partition P : V = V1 ∪ V2 ∪ · · · ∪ Vt of
the vertex set of G into t parts, let GP denote the weighted graph with vertex set V obtained by
giving weight dij := d(Vi, Vj) to all pairs of vertices in Vi × Vj , for every 1 ≤ i ≤ j ≤ t. We say P
is an ǫ-regular Frieze–Kannan (or ǫ-FK-regular) partition if d�(G,GP ) ≤ ǫ. In other words, P is
an ǫ-regular Frieze–Kannan partition if

∣∣∣∣∣∣
e(S, T ) −

t∑

i,j=1

dij |S ∩ Vi||T ∩ Vj |

∣∣∣∣∣∣
≤ ǫ|V |2. (1)

for all S, T ⊆ V . We say that sets S and T witness that P is not ǫ-FK-regular if the above inequality
is violated.

Frieze and Kannan [7, 8] proved the following regularity lemma.

Theorem 1.1 (Frieze–Kannan). Let ǫ > 0. Every graph has an ǫ-regular Frieze–Kannan partition

with at most 22/ǫ
2
parts.

There is a variant of the weak regularity lemma, where the final output is not a partition of V

into 2ǫ
−O(1)

parts, but rather an approximation of the graphs as a sum of ǫ−O(1) complete bipartite
graphs, each assigned some (not necessarily nonnegative) weight, see [8]. For S, T ⊆ V , we denote
by KS,T the weighted graph where an edge {s, t} has weight 1 if s ∈ S and t ∈ T (and weight 2 if
s, t ∈ S∩T ) and weight zero otherwise. For any c ∈ R, by cG we mean the weighted graph obtained
from G by multiplying every edge-weight by c. For a pair of weighted graphs G1, G2 on the same
set of vertices, we will use the notation G1 +G2 to denote the graph on the same vertex set with
edge weights summed (and weight 0 corresponding to not having an edge). Additionally, we write
c to mean the constant graph with all edge-weights equal to c. We also use d(G) := d(V (G), V (G))
to denote the edge density of the weighted graph G.

Theorem 1.2 (Frieze–Kannan). Let ǫ > 0. Let G be any weighted graph with [−1, 1]-valued
edge weights. There exists an r = O(ǫ−2), and there exist subsets S1, . . . , Sr, T1, . . . , Tr ⊆ V , and
c1, . . . , ck ∈ [−1, 1], so that

d�(G, d(G) + c1KS1,T1 + · · ·+ crKSr ,Tr
) ≤ ǫ.

See [11, Lemma 4.1] for a simple proof (given there in a more general setting of arbitrary Hilbert
spaces). It is well known using the triangle inequality (see, e.g., [8]) that given sets and numbers as
in the theorem, the common refinement of all Si, Ti must be a 2ǫ-regular Frieze-Kannan partition.

In addition to proving that a partition or “cut graph decomposition” exists, Frieze and Kannan
gave probabilistic algorithms for finding a weak regular partition [7, 8] or decomposition. Two
deterministic algorithms were given by Dellamonica, Kalyanasundaram, Martin, Rödl, and Shapira
[2, 3]. Specifically, in [2], the authors gave an ǫ−6nω+o(1) time algorithm (ω < 2.373 is the matrix
multiplication exponent) to generate an equitable ǫ-regular Frieze–Kannan partition of a graph on

n vertices into at most 2O(ǫ−7) parts. In [3] a different algorithm was given which improved the

dependence of the running time on n from Oǫ(n
ω+o(1)) to Oǫ(n

2), while sacrificing the dependence

of ǫ. Namely, it was shown that there is a deterministic algorithm that finds, in 22
ǫ
−O(1)

n2 time,

an ǫ-regular Frieze–Kannan partition into at most 2ǫ
−O(1)

parts.
In Section 2, we give an optimal algorithm that provides the best of both worlds: We give an

algorithm that finds, in ǫ−O(1)n2 time, a weakly regular partition.1 In fact, we provide an algorithm
for finding a cut graph decomposition, which is more useful in some applications. The algorithm is
also self-contained.

1Theorem 1.3 replaces [6, Corollary 3.5], which we retracted [5].
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Theorem 1.3. There is a deterministic algorithm that, given ǫ > 0 and an n-vertex graph G,

outputs, in ǫ−O(1)n2 time, subsets S1, S2, ..., Sr, T1, T2, ..., Tr ⊆ V (G) and c1, c2, ..., cr ∈ {− ǫ8

300 ,
ǫ8

300}
for some r = O(ǫ−16), such that

d�(G, d(G) + c1KS1,T1 + · · ·+ crKSr ,Tr
) ≤ ǫ.

Remark. Given a decomposition as above, we obtain the 2ǫ-regular Frieze-Kannan partition that
gives the common refinement of all Si, Ti in time O(nr), by going through the vertices of the graph,
and checking, for each vertex, which parts it does and does not belong to.

Remark. As in the case of the usual regularity lemma, it is possible to obtain an equitable partition
in the Frieze–Kannan regularity lemma, increasing the number of parts and the cut distance by
a negligible amount. This can be done by arbitrarily partitioning each part into essentially equal
size parts of the desired size and a remainder part, and then arbitrarily partitioning the union of
the remainder vertices into parts of the desired size. We leave the details of this algorithm to the
reader.

In Section 3, using the above algorithmic weak regularity lemma, we obtain a deterministic
algorithm for approximating the number of copies of a fixed vertex graph H in a large vertex graph
G.2 Note that there is an easy randomized algorithm for estimating the number of copies of H by
sampling. However, it appears to be nontrivial to estimate this quantity deterministically. Duke,
Lefmann and Rödl [4] gave an approximation algorithm for the number of copies of a k-vertex

graph H in an n-vertex graph G up to an error of at most ǫnk in time O(2(k/ǫ)
O(1)

nω+o(1)). We
give a new algorithm which significantly improves the running time dependence on both n and ǫ.

Theorem 1.4. There is a deterministic algorithm that, given ǫ > 0, a graph H, and an n-vertex
graph G, outputs, in O(ǫ−OH (1)n2) time, the number of copies of H in G up to an additive error

of at most ǫnv(H).

Remark. An examination of the proof shows that the exponent of ǫ−1 in the running time can be
9|H| (though not believed to be optimal). For example, we can count the number of cliques of order

1000 in an n-vertex graph up to an additive error n1000−10−1000000
in time O(n2.1).

Remark. All results here can be generalized easily to weighted graphs G with bounded edge-weights.

2. Algorithmic weak regularity

Here we prove Theorem 1.3. We will prove the following, roughly equivalent form. In order to
state it, we first give some notation. Given a matrix A, we denote by ‖A‖ the spectral norm, i.e.
the largest singular value. It is well known that this is equal to the operator norm of A when viewed
as an operator between L2-spaces. We also use the Frobenius norm

‖A‖F =

√∑

i,j

a2i,j .

and the entry-wise maximum norm

‖A‖max = sup
i,j

|ai,j|.

Given a set S ⊆ [n], we will denote by 1S ∈ R
n the characteristic vector of S.

2Theorem 1.4 replaces [6, Theorem 1.4], which we retracted [5].
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Theorem 2.1. There is an algorithm that, given an ǫ > 0 and a matrix A ∈ [−1, 1]n×n, outputs,

in ǫ−O(1)n2 time, subsets S1, . . . , Sr, T1, . . . , Tr ⊆ [n] and real numbers c1, . . . , cr ∈ {− ǫ8

300 ,
ǫ8

300} for

some r = O(ǫ−16), such that, setting

A′ =

r∑

i=1

ci1Si
1
⊤
Ti
,

each row and column of A−A′ has L2-norm at most
√
n (i.e. the sum of the squares of the entries

is at most n), and

‖A−A′‖ ≤ ǫn.

It is well-known that if G and H are weighted bipartite graphs between two sets X,Y of size n,
and AG, AH are the adjacency matrices, with rows corresponding to X and columns corresponding
to Y , then

d�(G,H) ≤ ‖AG −AH‖
n

.

Indeed, for any S, T ⊆ [n], taking the characteristic vectors 1S and 1T , we have

|eG(S, T )− eH(S, T )| =
∣∣∣1⊤S (AG −AH)1⊤T

∣∣∣ ≤ ‖AG −AH‖‖‖1S‖2‖1T ‖2 ≤ ‖AG −AH‖n.

Therefore, this theorem indeed implies Theorem 1.3 (taking A to be AG − d(G)11⊤).
The proof of the Frieze–Kannan regularity lemma and its algorithmic versions, roughly speaking,

run as follows:

• Given a partition (starting with the trivial partition with one part), either it is ǫ-FK-regular
(in which case we are done), or we can exhibit some pair of subsets S, T of vertices that
witness the irregularity (in the algorithmic versions, one may only be guaranteed to find S
and T that witness irregularity for some smaller value of ǫ).

• Refine the partition by using S and T to split each part into at most four parts, thereby
increasing the total number of parts by a factor of at most 4.

• Repeat. Use a mean square density increment argument to upper bound the number of
possible iterations.

This can be modified to prove the approximation version. Roughly speaking, to find the appro-
priate Si, Ti, ci, in the second step of the above outline of the proof of the weak regularity lemma,
instead of using S and T to refine the existing partition, we subtract c1S1

⊤
T from the remaining

matrix, for a carefully chosen c. We record the corresponding Si, Ti, ci in step i of this iteration. We
can bound the number of iterations by observing that the L2 norm of A− c11S11

⊤
T1

−· · · − ci1Si
1
⊤
Ti

must decrease by a certain amount at each step.
As for the algorithmic versions, the main challenge is checking whether a partition is regular, or

a cut graph approximation is close in cut distance. Given a matrix A, up to a polynomial change
in ǫ, having small singular values as a fraction of n is equivalent to trAA⊤AA⊤ being small as a
fraction of n4, which roughly says that most scalar products of rows are small as a fraction of n.
In [1], the authors use this fact to obtain an algorithm which runs in O(nω+o(1)) time and either
correctly states that a pair of parts is ǫ-regular, or gives a pair of subsets which realizes it is not
ǫO(1)-regular. This was adapted in [2] to the weak regular setting. In [10], the authors noticed
that it suffices to check the scalar products along the edges of a well-chosen expander, which has a
linear number of edges in terms of n, allowing them to obtain an Oǫ(n

2)-time algorithm. This was
also the main idea in [3], but their algorithm is double exponential in ǫ−1. A further challenge in
proving Theorem 2.1 with the cut matrix approximation is that the entries of the approximation
matrices may not stay bounded, which was used in the algorithms for checking regularity. This is
problematic, because for a general matrix A, the singular value (divided by n) and the cut norm
may be quite different. To counter this, we give an algorithm which checks regularity effectively
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under a weaker assumption that simply the L2-norm of each row and each column stays bounded.
Heuristically, the reason this property is useful is that it implies that if we have a singular vector
(with norm 1) with a relatively large singular value, then no entry can be “too large”, it must be
“spread out”, which can then be used to show that a large singular value implies a large cut norm.
We then show that if we are careful, we can make sure that this property holds throughout the
process.

Let us state this more precisely. Given a matrix A, let ai be the i-th row of A and a
j the j-th

column. Our main ingredient then is the following theorem. Note that in the algorithm below, the
parameter C affects the running time but not the discrepancy of the output sets S, T .

Theorem 2.2. There exists a (C/ǫ)O(1)n2 algorithm which, given a matrix A ∈ R
n×n such that

‖A‖max ≤ C, and each ‖ai‖22 ≤ n, ‖aj‖22 ≤ n (or equivalently ‖A⊤A‖max, ‖AA⊤‖max ≤ n), either

• Correctly outputs that each singular value of A is at most ǫn, or
• Outputs sets S, T ⊆ [n] such that

∣∣∣∣∣∣

∑

i∈S,k∈T

ai,k

∣∣∣∣∣∣
≥ ǫ8

100
n2.

(This implies that A has a singular value that is at least ǫ8

100n.)

In the next lemma, we construct the expander along which we will check the scalar products.
For an integer n, let Jn denote the n× n matrix with each entry equal to 1.

Lemma 2.3. There exist fixed absolute constants l > 0 and 0 < c < 1 such that there is an
algorithm which given d0 and n, outputs a matrix M on R

n×n with nonnegative integer entries,
and an integer d with d0 ≤ d ≤ ld0, such that

‖d
n
Jn −M‖ ≤ d1−c.

In other words, for any vector v = (vi)
n
i=1 ∈ R

n, we have
∣∣∣∣∣∣

(
∑

i

vi

)2

− n

d
v
⊤Mv

∣∣∣∣∣∣
≤ n

dc
‖v‖22. (2)

The running time of the algorithm is O(dn(log n)O(1)).

Proof. Construct an l-regular two-sided expander G0 on [ñ] for some n ≤ ñ ≤ Kn with K fixed.

This can be done in n(log n)O(1) time. For example, Margulis [13] constructed an 8-regular expander
on Zm × Zm for every m, and Gabber and Galil [9] showed that all other eigenvalues (besides 8
with multiplicity 1) are at most 5

√
2 < 8. For every vertex (x, y) ∈ Zm × Zm, its eight neighbors

are

(x± 2y, y), (x ± (2y + 1), y), (x, y ± 2x), (x, y ± (2x+ 1)).

Therefore we can compute, for each vertex, a list of neighbors in time O(logm) = O(log n), which
then takes O(n log n) time total. Alternatively, we can start with a Ramanujan graph for some
fixed degree, constructed explicitly by Lubotzky, Phillips, and Sarnak [12]; Margulis [14]; and
Morgenstern [15].

The adjacency matrix AG0 has AG01 = l1 and all eigenvalues besides l have absolute value at

most some explicit a < l. Let k be the integer and M̃ = Ak
G0

be such that d0
n
ñ ≤ d̃ := lk < ld0

n
ñ .

Note that M̃ is symmetric and has nonnegative integer entries, so it is the adjacency matrix of

some graph G (possibly with multiple edges and loops). Clearly M̃1 = d̃1, so d̃ is an eigenvalue
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of M̃ , and all other eigenvalues have absolute value at most ak = alogl(d̃) = d̃logl(a). Since a < l,
c̃ := 1− logl(a) > 0. This implies that

‖ d̃
ñ
Jñ − M̃‖ ≤ d̃1−c̃.

Take any set of n vertices, let M be the restricted submatrix of M̃ , and let d = n
ñ d̃. As

ñ
n ≤ K,

and the spectral norm of a matrix cannot increase when taking a submatrix, we have that

‖d
n
Jn −M‖ ≤ ‖ d̃

ñ
Jñ − M̃‖ ≤ d̃1−c̃ =

(
ñ

n
d

)1−c̃

≤ (Kd)1−c̃ ≤ d1−c

for an explicit c > 0.
We can construct G0 in time (log n)O(1)n. We make sure, for each vertex, to keep a list of its

neighbors. We then compute Ai
G0

for i = 1, 2, ..., k. In each case, we make sure to keep a list of

the li neighbors of each vertex (with multiplicities). We can then compute Ai+1
G0

in O(lin) time

by computing the list of li+1 neighbors for each vertex, by looking at its l neighbors in G0 and

taking the (multiset) union. The total running time is therefore O((log n)O(1)n +
∑k

i=1 l
in) =

O(((log n)O(1) + d)n). �

Alternatively, we could have used the zig-zag construction of expanders due to Reingold, Vadhan,
and Wigderson [16].

Proof of Theorem 2.2. Throughout this proof, we use the convention that i and j refer to rows, k
and l refer to columns. The basic idea of the algorithm is the following. It is easy to see that

tr(AA⊤AA⊤) =
∑

i,j,k,l

ai,kai,laj,kaj,l. (3)

In order to estimate this sum, we can use the expander to only compute the sum for pairs (i, j)
which form an edge of the expander (and then multiply by n/d). In fact, this is true even for the
terms in (3) corresponding to a fixed k, l. We can therefore use the expander to estimate the sum
in (3), and if it is large, find a k for which the sum of the terms corresponding to k are large. This
will allow us to find sets S, T as required.

Here is the algorithm.

1. Construct the matrix M according to Lemma 2.3 that satisfies (2) (inputting d0 = (3C2ǫ−4)1/c).
Let M = (mi,j)

n
i,j=1.

2. For each i, j with mi,j > 0, compute si,j = 〈ai,aj〉.
3. For each k ∈ [n], compute

bk =
n∑

i,j=1

mi,jai,kaj,ksi,j.

4. If each bk ≤ 2
3ǫ

4dn2, return that ‖A‖ ≤ ǫn.

5. If some bk ≥ 2
3ǫ

4dn2, do the following:
a. Compute for each l

cl =
∑

i

ai,kai,l.

b. Let T be either the set of l such that cl > 0, or the set of l such that cl < 0, whichever has a
bigger sum in absolute value.

c. Compute for each i ∈ [n] the values

dT (i) =
∑

k∈T

ai,k.
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d. Let S be either the set of i ∈ [n] such that dT (i) > 0 or the set of i ∈ [n] such that dT (i) < 0,
whichever has a bigger sum in absolute value.

Let us first analyze the running time. We can construct M in time (log n)O(1)dn. We can
compute each si,j in O(n) time, so computing all of them takes O(dn2) time in total. Computing
each bk then similarly takes O(dn) time (since we only need to sum the terms where mi,j > 0,
and we keep a list of these entries), so that takes O(dn2) total time. If the algorithm says that
‖A‖ ≤ ǫn, then we are done. Otherwise, computing each cl can be done in time O(n), so that takes
O(n2) time in total. We then obtain T in O(n) time. Computing S then similarly takes O(n2)

time. Since d = (C/ǫ)O(1), this shows that the algorithm runs in time (C/ǫ)O(1)n2.
We now show that the algorithm is correct. First, we show the following lemma, which makes

precise that we can use the expander to estimate the sum (3).

Lemma 2.4. For any k, l ∈ [n], we have
∣∣∣∣∣∣

∑

i,j

ai,kai,laj,kaj,l −
n

d

∑

i,j

mi,jai,kai,laj,kaj,l

∣∣∣∣∣∣
≤ C2n2

dc
≤ ǫ4

3
n2. (4)

Proof. Let ak,l be the vector with entries (ak,l)i = ai,kai,l. Since each |ai,j| ≤ C, we have that
‖ak,l‖22 ≤ C2n. Therefore, by (2),

∣∣∣∣∣∣

(
∑

i

ai,kai,l

)2

− n

d
a
⊤
k,lMak,l

∣∣∣∣∣∣
≤ C2n2

dc
.

Clearly (
∑

i

ai,kai,l

)2

=
∑

i,j

ai,kai,laj,kaj,l,

and by the definition of M and ak,l, we have

a
⊤
k,lMak,l =

∑

i,j

mi,jai,kai,laj,kaj,l.

�

Lemma 2.5. If the algorithm returns that ‖A‖2 ≤ ǫn then it is correct.

Proof. We have
∑

k,l

∑

i,j

mi,jai,kai,laj,kaj,l =
∑

i,j

mi,j〈ai,aj〉2 =
∑

k

∑

i,j

mi,jai,kaj,k〈ai,aj〉 =
∑

k

bk ≤ 2

3
ǫ4dn3.

Summing (4) over all pairs k, l ∈ [n], we have
∣∣∣∣∣∣

∑

k,l

∑

i,j

ai,kai,laj,kaj,l −
n

d

∑

k,l

∑

i,j

mi,jai,kai,laj,kaj,l

∣∣∣∣∣∣
≤ ǫ4

3
n4.

Therefore,

trAA⊤AA⊤ =
∑

i,j,k,l

ai,kai,laj,kaj,l ≤
n

d

∑

i,j

mi,j〈ai,aj〉2 +
ǫ4

3
n4 ≤ ǫ4n4.

Since trAA⊤AA⊤ is the sum of the fourth powers of the singular values, this implies that each
singular value is at most ǫn. �
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Lemma 2.6. If the algorithm returns S and T , then∣∣∣∣∣∣

∑

(i,l)∈S×T

ai,l

∣∣∣∣∣∣
≥ ǫ8

100
n2.

Proof. First, note that for the particular k we obtain in the algorithm, we have

2

3
ǫ4dn2 ≤ bk =

∑

i,j

mi,jai,kaj,kbi,j =
∑

i,j,l

mi,jai,kaj,kai,laj,l.

we claim that we have
∑

l,i,j∈[n]

ai,kaj,kai,laj,l ≥
n

d

∑

i,j,l

mi,jai,kaj,kai,laj,l −
ǫ4

3
n3 ≥ ǫ4

3
n3.

Indeed, for any fixed l, by (4), we have
∣∣∣∣∣∣

∑

i,j∈[n]

ai,kaj,kai,laj,l −
n

d

∑

i,j

mi,jai,kaj,kai,laj,l

∣∣∣∣∣∣
≤ ǫ4

3
n2,

and we can add this up over all l ∈ [n]. Let u = (ai,k)
n
i=1, and v be the vector with coordinates

vl =
∑

i

ai,kai,l.

Then ‖v‖∞ ≤ n, and ‖u‖2 ≤
√
n and we have

u
⊤Av ≥ ǫ4

3
n3.

Note however, that

|u⊤Av| ≤ ‖u⊤A‖1‖v‖∞.

Therefore, we obtain that

‖u⊤A‖1 ≥ ǫ4

3
n2.

Since T consists of either the positive or the negative coordinates of u⊤A, whichever one has larger
sum in absolute value, this implies that the T that we obtain in step 5b satisfies, with 1T the
characteristic vector, ∣∣∣u⊤A1T

∣∣∣ ≥ ǫ4

6
n2.

Since ‖u‖2 ≤ √
n, by the Cauchy-Schwarz inequality, this implies that

‖A1T ‖22 ≥ (u⊤A1T )
2

‖u‖22
≥ ǫ8

36
n3.

Since each row ai of A has ‖ai‖2 ≤
√
n, we also have that

‖A1T ‖∞ ≤
√
n‖1T ‖2 ≤ n.

Therefore,

‖A1T ‖1 ≥
‖A1T ‖22
‖A1T ‖∞

≥ ǫ8

36
n2.

This means that for the S that we obtain in step 5d, we have, if 1S is the characteristic vector,
∣∣∣1⊤SA1T

∣∣∣ ≥ ǫ8

72
n2 ≥ ǫ8

100
n2,

which is what we wanted to show. �
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We have seen that either output of the algorithm must be correct, so this completes the proof
of Theorem 2.2. �

Before proving Theorem 2.1, we need one more technical lemma.

Lemma 2.7. There exists an O(n2) time algorithm which takes as input a matrix A ∈ R
n×n and

subsets S, T ⊆ [n] such that ∑

i∈S
k∈T

ai,k ≥ ǫ′n2,

and outputs sets S′, T ′ ⊆ [n] such that
∑

i∈S′,k∈T ′

ai,k ≥ 2

3
ǫ′n2.

Furthermore, for any i ∈ S′,
∑

k∈T ′

ai,k ≥ ǫ′

6
n,

and for any k ∈ T ′,
∑

i∈S′

ai,k ≥ ǫ′

6
n.

Proof. Here is the algorithm.

1. To start, set S′ = S and T ′ = T .
2. For each i ∈ S′ and each k ∈ T ′, store the sum of the corresponding row or column in the

submatrix induced by S′ × T ′.
3. Check whether there is a row or column with sum less than ǫ′

6 n.
4. If there is, delete it, and update the row or column sums by subtracting the corresponding

element from each sum.
5. Go back to step 3 and repeat until no such row or column remains.

We first show that the running time is O(n2). We can compute each row and column sum in O(n)
time, therefore step 2 takes O(n2) time total. Each time we delete an element from S′ or T ′, we
perform O(n) subtractions. The loops runs for at most 2n iterations since |S| + |T | ≤ 2n. Thus
the algorithm takes O(n2) time.

We next show that the algorithm is correct. In each step, the sum decreases by at most ǫ′

6 n, and
there are at most 2n steps total. Therefore, after this process, for the S′ and T ′ that we kept, we
must still have ∑

(i,k)∈S×T

ai,k ≥ 2

3
ǫ′n2.

In particular, this implies that when the algorithm terminates, S′ and T ′ cannot be empty. By the
definition of the algorithm, if it terminates, we must have the property that for any i ∈ S′,

∑

k∈T ′

ai,k ≥ ǫ′

6
n,

and for any k ∈ T ′,
∑

i∈S′

ai,k ≥ ǫ′

6
n.

This completes the proof of the lemma. �

We are now ready to prove our main theorem.
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Proof of Theorem 2.1. Let ǫ′ = ǫ8/100. Here is the algorithm. We iteratively construct a sequence
of matrices as follows.

1. Set A0 = A.
2. For each l starting at 0, do the following.

a. Apply the algorithm from Theorem 2.2 to Al.
b. If the algorithm returns that ‖Al‖ ≤ ǫn, then FINISH.
c. Otherwise, the algorithm outputs sets S, T ⊆ [n] such that

∣∣∣∣∣∣

∑

i∈S,k∈T

ai,k

∣∣∣∣∣∣
≥ ǫ′n2.

Let σ ∈ {−1, 1} be the sign of the above sum.
d. Use Lemma 2.7, applied to σAl (and S, T from above), to find S′, T ′ ⊆ [n] such that

σ
∑

i∈S′,k∈T ′

ai,k ≥ 2

3
ǫ′n2.

Furthermore, for any i ∈ S′,

σ
∑

k∈T ′

ai,k ≥ ǫ′

6
n,

and for any k ∈ T ′,

σ
∑

i∈S′

ai,k ≥ ǫ′

6
n.

Replace S and T with S′ and T ′.
e. Let Sl = S, Tl = T , t = σ ǫ′

3 , and Al+1 = Al − tKSl,Tl
.

Let us first show that we can indeed apply Theorem 2.2 to each Al. We first show that if v is a
row or column of Al, then

‖v‖22 ≤ n.

By the assumptions of the theorem, this is true for l = 0. Fix l so that it is true for Al, let ai,k be
the entries of Al, and let i be any row. If i /∈ S, then the row does not change, so the L2 norm of
the row does not change in Al+1. If i ∈ S, then we have

∑

k∈T

a2i,k − (ai,k − t)2 = 2t
∑

k∈T

ai,k − |T |t2 ≥ 2tσ
ǫ′

6
n− t2n = t

(
σ
ǫ′

3
− t

)
n = 0.

Since the entries in Al were ai,k, and the entries in Al+1 are ai,k − t, this implies that the L2-norm
of the corresponding row in Al+1 cannot increase, and so for each row it is still at most

√
n. The

analogous argument for columns shows that the same holds for each column.
Next, note that each entry of A0 has absolute value at most 1, and each entry changes by at

most ǫ′

3 when going from Al to Al+1. Therefore, each entry of Al is at most 1 + lǫ′/3 in absolute
value so we can apply Theorem 2.2 with C = 1 + lǫ′/3.

Finally, we show that the Frobenius norms of the matrices must decrease:

‖Al+1‖2F ≤ ‖Al‖2F − ǫ′2

3
n2.



A FAST NEW ALGORITHM FOR WEAK GRAPH REGULARITY 11

Let ai,k be the entries of Al again. We have

‖Al‖2F − ‖Al+1‖2F =
∑

i∈S
k∈T

a2i,k − (ai,k − t)2 = 2t
∑

i∈S
k∈T

ai,k − |S||T |t2

≥ σ
4

3
tǫ′n2 − |S||T |t2 ≥

(
σ
4

3
tǫ′ − t2

)
n2.

With our choice of t = σ ǫ′

3 , this is implies that

‖Al+1‖2F ≤ ‖Al‖2F − ǫ′2

3
n2.

Now, we must have ‖A0||2F ≤ n2. Since the square of the Frobenius norm decreases by at least
ǫ′2

3 n2 = ǫ16

30000n
2 in each step, the number of steps is at most O(1/ǫ16). Therefore, after at most

O(1/ǫ16), the algorithm must terminate.
As for the running time, the algorithm from Theorem 2.2 (with C = 1 + lǫ′/3) takes at most

O((l/ǫ)O(1)n2) = ǫ−O(1)n2 time as l = O(ǫ−16). The algorithm from Lemma 2.7 takes O(n2) time.

Finally, as the number of steps is O(ǫ−16), the whole process takes ǫ−O(1)n2 time. �

3. Approximation algorithm for subgraph counts

We would like to approximate the number of copies of a fixed k-vertex graph H in an n-vertex
graph G, up to an additive error of at most ǫnk. In this section, we prove Theorem 1.4, which
claims an algorithm to perform the task in O(ǫ−OH(1)n2) time.

It will be cleaner to work instead with hom(H,G), the number of graph homomorphisms from
H to G. This quantity differs from the number of (labeled) copies of H in G by a negligible

OH(nv(H)−1) additive error. We use the following multipartite version.

Definition 3.1. Let H be a graph on [k], and let G be a k-partite weighted graph with vertex sets
V1, . . . , Vk. We write

hom∗(H,G) =
∑

(v1,...,vk)∈V1×···×Vk

∏

{i,j}∈E(H)

G(vi, vj), (5)

where G(x, y) denotes the edge-weight of {x, y} in G, as usual.

Note that for graphs H and G, hom∗(H,G) counts the number graph homomorphisms from H
to G where every vertex vi ∈ V (H) is mapped to the associated vertex part Vi in G.

For every graph G, there is a k-partite G∗, obtained by replicating each vertex of G into k
identical copies and two vertices of G∗ are adjcent if the original vertices in G they came from are
adjacent, such that hom(H,G) = hom∗(H,G∗). Thus Theorem 1.4 follows from its multipartite
generalization below.

Theorem 3.2. There exists a deterministic algorithm that takes as input a graph H on [k], a
k-partite graph G with each vertex part having at most n vertices, and ǫ > 0, and outputs, in time
ǫ−OH(1)n2, a quantity that approximates hom∗(H,G) up to an additive error of at most ǫnk.

Proof. We begin with a description of the algorithm. If H has no edges, then hom∗(H,G) =
|V1| · · · |Vk|. Assume now that H has at least one edge, say {1, 2} (relabeling if necessary). Denote
the vertex parts of G by V1, . . . , Vk. Let G12 denote the bipartite graph induced by V1 and V2 in G,
and d(G12) = d(V1, V2) = e(V1, V2)/(|V1||V2|) to denote the edge density between V1 and V2 in G. By
Theorem 1.3, we can algorithmically find S1, . . . , Sr ⊆ V1, T1, . . . , Tr ⊆ V2, and c1, . . . , cr = O(ǫ8),
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with r = O(ǫ−16), such that the weighted bipartite graph G′
12 on vertex sets V1 and V2 defined by

G′
12 = d(G12) +

r∑

i=1

ciKSi,Ti
(6)

satisfies

d�(G12, G
′
12) ≤ ǫ/2.

Let G(i) be G obtained by deleting the vertices (V1 \ Si) ∪ (V2 \ Ti). Let H
′ be H with edge {1, 2}

removed. Since H ′ has one fewer edge than H, we can recursively apply the algorithm to estimate
each of hom∗(H ′, G), hom∗(H ′, G(1)), . . . ,hom∗(H ′, G(r)) up to an additive error of at most cǫ9,
where c is some absolute constant. Summing up a linear combination of these estimates, we obtain
an estimate for

d(G1, G2) hom
∗(H ′, G) +

r∑

i=1

ci hom
∗(H ′, G(i)),

which we use as our estimate for hom∗(H,G).
Now we prove the correctness of the algorithm. Let G′ be obtained from G by replacing the

bipartite graph between V1 and V2 by G′
12. We claim that

∣∣hom∗(H,G)− hom∗(H,G′)
∣∣ ≤ ǫnk

2
. (7)

Indeed,

hom∗(H,G) − hom∗(H,G′) =
∑

(v1,...,vk)∈V1×···×Vk

fv3,...,vk(v1)gv3,...,vk(v2)(G(v1, v2)−G′(v1, v2))

for some fv3,...,vk(v1), gv3,...,vk(v2) ∈ {0, 1} obtained by appropriately grouping the G(vi, vj) factors
in (5).3 For fixed (v3, . . . , vk) ∈ V3 × · · · × Vk, we have

∣∣∣∣∣∣

∑

(v1,v2)∈V1×V2

fv3,...,vk(v1)gv3,...,vk(v2)(G(v1, v2)−G′(v1, v2))

∣∣∣∣∣∣
≤ max

U⊂V1,W⊂V2

|eG12(U,W )− eG′

12
(U,W )| ≤ n2d�(G12, G

′
12) ≤ ǫn2/2.

Then, summing over all (v3, . . . , vk) ∈ V3 × · · · × Vk and applying the triangle inequality, we obtain
(7).

From (6), we have

hom∗(H,G′) = d(G12) hom
∗(H ′, G) +

r∑

i=1

ci hom
∗(H ′, G(i)).

Since ci = O(ǫ8) and r = O(ǫ−16), we obtain an estimate of hom∗(H,G′) up to an additive error
of at most ǫnk/2 as long as each hom∗(H ′,−) in the above sum is estimated up to an additive
error cǫ9 for an appropriate positive constant c. Together with (7), the estimate is within ǫnk of
hom∗(H,G), as claimed.

Now we analyze the running time. It takes ǫ−O(1)n2 time (independent of H) to find S1, . . . , Sr,

T1, . . . , Tr, and c1, . . . , cr. Estimating each hom∗(H ′, G), hom∗(H ′, G(1)), . . . ,hom∗(H ′, G(r)) up to
an additive error of at most cǫ9 takes ǫ−O

H′(1)n2 time (by induction), and we need to perform

r + 1 = O(ǫ−16) such estimates. Thus the total running time is ǫ−OH(1)n2. �

3We use the assumption that 0 ≤ G ≤ 1 in this step. In the analogous step in [6], we mistakenly also assumed
that 0 ≤ G′

≤ 1, which is not necessarily the case.
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