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A FAST NEW ALGORITHM FOR WEAK GRAPH REGULARITY

JACOB FOX, LASZLO MIKLOS LOVASZ, AND YUFEI ZHAO

ABSTRACT. We provide a deterministic algorithm that finds, in e 9Mn? time, an e-regular Frieze—

Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given
graph as a weighted sum of €~°® many complete bipartite graphs.

As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an
n-vertex graph G up to an additive error of at most en”) | in time ¢~ 9 Mp?2,

1. INTRODUCTION

The regularity method, based on Szemerédi’s regularity lemma [18], is one of the most powerful
tools in graph theory. Szemerédi [17] used an early version in the proof of his celebrated theorem
on long arithmetic progressions in dense subsets of the integers. Roughly speaking, the regularity
lemma says that every large graph can be partitioned into a small number of parts such that the
bipartite subgraph between almost every pair of parts is random-like. One of the main drawbacks
of the original regularity lemma is that it requires a tower-type number of parts, where the height
of the tower depends on an error parameter €. However, for many applications, the full power of
the regularity lemma is not needed, and a weaker notion of Frieze-Kannan regularity suffices.

To state the regularity lemmas requires some terminology. Let G be a graph, and X and Y be (not
necessarily disjoint) vertex subsets. Let e(X,Y’) denote the number of pairs vertices (z,y) € X xY
that are edges of G. The edge density d(X,Y) = e(X,Y)/(|X]||Y]) between X and Y is the fraction
of pairs in X x Y that are edges. The pair (X,Y) is e-regular if for all X’ C X and Y’ C Y with
|X'| > €|X| and |Y'| > €|Y], we have |d(X',Y') — d(X,Y)| < e. Qualitatively, a pair of parts is
e-regular with small € if the edge densities between pairs of large subsets are all roughly the same.
A vertex partition V =V U... UV} is equitable if the parts have size as equal as possible, that is
we have ||V;| —|V}]| <1 for all 4, j. An equitable vertex partition with k parts is e-regular if all but
ek? pairs of parts (V;, Vj) are e-regular. The regularity lemma states that for every € > 0 there is a
(least) integer K (€) such that every graph has an e-regular equitable vertex partition into at most
K (€) parts.

To state Frieze-Kannan regularity precisely, first, we extend the definition of e(X,Y") and d(X,Y")
to weighted graphs. Below by weighted graph we mean a graph with edge-weights. Given two sets
of vertices X and Y, we let ¢(X,Y’) denote the sum of the edge-weights over pairs (z,y) € X XY
(taking 0 if a pair does not have an edge). Let d(X,Y) = e(X,Y)/(|X||Y]) as earlier. Recall that
the cut metric dg between two graphs G and H on the same vertex set V = V(G) = V(H) is
defined by

X |6G(Ua W) - EH(U, W)|
dD(Ga H) = Ufafaé(\/ |V|2 )
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and this extends to graphs with weighted edges, and can be adapted to bipartite graphs (with given
bipartitions). Given any edge-weighted graph G and any partition P: V = V; U Vo U--- UV, of
the vertex set of GG into t parts, let Gp denote the weighted graph with vertex set V' obtained by
giving weight d;; := d(V;, V;) to all pairs of vertices in V; x Vj, for every 1 <i < j <t. We say P
is an e-reqular Frieze—-Kannan (or e-FK-regular) partition if do(G, Gp) < €. In other words, P is
an e-regular Frieze-Kannan partition if

t
e(S,T) = Y di| SN VA|IT N V|| < e[V, (1)

1,7=1

for all S, T C V. We say that sets S and T witness that P is not e-FK-regular if the above inequality
is violated.
Frieze and Kannan [7,8] proved the following regularity lemma.

Theorem 1.1 (Frieze-Kannan). Let € > 0. Every graph has an e-reqular Frieze—Kannan partition
with at most 22/ parts.

There is a variant of the weak regularity lemma, where the final output is not a partition of V'
into 2¢~ " parts, but rather an approximation of the graphs as a sum of e~©() complete bipartite
graphs, each assigned some (not necessarily nonnegative) weight, see [8]. For S,T C V, we denote
by Kgr the weighted graph where an edge {s,t} has weight 1 if s € S and ¢t € T' (and weight 2 if
s,t € SNT) and weight zero otherwise. For any ¢ € R, by ¢G we mean the weighted graph obtained
from G by multiplying every edge-weight by c. For a pair of weighted graphs Gy, G2 on the same
set of vertices, we will use the notation GG; + G5 to denote the graph on the same vertex set with
edge weights summed (and weight 0 corresponding to not having an edge). Additionally, we write
¢ to mean the constant graph with all edge-weights equal to ¢. We also use d(G) := d(V(G), V(Q))
to denote the edge density of the weighted graph G.

Theorem 1.2 (Frieze-Kannan). Let € > 0. Let G be any weighted graph with [—1,1]-valued
edge weights. There exists an r = O(e~2), and there exist subsets Sy,..., 8., T1,...,T, CV, and
1.,k € [—1,1], so that

do(G,d(G) + e1Ks, 1y + -+ + & Ks, 1,) < €.

See [11, Lemma 4.1] for a simple proof (given there in a more general setting of arbitrary Hilbert
spaces). It is well known using the triangle inequality (see, e.g., [8]) that given sets and numbers as
in the theorem, the common refinement of all S;, T; must be a 2e-regular Frieze-Kannan partition.

In addition to proving that a partition or “cut graph decomposition” exists, Frieze and Kannan
gave probabilistic algorithms for finding a weak regular partition [7,8] or decomposition. Two
deterministic algorithms were given by Dellamonica, Kalyanasundaram, Martin, Rodl, and Shapira
[2,3]. Specifically, in [2], the authors gave an e 6n“+°(1) time algorithm (w < 2.373 is the matrix
multiplication exponent) to generate an equitable e-regular Frieze-Kannan partition of a graph on
n vertices into at most 20" parts. In [3] a different algorithm was given which improved the

dependence of the running time on n from O,(n*+°M) to O.(n?), while sacrificing the dependence
570(1) .
of €. Namely, it was shown that there is a deterministic algorithm that finds, in 22 n? time,

an e-regular Frieze—Kannan partition into at most e oW parts.

In Section 2, we give an optimal algorithm that provides the best of both worlds: We give an
algorithm that finds, in e ?(Mn?2 time, a weakly regular partition." In fact, we provide an algorithm
for finding a cut graph decomposition, which is more useful in some applications. The algorithm is
also self-contained.

ITheorem 1.3 replaces [6, Corollary 3.5], which we retracted [5].
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Theorem 1.3. There is a deterministic algorithm that, given € > 0 and an n-vertexr graph G,
outputs, in e~ OMn? time, subsets S1, Sy, ..., Sp, T1,Ts, ..., T, CV(G) and ¢1,¢3, ...,cr € {—%0, %0}
for some r = O(e71%), such that

dD(Gv d(G) + CIKS1,T1 Tt CTKST’TT) se

Remark. Given a decomposition as above, we obtain the 2e-regular Frieze-Kannan partition that
gives the common refinement of all S;, T; in time O(nr), by going through the vertices of the graph,
and checking, for each vertex, which parts it does and does not belong to.

Remark. As in the case of the usual regularity lemma, it is possible to obtain an equitable partition
in the Frieze-Kannan regularity lemma, increasing the number of parts and the cut distance by
a negligible amount. This can be done by arbitrarily partitioning each part into essentially equal
size parts of the desired size and a remainder part, and then arbitrarily partitioning the union of
the remainder vertices into parts of the desired size. We leave the details of this algorithm to the
reader.

In Section 3, using the above algorithmic weak regularity lemma, we obtain a deterministic
algorithm for approximating the number of copies of a fixed vertex graph H in a large vertex graph
G.2 Note that there is an easy randomized algorithm for estimating the number of copies of H by
sampling. However, it appears to be nontrivial to estimate this quantity deterministically. Duke,
Lefmann and Rodl [4] gave an approximation algorithm for the number of copies of a k-vertex
graph H in an n-vertex graph G up to an error of at most en” in time O(Q(k/f)o(l)n““(l)). We
give a new algorithm which significantly improves the running time dependence on both n and e.

Theorem 1.4. There is a deterministic algorithm that, given € > 0, a graph H, and an n-vertex
graph G, outputs, in O(e_oH(l)nz) time, the number of copies of H in G up to an additive error
of at most en?H).

Remark. An examination of the proof shows that the exponent of ¢! in the running time can be
9lH| (though not believed to be optimal). For example, we can count the number of cliques of order

1000 in an n-vertex graph up to an additive error n1000=107""% i;) time O(n?1).

Remark. All results here can be generalized easily to weighted graphs G with bounded edge-weights.

2. ALGORITHMIC WEAK REGULARITY

Here we prove Theorem 1.3. We will prove the following, roughly equivalent form. In order to
state it, we first give some notation. Given a matrix A, we denote by ||A|| the spectral norm, i.e.
the largest singular value. It is well known that this is equal to the operator norm of A when viewed
as an operator between L%-spaces. We also use the Frobenius norm

1AlF = [> a3
Z‘?j

| Allmax = sup |ai, ;.
Z7-7

and the entry-wise maximum norm

Given a set S C [n], we will denote by 1g € R™ the characteristic vector of S.

2Theorem 1.4 replaces [6, Theorem 1.4], which we retracted [5].
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Theorem 2.1. There is an algorithm that, given an € > 0 and a matriz A € [—1,1]"*", outputs,
OMn? time, subsets S,...,S,,T1,...,T, C [n] and real numbers c1, ..., c, € {—%, %} for

~16) such that, setting

m e
some r = O(e

r
/ } : T
A = Ci]_si]_Ti,

=1

each row and column of A— A’ has L?>-norm at most \/n (i.e. the sum of the squares of the entries
is at most n), and
A — A|| < en.

It is well-known that if G and H are weighted bipartite graphs between two sets X,Y of size n,
and Ag, Ag are the adjacency matrices, with rows corresponding to X and columns corresponding
to Y, then

|Ac — Agll
< 126 = AT
dD(G,H) < -

Indeed, for any S,T C [n], taking the characteristic vectors 1g and 17, we have
lec(S,T) = en(S,T)| = |15 (Ac — Am)1z| < |Ac — Aul|[l[Lsl2ll1r]2 < [|[Ac — Anlln.

Therefore, this theorem indeed implies Theorem 1.3 (taking A to be Ag — d(G)11 7).
The proof of the Frieze-Kannan regularity lemma and its algorithmic versions, roughly speaking,
run as follows:

e Given a partition (starting with the trivial partition with one part), either it is e-FK-regular
(in which case we are done), or we can exhibit some pair of subsets S,T of vertices that
witness the irregularity (in the algorithmic versions, one may only be guaranteed to find S
and T that witness irregularity for some smaller value of ).

e Refine the partition by using S and T to split each part into at most four parts, thereby
increasing the total number of parts by a factor of at most 4.

e Repeat. Use a mean square density increment argument to upper bound the number of
possible iterations.

This can be modified to prove the approximation version. Roughly speaking, to find the appro-
priate S;,T;, ¢;, in the second step of the above outline of the proof of the weak regularity lemma,
instead of using S and T to refine the existing partition, we subtract 0151; from the remaining
matrix, for a carefully chosen c. We record the corresponding S;, T, ¢; in step ¢ of this iteration. We
can bound the number of iterations by observing that the L? norm of A —c11g, 1;1 —-—qlg, 1;1_
must decrease by a certain amount at each step.

As for the algorithmic versions, the main challenge is checking whether a partition is regular, or
a cut graph approximation is close in cut distance. Given a matrix A, up to a polynomial change
in €, having small singular values as a fraction of n is equivalent to tr AAT AAT being small as a
fraction of n*, which roughly says that most scalar products of rows are small as a fraction of n.
In [1], the authors use this fact to obtain an algorithm which runs in O(n®+t°M) time and either
correctly states that a pair of parts is e-regular, or gives a pair of subsets which realizes it is not
€9 _regular. This was adapted in [2] to the weak regular setting. In [10], the authors noticed
that it suffices to check the scalar products along the edges of a well-chosen expander, which has a
linear number of edges in terms of n, allowing them to obtain an O,(n?)-time algorithm. This was
also the main idea in [3], but their algorithm is double exponential in e~!. A further challenge in
proving Theorem 2.1 with the cut matrix approximation is that the entries of the approximation
matrices may not stay bounded, which was used in the algorithms for checking regularity. This is
problematic, because for a general matrix A, the singular value (divided by n) and the cut norm
may be quite different. To counter this, we give an algorithm which checks regularity effectively
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under a weaker assumption that simply the L?-norm of each row and each column stays bounded.
Heuristically, the reason this property is useful is that it implies that if we have a singular vector
(with norm 1) with a relatively large singular value, then no entry can be “too large”, it must be
“spread out”, which can then be used to show that a large singular value implies a large cut norm.
We then show that if we are careful, we can make sure that this property holds throughout the
process.

Let us state this more precisely. Given a matrix A, let a; be the i-th row of A and a’ the j-th
column. Our main ingredient then is the following theorem. Note that in the algorithm below, the
parameter C' affects the running time but not the discrepancy of the output sets S, T.

Theorem 2.2. There exists a (C/e)}o(l)n2 algorithm which, given a matriz A € R™™™ such that
| Allmax < C, and each ||a;||3 < n, ||a?]|3 < n (or equivalently ||AT Allmax, [|AAT [|max < 1), either

o Correctly outputs that each singular value of A is at most en, or
e Outputs sets S, T C [n] such that

8

Z a; k >6—n2.
17100

i€S,keT
(This implies that A has a singular value that is at least < On .)

In the next lemma, we construct the expander along which we will check the scalar products.
For an integer n, let J,, denote the n x n matrix with each entry equal to 1.

Lemma 2.3. There exist fired absolute constants | > 0 and 0 < ¢ < 1 such that there is an
algorithm which given dg and n, outputs a matriz M on R™™ with nonnegative integer entries,
and an integer d with dy < d < ldy, such that

d
|=J, — M| < d*=.
n

In other words, for any vector v = (v;)i~; € R", we have

(sz> — SvTMy| < v, 2)

The running time of the algorithm is O(dn(log n)®M).

Proof. Construct an [-regular two-sided expander Gy on [n] for some n < n < Kn with K fixed.
This can be done in n(logn)°™) time. For example, Margulis [13] constructed an 8-regular expander
on Zy, X Zy, for every m, and Gabber and Galil [9] showed that all other eigenvalues (besides 8
with multiplicity 1) are at most 5v/2 < 8. For every vertex (z,y) € Zm X Zm, its eight neighbors
are

(x £ 2y,y), (£ 2y +1),y), (z,y £ 2z), (z,y £ 2z + 1)).

Therefore we can compute, for each vertex, a list of neighbors in time O(log m) = O(logn), which
then takes O(nlogn) time total. Alternatively, we can start with a Ramanujan graph for some
fixed degree, constructed explicitly by Lubotzky, Phillips, and Sarnak [12]; Margulis [14]; and
Morgenstern [15].

The adjacency matrix Ag, has Ag,1 = [1 and all eigenvalues besides | have absolute value at

most some explicit a < [. Let k be the integer and M = Ak be such that dpz < d:=1F < ldo%.

Note that M is symmetric and has nonnegative integer entrles so it is the adjacency matrix of
some graph G (possibly with multiple edges and loops). Clearly M1 = dl so d is an eigenvalue
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of M , and all other eigenvalues have absolute value at most a* = alog(d) — Jlog(@) | Since a < l,
¢:=1—log;(a) > 0. This implies that

d — ~ =
|=Js — M| < d=°.
n

Take any set of n vertices, let M be the restricted submatrix of M , and let d = %EZV As % <K,
and the spectral norm of a matrix cannot increase when taking a submatrix, we have that

' 1—¢
1L, = MY < L N < @ = (ﬁd) < (Kd)'"F < d
n n

n
for an explicit ¢ > 0.

We can construct Gy in time (logn)“"n. We make sure, for each vertex, to keep a list of its
neighbors. We then compute AE;O for i = 1,2,...,k. In each case, we make sure to keep a list of

o(1)

the I° neighbors of each vertex (with multiplicities). We can then compute Ag)l in O(I'n) time
by computing the list of I**! neighbors for each vertex, by looking at its | neighbors in Gy and
taking the (multiset) union. The total running time is therefore O((logn)®Mn + Zlelin) =
O(((log n)°M + d)n). O

Alternatively, we could have used the zig-zag construction of expanders due to Reingold, Vadhan,
and Wigderson [16].

Proof of Theorem 2.2. Throughout this proof, we use the convention that ¢ and j refer to rows, k
and [ refer to columns. The basic idea of the algorithm is the following. It is easy to see that

tr(AATAAT) = Z A Qi 1G5 G ] (3)
,7,k,l
In order to estimate this sum, we can use the expander to only compute the sum for pairs (i, j)
which form an edge of the expander (and then multiply by n/d). In fact, this is true even for the
terms in (3) corresponding to a fixed k,l. We can therefore use the expander to estimate the sum
in (3), and if it is large, find a k for which the sum of the terms corresponding to k are large. This
will allow us to find sets S,7T as required.
Here is the algorithm.
1. Construct the matrix M according to Lemma 2.3 that satisfies (2) (inputting dy = (3C2e~*4)1/¢).
Let M = (miyj)?,jzl‘
2. For each i,j with m;; > 0, compute s; ; = (a;,a;).
3. For each k € [n], compute

n
=1
4. If each by, < 2€etdn?, return that ||A|| < en.

5. If some b > %e4dn2, do the following:
a. Compute for each [

=Y i
7

b. Let T be either the set of [ such that ¢; > 0, or the set of [ such that ¢; < 0, whichever has a
bigger sum in absolute value.
c. Compute for each i € [n] the values

dT(Z) = Z Qg k-

keT
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d. Let S be either the set of i € [n] such that dr(i) > 0 or the set of i € [n] such that dr (i) < 0,
whichever has a bigger sum in absolute value.

Let us first analyze the running time. We can construct M in time (log n)o(l)dn. We can
compute each s; ; in O(n) time, so computing all of them takes O(dn?) time in total. Computing
each by then similarly takes O(dn) time (since we only need to sum the terms where m;; > 0,
and we keep a list of these entries), so that takes O(dn?) total time. If the algorithm says that
|Al| < en, then we are done. Otherwise, computing each ¢; can be done in time O(n), so that takes
O(n?) time in total. We then obtain T in O(n) time. Computing S then similarly takes O(n?)
time. Since d = (C/€)®M), this shows that the algorithm runs in time (C/e)?Mn2,

We now show that the algorithm is correct. First, we show the following lemma, which makes
precise that we can use the expander to estimate the sum (3).

Lemma 2.4. For any k,l € [n], we have

0 L0 n B P C%n? < ¢! 2 4
azyka27la.]7ka.77l - E ml?]alyka27la.]7ka.77l — dc — gn ° ( )
i,j i,j

Proof. Let aj; be the vector with entries (ay;); = a;xa;;. Since each |a; ;| < C, we have that
lak.||3 < C%n. Therefore, by (2),

(Z >2 Ral M < Con?
Q; 1a5 ] — Fap Mag]| > -
- d d

Clearly

2
( g ai,kai,l) = Z Q4 ki, 10 kAj L5
i ,J

and by the definition of M and ay;, we have

N
a, May = E TN G 10 O
i7j

Lemma 2.5. If the algorithm returns that ||All2 < en then it is correct.

Proof. We have
s 10 O ] — o as as)? = s 1 g — b<24d3
MMy, 5 Qg Qi1 O kA1 = mij(a;,a;)” = m; ja; kaj k@i, aj) = kS gﬁ n-.
kd iy ij kg k

Summing (4) over all pairs k, [ € [n], we have

4

n € 4

E E ai,kai,laj,kaj,l_gg E M G |0 10 kOj ] Sgn.
kil irj

ko iy
Therefore,
TAAT n 2 € 4 4 4
trAA' AA' = E Qi ki 1 G kGG < 3 E m; j{a;, a;) —i-gn < e*nt.
1,9k, i,J

Since tr AAT AAT is the sum of the fourth powers of the singular values, this implies that each
singular value is at most en. 0
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Lemma 2.6. If the algorithm returns S and T, then

8

€ 2
E a; 1| 2 ——=n".
) ’ 100
(#,1)eSXT

Proof. First, note that for the particular k we obtain in the algorithm, we have

2
4 2
3¢ dn® < b= mijaipajkbij = > M0 kG5 k0105

,J 1,5,
we claim that we have
4 4
s s > n O L 10 €,.35 8.3
al7ka.]7ka27la.]7l — E mzvjalvka.]vkal7la.]7l - §T’L — gn °
l4,5€[n] 0,5,
Indeed, for any fixed [, by (4), we have
n et 9
E @ik k1051 = E M QG kG kG 1051 < 3

1,J€[n] ,J

and we can add this up over all [ € [n]. Let u = (a;4)"_;, and v be the vector with coordinates
(A Z Q5 LAy 1
i

Then ||v||oo < n, and ||ul2 < y/n and we have

T ¢!
u Av > gn?’.

Note however, that
ju" Av] < [[u Al ][V ]loo-

Therefore, we obtain that
4
|luT A, > %n2.

Since T consists of either the positive or the negative coordinates of u' A, whichever one has larger
sum in absolute value, this implies that the T that we obtain in step 5b satisfies, with 17 the

characteristic vector,
4

‘uTAlT‘ > %n2.
Since |Julj2 < /n, by the Cauchy-Schwarz inequality, this implies that
1AL} > = > oon
3 36
Since each row a; of A has ||a;||2 < v/n, we also have that

[A17[loo < V/nl17[l2 < n.

Therefore,
[ALr]53 _ €
Alplly > 7o 2> o=n’.
44l = 335 = 36
This means that for the S that we obtain in step 5d, we have, if 1g is the characteristic vector,
T ¢ e 5
1. A1 ‘ > _—n®>—n°,
‘ S =" = 100"

which is what we wanted to show. O
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We have seen that either output of the algorithm must be correct, so this completes the proof
of Theorem 2.2. O

Before proving Theorem 2.1, we need one more technical lemma.

Lemma 2.7. There exists an O(n?) time algorithm which takes as input a matriz A € R™" and
subsets S, T C [n] such that
Z Qi | > 6,7’L2,

i€S
keT

and outputs sets S',T" C [n]| such that
2
Z A f > ge/n2.
€S keT"
Furthermore, for anyi € S,

6/
Z Qi k > Ena

keT’

Z Qi | > %/’I’L

€S’

and for any k € T,

Proof. Here is the algorithm.

1. To start, set ' =S and 7" =T.

2. For each i € S’ and each k € T’, store the sum of the corresponding row or column in the
submatrix induced by S’ x T".

3. Check whether there is a row or column with sum less than %n.

4. If there is, delete it, and update the row or column sums by subtracting the corresponding
element from each sum.

5. Go back to step 3 and repeat until no such row or column remains.

We first show that the running time is O(n?). We can compute each row and column sum in O(n)
time, therefore step 2 takes O(n?) time total. Each time we delete an element from S’ or T", we
perform O(n) subtractions. The loops runs for at most 2n iterations since |S| 4 |T'] < 2n. Thus
the algorithm takes O(n?) time.

We next show that the algorithm is correct. In each step, the sum decreases by at most %n, and
there are at most 2n steps total. Therefore, after this process, for the S’ and T" that we kept, we

must still have
Z a; > ge'n2
ik — 3
(i,k)eSxT
In particular, this implies that when the algorithm terminates, S’ and 7" cannot be empty. By the
definition of the algorithm, if it terminates, we must have the property that for any ¢ € S’,

E/
Z Qi k > gnv

keT’
and for any k € T,
/
€
Z Qi = —MN.
€S’ 6
This completes the proof of the lemma. O

We are now ready to prove our main theorem.
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Proof of Theorem 2.1. Let € = €3/100. Here is the algorithm. We iteratively construct a sequence
of matrices as follows.

1. Set Ayg = A.
2. For each [ starting at 0, do the following.
a. Apply the algorithm from Theorem 2.2 to A;.
b. If the algorithm returns that || 4;| < en, then FINISH.
c. Otherwise, the algorithm outputs sets S, T C [n] such that

Z Qi k Ze/nz.

i€S,keT

Let o € {—1,1} be the sign of the above sum.
d. Use Lemma 2.7, applied to 0 A; (and S, T from above), to find S’, 7" C [n] such that

2
o Z aLnge/nz.
€S keT’

Furthermore, for any i € S,

and for any k € T,

/
€
o Z Qi f = En
€S’
Replace S and T with S" and T".
e. Let §;=5,T,=T,t= 0%, and Aj11 = A; — tKs, -

Let us first show that we can indeed apply Theorem 2.2 to each A;. We first show that if v is a
row or column of A;, then

Iv[I3 < n.

By the assumptions of the theorem, this is true for [ = 0. Fix [ so that it is true for A;, let a; ; be
the entries of A;, and let i be any row. If i ¢ S, then the row does not change, so the L? norm of
the row does not change in A;41. If ¢ € S, then we have

/ /
doal —(aix—t)°=2tY aip—|TI* > 2t0%n —t’n=t (J% - t> n = 0.
keT keT

Since the entries in A; were a; 1, and the entries in A;1 are a;j — t, this implies that the L?-norm
of the corresponding row in A;;1 cannot increase, and so for each row it is still at most \/n. The
analogous argument for columns shows that the same holds for each column.

Next, note that each entry of Ay has absolute value at most 1, and each entry changes by at
most %/ when going from A; to A;11. Therefore, each entry of A; is at most 1 + l¢//3 in absolute
value so we can apply Theorem 2.2 with C' =1+ 1€'/3.

Finally, we show that the Frobenius norms of the matrices must decrease:

2

€
Al < JAE - ?712-
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Let a; 1 be the entries of A; again. We have

JANE = Al =D aly = (aik —)° =2t > agp — |S||T|E?
i€S €S
keT keT
4 4
> Ugte'n2 —|S||T|t? > <0§te' - t2> n?.

With our choice of t = O’%, this is implies that

6/2
lArall: < Al - ?712-

Now, we must have ||4p||% < n?. Since the square of the Frobenius norm decreases by at least
#nz = %nz in each step, the number of steps is at most O(1/€'%). Therefore, after at most
O(1/€'9), the algorithm must terminate.

As for the running time, the algorithm from Theorem 2.2 (with C' = 1 + l¢'/3) takes at most
O((1/€)°Mn2) = e=OMn?2 time as | = O(e~'6). The algorithm from Lemma 2.7 takes O(n?) time.

Finally, as the number of steps is O(¢~1¢), the whole process takes e~ 9MWn2 time. O

3. APPROXIMATION ALGORITHM FOR SUBGRAPH COUNTS

We would like to approximate the number of copies of a fixed k-vertex graph H in an n-vertex
graph G, up to an additive error of at most en®. In this section, we prove Theorem 1.4, which
claims an algorithm to perform the task in O(e~?#(Mn?) time.

It will be cleaner to work instead with hom(H, G), the number of graph homomorphisms from
H to G. This quantity differs from the number of (labeled) copies of H in G by a negligible
Ox (n*)=1y additive error. We use the following multipartite version.

Definition 3.1. Let H be a graph on [k], and let G be a k-partite weighted graph with vertex sets
Vi,...,Vi. We write

hom*(H,G) = Z H G (vi,v)), (5)

(V1,508 ) EVA XX Vi, {4, }EE(H)
where G(z,y) denotes the edge-weight of {x,y} in G, as usual.

Note that for graphs H and G, hom*(H, G) counts the number graph homomorphisms from H
to G where every vertex v; € V(H) is mapped to the associated vertex part V; in G.

For every graph G, there is a k-partite G*, obtained by replicating each vertex of G into k
identical copies and two vertices of G* are adjcent if the original vertices in G they came from are
adjacent, such that hom(H,G) = hom™(H,G*). Thus Theorem 1.4 follows from its multipartite
generalization below.

Theorem 3.2. There exists a deterministic algorithm that takes as input a graph H on [k], a
k-partite graph G with each vertex part having at most n vertices, and € > 0, and outputs, in time
e 9nMn2 4 quantity that approzimates hom*(H,G) up to an additive error of at most en®.

Proof. We begin with a description of the algorithm. If H has no edges, then hom™(H,G) =
[Vi]--+|Vk|. Assume now that H has at least one edge, say {1,2} (relabeling if necessary). Denote
the vertex parts of G by V1,...,Vi. Let G152 denote the bipartite graph induced by V; and V5 in G,
and d(G12) = d(V1, V) = e(V1, V2)/(|V1]|V2|) to denote the edge density between V; and V5 in G. By
Theorem 1.3, we can algorithmically find Sy,...,S, C Vi, Ty,..., T, C Vo, and c1,..., ¢, = O(€d),
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with 7 = O(¢71°), such that the weighted bipartite graph G, on vertex sets Vi and V5 defined by

lo = d(Gia) + > ciKs, 1, (6)
=1
satisfies
do(Gra, Ghy) < €/2.

Let G be G obtained by deleting the vertices (Vi \ S;) U (Vo \ T;). Let H' be H with edge {1,2}
removed. Since H' has one fewer edge than H, we can recursively apply the algorithm to estimate
each of hom*(H’, @), hom*(H',GW),... hom*(H',G")) up to an additive error of at most ce”,
where c is some absolute constant. Summing up a linear combination of these estimates, we obtain
an estimate for

d(Gy,Gs)hom™(H',G) + > cihom™(H',GY),
i=1
which we use as our estimate for hom*(H, G).
Now we prove the correctness of the algorithm. Let G’ be obtained from G by replacing the
bipartite graph between Vi and V5 by G},. We claim that

enk

|hom*(H, G) — hom*(H,G")| < (7)

Indeed,
hom*(H, G) — hom*(H,G") = Z Toswn (V1) s 0, (02) (G(v1,v2) — G (v1,02))

(V1500508 )EVL XXV,

for some fy, 0 (V1), Gus,...v. (v2) € {0, 1} obtained by appropriately grouping the G(v;,v;) factors
in (5).3 For fixed (vs,...,vx) € V3 x --- X V},, we have

Do o (010,00 (02) (Gv1,02) = G (01, 02))

(Ul ,U2)€V1 x Vo

2 ! 2
< ol e (U W) = eqq, (U.W)] < n?do(Gra, Ghy) < en/2.

Then, summing over all (vs,...,v;) € Va3 x -+ x Vj, and applying the triangle inequality, we obtain

(7).

From (6), we have

T
hom*(H,G') = d(G1) hom*(H',G) + > ¢; hom* (H',G).
i=1
Since ¢; = O(e®) and 7 = O(e %), we obtain an estimate of hom*(H,G’) up to an additive error
of at most en®/2 as long as each hom*(H’, —) in the above sum is estimated up to an additive
error ce? for an appropriate positive constant c. Together with (7), the estimate is within en® of
hom*(H, G), as claimed.

Now we analyze the running time. It takes e ©Mn?2 time (independent of H) to find Si,...,S,,
Ti,...,T,, and ¢y, ..., c.. Estimating each hom*(H’, @), hom*(H’,GM), ... hom*(H',G™) up to
an additive error of at most ce” takes e~ 9#'(Un? time (by induction), and we need to perform
r+ 1= O(¢ ') such estimates. Thus the total running time is e~ 971 p2, O

3We use the assumption that 0 < G < 1 in this step. In the analogous step in [6], we mistakenly also assumed
that 0 < G’ < 1, which is not necessarily the case.
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