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Abstract

In 1971, Tomescu conjectured that every connected graph G on n vertices with chromatic number

k ≥ 4 has at most k!(k − 1)n−k proper k-colorings. Recently, Knox and Mohar proved Tomescu’s

conjecture for k = 4 and k = 5. In this paper, we complete the proof of Tomescu’s conjecture for all

k ≥ 4, and show that equality occurs if and only if G is a k-clique with trees attached to each vertex.

1 Introduction

Let k be a positive integer and G = (V,E) be a graph1. A proper k-coloring, or simply a k-coloring, of G is a
function c : V → [k] (here [k] = {1, . . . , k}) such that c(u) 6= c(v) whenever uv ∈ E. The chromatic number
χ(G) is the minimum k for which there exists a k-coloring of G. Let PG(k) denote the number of k-colorings
of G. This function is a polynomial in k and is thus called the chromatic polynomial of G. In 1912, Birkhoff
[5] introduced the chromatic polynomial for planar graphs in an attempt to solve the Four Color Problem
using tools from analysis. The chromatic polynomial was later defined and studied for general graphs by
Whitney [41].

Despite a great deal of attention over the past century, our understanding of the chromatic polynomial
is still quite poor. In particular, proving general bounds on the chromatic polynomial remains a major
challenge. The first result of this type, due to Birkhoff [6], states that

PG(k) ≥ k(k − 1)(k − 2)(k − 3)n−3

for any planar graph G on n vertices and any real number k ≥ 5. Birkhoff and Lewis [7] later conjectured
this to be true for all real k ≥ 4. The case k = 4 is equivalent to the celebrated Four Color Theorem, which
was resolved much later.

In 1971, Tomescu [36] conjectured that

PG(k) ≤ k!(k − 1)n−k (1.1)

for every connected graph G on n vertices with chromatic number k ≥ 4. This inequality can be easily shown
if G contains a k-clique. It is also tight if the 2-core of G is exactly a k-clique, that is, if after repeatedly
deleting vertices of degree at most one, the remaining graph is a k-clique. Equivalently, such a graph G is
formed by attaching a tree to each vertex of the complete graph Kk. Tomescu further conjectured that such
graphs are the only examples for which inequality (1.1) is tight.

Tomescu’s conjecture has received considerable attention over the past 46 years. Tomescu observed that
if k = 2, inequality (1.1) holds as an equality for every connected bipartite graph, whereas it is false for
k = 3 when G is an odd cycle of length at least five. This shows that the condition k ≥ 4 is necessary; see
[21, 37, 39, 40] for details. Tomescu [38] also proved his conjecture for 4-chromatic planar graphs. Further
partial results were obtained in [4, 14, 15], and the book [13] gives an overview of the area. Recently, Knox
and Mohar solved the cases k = 4 [21] and k = 5 [22] of Tomescu’s conjecture.

In this paper, we prove the full conjecture.
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Theorem 1. If G is a connected graph on n vertices with χ(G) = k ≥ 4, then

PG(k) ≤ k!(k − 1)n−k,

with equality if and only if the 2-core of G is a k-clique.

In order to prove Theorem 1, we introduce a method for bounding the number of k-colorings of a graph
using what we call the Overprediction Lemma. The idea is to construct a probability distribution on the
set of colorings by randomly coloring one vertex at a time. From this distribution one obtains an upper
bound on PG(k) using the fact that the cross-entropy between two random variables is at least the entropy
of either (this is equivalent to the nonnegativity of Kullback–Leibler divergence). We expect this lemma
to have further applications in graph coloring. The argument closely resembles what is sometimes called
the “entropy method” for combinatorial upper bounds, first developed by Radhakrishnan [34] to give an
alternative proof of Brégman’s Theorem, and applied subsequently in various forms, see e.g. [19, 20, 29].

In the next section, we state and prove the Overprediction Lemma using the entropy inequality mentioned
above and develop probabilistic tools for applying it.

In Section 3, we collect some basic results on graphs with chromatic number k, and set up the pieces
of our inductive proof of Theorem 1. There, we also show that Theorem 1 holds for small graphs G in the
range |V | ≤ 2k − 2, which serve as base cases for the induction.

In Section 4, we describe a simple linear program whose optimum describes an upper bound for the number
of proper k-colorings of a possible counterexample to Tomescu’s conjecture, and complete the argument in
Section 5. Together with the Overprediction Lemma, this proves Theorem 1 for large graphs G, in the range
|V | > 2k − 2 when k ≥ 5.

Finally, in Section 6 we use a more delicate calculation to handle the case k = 4.

2 The Overprediction Lemma

Fix a graph G = (V,E) of chromatic number at most k. Given a k-coloring c of G and a (linear) ordering π
of V , we can predict the total number PG(k) of k-colorings of G as follows.

Define a prefix of π to be a set U ⊆ V with the property that if v ∈ U then any vertex before v lies in
U . Define a π-precoloring of G to be a k-coloring of an induced subgraph of G whose vertices form a prefix
of π. Define a maximal π-precoloring to be a π-precoloring which cannot be extended to the next vertex in
π. In particular, all k-colorings are also maximal π-precolorings.

Define the backneighborhood of a vertex v with respect to π, denoted N−
π (v), to be the set of neighbors

of v coming before v in the ordering π. If c is a maximal π-precoloring of G, let Xπ(c, v) be the number of
colors in [k] that do not appear among the colored vertices in N−

π (v). If U is the set of vertices colored by
c, let

Xπ(c) =
∏

v∈U

Xπ(c, v).

If the vertices of G are greedily colored in the order of π, the number of choices of the color for v, having
already colored all the preceding vertices according to c, is exactly Xπ(c, v). It is thus natural to suspect
that if c is a k-coloring of G, then Xπ(c) is a good estimate for PG(k). For example, if G = Kk, then for any
ordering π and any k-coloring c, PG(k) = Xπ(c) = k!.

We will be taking expectations of random variables over random choices of a vertex, a coloring, and an
ordering of V . The subscripts in the expectation operator E[·] denote the random choice(s) we are taking
expectation over, and choices are made uniformly and independently from among all possible ones.

For example, we write Eπ,c[X ] for the expectation of the random variable X over a uniform random
choice of a vertex ordering π and a k-coloring c of G.

The Overprediction Lemma. For any graph G = (V,E) with χ(G) ≤ k and any ordering π of V ,

PG(k) ≤ exp(Ec[logXπ(c)]).
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Proof. Let C be the family of all k-colorings of G and Cπ be the family of all maximal π-precolorings of G,
so C ⊆ Cπ and |C| = PG(k). We wish to show

Ec∈C [logXπ(c)] ≥ log |C|. (2.1)

Define two probability distributions p, q over Cπ as follows. The distribution p is uniform over colorings
c ∈ C. The distribution q picks each c ∈ Cπ with probability Xπ(c)

−1. Equivalently, q constructs a random
maximal pre-coloring c by greedily coloring G one vertex at a time in the order of π, making a uniform
choice for the color of v at each step out of all Xπ(c, v) possible colors. This process stops at a maximal
π-precoloring when it runs out of choices or vertices.

By the nonnegativity of Kullback–Leibler divergence from p to q, we find that

−
∑

c∈Cπ

p(c) log q(c) ≥ −
∑

c∈Cπ

p(c) log p(c). (2.2)

Note that p is supported on C. Thus, the left hand side of the inequality is

−
∑

c∈Cπ

p(c) log q(c) = Ec∈C [logXπ(c)],

while the right hand side is

−
∑

c∈Cπ

p(c) log p(c) = log |C|,

so (2.2) is exactly equivalent to the desired inequality (2.1).

Let
T (c, v) = exp(Eπ[logXπ(c, v)]) (2.3)

be the geometric mean of Xπ(c, v) over a uniform random permutation π, and define

T =
∏

v∈V

exp(Ec[logT (c, v)]).

By linearity of expectation,

exp(Eπ,c[logXπ(c)]) =
∏

v∈V

exp(Eπ,c[logXπ(c, v)])

=
∏

v∈V

exp(Ec[logT (c, v)])

= T.

After averaging over orderings π, we can upper bound PG(k) by the quantity T .
Given a k-coloring c, define ci(v) to be the number of neighbors of v colored with color i. The value of

T (c, v) is completely determined by the k-tuple (ci(v))i≤k, and we can obtain an upper bound for T (c, v)
via the AM–GM inequality. Define

W (c, v) =
∑

i≤k

1

ci(v) + 1
. (2.4)

Lemma 2. With T (c, v) and W (c, v) defined by (2.3) and (2.4) respectively, we have

T (c, v) ≤ W (c, v)

for every k-coloring c and vertex v.
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Proof. Note that Xπ(c, v) = k − Zπ(c, v), where Zπ(c, v) is the number of colors of c that appear in N−
π (v).

By the AM–GM inequality and linearity of expectation,

T (c, v) = exp(Eπ[logXπ(c, v)])

≤ Eπ[Xπ(c, v)]

= k − Eπ [Zπ(c, v)]

= k −
∑

i≤k

Eπ[Z
i
π(c, v)],

where Zi
π(c, v) is the indicator random variable for the event that color i appears in N−

π (v).
But for each individual color i, Pr[Zi

π(c, v)] is the probability that v comes after at least one of the ci(v)
vertices of color i in its neighborhood. In a uniform random ordering π, the probability that v appears before
all ci(v) of these vertices is just 1

ci(v)+1 . Thus,

T (c, v) ≤ k −
∑

i≤k

(

1−
1

ci(v) + 1

)

=
∑

i≤k

1

ci(v) + 1
= W (c, v),

as desired.

3 Setup

We outline the proof of Theorem 1. Our strategy is to control the size of a minimal counterexample to
Tomescu’s conjecture (equivalently, to induct on the number of vertices n in G).

Suppose Theorem 1 is false for a certain k ≥ 4. Fix this k henceforth. Let n be the minimum number
of vertices in a counterexample to Theorem 1, so that n > k. Note that such a counterexample G either
satisfies (1.1) strictly, or else

PG(k) = k!(k − 1)n−k

and the 2-core of G is not a k-clique.
Define a graph G = (V,E) to be bad if χ(G) = k, |V | = n, and G is a minimal counterexample to

Theorem 1, i.e. every proper subgraph of G satisfies Theorem 1.
Our proof breaks into three parts. First, we use a straightforward edge-counting argument to show that

there are no bad graphs for n ≤ 2k−2. Then, we show using the Overprediction Lemma that any bad graph
with k ≥ 5 satisfies n ≤ 2k− 2. Finally, for k = 4 we modify the argument to show that n ≤ 7, which leaves
exactly the case k = 4, n = 7 to check by hand.

Recall that a graph G is k-critical if χ(G) = k and deleting any vertex or edge reduces its chromatic
number.

Lemma 3. Every bad graph is k-critical.

Proof. Suppose G is bad but not k-critical, and there is an edge e for which G\e is still k-chromatic. Since
G is a minimal counterexample to Theorem 1 with respect to edge deletion, if G\e is connected, then it
satisfies

PG\e(k) ≤ k!(k − 1)n−k.

But every k-coloring of G is a k-coloring of G\e, so G also satisfies Theorem 1, which is a contradiction.
If G\e is disconnected, let the two components be the induced subgraphs G[V1] and G[V2] for some vertex

partition V = V1 ⊔ V2. Since e is the only edge between these two components in G and χ(G) = k, one
of the two components (say G[V1]) has chromatic number k. Since G[V2] is connected, every k-coloring of
G[V1] extends to at most (k − 1)|V2| k-colorings of G, with equality if and only if V2 is a tree. Also, by the
minimality of G,

PG1
(k) ≤ k!(k − 1)|V1|−k,

with equality if and only if the 2-core of G[V1] is a k-clique. Thus,

PG(k) ≤ PG1
(k) · (k − 1)|V2| ≤ k!(k − 1)n−k,

4



with equality if and only if the 2-core of G[V1] is a k-clique and G[V2] is a tree. But then the 2-core of G is a
k-clique, so G is not a counterexample to Theorem 1. This is a contradiction and completes the proof.

We will need some well-known structural results about k-critical graphs. It is a basic fact that the
minimum degree of a k-critical graph G is at least k − 1. We will also need a classical result of Brooks.

Lemma 4 (Brooks’ Theorem [9]). If k ≥ 4, a k-critical graph that is not the k-clique has at least one vertex
of degree at least k.

The structure of k-critical graphs has been studied extensively, and much more is now known – see for
example Gallai [16, 17], Dirac [12], and Kostochka and Yancey [23, 24].

We also use a general fact about k-colorings of graphs using the minimum possible number of colors.

Lemma 5. For every graph G = (V,E) of chromatic number k and for every proper k-coloring c of G, there
are k vertices v1, . . . , vk ∈ V such that, for each i ≤ k, c(vi) = i and {vi} ∪N(vi) contains a vertex of every
color.

Proof. Suppose there is no vertex of some color i with every color in [k]\i appearing in its neighborhood.
Then, for every vertex v with c(v) = i, there is some color j 6= i not appearing in N(v), and we can change
the color of v to j. Since the vertices of color i in k-coloring c form an independent set, these changes can
be made simultaneously to create a proper (k− 1)-coloring of G not using color i. This shows χ(G) ≤ k− 1,
which is a contradiction.

Thus, to every k-coloring c of G, we can associate a set of k vertices. There is one of each color, and
each sees all the other colors in its neighborhood. We call these k vertices the radiant vertices of k-coloring
c. When there are multiple vertices of the same color with this property, we arbitrarily fix a single one of
them to call radiant. If a vertex v is radiant in k-coloring c, then we say v is c-radiant.

Finally, for bad graphs specifically, we show that each pair of vertices receive the same color in less than
a fraction 1/(k − 1) of all k-colorings.

Lemma 6. If G is a bad graph, and u, v are any two distinct vertices of G, then

Pr[c(u) = c(v)] <
1

k − 1
,

where the probability is over a uniform choice of a k-coloring c of G.

Proof. Suppose this is not true for some pair u, v. Note that u, v are not adjacent as otherwise u and v must
receive different colors and Pr[c(u) = c(v)] = 0. Let G′ be the graph obtained from G by contracting u and v
together. That is, the two vertices u and v are replaced by a single vertex whose neighborhood is the union
N(u) ∪N(v). The k-colorings of G′ are in bijection with the k-colorings of G that assign u and v the same
color. Thus,

PG′(k) = Pr
[

c(u) = c(v)
]

PG(k) ≥
1

k − 1
PG(k) ≥ k!(k − 1)|V |−k−1

since G itself contradicts Theorem 1. Note that G′ is connected because G is connected.
Thus, either the 2-core of G′ is a k-clique or G′ is a counterexample to Theorem 1 with fewer vertices.

The latter assumption contradicts the minimality of G, so the 2-core of G′ is a k-clique.
Since G is bad, G is k-critical and has minimum degree at least k − 1 ≥ 3. But a single contraction

reduces the degree of each vertex by at most 1, so the minimum degree of G′ is at least 2. Thus, G′ is its
own 2-core and must be exactly Kk.

This is impossible. Indeed, it would have to be the case that G\{u, v} is a (k − 1)-clique, and since
χ(G) = k at least one of u and v must be complete to this (k − 1)-clique. But then G would contain a
k-clique as a proper subgraph, and would not be k-critical.

The next lemma is a straightforward consequence of Lemma 6.
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Lemma 7. Let G = (V,E) be a bad graph. For any subset U ⊂ V , if P (c, U) is the number of pairs u, v of
distinct vertices in U for which c(u) = c(v), then

Ec[P (c, U)] <
1

k − 1

(

|U |

2

)

.

Proof. For every pair (u, v) of vertices in U , the probability they are the same color in a random k-coloring
of G is less than 1

k−1 by Lemma 6. The stated inequality follows by linearity of expectation.

In general, we will apply Lemma 7 when U = V or when U ⊆ N(v) for some vertex v and |U | = k − 1.
We describe an immediate application of Lemma 6, showing there are no small bad graphs.

Lemma 8. If there exists a bad graph on n vertices, then n ≥ 2k − 1.

Proof. Suppose there is a bad graph G = (V,E) with χ(G) = k ≥ 4 and |V | = n ≤ 2k − 2. Define
P (c) = P (c, V ) to be the total number of unordered pairs u 6= v ∈ V for which c(u) = c(v).

Applying Lemma 6 to every pair u 6∼ v of nonadjacent vertices in G and summing over all such pairs, we
find by linearity of expectation that

Ec[P (c)] <
1

k − 1

(

(

n

2

)

− |E|
)

. (3.1)

On the other hand, P (c) =
∑

i

(

ci
2

)

, where ci is the size of the i-th color class in k-coloring c. As
∑

i ci = n ≤ 2k − 2 and each ci is a nonnegative integer, convexity of the binomial coefficient implies

P (c) =
∑

i≤k

(

ci
2

)

≥ (n− k)

(

2

2

)

+ (2k − n)

(

1

2

)

= n− k. (3.2)

Comparing (3.1) to (3.2), we have

n− k <
1

k − 1

(

(

n

2

)

− |E|
)

,

which simplifies to

|E| <

(

n

2

)

− (n− k)(k − 1) =
n2 + n

2
+ k2 − kn− k. (3.3)

Since G is bad, it has at least k + 1 vertices. By an old result of Gallai [17], the number of edges of any
k-critical graph on n vertices with k < n ≤ 2k − 1 is at least

k − 1

2
n+

(n− k)(2k − n)

2
− 1. (3.4)

Comparing (3.3) with (3.4), it follows that

n2 + (1− 3k)n+ (2k2 − k + 1) > 0,

and it is easy to check that this inequality does not hold whenever k ≥ 4 and n ≤ 2k − 2.

4 A Linear Program

We reduced upper bounding the number of k-colorings of G to estimating the geometric mean of the quantity
W (c, v) defined by (2.4), which depends only on the integer partition deg(v) = c1(v) + c2(v) + · · · + ck(v)
of deg(v) into the sizes of the color classes within N(v). We now solve a linear program that we will use to
bound W (c, v) in the next section.
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Lemma 9. Suppose x ≥ k ≥ 4 are positive integers, S ∈ [k − 1, 3k − 3] is a real number, and aj, for j ≥ 0,
are nonnegative real numbers for which

∑

j≥0

aj = x (4.1)

∑

j≥0

jaj = k − 1 (4.2)

∑

j≥0

j2aj ≤ S. (4.3)

Then,
∑

j≥0

1

j + 1
aj ≤

{

x− 4(k−1)−S
6 if S ≤ 2k − 2

x− 6(k−1)−S
12 if S > 2k − 2.

(4.4)

Proof. Write W =
∑

j≥0
1

j+1aj .

The maximum value of W will always be attained when (4.3) achieves equality. Otherwise, subtract 2ε
from some nonzero aj , j ≥ 1, and add ε to each of aj−1, aj+1. For a small enough ε > 0, this operation
maintains the constraints (4.1), (4.2), and (4.3) while increasing W .

It is a standard fact that for a linear program with n variables whose set of feasible solutions is nonempty
and bounded, there exists an optimal solution for which some set of n linearly independent constraints
are exactly equality. Such solutions are called basic feasible solutions (see for example Theorems 2.3 and
2.7 of [3]). For the linear program (4.1)-(4.3) in question, there are only three constraints other than the
nonnegativity constraints aj ≥ 0. Thus, some optimal solution has at most three nonzero aj . We assume
henceforth that there are at most three distinct values of j with aj 6= 0.

Subtracting (4.2) from (4.1), we see that a0 > 0, so there are at most two nonzero aj with j > 0.
Suppose 0 < j0 < j1 are two indices such that if j 6∈ {0, j0, j1} then aj = 0. The three constraints are
linearly independent and uniquely determine the values of a0, aj0 , aj1 :

a0 + aj0 + aj1 = x

j0aj0 + j1aj1 = k − 1

j20aj0 + j21aj1 = S.

The unique solution to this system is

(a0, aj0 , aj1) =
(

x− aj0 − aj1 ,
(k − 1)j1 − S

j0j1 − j20
,
S − (k − 1)j0
j21 − j0j1

)

.

As we require aj0 , aj1 ≥ 0, the solution exists whenever j0 ≤ S
k−1 ≤ j1. In terms of j0, j1, the final

objective function is

W = a0 +
1

j0 + 1
aj0 +

1

j1 + 1
aj1

= x−
j0

j0 + 1
aj0 −

j1
j1 + 1

aj1

= x−
(k − 1)(j0 + j1 + 1)− S

(j0 + 1)(j1 + 1)
. (4.5)

We see that W is at most the maximum value of (4.5) over all choices of integers 0 < j0 < j1 for which
j0 ≤ S

k−1 ≤ j1. It is easy to check that when S
k−1 ∈ [1, 2], the best choice is j0 = 1, j1 = 2, and if S

k−1 ∈ [2, 3],
the best choice is j1 = 2, j2 = 3. Plugging these choices into (4.5), we obtain exactly the desired bound
(4.4).

Although we will only use the case x = k, we state Lemma 9 for general x because it may be useful to
tackle the problem of counting x-colorings of graphs with chromatic number k even when x > k.
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5 Main Theorem

We are almost ready to apply the Overprediction Lemma to bad graphs. We make one final simplification
which allows us to treat G as if it is (k − 1)-regular.

Suppose G = (V,E) is a bad graph, so it has minimum degree at least k − 1. For each vertex v ∈ V , fix
an arbitrary set N∗(v) ⊆ N(v) of exactly k− 1 neighbors. This specified set of neighbors will take the place
of N(v) in some of the proceeding calculations. Define N∗−

π (v) = N−
π (v) ∩ N∗(v), and X∗

π(c, v) to be the
number of distinct colors of k-coloring c missing from N∗−

π (v).
Similarly, define c∗i (v) to be the number of vertices of color i in N∗(v),

T ∗(c, v) = exp(Eπ [logX
∗
π(c, v)])

and

W ∗(c, v) =
∑

i≤k

1

c∗i (v) + 1
.

Then, it follows that Xπ(c, v) ≤ X∗
π(c, v), ci(v) ≥ c∗i (v), T (c, v) ≤ T ∗(c, v), and W (c, v) ≤ W ∗(c, v). It

will suffice to bound the quantity W ∗(c, v) in place of W (c, v).

Theorem 10. If there exists a bad graph on n vertices, then either k = 4 and n ≤ 12, or k ≥ 5 and
n ≤ 2k − 2.

Proof. Let G be a bad graph. By applying Lemma 7 to N∗(v) and averaging over all v,

Ec,v

[

∑

i≤k

(

c∗i (v)

2

)

]

<
1

k − 1

(

k − 1

2

)

=
k − 2

2
. (5.1)

It is possible to bound T (c, v) on average with (5.1), but we can obtain a stronger bound on T (c, v) for
the radiant vertices. Thus, we bound T (c, v) when v is c-radiant and when v is not c-radiant separately.

If v is c-radiant, let u1, . . . , uk−1 be k−1 neighbors of v representing every color except c(v). In a uniform
random ordering of V , the number of ui which appear before v is uniformly distributed among 0, . . . , k − 1.
Thus, the probability that N−

π (v) contains vertices of at least i different colors is at least i
k . Under these

conditions,

T (c, v) = expEπ[logXπ(c, v)] =
∏

i≤k−1

(k − i)Pr[Xπ(c,v)=k−i] ≤ (k!)
1

k . (5.2)

This is our bound for T (c, v) when v is c-radiant. Now we seek to control T (c, v) when v is not c-radiant
using (5.1). Define

E
∗
c,v[Y ] = Ec[Ev[Y |v is not c-radiant]]

to be the expectation of Y = Y (c, v) under a uniform random choice of a pair (c, v) of a k-coloring c and a
vertex v which is not c-radiant.

In a uniform random choice of a pair (c, v) of a k-coloring and a vertex, the probability that v is c-radiant

is k
n . Since the sum of

(

c∗
i
(v)
2

)

is always nonnegative, this observation together with (5.1) implies

E
∗
c,v

[

∑

i≤k

(

c∗i (v)

2

)

]

≤
(

1−
k

n

)−1

Ec,v

[

∑

i≤k

(

c∗i (v)

2

)

]

<
n(k − 2)

2(n− k)
. (5.3)

For j ≥ 0, let aj = E
∗
c,v[|{i : c

∗
i (v) = j}|]. Then, we claim that these aj satisfy the conditions

∑

j≥0

aj = k (5.4)

∑

j≥0

jaj = k − 1 (5.5)

∑

j≥0

j2aj < S (5.6)

8



of Lemma 9 with

S = (k − 1) +
n(k − 2)

n− k
.

The first constraint (5.4) is the fact that there are k colors in total. The second constraint (5.5) comes
from the fact that |N∗(v)| = k − 1 for each v. Adding (5.5) to twice (5.3), we get the third constraint (5.6).

The corresponding objective function
∑

j≥0
1

j+1aj in Lemma 9 is exactly E
∗
c,v[W

∗(c, v)]. We apply Lemma
9 and obtain

E
∗
c,v[W

∗(c, v)] ≤

{

7k+5
12 + n(k−2)

12(n−k) if 2k − 1 ≤ n ≤ k2 − k
k+1
2 + n(k−2)

6(n−k) if n > k2 − k.

From Lemma 2, T (c, v) ≤ W (c, v), and we noted that W (c, v) ≤ W ∗(c, v). Hence, by the Overprediction
Lemma,

PG(k) ≤
∏

v∈V

exp(Ec[logT (c, v)])

= exp(nEc,v[logT (c, v)])

= exp(kEc,v[logT (c, v)|v is c-radiant] + (n− k)E∗
c,v[logT (c, v)])

≤ k!E∗
c,v[W

∗(c, v)]n−k

≤











k!
(

7k+5
12 + n(k−2)

12(n−k)

)n−k

if 2k − 1 ≤ n ≤ k2 − k

k!
(

k+1
2 + n(k−2)

6(n−k)

)n−k

if n > k2 − k.

The factor of k! comes from (5.2). Note that

7k + 5

12
+

n(k − 2)

12(n− k)
< k − 1

when k ≥ 5 and 2k − 1 ≤ n ≤ k2 − k, while

k + 1

2
+

n(k − 2)

6(n− k)
< k − 1

when k ≥ 5 and n > k2 − k or k = 4 and n ≥ 13.
Plugging these bounds in, we get

PG(k) < k!(k − 1)n−k

when k ≥ 5 and n ≥ 2k − 1 or k = 4 and n ≥ 13. This completes the proof.

Theorem 10 and Lemma 8 together show that there are no bad graphs except possibly in the case k = 4
and 7 ≤ n ≤ 12. In the next section we improve the above argument to handle 8 ≤ n ≤ 12 and then check
n = 7 by hand.

6 Small 4-Critical Graphs

In our application of the Overprediction Lemma in Theorem 10, we bounded T (c, v) by the larger but simpler
quantity W (c, v) via the AM–GM Inequality. When k = 4 it is possible to directly bound the average value
of T (c, v), improving Theorem 10. We use the same notations as in Section 5.

Lemma 11. If there exists a bad graph on n vertices with chromatic number k = 4, then n ≤ 7.

Proof. Let G be the bad graph in question. We use a very similar argument to the proof of Theorem 10.
Inequalities (5.2) and (5.3) still hold for G, showing (respectively) that if v is c-radiant,

T (c, v) ≤ (4!)
1

4 , (6.1)
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and that conditional on v being non-radiant,

E
∗
c,v

[

∑

i≤4

(

c∗i (v)

2

)

]

<
n

n− 4
. (6.2)

Recall that E∗
c,v is the expectation over a uniform choice of a coloring c and a vertex v which is not c-radiant.

Now, observe that |N∗(v)| = k − 1 = 3 for every vertex v. For each j ∈ 1, 2, 3, define Sj to be the set
of non-radiant vertices v for which N∗(v) contains vertices of exactly j distinct colors. The exact value of
T ∗(c, v) is determined as follows:

T ∗(c, v) =











4
1

4 · 3
3

4 if v ∈ S1

4
1

4 · 3
1

3 · 2
5

12 if v ∈ S2

(4!)
1

4 if v ∈ S3.

The first case, for example, comes from the fact that if the three elements of N∗(v) are all the same color,
then there is a 1

4 chance that v precedes all of N∗(v) in the random ordering π so that Xπ(c, v) = 4, and
otherwise Xπ(c, v) = 3.

Let sj = Ec[|Sj |]. Conditioning on the value of j for which v ∈ Sj , we are left with the problem of upper
bounding

(n− 4)E∗
c,v[logT

∗(c, v)] = s1 log(4
1

4 · 3
3

4 ) + s2 log(4
1

4 · 3
1

3 · 2
5

12 ) + s3 log((4!)
1

4 ). (6.3)

Using the fact that there are 4 radiant vertices, we see that

s1 + s2 + s3 = n− 4. (6.4)

Next, consider the size of

P (v) =
∑

i≤4

(

c∗i (v)

2

)

when v ∈ S1, S2, and S3. When v ∈ S1, there is a single color for which c∗i (v) = 3, so P (v) = 3. When
v ∈ S2, the sizes of c∗i (v) are 2, 1, 0, 0, so P (v) = 1. When v ∈ S3, the sizes of c∗i (v) are 1, 1, 1, 0, so P (v) = 0.
Thus, by breaking up the expecation in (6.2) conditional on which Sj each vertex lies in, we get

3s1 + s2 = (n− 4)E∗
c,v

[

∑

i≤4

(

c∗i (v)

2

)

]

≤ n. (6.5)

It remains to solve another linear program. Assuming n ≥ 6, we find that (s1, s2, s3) = (2, n − 6, 0) is
the unique triple maximizing the quantity (6.3) subject to sj ≥ 0 and the two constraints (6.4) and (6.5).

Putting all this together with the Overprediction Lemma,

PG(4) ≤ exp(nEc,v[logT (c, v)])

= exp(4Ec,v[logT (c, v)|v is c-radiant] + (n− 4)E∗
c,v[logT (c, v)])

≤ 4!E∗
c,v[T

∗(c, v)]n−4

≤ 4! · (4
1

4 · 3
3

4 )2 · (4
1

4 · 3
1

3 · 2
5

12 )n−6

= 4! · 3(2n−3)/6 · 2(11n−54)/12.

The factor of 4! comes from (6.1). The last quantity above is smaller than 4! · 3n−4 if n ≥ 8, so there are
no bad graphs when n ≥ 8, as desired.

We can now finish the proof of Tomescu’s conjecture.
Proof of Theorem 1. Combining Theorem 10 with Lemma 8, we see that there are no bad graphs except

possibly if k = 4 and 7 ≤ n ≤ 12. In this case, Lemma 11 rules out n ≥ 8, which leaves the sole possibility
of k = 4 and n = 7.

Up to isomorphism, there are exactly two 4-critical graphs on 7 vertices. One of them is the so-called
Mycielskian of a triangle, which can be described explicitly as the graph on vertices u1, u2, u3, v1, v2, v3, w,
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where the edges are ui ∼ uj for all i 6= j, vi ∼ uj for all i 6= j, and w ∼ vi for all i. This graph has 4! · 13
colorings by 4 colors.

The second 4-critical graph is the Moser spindle, which is obtained by gluing two diamonds at a vertex
and connecting their opposite vertices. Explicitly, it is the graph on vertices u1, u2, u3, v1, v2, v3, w where
ui ∼ uj if i 6= j, vi vj if i 6= j, u1 ∼ v1, and w is adjacent to u2, u3, v2, v3. This graph has 4! · 16 colorings by
4 colors.

Both graphs satisfy PG(4) ≤ 4! · 33, so we are done.

7 Concluding Remarks

In 1990, Tomescu [38] extended his original conjecture to a general number of colors.

Conjecture 12. If x ≥ k ≥ 4, and G is a graph on n vertices with chromatic number k, then

PG(x) ≤ (x)k(x − 1)n−k,

with equality if and only if the 2-core of G is a k-clique.

Here (x)k is the falling factorial x(x − 1) · · · (x − k + 1). Knox and Mohar [21, 22] proved this more
general conjecture for k = 4 and 5, but our methods meet an obstruction to resolving the general case x > k.
We relied on the existence of radiant vertices in Lemma 5 to recover the factor of k! when x = k, and such
vertices do not necessarily exist in x-colorings of graphs of chromatic number k when x > k.

Our proof of Tomescu’s conjecture began with the fact that a minimal counterexample would have to be
k-critical. However, while the bound in Tomescu’s conjecture is tight for chromatic number k, it is no longer
tight when we restrict our attention to k-critical graphs. We are thus led to the following question.

Question 13. What is the maximum of PG(k) over all k-critical graphs on n vertices?

Knox and Mohar [21] recently announced the bound PG(k) ≤ (k − 1)n−c logn(k − 2)c logn holds for every
graph G on n vertices of minimum degree at least three and with no twins (two vertices with identical
neighborhoods), where c > 0 is an absolute constant. This same bound holds for every k-critical graph with
k ≥ 4 because critical graphs have no twins, and improves on Theorem 1 when n is superexponentially large
in k2. Our methods suggest much stronger bounds than Theorem 1 may hold in Question 13 and we plan
to explore this problem further.

There are many other attractive optimization problems in the study of graph colorings. Linial [28] studied
the problem of minimizing PG(k) over all graphs with n vertices and m edges, and found that the complete
graph Ks with one additional vertex adjacent to l vertices of the clique and n− s− 1 isolated vertices, where
m =

(

s
2

)

+ l and 0 ≤ l < s, is a minimizer for every integer k.
Linial also proposed the related problem of maximizing PG(k) over graphs G with n vertices and m

edges, which is more challenging because the extremal graphs no longer have such a simple structure.
Bender and Wilf [2, 42] arrived at the same maximization problem independently, via the study of the
backtrack algorithm for enumerating all proper k-colorings of a graph G. Lazebnik [25] was the first to make
substantial progress on this problem, and conjectured that the Turán graphs are always extremal graphs
for the coloring-maximization problem (see [27]). Many cases of Lazebnik’s conjecture have been verified
[26, 30, 33, 35], but the full conjecture was recently disproved by Ma and Naves [31].

More recently, Galvin and Tetali [18] considered the problem of maximizing PG(k) over d-regular graphs
G with n vertices. They conjectured that for n a multiple of 2d, the optimal G consists of n

2d disjoint copies of
the complete bipartite graph Kd,d. Using entropy methods, they proved this conjecture under the additional
assumption that G is bipartite. This conjecture was later resolved using a linear programming relaxation
for 3-regular graphs by Davies et al. [11] and for 4-regular graphs when k ≥ 5 by Davies [10].

Acknowledgements. We would like to thank Aysel Erey, János Pach and the referees for many helpful
comments.

After we submitted this paper, we learned [32] that Bojan Mohar and Fiachra Knox have also announced
a proof of Tomescu’s conjecture. We also learned from Persi Diaconis that the counting method in the
Overprediction Lemma can be viewed as an instance of a general estimation method known as sequential
importance sampling (see for example [8]).
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