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Prediction of optoelectronic properties of Cu2O
using neural network potential†

Balaranjan Selvaratnam, Ranjit T. Koodali and Pere Miró *

Neural network potentials (NNPs) trained against density functional theory (DFT) are capable of

reproducing the potential energy surface at a fraction of the computational cost. However, most NNP

implementations focus on energy and forces. In this work, we modified the NNP model introduced by

Behler and Parrinello to predict Fermi energy, band edges, and partial density of states of Cu2O. Our

NNP can reproduce the DFT potential energy surface and properties at a fraction of the computational

cost. We used our NNP to perform molecular dynamics (MD) simulations and validated the predicted

properties against DFT calculations. Our model achieved a root mean squared error of 16 meV for the

energy prediction. Furthermore, we show that the standard deviation of the energies predicted by the

ensemble of training snapshots can be used to estimate the uncertainty in the predictions. This allows

us to switch from the NNP to DFT on-the-fly during the MD simulation to evaluate the forces when the

uncertainty is high.

1 Introduction

The predictive power of machine learning (ML) has been
demonstrated to be useful in several avenues of chemical
research and the application of this data-driven approach is
considered as the fourth paradigm in materials science.1,2 In
general, machine learning algorithms improve their perfor-
mance at a given task by learning from experience. In super-
vised machine learning, this improved performance is achieved
by learning from data to minimize the error between the
predicted and expected outcome for the given inputs. This
process is known as training and once completed, the model
acts as a surrogate to the original computational calculation/
experiment and can predict outcomes for new inputs.3 Machine
learning has been used in a broad range of applications in
chemistry such as the accelerated prediction of various experi-
mental and ab initio properties,4,5 inverse design of molecules
and materials with desired physico-chemical properties,6 opti-
mizing synthesis parameters toward desired properties,7,8

synthesis planning9 and, catalyst design,10–12 machine learning
potentials,13,14 etc.

Neural network potentials (NNP) are machine leaning poten-
tials that model the potential energy surface (PES) of a system
using features derived from positions and identities of all
atoms in the system as input. Although first principles methods

such as density functional theory (DFT) can provide accurate
PES for many systems, using DFT for large systems or long
simulation times can be computationally expensive. Alterna-
tively, PES can be described using empirical potentials which
are relatively inexpensive in terms of computational cost, but
the development of such potentials is usually a lengthy and
difficult process. In addition, their accuracy is rather limited
compared to first principles methods. In 2007, Behler and
Parrinello presented a generalized NN model to describe the
PES using Atom Centered Symmetry Functions (ACSF) as
descriptors.15 This NN-PES approach is orders of magnitude
faster than DFT with comparable accuracy.16 An important
aspect of NN potentials compared to classical potentials is that
NNP does not assume a specific functional form and fits the
PES from the training data rather than fitting the parameters of
an empirical function. NN-PES have been used in several
applications such as modeling phase changing materials,17

studying the atomic structure of nanoparticles,18,19 Molecular
dynamics (MD) simulations metal nanoparticles on support,20

MD simulations of amorphous materials,21,22 atom diffusion,23

surface phonons,24 etc. However, most NNPs do not include
information beyond energy and forces such as band gap, band
structure or density of states (DOS). Availability of these proper-
ties can expand the applications of neural network potentials to
study the dynamic evolution of these properties during MD
simulations. There are two recent works focused on the predic-
tion of DOS using ML. Yeo et al. used a ML model to predict the
principal components (PCs) of the DOS vector using d-orbital
occupation ratio, coordination number, mixing factor, and the
inverse of Miller indices as input features.25 Later, the DOS
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probability matrix for the DOS vector was calculated and then
converted to DOS pattern for the given system. They tested this
approach to predict DOS for multi-component alloy system and
obtained an accuracy greater than 90% compared to DFT.
Chandrasekaran et al. used NN to predict the charge density
and local DOS around a given grid point using a rotation invariant
atomic environment descriptor as input representation.3 The DOS
predicted using this approach for polyethylene and aluminum
systems were in excellent agreement with the DFT values.
Although these approaches predict DOS, both energy and forces
were not included in their models. To authors’ best knowledge,
there are no works using Behler–Parrinello’s ASCFs to predict
optoelectronic properties such as band edges or DOS. In this
work, we show that a multitask neural network model can be used
to predict DOS, Fermi energy (EF), valence bandmaximum (VBM),
and conduction band minimum (CBM), and that can be used to
predict these properties during molecular dynamic simulations.
Furthermore, we also show that the standard deviation of the
energies predicted by ensemble of training snapshots can be
used to identify when the NNP ventures into PES regions
beyond the ones included in the training. By using forces from
DFT at these points in the trajectory, the molecular dynamics
can be continued.

2 Methods

In the NN-PES approach reported by Behler and Parrinello,
atom centered symmetry functions (ASCF) are used as descrip-
tors, from which a NN learns to predict atomic energies. These
atomic energies are added to give the total energies and the
forces are calculated from the analytic gradients. This NN-PES
model is available in several codes such as RuNNer,26 Atomistic
machine learning package (AMP),27 and ænet.28 In this work,
we extend the NN-PES approach to predict optoelectronic
properties by modifying the NN model implemented in the
AMP code. The optoelectronic properties are predicted by
modifying the output layer of the NN model from 1 to 104
where energy, Fermi energy, VBM, and CBM were predicted by
the first four nodes and the remaining hundred nodes were
used to predict the partial density of states (PDOS). Since the
DOS can be calculated as summation of PDOS, in this work, we
decided to focus on PDOS. Since the region near the Fermi level
will be relevant for the optoelectronic properties, the PDOS near
the Fermi level was modeled with 100 points however, the
PDOS region of interest can be changed if needed. This gives
the flexibility of focusing on different region of PDOS when
needed at the expense of retraining of the NNP.

Prior to training, the PDOS data was preprocessed. Initially,
the Fermi energy was subtracted from PDOS in order to focus
PDOS region near band edges. After, the PDOS was interpolated
using SciPy’s 1-D interpolate function with third order and re-
sampled at 0.1 eV intervals from�4.9 to +5.0 eV to give 100 data
points.29 However, we note that one can avoid the interpolation
scheme by sampling the PDOS at fine intervals when acquiring
the training data. The DFT and NNP PDOS data were smoothed

by Savitzky–Golay filter (as implemented in SciPy) using third
order polynomial with a window length of 5. The raw PDOS
plots without the application of this filter for the data given in
Fig. 4(b, c, e and f) is presented in Fig. S1 (ESI†). The energy and
PDOS are calculated as sum of atomic contributions, however,
EF, VBM and CBM are calculated by summation of the atomic
contributions followed by division by the number of atoms in
the system. The atom centered symmetry functions used in this
work are given eqn (1) and (2), and the Gaussian parameters are
given in ESI.†

f Ii ¼
XN
jai

e�ZRij
2=Rc

2

fc Rij

� �
(1)

where N is the number of atoms within cutoff radius, i, j atom
indices, Rij is the distance between atom i and j, Rc is the cutoff
radius, Z is Gaussian parameter, and fc is the cutoff function.

f IIi ¼ 21�z
XN

j;kai;jak

1þ l cos yijk
� �z�e�Z Rij

2þRik
2þRjk

2ð Þ=Rc
2

� fc Rij

� �
fc Rjk

� �
fc Rikð Þ

(2)

where z and l are Gaussian parameters, and yijk is the angle
between atoms indicated by the indices. The fc is the cutoff
function, given below.

fcðrÞ ¼
0:5 1þ cos pr=Rcð Þð Þ if r � Rc;

0 if r4Rc:

�
(3)

The loss function also modified to optimize the parameters
for the additional properties being predicted. The modified loss
function is given in eqn (4). This modified model was imple-
mented in Python (version 3.6) using TensorFlow,30 (version
1.13) framework in AMP code.

L = CELE + CFLF + CEFLEF + CVBMLVBM + CCBMLCBM + CPDOSLPDOS
(4)

Li ¼
1

n

Xn
i¼0

yi � ŷið Þ2 (5)

where Ci and Li are coefficient and loss for property i. The
subscripts E, F, EF, VBM, CBM, PDOS stands for energy, forces,
Fermi energy, valence band maximum, conduction band mini-
mum, and partial density of states, respectively. yi and ŷi stands
for true and predicted properties, respectively.

2.1 Training data

We tested this modified model to predict electronic properties
of cuprous oxide, Cu2O. Since we are interested in evaluating
the feasibility of using NNP to predict optoelectronic proper-
ties, we performed all calculations and MD simulations on the
unit cell of Cu2O containing four copper and two oxygen atoms.
The training data was generated by following the dataset
aggregation method. Initially, a MD simulation was performed
at 1550 K and all snapshots from this trajectory were added into
the training set. The starting temperature was selected to be
above the melting point of Cu2O in order obtain configurations
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that are far from the equilibrium structure. Then a coarse NNP
was trained using unmodified AMP and then it was used to
perform MD at random temperatures between 50 K and 1550 K
(in 25 K intervals) using random snapshots from the training
set as starting points. See ESI† for details. Then the energies
predicted by the coarse potential were compared with DFT
values and if the absolute difference between the NNP and
DFT energy was greater than 5 kcal, then the structure was
added to training set. Finally, the NNP was retrained and the
cycle was continued until no structures had energy difference
greater than 5 kcal when compared to DFT for three consecu-
tive MD validations. This cycle was implemented in Python
using Atomic simulation environment (ASE).31 This data gen-
eration cycle was performed with a lower k-point mesh in order
to reduce the computational cost. After the training data was
generated, single point calculations were performed with the
optimized k-points. See computational methods for details.

2.2 Hyperparameter optimization

The number of layers, number of neurons in each layer, and
activation function were optimized using the training set and a
separate DFT-MD trajectory at 300 K as validation set. Initially,
hyperbolic tangent was used as activation function to optimize
the layers and number of neurons. For each hyperparameter
configuration, three separate models were trained and perfor-
mance metrics on the evaluation set were averaged. The hyper-
parameters with lowest root mean squared error (RMSE) for
energy and forces were selected for further studies. All models
used in this work were optimized using L-BFGS-B optimizer
implemented in the SciPy library.

2.3 Computational methods

All reference calculations were performed using the periodic den-
sity functional theory implementation in the Vienna Ab-Initio

Simulation Package (VASP 5.1). The exchange–correlation func-
tional is approximated by the generalized gradient approxi-
mation according to Perdew, Burke and Ernzerhof (PBE)
functional with a Hubbard U parameter of 6 eV.32 The cut-off
energy for the plane wave basis set was set to 700 eV. Gaussian
smearing with Sigma of 0.02 was used for all calculations. For
the starting geometry, all atoms in the unit cell were allowed to
relax until the forces were less than 0.02 eV Å�1. For populating
the training database using the dataset aggregation method, we
used (1, 1, 1) k-points and for single point calculations (4, 4, 4)
k-points were used.

3 Results and discussion
3.1 NNP training and hyperparameter optimization

The dataset aggregation method generated a training set with
2712 entries. A total of 22 iterations were performed by the
dataset aggregation method. From this, structures with forces
greater than 5 eV Å�1 were removed, which resulted in a
training set with 2492 entries. Then the NNP was trained with
different loss coefficients to get the optimum values for the
coefficients in eqn (4). However, in all different coefficients we
tried, the agreement between the true and predicted PDOS was
not satisfactory. Therefore, to obtain a better fit, we used a step-
wise training scheme. Initially, we optimized the entire network
with the coefficients CE = 0.91, CF = 0.05, CEF = 0.01, CVBM =
0.01, CCBM = 0.01, and CPDOS = 0.01. Then the output layer
parameters corresponding to EF, VBM, and CBM were fine
tuned by retraining the model with coefficient of 1.0 for EF,
VBM, and CBM, and 0.0 for others (CEF = 1.0, CVBM = 1.0, CCBM =
1.0, and Ci = 0.0 for others). Finally, the parameters for the
PDOS part of the output layer was retrained with CPODS = 1.0
and all other Ci = 0.0. During the fine tuning of the output layer
parameters corresponding to EF, VBM, CBM, and PDOS, the

Table 1 Results of the hyperparameter optimization

Entry Configuration of hidden layers

RMSE on evaluation set

E F EF VBM CBM PDOS Cu PDOS O

(meV) (meV Å�1) (meV) (meV) (meV) (a.u.) (a.u.)

1 4–4 345 � 68 297 14 5 2 1.10 0.25
2 8–8 70 � 53 258 13 4 3 0.65 0.19
3 16–16 73 � 45 199 27 6 3 0.53 0.20
4 32–32 15 � 7 194 43 5 4 0.81 0.20
5 64–64 23 � 3 108 33 6 2 0.66 0.21
6 128–128 23 � 13 116 67 4 2 0.89 0.21
7 256–256 26 � 11 72 86 5 2 1.34 0.21
8 512–512 16 � 5 57 45 5 1 0.74 0.20

9 4–4–4 234 � 58 348 19 5 4 0.99 0.25
10 8–8–8 105 � 50 214 6 10 5 0.58 0.19
11 16–16–16 37 � 40 170 7 8 6 0.47 0.21
12 32–32–32 33 � 17 174 18 11 4 0.57 0.20
13 64–64–64 9 � 2 132 20 6 2 0.59 0.20
14 128–128–128 22 � 4 97 21 5 3 0.63 0.20
15 256–256–256 17 � 4 91 50 6 1 0.76 0.21
16 512–512–512 15 � 5 63 57 6 2 0.80 0.20
17 512–512a 21 � 10 233 50 4 1 0.91 0.20

a Rectified Linear Unit was used as activation function.
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parameters of the other parts of the network were kept frozen.
The hyperparameters (number of layers, number of neurons,
and activation function) were optimized using the step-wise
training scheme and the results are given in Table 1.

The optimization data in Table 1 shows that the root mean
squared error (RMSE) on the evaluation set decreases sharply as
the number of neurons in the hidden layers of NN increases.
However, when increasing the number of hidden layers, the
improvement achieved with more neurons is minimal. For
entry 8, we tested use of rectified linear unit (ReLU) activation
function and the performance with ReLU is poor compared to
hyperbolic tangent activation. Hence, we selected entry 8 (two
hidden layers each with 512 neurons, hyperbolic tangent acti-
vation) as optimum hyperparameters. The RMSE on energy and
forces at this configuration is similar to the metrics previously
reported and the error on energy is below chemical accuracy
(0.016 eV).20,23 In this configuration, the network has 326 676
parameters per element. The comparison between the DFT and
NNP potential energies, band edges and Fermi energy are given
in Fig. 1 and the forces are compared in Fig. 2. The energies and
forces predicted by the NNP shows a good agreement with DFT.
The predicted PDOS also aligns well with the DFT data and the
histogram of root mean squared deviation (RMSD) for the
PDOS predictions and sample PDOS of Cu and O are given in
the Fig. S2 (ESI†).

3.2 NNP molecular dynamics

To further validate the NNP, we performed constant energy (NVE)
molecular dynamics simulations using the trained potential.
These MD were performed using the velocity verlet algorithm
implemented in ASE. Initially we performed a molecular
dynamics at 300 K for 500 steps using 1 fs timestep. Then the
potential energy and optoelectronic properties predicted by
NNP were compared with DFT values by performing single
point calculations for each snapshot along the MD trajectory.
The results are given in Fig. 3 and values predicted by the NNP
are in good agreement with the DFT values. The error between
the DFT and NNP potential energies are on the order of 1 kcal
for most of the structures and the predicted band edges are also

close to the DFT ones. However, the Fermi energy predicted by
the NNP differs from the DFT as high as 147 meV. The Fermi
energy calculated by DFT during this dynamics drops signifi-
cantly between steps 70–80 and this is due to the use of
Gaussian smearing in the DFT calculations. The RMSD between
the DFT and NNP PDOS of Cu varies from 0.1 to 2.5, for PDOS
of O, the RMSD varies between 0.15 and 0.40. From this we
randomly selected two snapshots each for Cu and O as repre-
sentative to assess the quality of PDOS predictions. For Cu, two

Fig. 1 Comparison between DFT and NNP (a) energy (b) Fermi energy (EF), valence band maximum (VBM), and conduction band minimum (CBM) along
the evaluation molecular dynamics trajectory.

Fig. 2 Comparison between DFT and NNP forces for (a) all atoms in a
randomly selected MD snapshot (inset shows the unit cell structure of
Cu2O bulk used for MD), and (b) average |F| of all atoms along the
evaluation molecular dynamics trajectory.
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snapshots with RMSD-Cu between 1.2o xo 1.3 and 2.2o xo 2.3
were selected and the DFT and NNP PDOS are compared in

(Fig. 4b and c, respectively). Similarly, we randomly selected
two snapshots where the RMSD-O is 0.29o xo 0.31 for the first

Fig. 3 (a) Total energy (b) comparison of potential energies, (c) comparison between Fermi level, and band edges, and (d) error between DFT and NNP
potential energies.

Fig. 4 Comparison between DFT and NNP partial density of states. (a) Histogram RMSD of PDOS-Cu (b) and (c) PDOS of Cu at two different snapshots,
(d) histogram of RMSD of PDOS-O, and (e) and (f) PDOS of O at two different snapshots.
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snapshot and is 0.35 o x o 0.36 for the second snapshot
(Fig. 4e and f, respectively). The PDOS predicted by the NNP
shows a general agreement with density calculated by the DFT.

3.3 Uncertainty in NNP molecular dynamics

In order to further test the NNP, we performed additional MD
simulations under same conditions and found that during
some simulations, the system would eventually reach unphysi-
cal structures due to high forces. This is a clear indication that
the system reached points in the PES that are outside of the
training points of our potential. To address this issue, one
needs to identify the points where the predictions by the
NNP are out of its training data. Once identified, by using
the forces from DFT at those points on-the-fly, the MD can be
continued.33 To identify uncertainties in the NN predictions,
several approaches have been proposed in the literature. For
instance, Janet et al. showed that the distance between training
data and test data at latent space can be used as a measure of
uncertainty.34 Peterson et al. used an ensemble of NNPs and
showed that the width of the ensemble can be used to quantify
the uncertainty.35 This method requires the training of several
NNPs. Instead of using an ensemble of several NN models,
Cortés-Ciriano and Bender used weights (snapshots) taken
during the training of one NN model as ensemble.36 In this
work, we use the standard deviation of the snapshot-ensemble
energies as measure of uncertainty. By running a few MD
simulations using the trained NNP, we found that when the
standard deviation of the ensemble of the predicted energies is
greater than 5 meV, the dynamics eventually leads to unpysical
structures. Hence, when the ensemble standard deviation is
above 5 meV, we calculated the forces using DFT single point
calculation and updated the forces to continue the molecular
dynamics. The results of the dynamics are given in Fig. 5 and
the steps where DFT calculations were performed during MD
are shaded in Fig. 5b. The DFT and NNP potential energies,
Fermi energy, and band edges of this simulation are consistent
with the DFT values. See ESI† for details (Fig. S3 and S4). The
comparison of the forces shows that DFT is used in
four different spans during the dynamics and that DFT is

continuously used in each span. During this MD, DFT was used
for a total of 58 steps.

For further validation of this approach we performed NVT MD
simulations using this scheme at 300 K, 600 K, and 900 K with a
timestep of 0.5 fs for 500 steps. These simulations were performed
using NVT Andersen dynamics implemented in the TSASE code by
Henkelman and coworkers.37 Collision strength of 0.8 was used
for the dynamics. Then DFT single point calculations were
performed for the trajectory. The comparison of DFT and NNP
potential energies are presented in Fig. S5 (ESI†) for all three
temperatures. During these runs, the number of on-the-fly DFT
calculations increased with increasing temperature with 0, 59,
and 278 DFT force calculations for 300 K, 600 K, and 900 K
respectively. The increasing number of DFT force calculations
with temperature shows the need for an extensive sampling to
generate the training dataset. Furthermore, the changes in the
ensemble standard deviation also plotted in the respective
potential energy comparison plots which shows that the ensemble
standard deviation method can be used as uncertainty measure
for most cases. However, for some configurations, this method
yields poor results where we observed high difference between
DFT and NNP energy eventhough the ensemble standard devia-
tion is lower than 5.0 threshold. Upon closer inspection, we
noticed that the ensemble standard deviation is above 3.5 meV
and below 5.0 meV for most of these configurations. Hence, we
decided to set the ensemble standard deviation threshold to
3.5 meV for future MD simulations.

Finally, we performed NVT MD using Andersen thermostat for
1 ps with 0.5 fs steps at 300 K. Based on the uncertainty changes
and energy differences in the high temperature simulations, we
set the threshold for ensemble standard deviation to 3.5 meV. The
change in the potential energy along with the ensemble standard
deviation are given in Fig. 6. A total of 951 DFT force calculations
were made during this 1 ps simulation consisting 2000 steps. This
scheme can be used for extended time simulations by retraining
the NNP (with data for which DFT was used) when the number of
DFT calculations reach a preset value.

The extensive MD validations shows the need for more
through sampling of the PES to build the training dataset. We

Fig. 5 (a) Total energy, and (b) comparison of norm of forces on all atoms by DFT and NNP (highlighted regions indicates the use of DFT forces during
molecular dynamics).
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will test the effectiveness of a well sampled training dataset
against an automatic retraining scheme in a future work.

4. Conclusion

In summary, we implemented, and trained a multitask neural
network model to predict optoelectronic properties using atom
centered symmetry functions as descriptor. Using this neural
network potential model, we predict energy, forces, Fermi
energy, valence band maximum, conduction band minimum,
and partial density of states for molecular dynamics trajectories
for a representative metal oxide system Cu2O. The potential
energies, forces, band edges, and partial density of states
predicted by the model are in good agreement with the DFT
calculated data. In addition, we also show that the standard
deviation of energies predicted by snapshot ensemble can be
used as measure of uncertainty.
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