Extremes of Spherical Fractional Brownian Motion

Dan Cheng * Peng Liu |
Arizona State University University of Lausanne

February 25, 2019

Abstract

Let {Bs(z),r € SV} be a fractional Brownian motion on the N-dimensional unit sphere
SN with Hurst index 8. We study the excursion probability P {sup,.; Bg(z) > u} and
obtain the asymptotics as u — oo, where T' can be the entire sphere SV or a geodesic disc

on SN.
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1 Introduction

Let {X(t),t € T} be a real-valued Gaussian random field living on some parameter space
T. The extremes, especially excursion probabilities P{sup,c X(t) > u}, of the field have
been extensively studied in the literature due to the importance in both probability theory
[26, 6, 10, 16, 20, 30] and statistical applications such as the p-value computation for controlling
the family-wise error [31, 32|, nonparametric density estimation [5, 15, 25] and construction of
confidence bands [21, 33]. We refer to the survey [1] and monographs [24, 2, 3] for the history,
recent developments and more related applications on this subject.

Recently, the study of random fields on spheres is attracting more and more attention due
to vast applications in astronomy [22], spatial statistics [13, 28], geoscience [23, 19] and envi-
ronmental sciences [29]. In particular, Istas [17, 18] introduced spherical fractional Brownian
motion (abbreviated as SFBM throughout this paper) on spheres and studied the Karhunen-
Loeve expansion and other properties. As an important extension to the classical fractional
Brownian motion on Euclidean space, it would be very useful and valuable to study the excur-

sion probability of SFBM, which is the main purpose of this paper.
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Let o be a fixed point on the N-dimensional unit sphere SV ¢ RN*1. The SFBM, denoted
by Bg = {Bs(x),z € SV}, is defined in Istas [17] as a centered real-valued Gaussian random
field on SV such that Bg(o) = 0 and

E[Bs(z) — Bs(y))* = d**(z,y), Va,yes", (1.1)

where the index f € (0,1/2] and d(-,-) is the spherical distance on SV, that is d(z,y) =
arccos (x,%), Yo,y € SV. Here (-,-) is the usual inner product in RN*1. It follows immediately

that the covariance structure is given by

1

Cov(Bg(z), Bs(y)) = = (d**(x,0) + d** (y,0) — d**(z,y)). (1.2)

[\ )

In this paper, we shall study the asymptotics of the excursion probability P{sup,r Bg(z) >
u} as u — 0o. Two cases for the parameter set T are considered separately: (i) T'= SV and
(i) T =T, := {z € SV : d(z,0) < a}, where a € (0,7). In other words, T, is the geodesic disc
on SV of radius a centered at o, so that T, = S when a = 7. Notice that, the maximum of
the variance function of Bg(x) over T' will be attained at a single point for case (i) and on the
boundary set {z € SV : d(z,0) = a}, which is in fact an (N — 1)-dimensional sphere, for case
(ii), respectively, making the latter case more challenging.

Since the sphere SV is not an Euclidean space, it would be hard to apply directly the
traditional double sum method over SV to derive the asymptotics of the excursion probability.
Instead, we shall apply the main technique in Cheng and Xiao [7] to consider the SFBM as
a Gaussian random field on Euclidean space by using spherical coordinate transformation. In
such way, we can study the local behaviors of the standard deviation and correlation functions
of the field under spherical coordinates (see Lemmas 3.2 and 4.2 below), and then apply the
results in Euclidean space (see Lemma 3.3 and Theorem 4.3 below) to derive the desired
asymptotics of the excursion probabilities in Theorems 3.4 and 4.5. In particular, for case (ii),
the maximum of variance is attained on a set of dimension at least one (when N > 2) and there
is no known asymptotic result in the literature except for the two-dimensional case studied in
[10]. In order to obtain the asymptotics on a geodesic disc in Theorem 4.5, we establish an
asymptotic result on Euclidean space in Theorem 4.3 which is valuable itself in extreme value
theory and will have further applications in the future.

The paper is organized as follows. We first introduce the preliminaries, such as spherical
coordinate transformation and the Pickands and Piterbarg constants, in Section 2; and then
study the asymptotics of the excursion probabilities of Bg(x) on the entire sphere SN and on a
geodesic disc in Sections 3 and 4, respectively. Finally, the Appendix contains some auxiliary

results and the proof of Theorem 4.3.



2 Preliminaries

2.1 Spherical Coordinates and Notations

For x = (21,...,2n,2n+1) € S, its corresponding spherical coordinate 6 = (61,...,0y) is

defined by the following way.

N-1 N
1 =cosby, ..., TN= (H sin9i> cosfy, xni1= Hsiné’i, (2.1)
i=1 i=1
where 6 € © := [0, 7]V~ x [0,27).
Throughout this paper, for two points = = (21,...,2x4+1) and ¥y = (y1,...,yn4+1) on SV,

we always denote by 6 = (01,...,0y) and ¢ = (¢1,...,¢n) the spherical coordinates of z
and y, respectively. For functions f(z) and g(z,vy), z,y € SV, we denote by f(6) := f(x) and
9(0,¢) := g(z,y) the corresponding functions of f(x) and g(z,y) under spherical coordinates,
respectively.

Let d(-,-) denote the spherical distance on S and let || - || be the Euclidean norm in RV*!
or in RV, which will be clear from the context. For a set D C R¥, denote by mes(D) the
measure (volume) of D. Denote by W(u) the tail probability of standard normal distribution,
that is U(u) = (2r)~ /2 [.r ev*/2dv. For any two real-valued functions hy(u) and ha(u), we

say hi(u) ~ ha(u) as u — ug € [—00, +00] if limy—yy, h1(w)/ho(u) = 1.
2.2 Pickands and Piterbarg Constants
Let {xg(t), t € RN}, H € (0,1], be a Gaussian random field with mean function
E(xu(t) = —[t|*, teRY,
and covariance
Cov(xm(t), xa(s) = [t + [Is|** — |t — s>, t,s e RY.

Let Hop (E) = E {sup;cp exp[xm (t)]}, where E C RY is a compact set. The Pickands constant
[24] is defined by

- Hyu((0,5]) . Ham([0,8] x [0, 5]V )
N ._ 2m Y N _ ) )
H?H = 5’11_{12.10 T, where HQH([O, S]) = S}li)noo S{Vil . (22)
The Piterbarg constant [4, 24] is defined by
PYy = lim P ([—S,S]V), where PJ,(E) =E {sup eXH(t)g(t)} , (2.3)
S—o00 tel
E c RY is a compact set and g is a continuous function over RY. Moreover, let
9.([=8,8] x [0,8]V !
M, = lim lim Pon (25, ]N>i1[ il ),
S—o00 S1—00 Sl
— PY([0,8] x [0, S1]N ) (24)
My = Jim M3y (0,8, where My (0.8]) = Jim “HEEZ G m S,

if the limits above exist.



3 Excursion Probability on SV

We first study the excursion probability of Bg over the entire sphere. Recall the notations intro-
duced in Section 2.1, we have that P {sup,csv Bg(x) > u} is equivalent to P{supgceo Eg(&) >
u}, where Eg(@) := Bg(z) and © = [0, 7]V~ x [0,27) is an N-dimensional rectangle on R¥.
Therefore, to establish the asymptotics for the excursion probability of Bg, we will study
the properties of the standard deviation and correlation functions of Eg, which is a Gaussian
random field living on ©, and then apply results on extremes for Gaussian random fields on
Euclidean space.

In this section, we assume without loss of generality that Bg starts at o = (0,0,...,1,0) €
RN+ whose spherical coordinate is given by (7/2,...,7/2,0) € © C RV according to (2.1).
Denote by o(z) the standard deviation function of Bg(z). By (1.1),

o(z) = d°(x,0) = arccos” (x,0) = arccos’ (zy), xSV, (3.1)

which attains its unique maximum 7% at p := (0,0,...,—1,0) € R¥*! whose spherical coor-
dinate is given by 6y := (7/2,...,7/2, 7). Note that, by (3.1), we have the following standard

deviation function under spherical coordinates,

N-1
5(0) := o(x) = arccos’ (zx) = arccos’ ((H sin 91') cos HN) , (3.2)

i=1
which attains its unique maximum at the interior point 6y € © above. Additionally, it follows
from (1.1) and (1.2) that the correlation function of Bg(z) becomes
( ) d2ﬂ(m7 0) + d2ﬂ(y7 O) — d25($7 y)
r(z,y) =
Y 27@,0)d(y,0)

whose form under spherical coordinates, denoted by 7(, ¢), can be obtained accordingly.

z,yeSY, (3.3)

Remark 3.1 We choose the starting point of Bs(x) at o = (0,0,...,1,0) € RN*! to make
sure that the maximum of the variance function of Eg (0) will be attained at an interior point
in ©. This will simplify a lot the arguments on deriving the asymptotics for the excursion
probability. Note that the choice of starting point o does not affect our results since the
asymptotics of the excursion probability is determined only by the behavior of the field around

the points attaining the maximum of the variance function. O

We first derive a result below showing the local behaviors of the standard deviation and

correlation functions of 55(9), the SFBM under spherical coordinates, around 6y.

Lemma 3.2 Let 0y = (7/2,...,7/2,7) € © CRN. Then

5(0) =78 — BP0 — 60)|(1 + o(1)), as ||6 — O] — 0; (3.4)
and
— 9|28
#0.) =1 - 12004 o1)), s 10— a0l v e — 60 > 0 (35)



Proof. Note that, as zny | —1,

() (=1 J—— [——
arccos(xy) — arccos(—1 :/ —dt = —dt
/1 — 12 Ot — 42
- 1+a:1N j " ? ' (36)
~ — —dt = —/2(1 + zn).
; 5 (I+an)

It then follows from (3.6) and Taylor’s expansion that, as ||§ — || — O,

N-1 N-1
5(0) — m” = arccos’( H sin6; cos ) — m° ~ pr’t (arccos( H sin 0; cos ) — arccos(—l))

i=1 i=1
N-1 N-1
— p—-1 ino. _ BBt - 2 _ 2
~ —V2pm 1+ H sin 0; cos O ~ —pm Z |0; — /2|17 + |On — 7|,
i=1 i=1

yielding (3.4).
We derive next the expansion for the correlation function. First note that

P(z,y) — (@ (z,0) — d’(y.0))"

2dP(x,0)dP(y, 0)

1—r(z,y) = (3.7)

As z,y — p=1(0,0,...,—1,0) € R¥*1 which is equivalent to 6, — g, by Taylor’s formula,
2
((x,0) = d(y,0))” ~ B~V (d(w, 0) - d(y,0))*.
Combining this with the triangle inequality such that |d(x,0) — d(y,0)| < d(z,y), we obtain
that for g € (0,1/2],
2
(°(@,0) = d*(y,0)) =0 (¥ (z,)), asz.y—p,
implying 1 — r(z,y) ~ d**(x,y)/(27%%) by (3.7). Note also that by Lemma 2.1 in Cheng and
Xiao [7], as 2,y — p, d(z,y) ~ [|0 — o||. Therefore,

i d¥(z.y) |l -0l
1—7(0,0)=1- T'(l’, y) ~ 2B ~ on28

yielding (3.5). O

For convenience, we present here a simpler version of Theorem 8.2 in Piterbarg [24]. Let
{X(t),t € E}, where E C RY is a compact set, be a centered Gaussian random field with
variance function attaining its maximum at the unique point ¢ty € E. Moreover, there exist

non-degenerate N x N matrices A and C, and constants n > 0 and « € (0, 2] such that
Var(X(t)) = 1 = [|A(t = t0)["(1 +0(1)), [t = toll =0, (3-8)

and
Corr(X (1), X(s)) =1—[|C(t —s)||*(1 + o(1)), t,s— to. (3.9)

Additionally, there exist v > 0 and G > 0 such that

E[X(t)— X(s)? <G|t —s|", stek. (3.10)

5



Lemma 3.3 Let {X(t),t € E}, where E C RY is a compact set, be a centered Gaussian

random field with variance function attaining its maximum at the unique point tg € E. Assume

further that ty is an inner point of E and (3.8)-(3.10) are satisfied.
If o < n, then

P{supX(t) > u} ~ Hév/ e_HAC_ltllndtu%_%\I’(u),
el RN
If a =1, then
P {supX(t) > u} ~ PLLAC?HHQ\II(U), U — 00.
teE
If a > n, then

P {supX(t) > u} ~U(u), u— oo.
tek

We are now ready to derive one of our main results as follows.

Theorem 3.4 Let {Bs(z),x € SN} be a SFBM, where 3 € (0,1/2].
(i) If B € (0,1/2), then

]P’{ sup Bg(z) > u

zeSN

} N 7—[% N;(26-1/2)N (1-28)N
N
225 BNT(N/2 + 1)
where ’H% is the Pickands constant defined in (2.2).
(ii) If B = 1/2, then

P{ sup Bg(z) > u} ~PIO(nV2),  u— .

zeSN

u — 00. (3.11)

(3.12)

w p U(r P, u— oo,

where P{ is the Piterbarg constant defined in (2.3) and g(t) = VION 2 te RN,

=1 "3’

Proof. (i) Note that

Bg(6) _ u
P< sup Bg(z) >up =P{sup > — p.
{xGSN IB( ) } {66@ w8 w8

It follows from Lemma 3.2 that

56
- 0755) _ gue — o)l (1+0(1), (16— || =0,

Applying the identity

d(z,y)
2

|x—yu=2sin( ) Va,y e SV,

there exists a positive constant C; such that

d*(z,y) < Cilla — y||*®, Va,y e SV.

6

1
25110 — 2l (1 +o(1)), 16— 6ol V [l — boll — O.



Combining this inequality with (1.1), there exists a positive constant Cy such that
- - 2
E|Ba(0) - Bolw)| = d*(z,y) < Cille =yl < Co)l0 — 0|, W0, ¢ € ©.

Therefore, for 3 € (0,1/2), applying Lemma 3.3 with = 1, a = 28, A = Br Iy and
C =271y, we obtain

(A—-28)N
]P’{ sup Bg(z) > u} ~ 7-[975/ e 2P Bllsll g5 U(v),
RN

xeSN

where v = 77%u and Iy is the N x N identity matrix. Note that JoZrN"tem"dr = I(N) and

2 N/2
. N—2 .. N—3 . N—-1
sin 01 sin Oy ...sinfy_odby ---dfn_1 = Area(S ) = , (3.13)
/[o,w]N?x[o,m L(N/2)
one can use the spherical coordinate transformation to obtain
2 N/2 N! N/2
/ e olgs = (N x 22— = N
RN I(N/2) T(N/2+1)
Therefore, as u — oo,
N7 (28-1/2)N (1-28)N
P4 sup Bg(z) > u NH% ~ i u B W(nPu).
zeSN 228 BNT'(N/2 + 1)
(ii) For 8 = 1/2, applying again Lemma 3.3, we have that
P{ sup Bg(z) >u p ~ P{U(rPu), u— oo,
zeSN
where g(t) = ||t||, t € RY. O

4 Excursion Probability on a Geodesic Disc

In this section, we will study the excursion probability of Bg(z) over a geodesic disc on SH.
Without loss of generality, assume that Bg(z) starts at o/ = (1,0,...,0) € RY¥*! whose
spherical coordinate is given by (0, ...,0) € © C RY according to (2.1). The standard deviation

function of Eg (#) now becomes
5(0) = o(x) = arccos’® (x, o) = arccos” (x1) = Gf, g€ 0. (4.1)
The geodesic disc on S with radius @ > 0 and center at o is defined as
T, ={z e SN :d(z,0) < a}.
Since d(z,0’) = 6, the set corresponding to T, under spherical coordinates becomes
0, = [0,a] x [0, 7]V 72 x [0, 27).

7



It is straightforward to check that &(6) attains its maximum only at
{0 €0,:0,=a} ={a} x [0,7]V"2 x [0,27),
which is one of the (/N — 1)-dimensional faces of the N-dimensional rectangle ©,.

Remark 4.1 We choose the starting point of Bg(z) at o/ = (1,0,...,0) € R¥*! to make
the variance function of 33 (0) have a simple form so that the set attaining the maximum of
variance would be easier to handle. Again, the choice of starting point does not affect our

results. O

Similarly to Lemma 3.2, we have the following result describing the local behaviors of the

standard deviation and correlation functions of Eg (#) around ©,.

Lemma 4.2 Let ©, = [0,a] x [0,7]Y=2 x [0,27). Then
0

):1—§|a—91|(1+0(1)), 00O, 0 —a; (4.2)
and

. 1 :
(009 = 1= (L o) g5 (1 = 002 + (s )0 — 0)° 4 -
N-1 8 (4.3)
+ <sin2a H sin? 91') (N — 91\/)2] , 0,0€0,, ||0—¢|—0, 0, —a.
=2

Proof. Note that (4.2) follows immediately from Taylor’s formula. By similar arguments in

the proof of Lemma 3.2, we obtain

- d*(z, y)
1—7“(9790)21—7”(95&)”2@725

Then (4.3) follows from Lemma 2.1 in Cheng and Xiao [7]. O

Here, we present a result extending both Theorems 7.1 and 8.2 in Piterbarg [24]. It is not
only useful to prove Theorem 4.5 below, but valuable itself in extreme value theory. The proof
is given in the Appendix.

Let {X(t),t € E}, where E = [[X[ai,bi], be a Gaussian random field with continuous
trajectories. Its standard deviation function ox(¢) attains the maximum 1 at the hyperspace

Eo = {t1} x [T, [ai, bi], where t§ € a1, b1], and satisfies
1—ox(t)

tim sy Ty =0 (4.4)

[t—t51=0 ¢ h(t)|ty — ¢

iel—[é\;2[aivbi}
where v > 0 and h(£)7 te Hl]\ig [a;, bs], is a positive continuous function with t= (tay...,tN).
Moreover,
1-— t

LA 2 R

—0, u—o00 . N N

ey <Cl(t1 — )2+ N, ()t — si)Q)

8



where E, = ([t; — ((log u)/u)?/7, £t + ((log u) /u)?"] x [T, [ai, bi]>ﬁE, §>0,8€(0,1),c; >
0 and ¢;(f), 2 < i < N, are positive and continuous functions over Hf\i olas, b;]. Additionally,

assume that
r(s,t) <1, s#t, s,t€E. (4.6)

Theorem 4.3 Let {X(t),t € E}, where E = Hfil[ai,bi], be a Gaussian random field with

continuous trajectories satisfying (4.4)-(4.6) and let t7 = a1 or by. Then we have, as u — oo,

(i) for B <~/2,

tek

P X N —1/v(f 5 (NI )
sup X (t) > u o~ v/elT(1/y + DMy [ W@ [T ei®dius =70 (w); (4.7)
te][;=o[aibi] ;

(it) for B =~/2,

N
— A ga N1
plapx@>ul~ [ GO a0d e, @
ter te]I;20lai,bi] =2
where g(t) = Cf’gh(f)ﬁlm t e RY;
(iii) for B> ~v/2,
p{ X(t) } ”HNl/ ﬁ (Dydiu" 7 W(u) (4.9)
sup >up o~ i u w)- :
tcE 26 el T olaibi] j—o

Remark 4.4 In Theorem 4.3 above, we consider the case when ¢} is the boundary of the
interval [a1,b1]. If ¢ € (a1,b1), the following results will be obtained by modifying the proof
accordingly. (i) For 8 < /2, replace ’H% by 2%% in the asymptotics in (4.7); (ii) for 5 = v/2,
replace M\gg) by Mgg) in the asymptotics in (4.8); (iii) for 8 > /2, the asymptotics in (4.8)
still holds. ]

We formulate our next main result as following.
Theorem 4.5 Let {Bg(z),z € SV} be a SFBM, where 3 € (0,1/2], and let T, = {x € SV :
d(z,0") < a} with a € (0, 7).

(i) If 5 € (0,1/2), then
N7alN/2(sin a)N -1 N_g

975 a2N-28-13T(N/2 + 1)

P { sup Bg(x) > u} ~ "Hévﬂ
xGTa

where Hévﬁ is the Pickands constant defined in (2.2).
(ii) If 5 =1/2, then

PN DY), u— oo,

} — N7aN/2(sin q) V-1

~ g
P { sup Bg(x) > u M12N_1a2(N—1)I‘(N/2 +1)

xETa

where M\‘{ is defined in (2.4) and is finite by Lemma 5.2, g(t) = |t1], t = (t1,...,tn) € RV,



Proof. Note that

Bs(6
P{supBﬁ(:I:) >u} =P< sup ’8/(3 ) > % )
zeT, 0€0, a a
and we will focus on studying the excursion probability on the right hand side which turns out

to be of Euclidean case. It is straightforward that for any 0 < ¢ < 7/2,

Bs(0 Bs(0
]P’{sup ’Bé)>l;}§]13’{sup ﬁé)>uﬁ}
gcos a a b0, a@ a

Bs(6 Bs(#
< P< sup B()> +P sup 6é)>% )
e, \0s a

ISCH a?
O; =[0,a] x [e,m — ]V x [0,27 —€].

(4.10)

%l

where

Applying Lemma 4.2 and Theorem 4.3 with 3 = 3, v = 1, h(d) = B/a, ¢1 = (2a*#)~1/8,
c2(f) = (2a*°)~Bsin? a and ¢;(9) = (2a*%)~1/F(sin? a) Hg;; sin?@; for 3 < j < N, we have
that for 5 € (0,1/2),

Bs(0) _ u
P{ sup —— > —
{96@3 a? a?

N1 (4.11)
~ H%%(Qaw)’w(w) (sina) 1N [ T (sin0)Vdh N 20 ( )
6e0: ;5 a
and for § =1/2,
EB(H) u
P — > —
N1 (4.12)
~ MY (2a) N (sina)N 1ot I (sin6:)¥—dé u2<N—1>\1u(1L/2),
éEés i=2 a
where g(t) = |t1], t = (t1,...,ty) € RY, and
O.=le,m—eV2x0,2r—¢], 0= (a,...,0n).
Next we show that the last term in (4.10) is negligible. Denote by
Ey=[0,a—¢] x[0,7]N"2x[0,27), Ej=[a—¢,a]xF;, 1<j<n,
where Fj,1 < j < n, is a collection of compact rectangles forming a partition of [0, m]N=2 x

0,27) \ ©.. Moreover, assume that F; and F;; have no common inner point for j # j’ and the
J J

largest edge of F; has length L. Then we have that

o Be®) _uwl Bs(0) _ u
IP’{ sup oz >CL6}§Z]P’{supj "z >a7ﬁ .

0€0,\05




It follows from Lemma 4.2 that there exists 0 < § < 1 such that supyeg, 5(0)/a” <1—6. By
the Borell-TIS inequality [2], for u sufficiently large,

Bs(0) _ u (u/a’)?
P{:ﬁa % >a5}§exp{z<l—a>2}'

By (4.2)-(4.3) and the Slepain inequality, we have that for ¢ > 0 and L > 0 sufficiently small

Bs(0 B 5
Pl oup 220 o vl _p SHPM>£ <P Sup¢>g 7
ocr; a° a? 9EE, 1—|— ~la — 61 ab 0cE; 1+ ~la — 6] a?

where 1 < j <n, C >2"/8q=1 and Y (t) is a centered homogeneous Gaussian random field

with continuous trajectories, unit variance and correlation function satisfying

Corr(Y(s), Y (t)) = e Is=tI” 5 ¢ e RN,

In light of Theorem 4.3 with 8 = 8, v =1, h(d) = /(2a), ¢1 = C?, ¢;(0) = C2, 2 < i < n, we
have for 1 < j < n,
P sup ———— > — p ~ HogC' —mes(F;)(—)?P “V(— 6<1/2
{HEEj1+2i|CL—91| aB 283 /8 ( J)(aﬁ) ( 5) /

1 a1/2)7

_ Yy “} M(4ac)1|t1|meS(Fj)(1f)2N_2\P(u B=1/2.

S}

= Y (C0) u N N2 uU\N_o U
Pdsup — 2 LU NG mes(F))(—2) 5 2w (Ly, g <1/2,
Z {GEEI') 1+ ﬁ]a—ﬁﬂ p 2 Z ﬁ (aﬁ) v /

- Y (C0) u =(4aC)~1|t] w/C on oo U

Pdsup ——F5———>— 1~ M mes(F; U(—-), B=1/2.

JZ:; {HEE L+ gpla— 61~ o 1 J; = Va ) (G7) /

Note that lim—o )7, mes(Fj) = 0 implies that the last term in (4.10) is negligible.
Applying (3.13), one has

N-1 Nﬂ'N/Q

lim/ (sin 6;) N=iqg —/ sin 6; N—igh = —— =
=0 J4eb, lHQ fef0,7)N—2x[0,2n) g ( ) F(N/z + 1)

Plugging this into (4.11) and (4.12), together with (4.10), we obtain the desired asymptotic
results by letting ¢ — 0. U

It is worth mentioning that, when N = 1, the geodesic disc T, becomes a circular arc and
the maximum of variance is attained at only the two boundary points of T,. Recall Lemma
3.3 and note that if N = 1 and ¢y is a boundary point instead of an interior point, then

we can obtain the asymptotics by multiplying the original asymptotics in (3.11) by 1/2 for

11



|AC—1 |AC—1

B € (0,1/2), and by replacing P' 1 i (3.12) by ./\/l‘ " for B =1/2. Applying these
results, together with Lemma 4.2, similarly to the proof of Theorem 3.4, we have that
281
P { sup Bg(x) >up ~Hog———uPf “V(a "u), B€(0,1/2),
reTe (4.13)

P{sup Bg(x) > u} ~ 2./(/1\€\I/(a_1/2u), g=1/2,

z€T,

where g(t) = |t|, t € R. Then it is easy to check that the asymptotics in (4.13) are exactly the

same as those in Theorem 4.5 for N = 1.
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5 Appendix

The following useful lemma can be shown by similar arguments in the proof of Lemma 7.1 in

[24]. The proof is omitted in this paper.

Lemma 5.1 Let Y(t),t € RN be a centered homogeneous Gaussian random field with contin-

uous trajectories, unit variance and correlation function satisfying, with 8 € (0, 1],
1— Corr(Y(s),Y(t) = |ls — t|**(1 + 0(1)), ||s —t|| = 0.
Denote by {ux, A € A} a series of function of u with the property that
i sup 5= 1] =0

Then for all b > 0

Y (1) N
li P{S“pte[o,u—l/ﬂslxnfiz[ai,bil 0L 7P~ “A} MU
1m sup N1 H bi —a;)| =
U0 NeA u F U(uy) =2
where

bt |2# N-1
b|t1| 28 R Pag ([0, S] x [0, 51] )
Mg ([0.5]) = S}lgloo SNt

€ (0, 00).

The following lemma shows the finiteness of the constant M\f in Theorem 4.5.

Lemma 5.2 For any B € (0,1] and b > 0,

MU = tim MY ((0,5)) € (0, 00).

S—o00 28

12



Proof. Let Y (¢) be as in Lemma 5.1. Note that for 0 < 57 <logu and S > 0,

[(logu)/S]+1
LIVNINY }s S AwS),  (5.1)

Ao(u, S1) < ]P’{ sup
k=0

t€[0,u—1/B logu] x[0,1]N—1 I+ b’tl‘Zﬂ

where

te[u=1/0kS,u—1/8(k+1)8]x 0,18 -1 L+ b[t1[*?

Ak (u, S) :IP’{ sup _Yw >u}.

In light of Lemma 5.1 and subadditivity of /\/lgﬁ([O, S]), we have
Ao, 8) ~ M3 (0, ST w(w)

Ap(u,8) <P sup Y (t) > u(l +u2b|kS|*)
te[u=1/PkSu—1/8(k+1)S]x[0,1]N -1

~ M350, ST W(u(l + u2b|kS|*))
< C8e ST w(w), 1<k < |(logu)/S] +1,

where C' > 0 is a fixed constant. Dividing (5.1) by u%\ll(u) on both sides, we have that

MY (0, 81) < MY (0,8 + 30 €5 <
k=1

Letting S1 — oo leads to
Jim M ([0.51]) < o0
completing the proof. O
Proor oF THEOREM 4.3 Without loss of generality, we assume that ¢t] = aq, implying
E, = [a1,a1 + ((logu)/u)?/7] x Hi]iz[ai, b;]. Denote by

N N
Fic.=la1 +¢,b1] x H ai,bi],  Fac(u) = [a1 4 ((logu)/u)?7, a; + €] x H[ai,bi]
1=2 =2

Then it follows that

P{tselﬁX(t) g “} = P{fgIE)X(t) >u}
SP{Sup A0 >U}HP{ sup X(?) >“}+]P’{ sup  X(t) >u}.(5.2)

teEu tEFl,e tGngs(u)

By (4.4), for € > 0 sufficiently small, there exists a constant § > 0 such that SUPsep, . o2(t) <
1 — 0. By the Borell-T1IS inequality [2], for u large enough,

w2
P{tZ%fEX(t) >u} gexp{—m_é)}. (5.3)

13



Moreover, in light of (4.5), there exists C' > 0 such that for u sufficiently large and ¢ > 0

sufficiently small,

N
E{(X(t) - X(s))} < Cllt = s[I”’ <NCD |ti = si|*, s,t € Fye(u),
i=1
where X is the standardized field of X. Additionally, it follows from (4.4) that there exists
C1 > 0 such that

1 2
sup o%(t) <1-Cy < ogu) .
tEFQ,E(u) U

By Theorem 8.1 in [24], we have that, for u sufficiently large,

u

]P’{ sup X(t) > u} < Cgu%\Il . (5.4)
teFs o (u) 1 Cl (10%>2

We study next P {sup,cp, X (t) > u} to derive the exact asymptotics and show that

P< sup X(t) >u and P<¢ sup X(t)>wu
tely . tEFQ’E(U)
are negligible as u — co. We distinguish three scenarios: § < v/2, 5 =+v/2 and 8 > /2.
(i) Case B < /2. We first introduce some notation for further analysis. Let

((log u) /u)*/

ise | L (5.5)

In(u) = [a1 + ku™YPS ay + (k + Du~VPS), MF = [

Split Hﬁ\iz[ai,bi] into nV~! rectangles with the form Hfiz [ai + w,ai + W]

with n, k; € N, denoted by {D;,1 < j <n?~1}. We assume that D, and Djs have no common
inner points for j # j'. Let

Ij(u) = I(u)xDj, A ={(kj):0<k<MI1<j<naVN1Y

.= 14+ (1—¢)h; inf |t1 —t|7), h;= inf A(}), 5.6

wge = u(1+@-an wt jn-6p), b it () (5.6)

C(]) = ((Cl+5)1/27(027j+6)1/2’~"7(CN»]'+6)1/2)7 CkaJ:?upck(£)72§k§N
tEDj

Moreover, let Y (t) be a centered homogeneous Gaussian random fields with continuous tra-
jectories, unit variance and correlation function satisfying Corr(Y (s),Y (¢)) = e ls=t1*" with
B € (0,1]. Tt follows straightforwardly that

7 (u) —X(u) <P {tselg) X(t) > u} < 7t (u), (5.7)

where

7+ (u) = Z IP’{ sup X(t)>u},
(k’,j)EAi tEIk’j (u)

14



Y(u) = Z IP{ sup X(t) >u, sup X(t)>u}.
k), (k! 5" )EA—

(kg)# (K 5" k< (), tely,;(v) bl g (w)

Asymptotics for mF (u). To derive the upper bound, in light of Slepian inequlaity we have

IP’{ sup X (t) > u} < IP’{ sup X (t) > uk,j,s} < P{ sup Y (c(j)t) > Uk,j,e}

tEIkyj(’u,) te],w-(u) telk,j(u)

=P sup  Y(t) > upje o s
tec(j)lo,1(u)

where for any D C RN, ¢(§)D = {((c1 + &)'/?t1, (caj +)Y?ta, ..., (enj +)Y?ty) 1 t € D}.

In light of Lemma 5.1, we have

IP’{ sup X(t)>u}
tGIkyj(u)

N (5.8)
N-1
< M0, (1 + )28 [ [ (ei + &) Pmes(Dy)u” 7 W(up i) (1 + 0(1)),
=2
as u — oo, uniformly with respect to (k,j) € A*. Hence, as u — oo,
M N
ZIP’{ sup X(t) > u} < 7—[%([ (c1 4 ¢)'/28]) H cij+e) ) 2mes(D Z\I’ Uk je)-
k=0  (1€1k;(w) pals

Noting that, as u — oo,

MF MF

2 1/8
Z\I] Uk,]g) < \I/ Ze (I—e)hju|ku= /P S|Y
k=0 k=0

-1
< W(u) ((1 - g)l/vh}”um—l/ﬂs)

M+
/
v Ze%k (1— 5)1/vhl Y2/ — 1/ﬁ5|w ( _E)l/yh;/yug/v,l/ﬁs
k=0
1 _ el
< U(u) ((1 —6)1/7h]-/7u2/7 1/55) /0 et at,

we have

M
ZP{ sup X(t)>u}
k=0 tel;w-(u)

HY([0, (c1 +¢)Y/28
< 2,6’([ (C; ) ])F(l/v + 1)(1 l/yh I/WH +€ I/QmeS(Dj)u%—%\I,(u)
<HYT(L/y+ 1) (e +e) (1 —e) R 1/”1'[ &) 2mes(Dy)u "3 W (w),

15



as u — oo and S — co. Furthermore,

=Sl 00

j=1 k=0 tely, ;(u)
N—-1
T(1/y+1)(c1 +e)Y/? n_2 " 1/
N ¥ 1/2
< Hiyp - ubf T U(u) > H2 i +&)Y?mes(D;) (5.9)
j= i=

N
~HYT(1 )y + Ve 2u 3@(@/ .y b]hl/V(f)HcZ?/?(f)df,
€l 1i=21a:,0;

i=2
as u — 00,1 — 00,& — 0. Analogously, we can show that

N
7 (u) N%%ra/yﬂ)c}/%?—h(u)/ i WG T el ), (5.10)
AEFL olaq,bi]

=2

as u — 00,n — 00. Next we show that ¥(u) is negligible compared with 7~ (u) as u — oco. For

this, denote by

AT ={(k,j, K. 5"): (k,j),(K.j) € A",k <K,D;nDj =0},

AT ={(k, 4, K. 5) - (k,j), (K, j) e Ak <k <k+1,D;NDy #0,j #j'},
Ay ={(k, 5, K. 5) : (k,j),(K,j) e A", k+ 1<K ,D;nDj # 0},

Ay ={(k, g, K5 - (k) (K, 5) € AT K =k + 1,5 = '}

Then it follows that (u) < Z?Zl Yi(u), where

Yi(u) = Z P{ sup X(t) >wu, sup X(t)> u} .
€A

(k,j,k/,j/) telk,j(u) telk/’j/(u)

Upper bound for ¥1(u). Note that

Yi(u) < Z IP’{ (sup X(s)+ X(t) > QU} ,
s€ly,;

(kg 5" EAT b€l i(u)

and by (4.4) and (4.6), there exists 0 < § < 1 such that
Var (X (s) + X (1)) = 02(s) + 02(t) 4+ 20(s)20(t)r(s, 1) < 4 — 6.

It follows from the Borell-TIS inequality [2] that, as u — oo,

(Quf]E(supteE X(t)))2 (2u7]]§(supteE X(t)))2

Siw) < > e 26-0) < (WNTIM)2e” 2G-0) = o(n ™ (u)).(5.11)
(k;vjvk:,mj/)eA;
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Upper bound for Yo(u). For (k,j,k',j') € A5, without loss of generality, we assume that

ﬁ[ b—al) '+(k¢+1)(bi—ai)}’

y Qi
n

)

" H [aiJr ki (b —az)’aiJr (ki +1)(bi _ai)] .
=3

[ kg—i—l bg—a2) a2+(k2+2)(b2—a2):|

n n

Split Dj: into two parts:

1 — 1 — -
D [a2+ (k2 +1)(by — a2) 4 (k2 4+ 1)(be — a2) +b2 ag]

- 2
J n ’ n n2

n

Xﬂ [aﬁ (s —al)m+ (ki+1)(bi—ai)]’

1=3
k 1)(by — by — k 2)(bg —
D§g)_[a2+(2+)(2 a2)+22a2,a2+(2+)(2 a?)]
n n n
N
ki(b; — a; ki +1)(b; — a;
XH[ai+ ( a)7ai+( + 1)( a)]'
i3 n n

Then it follows that

IP’{ sup X(t) >wu, sup X(t)>u}

telk,j(u) te]k/yj/(u)

<P sup X(t)>wup+P< sup X(t)>wu, sup X(t)>u
1)) (u) t Tk, (w) eI (u)

with I](Cg., (u) = I (u) x DJ(.f),l =1,2. By Lemma 5.1 and (5.8), we have as u — oo,

mes(D(.,l))
P sup X(t)>up <CO—~L P sup X(t) >wup,
te1) () mes(Dj) | tery i (w)

where C' > 0 is a constant independent of &’ and j’. Using the fact that D; has at most 3V~1

neighbors and

mes(D(.,l))
lim sup ——2— =0,
n—oo 1§j/§nN—l meS(Dj/)

we have

mes(D(.,l))
E E J

sup  X(t) > u}

bk gnen; (el (k! J)EAG 1€1 31 (w)
(1)
mes(D>,
(k'3 EA— meS(Dj/) tEIk/,]»/(u)

= o(ﬁ_(u)), U — 00, — 00.
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Using the same argument as in (5.11), we have

Z P sup X(t)>wu, sup X({)>up=o(r (u), u— oo.

. 2
(kK )N t€ly j(u) te[}i/?j/(u)

Hence,

Upper bound for X3(u). Let

Ji(w) = [Jlau™"PS, (1 + 1)u™PS], with 1= (ly,...,In), Ej={l:D;()Ji(u) # 0},

]P’{ sup X(t) >wu, sup X(t)> u}
telk,j(u) tEIk/’j/(’U,)

<P sup X (t) > Uk, jes SUP X(t) > Uk! 5! e
tely, ;(u) t€lyy v (uw)

< Z PS sup X(f) > ugje, sup  X(¢) > up jr e
lEEj,lIEEJ/ te']kvl(u) te‘]k’,l’(u)

= Z P< sup Y(ufl/’gt)>uk,j,€, sup Y(uil/ﬁt)>uk/’j/7€ )
le=;,l'eEy t€ k(1) teJpr (1)

In view of (4.5), there exist C,Cy > 0 such that for v and n sufficiently large

N N
C1 > Isi — i < w?(1— Corr(X (u™"7s), X (u/P1))) < Co > Isi — il ™,
i=1 =1

and

Corr(X (u=5), X (u=1Pt)) > 1/2,
hold for all st € [a1u/?, a1u'/? + ((logu)/u)?/7u'/?] x UDijj,ﬂul/ﬁDj/,l <j <Nt
with ©!/#Dj, = {u!/#t : t € D;y}. Thus in light of Corollary 3.1 in [11], there exist C,C; > 0
such that for u and n sufficiently large, | € Z;,I' € 5, D;N Dy # 0, 0 < k, k' < M, and
K —k—1]>1,

P {SuptGJkyl(l) Y(u_l/ﬁt) > uk‘Jv‘f’ SuptEJk/ﬂl/(l) Y(u_l/ﬁt) > Uk/-ld'/’g}

< CSQNe_Clszﬂ(|kr_k—1|26+ul—zf||2ﬂ)\I,(Uk Kojde)s (5.12)

where

Uk k7 g jre = MIN(Uk j e, Ups jr )

18



We have

Ya(u) < JP’{ sup X >u, sup X(t) >u}
(kjk jyens  \PEDks tely ji(w)

< Z IP’{ sup X(t) >wu, sup X(t)>u}
1,0, D, #0

(k.J)EA™ |~k — t€l,j(u) t€l s (u)

< Z 2

(k.J)EA= [k—K —1|>1,D; (| D;i A0 €2,V €E

P< sup Y(u_l/ﬁt)>uk,j,a, sup Y(U_l/ﬁt)>“k’dhs :
tEJk,l(l) tEJklyl/(l)

For (k,j) € A™, it follows from (5.12) that

Z Z IP’{ sup X (u”Pt) > Uk je, SUP X(u0t) > Uk’,j’,s}
lk—k'—1|>1,D; D #D I1€E; ' €Ey tedy (1) te gy (1)
< Z Z CSzNe*CISwUk/*’ﬂ*llzﬁﬂ\l#’\\w)\II(Uk; K j'e)

|k—k'=1|>1,D; N Dy #DIEE; V€
— (4528
< Z CgS2N€ CaS \Il(uk’jje)

le:j
528
< (582N 1y CaS U(ugje), u— 00,

where C3 and Cy are two positive constants. Hence

Z 0352N 1 —C4S l:[l(uk,j,e)
(k,j)EA—
= (03 §2N 1= CaS Z u%\I’(uk]a) =o(r (u)), u—o00,5— o0.
(k,j)eA—

Upper bound for ¥4(u). Observe that

IP’{ sup X(t) >wu, sup X(t)>u}

tEIk!j(’u) t€]k+1,j(u)

—IP’{ sup X(t)>u}—IP’{ sup X(t)>u}—]P’{ sup X(t)>u}.
t€lp,5(u) U Tp41,5(u) €Ty ;(u)

te[k+1,j (u)
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Thus in light of (5.9) and (5.10), it follows that

Sa(u) < Y IP’{ sup X (t) >wu, sup X(t)>u}
(k,j) €A~ tely,j(u) t€lpq1,5(u)

< Z P{ sup X(t)>u} Z IP{ sup X(t)>u}
(k.j)eA~ t€ly,;(w) U Ipt1,5(u) (bg)eA- tel (u)

— Z IP’{ sup X(t)>u}
(k.j)EA- t€lpt1,;(u)

=211 (u)(1 +0(1)) — 27~ (u)(1 + o(1)) = o(7 ™ (u)), u— 00,8 — .
Therefore we conclude that
Y(u)=o(r"(u)), u— 00,5 — 00,
together with (5.7), (5.9) and (5.10), yielding that as u — oo,
P { sup X (t) > } HYT(1/y + ey u 3\1/@)[ h(d) ﬂc,}/z(f)df
tEE, elliZz[aibil '

Inserting the above asymptotics, (5.3) and (5.4) into (5.2) establishes the claim.
(ii) Case 3 =~/2. It follows that

7y (u) — Es(u) <P { sup X (t) > u} < 7y (u) + 7 (u), (5.13)
teEy
where
nN-1 M;r niN-1
m (u) = P sup X(t)>uyp, wf(u)= P sup X(t) > u,p,
1 1
j=1 tGI()’j(u) k=1 j=1 te[,w‘(u)

Y5(u) = Z IP’{ sup X(t) >wu, sup X(t)> u} ,

1§j<j/§’l’bN71 tEonj (u) tGIO,j’(u)
with I ; and M- being defined in (5.5) and (5.6).
Asymptotics of my (u). By (4.4) and Slepain inequality,

nN— N-1
X() ; Y (c(4)t)
7 (u) < sup = >up < PS sup ————— >u
a Z {tGIOJ(U) L+ hjlts — 1] ]gl telo ;(w) 1+ jltr — 87

=1

Z Y(t) >u
tGC(J Ioj(u 1+h (Cl+€) ’y/2|tl_t*|7 ,

where h; and ) are given in (5.6). In light of Lemma 5.1 and Lemma 5.2, we have that
N
o ( Z Mh jleite)™ v/2|t1h[ 0, (c1 +2)'/29] H(Ci,j +5)1/2mes(Dj)u%\I/(u)
= N = (5.14)
~ / N Mg, OB \esthydin T w(w),
te]l;=olaibi] =2
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as u — 00,1 — 00, — 0. Similarly, we can show that

_ clﬂh \tm L
m (u) > t)dtu 7 W(u)(1+o0(1)), u— 00,8 — 0.
fEH«fV:Q[“ivb]

Hence

ﬂf(u)w/fenN[ . lth\/ dtuNT U(u), u— 00,8 — 0.
i=21%,

Upper bound for 7 (u). In view of (5.8), we have, as u — oo,

Maj— niN-1
Fu) < Z Z IP’{ sup X(t) > uk,j,g}

k=1 j=1 tEIkJ(u)
M+ N-1 N
N—-1
< Z Z 7—[25 (c1 +€)1/28]) H j+e 1/2mes(D])uT\I/(ukJ7€).
k=1 j=1 =2
Note that as u — o0,
M MF
D (g o) ~ U(u) Yy e PmMIST < (u)em T
k=1 k=1
where C > 0 is a positive constant. It follows that
-1
HYL([0, (¢1 +€)/28]) X _
7w (u) < Se” " Z 25(10,( IS ) D H(Ci’j +5)1/2mes(Dj)u%\I/(u) (5.15)
Jj=1 i=2 .

=o(m; (u)), u— 00,5 — 0.

Upper bound for X5(u). Let

As ={(.j):1<j<j <nV"',D;(\Dy =0},
As={(j,j"):1<j<j <n"1,D;(\Dy #0}.
Then
Y5(u) < Zg(u) + Xr(u),
with

Ez(u) = Z P sup X(t) >u, sup X(t) >uyp, i=6,7.
(3" EN_1 t€lo,;(u) tely ;i (u)

Using same arguments as in those to get the upper bounds of ¥;(u) and ¥a(u), we can show

that ¥;(u) = o(my (u)),7 = 6,7, as u — oo and n — oco. Hence

C - SN=2
IP’{supX(t)>u}~/ 25 Rt wH\/ t)dtu U U(u), u— oo,
feniig[am

teEEy,
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together with (5.2)-(5.4), establishing the claim.
(iii) Case 3 > ~/2. Observe that

ma(u) <P { sup X (t) > u} < 7 (u) + 7 (u),

teB,
with 71 (u) and 7} (u) defined in (5.13) and
WQ(U)ZP{ sup X (t5,1) >u}.
tAGHZNZQ[(Zi,bi]

Upper bound of 7 (u). By (4.4) and (5.14) , it follows that for any ¢,e > 0 and sufficiently

large S1, as u — 0o, n — 00,

n X(t
< P sup % > u
1 tely, j(u) 1+ q‘tl - t1|

J]=

—B
~ My 0, g H Bdfu"7 W(u)

eHz alaibi] 5o

P 10 51 [0, 511 N —  ae
< (142 ([ ]1 [0, 51] )/H [ }H ci(B)diu 7 W (w).
€ a;,b;

Sy bil =2
By the fact that
P (0, 8] x [0, S48 HY({0} x [0, 51]V 1
o Py ([0, 5] x[0,5]" ) Hap({0} < [0,5]" ) )
lim lim T = lim ~ 1 =My
S1—00 g—0 Sl S1—00 Sl

we have that as u — 0o, n — 00, ¢ = 00, §] — o0 and € — 0,

R (o
i=21%>

Using the same argument as in (5.15), we have that
7 (u) = o(my), u— 00,8 — o0

Asymptotics of m(u). Note that X (¢%,1) is a Gaussian random field with unit variance and

correlation function satisfying

1-— X(#,1), X(t1,8
hm Sup Corr( ( ]_’t)7 (t]_’S)) _ 1 — 07

. ) ) B
020 st 3 FeTY., las by, [i— 8 <6 (Zf\iz ci(B)(t: — Si)2>

and

N
Corr(X (t7,£), X(t7,8)) < 1, #3545 € []lai,bi].

22



By Theorem 7.1 in [24], we have

N
mo(u) ~ H%_lf H VeddiuF U(u), u— .

telT plaib j—o

Therefore, we conclude that

N
. N-1
P< sup X (¢ >u}~7—[N_1/ c(t)dtu 7 U(u), u— oo,
{sup x00 5 e, It v

vl =2
together with (5.2)-(5.4), establishing the claim. This completes the proof. O
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