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Machine-learning models have demonstrated great success in
learning complex patterns that enable them to make predic-
tions about unobserved data. In addition to using models for
prediction, the ability to interpret what a model has learned
is receiving an increasing amount of attention. However, this
increased focus has led to considerable confusion about the
notion of interpretability. In particular, it is unclear how the wide
array of proposed interpretation methods are related and what
common concepts can be used to evaluate them. We aim to
address these concerns by defining interpretability in the context
of machine learning and introducing the predictive, descriptive,
relevant (PDR) framework for discussing interpretations. The PDR
framework provides 3 overarching desiderata for evaluation:
predictive accuracy, descriptive accuracy, and relevancy, with rel-
evancy judged relative to a human audience. Moreover, to help
manage the deluge of interpretation methods, we introduce a
categorization of existing techniques into model-based and post
hoc categories, with subgroups including sparsity, modularity,
and simulatability. To demonstrate how practitioners can use the
PDR framework to evaluate and understand interpretations, we
provide numerous real-world examples. These examples high-
light the often underappreciated role played by human audiences
in discussions of interpretability. Finally, based on our frame-
work, we discuss limitations of existing methods and directions
for future work. We hope that this work will provide a com-
mon vocabulary that will make it easier for both practitioners
and researchers to discuss and choose from the full range of
interpretation methods.
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Machine learning (ML) has recently received considerable
attention for its ability to accurately predict a wide variety

of complex phenomena. However, there is a growing realization
that, in addition to predictions, ML models are capable of pro-
ducing knowledge about domain relationships contained in data,
often referred to as interpretations. These interpretations have
found uses in their own right, e.g., medicine (1), policymaking
(2), and science (3, 4), as well as in auditing the predictions them-
selves in response to issues such as regulatory pressure (5) and
fairness (6). In these domains, interpretations have been shown
to help with evaluating a learned model, providing information
to repair a model (if needed), and building trust with domain
experts (7).

In the absence of a well-formed definition of interpretability,
a broad range of methods with a correspondingly broad range
of outputs (e.g., visualizations, natural language, mathematical
equations) have been labeled as interpretation. This has led to
considerable confusion about the notion of interpretability. In
particular, it is unclear what it means to interpret something,
what common threads exist among disparate methods, and how
to select an interpretation method for a particular problem/
audience.

In this paper, we attempt to address these concerns. To do so,
we first define interpretability in the context of machine learning
and place it within a generic data science life cycle. This allows us
to distinguish between 2 main classes of interpretation methods:

model based∗ and post hoc. We then introduce the predictive,
descriptive, relevant (PDR) framework, consisting of 3 desider-
ata for evaluating and constructing interpretations: predictive
accuracy, descriptive accuracy, and relevancy, where relevancy is
judged by a human audience. Using these terms, we categorize
a broad range of existing methods, all grounded in real-world
examples.† In doing so, we provide a common vocabulary for
researchers and practitioners to use in evaluating and selecting
interpretation methods. We then show how our work enables a
clearer discussion of open problems for future research.

1. Defining Interpretable Machine Learning
On its own, interpretability is a broad, poorly defined concept.
Taken to its full generality, to interpret data means to extract
information (of some form) from them. The set of methods
falling under this umbrella spans everything from designing an
initial experiment to visualizing final results. In this overly gen-
eral form, interpretability is not substantially different from the
established concepts of data science and applied statistics.

Instead of general interpretability, we focus on the use of
interpretations to produce insight from ML models as part
of the larger data–science life cycle. We define interpretable
machine learning as the extraction of relevant knowledge from
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a machine-learning model concerning relationships either con-
tained in data or learned by the model. Here, we view knowledge
as being relevant if it provides insight for a particular audience
into a chosen problem. These insights are often used to guide
communication, actions, and discovery. They can be produced
in formats such as visualizations, natural language, or mathe-
matical equations, depending on the context and audience. For
instance, a doctor who must diagnose a single patient will want
qualitatively different information than an engineer determining
whether an image classifier is discriminating by race. What we
define as interpretable ML is sometimes referred to as explain-
able ML, intelligible ML, or transparent ML. We include these
headings under our definition.

2. Background
Interpretability is a quickly growing field in machine learning,
and there have been multiple works examining various aspects
of interpretations (sometimes under the heading, explainable
AI). One line of work focuses on providing an overview of dif-
ferent interpretation methods with a strong emphasis on post
hoc interpretations of deep learning models (8, 9), sometimes
pointing out similarities between various methods (10, 11). Other
work has focused on the narrower problem of evaluating inter-
pretations (12, 13) and what properties they should satisfy (14).
These previous works touch on different subsets of interpretabil-
ity, but do not address interpretable machine learning as a whole,
and give limited guidance on how interpretability can actually
be used in data–science life cycles. We aim to do so by provid-
ing a framework and vocabulary to fully capture interpretable
machine learning, its benefits, and its applications to concrete
data problems.

Interpretability also plays a role in other research areas. For
example, interpretability is a major topic when considering bias
and fairness in ML models (15–17). In psychology, the general
notions of interpretability and explanations have been studied at
a more abstract level (18, 19), providing relevant conceptual per-
spectives. Additionally, we comment on 2 related areas that are
distinct but closely related to interpretability: causal inference
and stability.

Causal Inference. Causal inference (20) is a subject from statis-
tics which is related, but distinct, from interpretable machine
learning. According to a prevalent view, causal inference meth-
ods focus solely on extracting causal relationships from data,
i.e., statements that altering one variable will cause a change
in another. In contrast, interpretable ML, and most other sta-
tistical techniques, is used to describe general relationships.
Whether or not these relationships are causal cannot be verified
through interpretable ML techniques, as they are not designed
to distinguish between causal and noncausal effects.

In some instances, researchers use both interpretable machine
learning and causal inference in a single analysis (21). One form
of this is where the noncausal relationships extracted by inter-
pretable ML are used to suggest potential causal relationships.
These relationships can then be further analyzed using causal
inference methods and fully validated through experimental
studies.

Stability. Stability, as a generalization of robustness in statistics,
is a concept that applies throughout the entire data–science life
cycle, including interpretable ML. The stability principle requires
that each step in the life cycle is stable with respect to appropri-
ate perturbations, such as small changes in the model or data.
Recently, stability has been shown to be important in applied
statistical problems, for example when trying to make conclu-
sions about a scientific problem (22) and in more general settings
(23). Stability can be helpful in evaluating interpretation meth-
ods and is a prerequisite for trustworthy interpretations. That

is, one should not interpret parts of a model which are not sta-
ble to appropriate perturbations to the model and data. This is
demonstrated through examples in the text (21, 24, 25).

3. Interpretation in the Data–Science Life Cycle
Before discussing interpretation methods, we first place the
process of interpretable ML within the broader data–science
life cycle. Fig. 1 presents a deliberately general description of
this process, intended to capture most data-science problems.
What is generally referred to as interpretation largely occurs
in the modeling and post hoc analysis stages, with the prob-
lem, data, and audience providing the context required to choose
appropriate methods.

Problem, Data, and Audience. At the beginning of the cycle, a
data–science practitioner defines a domain problem that the
practitioner wishes to understand using data. This problem can
take many forms. In a scientific setting, the practitioner may be
interested in relationships contained in the data, such as how
brain cells in a particular area of the visual system relate to visual
stimuli (26). In industrial settings, the problem often concerns
the predictive performance or other qualities of a model, such as
how to assign credit scores with high accuracy (27) or do so fairly
with respect to gender and race (17). The nature of the prob-
lem plays a role in interpretability, as the relevant context and
audience are essential in determining what methods to use.

After choosing a domain problem, the practitioner collects
data to study it. Aspects of the data-collection process can affect
the interpretation pipeline. Notably, biases in the data (i.e.,
mismatches between the collected data and the population of
interest) will manifest themselves in the model, restricting one’s
ability to generalize interpretations generated from the data to
the population of interest.

Model. Based on the chosen problem and collected data, the
practitioner then constructs a predictive model. At this stage,
the practitioner processes, cleans, and visualizes data; extracts
features; selects a model (or several models); and fits it. Inter-
pretability considerations often come into play in this step
related to the choice between simpler, easier to interpret mod-
els and more complex, black-box models, which may fit the data
better. The model’s ability to fit the data is measured through
predictive accuracy.

Post Hoc Analysis. Having fitted a model (or models), the practi-
tioner then analyzes it for answers to the original question. The
process of analyzing the model often involves using interpretabil-
ity methods to extract various (stable) forms of information from
the model. The extracted information can then be analyzed and
displayed using standard data analysis methods, such as scat-
ter plots and histograms. The ability of the interpretations to
properly describe what the model has learned is denoted by
descriptive accuracy.

Iterate. If sufficient answers are uncovered after the post
hoc analysis stage, the practitioner finishes. Otherwise, the

Fig. 1. Overview of different stages (black text) in a data–science life cycle
where interpretability is important. Main stages are discussed in Section 3
and accuracy (blue text) is described in Section 4.
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practitioner updates something in the chain (problem, data,
and/or model) and the iterate (28). Note that the practitioner
can terminate the loop at any stage, depending on the context of
the problem.

Interpretation Methods within the PDR Framework. In the frame-
work described above, our definition of interpretable ML focuses
on methods in either the modeling or post hoc analysis stages.
We call interpretability in the modeling stage model-based inter-
pretability (Section 5). This part of interpretability is focused
upon the construction of models that readily provide insight
into the relationships they have learned. To provide this insight,
model-based interpretability techniques must generally use sim-
pler models, which can result in lower predictive accuracy. Con-
sequently, model-based interpretability is best used when the
underlying relationship is sufficiently simple that model-based
techniques can achieve reasonable predictive accuracy or when
predictive accuracy is not a concern.

We call interpretability in the post hoc analysis stage post
hoc interpretability (Section 6). In contrast to model-based inter-
pretability, which alters the model to allow for interpretation,
post hoc interpretation methods take a trained model as input
and extract information about what relationships the model has
learned. They are most helpful when the data are especially com-
plex, and practitioners need to train a black-box model to achieve
reasonable predictive accuracy.

After discussing desiderata for interpretation methods, we
investigate these 2 forms of interpretations in detail and discuss
associated methods.

4. The PDR Desiderata for Interpretations
In general, it is unclear how to select and evaluate interpreta-
tion methods for a particular problem and audience. To help
guide this process, we introduce the PDR framework, consisting
of 3 desiderata that should be used to select interpretation meth-
ods for a particular problem: predictive accuracy, descriptive
accuracy, and relevancy.

A. Accuracy. The information produced by an interpretation
method should be faithful to the underlying process the practi-
tioner is trying to understand. In the context of ML, there are 2
areas where errors can arise: when approximating the underlying
data relationships with a model (predictive accuracy) and when
approximating what the model has learned using an interpreta-
tion method (descriptive accuracy). For an interpretation to be
trustworthy, one should try to maximize both of the accuracies. In
cases where either accuracy is not very high, the resulting inter-
pretations may still be useful. However, it is especially important
to check their trustworthiness through external validation, such
as running an additional experiment.
A.1. Predictive accuracy. The first source of error occurs during
the model stage, when an ML model is constructed. If the model
learns a poor approximation of the underlying relationships in
the data, any information extracted from the model is unlikely to
be accurate. Evaluating the quality of a model’s fit has been well
studied in standard supervised ML frameworks, through mea-
sures such as test-set accuracy. In the context of interpretation,
we describe this error as predictive accuracy.

Note that in problems involving interpretability, one must
appropriately measure predictive accuracy. In particular, the
data used to check for predictive accuracy must resemble the
population of interest. For instance, evaluating on patients from
one hospital may not generalize to others. Moreover, problems
often require a notion of predictive accuracy that goes beyond
just average accuracy. The distribution of predictions matters.
For instance, it could be problematic if the prediction error is
much higher for a particular class. Finally, the predictive accu-
racy should be stable with respect to reasonable data and model

perturbations. One should not trust interpretations from a model
which changes dramatically when trained on a slightly smaller
subset of the data.
A.2. Descriptive accuracy. The second source of error occurs dur-
ing the post hoc analysis stage, when interpretation methods are
used to analyze a fitted model. Oftentimes, interpretations pro-
vide an imperfect representation of the relationships learned by a
model. This is especially challenging for complex black-box mod-
els such as neural networks, which store nonlinear relationships
between variables in nonobvious forms.

Definition: We define descriptive accuracy, in the context of
interpretation, as the degree to which an interpretation method
objectively captures the relationships learned by machine-
learning models.
A.3. A common conflict: predictive vs. descriptive accuracy. In
selecting what model to use, practitioners are sometimes faced
with a trade-off between predictive and descriptive accuracy.
On the one hand, the simplicity of model-based interpreta-
tion methods yields consistently high descriptive accuracy, but
can sometimes result in lower predictive accuracy on complex
datasets. On the other hand, in complex settings such as image
analysis, complicated models can provide high predictive accu-
racy, but are harder to analyze, resulting in a lower descriptive
accuracy.

B. Relevancy. When selecting an interpretation method, it is not
enough for the method to have high accuracy—the extracted
information must also be relevant. For example, in the context of
genomics, a patient, doctor, biologist, and statistician may each
want different (yet consistent) interpretations from the same
model. The context provided by the problem and data stages in
Fig. 1 guides what kinds of relationships a practitioner is inter-
ested in learning about and by extension the methods that should
be used.

Definition: We define an interpretation to be relevant if it
provides insight for a particular audience into a chosen domain
problem.

Relevancy often plays a key role in determining the trade-off
between predictive and descriptive accuracy. Depending on the
context of the problem at hand, a practitioner may choose to
focus on one over the other. For instance, when interpretability
is used to audit a model’s predictions, such as to enforce fair-
ness, descriptive accuracy can be more important. In contrast,
interpretability can also be used solely as a tool to increase the
predictive accuracy of a model, for instance, through improved
feature engineering.

Having outlined the main desiderata for interpretation meth-
ods, we now discuss how they link to interpretation in the
modeling and post hoc analysis stages in the data–science life
cycle. Fig. 2 draws parallels between our desiderata for interpre-
tation techniques introduced in Section 4 and our categorization
of methods in Sections 5 and 6. In particular, both post hoc and
model-based methods aim to increase descriptive accuracy, but
only the model-based method affects the predictive accuracy.
Not shown is relevancy, which determines what type of output
is helpful for a particular problem and audience.

5. Model-Based Interpretability
We now discuss how interpretability considerations come into
play in the modeling stage of the data–science life cycle (Fig. 1).
At this stage, the practitioner constructs an ML model from
the collected data. We define model-based interpretability as
the construction of models that readily provide insight into the
relationships they have learned. Different model-based inter-
pretability methods provide different ways of increasing descrip-
tive accuracy by constructing models which are easier to under-
stand, sometimes resulting in lower predictive accuracy. The
main challenge of model-based interpretability is to come up
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Fig. 2. Impact of interpretability methods on descriptive and predictive
accuracies. Model-based interpretability (Section 5) involves using a sim-
pler model to fit the data which can negatively affect predictive accuracy,
but yields higher descriptive accuracy. Post hoc interpretability (Section 6)
involves using methods to extract information from a trained model (with
no effect on predictive accuracy). These correspond to the model and post
hoc stages in Fig. 1.

with models that are simple enough to be easily understood by
the audience, while maintaining high predictive accuracy.

In selecting a model to solve a domain problem, the practi-
tioner must consider the entirety of the PDR framework. The
first desideratum to consider is predictive accuracy. If the con-
structed model does not accurately represent the underlying
problem, any subsequent analysis will be suspect (29, 30). Sec-
ond, the main purpose of model-based interpretation methods
is to increase descriptive accuracy. Finally, the relevancy of a
model’s output must be considered and is determined by the con-
text of the problem, data, and audience. We now discuss some
common types of model-based interpretability methods.

A. Sparsity. When the practitioner believes that the underlying
relationship in question is based upon a sparse set of signals,
the practitioner can impose sparsity on the model by limiting the
number of nonzero parameters. In this section, we focus on lin-
ear models, but sparsity can be helpful more generally. When the
number of nonzero parameters is sufficiently small, a practitioner
can interpret the variables corresponding to those parameters as
being meaningfully related to the outcome in question and can
also interpret the magnitude and direction of the parameters.
However, before one can interpret a sparse parameter set, one
should check for stability of the parameters. For example, if the
signs/magnitudes of parameters or the predictions change due to
small perturbations in the dataset, the coefficients should not be
interpreted (31).

When the practitioner is able to correctly incorporate sparsity
into the model, it can improve all 3 interpretation desiderata. By

reducing the number of parameters to analyze, sparse models
can be easier to understand, yielding higher descriptive accu-
racy. Moreover, incorporating prior information in the form of
sparsity into a sparse problem can help a model achieve higher
predictive accuracy and yield more relevant insights. Note that
incorporating sparsity can often be quite difficult, as it requires
understanding the data-specific structure of the sparsity and how
it can be modeled.

Methods for obtaining sparsity often utilize a penalty on a
loss function, such as LASSO (32) and sparse coding (33),
or on model selection criteria such as AIC or BIC (34, 35).
Many search-based methods have been developed to find sparse
solutions. These methods search through the space of nonzero
coefficients using classical subset-selection methods [e.g., orthog-
onal matching pursuit (36)]. Model sparsity is often useful for
high-dimensional problems, where the goal is to identify key fea-
tures for further analysis. For instance, sparsity penalties have
been incorporated into random forests to identify a sparse subset
of important features (37).

In the following example from genomics, sparsity is used
to increase the relevancy of an interpretation by reducing the
number of potential interactions to a manageable level.

Example (Ex): Identifying interactions among regulatory fac-
tors or biomolecules is an important question in genomics.
Typical genomic datasets include thousands or even millions
of features, many of which are active in specific cellular or
developmental contexts. The massive scale of such datasets
makes interpretation a considerable challenge. Sparsity penalties
are frequently used to make the data manageable for statisti-
cians and their collaborating biologists to discuss and identify
promising candidates for further experiments.

For instance, one recent study (24) uses a biclustering
approach based on sparse canonical correlation analysis (SCCA)
to identify interactions among genomic expression features in
Drosophila melanogaster (fruit flies) and Caenorhabditis ele-
gans (roundworms). Sparsity penalties enable key interactions
among features to be summarized in heatmaps which contain
few enough variables for a human to analyze. The authors of
this study also perform stability analysis, finding their model
to be robust to different initializations and perturbations to
hyperparameters.

B. Simulatability. A model is said to be simulatable if a human
(for whom the interpretation is intended) is able to internally
simulate and reason about its entire decision-making process
(i.e., how a trained model produces an output for an arbitrary
input). This is a very strong constraint to place on a model and
can generally be done only when the number of features is low
and the underlying relationship is simple. Decision trees (38)
are often cited as a simulatable model, due to their hierarchical
decision-making process. Another example is lists of rules (39,
40), which can easily be simulated. However, it is important to
note that these models cease to be simulatable when they become
large. In particular, as the complexity of the model increases
(number of nodes in a decision tree or the number of rules in
a list), it becomes increasingly difficult for a human to internally
simulate.

Due to their simplicity, simulatable models have very high
descriptive accuracy. When they can also provide reasonable
predictive accuracy, they can be very effective. In the following
example, a simulatable model is able to produce high predictive
accuracy, while maintaining the high levels of descriptive accu-
racy and relevancy normally attained by small-scale rules-based
models.

Ex: In medical practice, when a patient has been diagnosed
with atrial fibrillation, caregivers often want to predict the
risk that the particular patient will have a stroke in the next
year. Given the potential ramifications of medical decisions, it

22074 | www.pnas.org/cgi/doi/10.1073/pnas.1900654116 Murdoch et al.
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is important that these predictions are not only accurate, but
interpretable to both the caregivers and patients.

To make the prediction, ref. 40 uses data from 12,586 patients
detailing their age, gender, history of drugs and conditions, and
whether they had a stroke within 1 y of diagnosis. To construct a
model that has high predictive and descriptive accuracy, ref. 40
introduces a method for learning lists of if–then rules that are
predictive of 1-y stroke risk. The resulting classifier, displayed
in SI Appendix, Fig. S1, requires only 7 if–then statements to
achieve competitive accuracy and is easy for even nontechnical
practitioners to quickly understand.

Although this model is able to achieve high predictive and
descriptive accuracy, it is important to note that the lack of
stability in these types of models can limit their uses. If the
practitioner’s intent is to simply understand a model that is ulti-
mately used for predictions, these types of models can be very
effective. However, if the practitioner wants to produce knowl-
edge about the underlying dataset, the fact that the learned rules
can change significantly when the model is retrained limits their
generalizability.

C. Modularity. We define an ML model to be modular if a
meaningful portion(s) of its prediction-making process can be
interpreted independently. A wide array of models satisfies mod-
ularity to different degrees. Generalized additive models (41)
force the relationship between variables in the model to be addi-
tive. In deep learning, specific methods such as attention (42)
and modular network architectures (43) provide limited insight
into a network’s inner workings. Probabilistic models can enforce
modularity by specifying a conditional independence structure
which makes it easier to reason about different parts of a model
independently (44).

The following example uses modularity to produce relevant
interpretations for use in diagnosing biases in training data.

Ex: When prioritizing patient care for patients with pneumo-
nia in a hospital, one possible method is to predict the likelihood
of death within 60 d and focus on the patients with a higher mor-
tality risk. Given the potential life and death consequences, being
able to explain the reasons for hospitalizing a patient or not is
very important.

A recent study (7) uses a dataset of 14,199 patients with pneu-
monia, with 46 features including demographics (e.g., age and
gender), simple physical measurements (e.g., heart rate, blood
pressure), and laboratory tests (e.g., white blood cell count,
blood urea nitrogen). To predict mortality risk, the researchers
use a generalized additive model with pairwise interactions, dis-
played below. The univariate and pairwise terms (fj (xj ) and
fij (xi , xj )) can be individually interpreted in the form of curves
and heatmaps, respectively:

g(E[y ])=β0 +
∑
j

fj (xj )+
∑
i 6=j

fij (xi , xj ). [1]

By inspecting the individual modules, the researchers found
a number of counterintuitive properties of their model. For
instance, the fitted model learned that having asthma is asso-
ciated with a lower risk of dying from pneumonia. In reality,
the opposite is true—patients with asthma are known to have
a higher risk of death from pneumonia. Because of this, in the
collected data all patients with asthma received aggressive care,
which was fortunately effective at reducing their risk of mortality
relative to the general population.

In this instance, if the model were used without having been
interpreted, pneumonia patients with asthma would have been
deprioritized for hospitalization. Consequently, the use of ML
would increase their likelihood of dying. Fortunately, the use of
an interpretable model enabled the researchers to identify and

correct errors like this one, better ensuring that the model could
be trusted in the real world.

D. Domain-Based Feature Engineering. While the type of model
is important in producing a useful interpretation, so are the
features that are used as inputs to the model. Having more
informative features makes the relationship that needs to be
learned by the model simpler, allowing one to use other model-
based interpretability methods. Moreover, when the features
have more meaning to a particular audience, they become easier
to interpret.

In many individual domains, expert knowledge can be useful
in constructing feature sets that are useful for building predic-
tive models. The particular algorithms used to extract features
are generally domain specific, relying both on the practitioner’s
existing domain expertise and on insights drawn from the data
through exploratory data analysis. For example, in natural lan-
guage processing, documents are embedded into vectors using
tf-idf (45). Moreover, using ratios, such as the body mass index
(BMI), instead of raw features can greatly simplify the relation-
ship a model learns, resulting in improved interpretations. In
the example below, domain knowledge about cloud coverage is
exploited to design 3 simple features that increase predictive
accuracy while maintaining the high descriptive accuracy of a
simple predictive model.

Ex: When modeling global climate patterns, an important
quantity is the amount and location of arctic cloud coverage. Due
to the complex, layered nature of climate models, it is beneficial
to have simple, easily auditable, cloud coverage models for use
by downstream climate scientists.

In ref. 46, the authors use an unlabeled dataset of arc-
tic satellite imagery to build a model predicting whether each
pixel in an image contains clouds or not. Given the qualita-
tive similarity between ice and clouds, this is a challenging
prediction problem. By conducting exploratory data analysis
and using domain knowledge through interactions with climate
scientists, the authors identify 3 simple features that are suf-
ficient to cluster whether or not images contain clouds. Using
these 3 features as input to quadratic discriminant analysis, they
achieve both high predictive accuracy and transparency when
compared with expert labels (which were not used in developing
the model).

E. Model-Based Feature Engineering. There are a variety of auto-
matic approaches for constructing interpretable features. Two
examples are unsupervised learning and dimensionality reduc-
tion. Unsupervised methods, such as clustering, matrix factor-
ization, and dictionary learning, aim to process unlabeled data
and output a description of their structure. These structures
often shed insight into relationships contained within the data
and can be useful in building predictive models. Dimensional-
ity reduction focuses on finding a representation of the data
which is lower dimensional than the original data. Methods such
as principal components analysis (47), independent components
analysis (48), and canonical correlation analysis (49) can often
identify a few interpretable dimensions, which can then be used
as input to a model or to provide insights in their own right.
Using fewer inputs can not only improve descriptive accuracy,
but also increase predictive accuracy by reducing the number of
parameters to fit. In the following example, unsupervised learn-
ing is used to represent images in a low-dimensional, genetically
meaningful, space.

Ex: Heterogeneity is an important consideration in genomic
problems and associated data. In many cases, regulatory fac-
tors or biomolecules can play a specific role in one context,
such as a particular cell type or developmental stage, and
have a very different role in other contexts. Thus, it is impor-
tant to understand the “local” behavior of regulatory factors
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or biomolecules. A recent study (50) uses unsupervised learn-
ing to learn spatial patterns of gene expression in Drosophila
(fruit fly) embryos. In particular, it uses stability-driven non-
negative matrix factorization to decompose images of complex
spatial gene expression patterns into a library of 21 “principal
patterns,” which can be viewed as preorgan regions. This decom-
position, which is interpretable to biologists, allows the study of
gene–gene interactions in preorgan regions of the developing
embryo.

6. Post Hoc Interpretability
We now discuss how interpretability considerations come into
play in the post hoc analysis stage of the data–science life cycle.
At this stage, the practitioner analyzes a trained model to pro-
vide insights into the learned relationships. This is particularly
challenging when the model’s parameters do not clearly show
what relationships the model has learned. To aid in this process,
a variety of post hoc interpretability methods have been devel-
oped to provide insight into what a trained model has learned,
without changing the underlying model. These methods are par-
ticularly important for settings where the collected data are high
dimensional and complex, such as with image data. In these
settings, interpretation methods must deal with the challenge
that individual features are not semantically meaningful, mak-
ing the problem more challenging than on datasets with more
meaningful features. Once the information has been extracted
from the fitted model, it can be analyzed using standard,
exploratory data analysis techniques, such as scatter plots and
histograms.

When conducting post hoc analysis, the model has already
been trained, so its predictive accuracy is fixed. Thus, under
the PDR framework, a researcher must consider only descrip-
tive accuracy and relevancy (relative to a particular audi-
ence). Improving on each of these criteria are areas of active
research.

Most widely useful post hoc interpretation methods fall into
2 main categories: prediction-level and dataset-level interpreta-
tions, which are sometimes referred to as local and global inter-
pretations, respectively. Prediction-level interpretation methods
focus on explaining individual predictions made by models,
such as what features and/or interactions led to the particular
prediction. Dataset-level approaches focus on the global rela-
tionships the model has learned, such as what visual patterns are
associated with a predicted response. These 2 categories have
much in common (in fact, dataset-level approaches often yield
information at the prediction level), but we discuss them sepa-
rately, as methods at different levels are meaningfully different.
Prediction-level insights can provide fine-grained information
about individual predictions, but often fail to yield dataset-level
insights when it is not feasible to examine a sufficient amount of
prediction-level interpretations.

A. Dataset-Level Interpretation. When practitioners are interested
in more general relationships learned by a model, e.g., relation-
ships that are relevant for a particular class of responses, they
use dataset-level interpretations. For instance, this form of inter-
pretation can be useful when it is not feasible for a practitioner
to look at a large number of local predictions. In addition to the
areas below, we note that there are other emerging techniques,
such as model distillation (51, 52).
A.1. Interaction and feature importances. Feature importance
scores, at the dataset level, try to capture how much individ-
ual features contribute, across a dataset, to a prediction. These
scores can provide insights into what features the model has
identified as important for which outcomes and their relative
importance. Methods have been developed to score individual
features in many models including neural networks (53), random
forests, (54, 55), and generic classifiers (56).

In addition to feature importances, methods exist to extract
important interactions between features. Interactions are impor-
tant as ML models are often highly nonlinear and learn complex
interactions between features. Methods exist to extract interac-
tions from many ML models, including random forests (21, 57,
58) and neural networks (59, 60). In the below example, the
descriptive accuracy of random forests is increased by extracting
Boolean interactions (a problem-relevant form of interpretation)
from a trained model.

Ex: High-order interactions among regulatory factors or
genes play an important role in defining cell type-specific behav-
ior in biological systems. Thus, extracting such interactions from
genomic data is an important problem in biology.

A previous line of work considers the problem of searching for
biological interactions associated with important biological pro-
cesses (21, 57). To identify candidate biological interactions, the
authors train a series of iteratively reweighted random forests
(RFs) and search for stable combinations of features that fre-
quently co-occur along the predictive RF decision paths. This
approach takes a step beyond evaluating the importance of indi-
vidual features in an RF, providing a more complete description
of how features influence predicted responses. By interpreting
the interactions used in RFs, the researchers identified gene–
gene interactions with 80% accuracy in the Drosophila embryo
and identify candidate targets for higher-order interactions.
A.2. Statistical feature importances. In some instances, in addi-
tion to the raw value, we can compute statistical measures of
confidence as feature importance scores, a standard technique
taught in introductory statistics classes. By making assumptions
about the underlying data-generating process, models like lin-
ear and logistic regression can compute confidence intervals and
hypothesis tests for the values, and linear combinations, of their
coefficients. These statistics can be helpful in determining the
degree to which the observed coefficients are statistically sig-
nificant. It is important to note that the assumptions of the
underlying probabilistic model must be fully verified before using
this form of interpretation. Below we present a cautionary exam-
ple where different assumptions lead to opposing conclusions
being drawn from the same dataset.

Ex: Here, we consider the lawsuit Students for Fair Admis-
sions, Inc. v. Harvard regarding the use of race in undergraduate
admissions to Harvard University. Initial reports by Harvard’s
Office of Institutional Research used logistic regression to model
the probability of admission using different features of an appli-
cant’s profile, including race (61). This analysis found that the
coefficient associated with being Asian (and not low income)
was −0.418 with a significant P value (<0.001). This negative
coefficient suggested that being Asian had a significant negative
association with admission probability.

Subsequent analysis from both sides in the lawsuit attempted
to analyze the modeling and assumptions to decide on the sig-
nificance of race in the model’s decision. The plaintiff’s expert
report (62) suggested that race was being unfairly used by build-
ing on the original report from Harvard’s Office of Institutional
Research. It also incorporates analysis on more subjective factors
such as “personal ratings” which seem to hurt Asian students’
admission. In contrast, the expert report supporting Harvard
University (63) finds that by accounting for certain other vari-
ables, the effect of race on Asian students’ acceptance is no
longer significant. Significances derived from statistical tests in
regression or logistic regression models at best establish associa-
tion, but not causation. Hence the analyses from both sides are
flawed. This example demonstrates the practical and mislead-
ing consequences of statistical feature importances when used
inappropriately.
A.3. Visualizations. When dealing with high-dimensional data-
sets, it can be challenging to quickly understand the complex
relationships that a model has learned, making the presentation
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of the results particularly important. To help deal with this,
researchers have developed a number of different visualizations
which help to understand what a model has learned. For lin-
ear models with regularization, plots of regression coefficient
paths show how varying a regularization parameter affects the
fitted coefficients. When visualizing convolutional neural net-
works trained on image data, work has been done on visualizing
filters (64, 65), maximally activating responses of individual neu-
rons or classes (66), understanding intraclass variation (67), and
grouping different neurons (68). For long short-term memory
networks (LSTMs), researchers have focused on analyzing the
state vector, identifying individual dimensions that correspond
to meaningful features (e.g., position in line, within quotes) (69),
and building tools to track the model’s decision process over the
course of a sequence (70).

In the following example, relevant interpretations are pro-
duced by using maximal activation images for identifying
patterns that drive the response of brain cells.

Ex: A recent study visualizes learned information from deep
neural networks to understand individual brain cells (25). In this
study, macaque monkeys were shown images while the responses
of brain cells in their visual system (area V4) were recorded.
Neural networks were trained to predict the responses of brain
cells to the images. These neural networks produce accurate
fits, but provide little insight into what patterns in the images
increase the brain cells’ response without further analysis. To
remedy this, the authors introduce DeepTune, a method which
provides a visualization, accessible to neuroscientists and others,
of the patterns which activate a brain cell. The main intuition
behind the method is to optimize the input of a network to max-
imize the response of a neural network model (which represents
a brain cell).

The authors go on to analyze the major problem of instabil-
ity. When post hoc visualizations attempt to answer scientific
questions, the visualizations must be stable to reasonable per-
turbations; if there are changes in the visualization due to the
choice of a model, it is likely not meaningful. The authors address
this explicitly by fitting 18 different models to the data and using
a stable optimization over all of the models to produce a final
consensus DeepTune visualization.
A.4. Analyzing trends and outliers in predictions. When inter-
preting the performance of an ML model, it can be helpful to
look not just at the average accuracy, but also at the distribution
of predictions and errors. For example, residual plots can identify
heterogeneity in predictions and suggest particular data points
to analyze, such as outliers in the predictions, or examples which
had the largest prediction errors. Moreover, these plots can be
used to analyze trends across the predictions. For instance, in the
example below, influence functions are able to efficiently identify
mislabeled data points.

B. Prediction-Level Interpretation. Prediction-level approaches are
useful when a practitioner is interested in understanding how
individual predictions are made by a model. Note that predic-
tion-level approaches can sometimes be aggregated to yield
dataset-level insights.
B.1. Feature importance scores. The most popular approach to
prediction-level interpretation has involved assigning impor-
tance scores to individual features. Intuitively, a variable with a
large positive (negative) score made a highly positive (negative)
contribution to a particular prediction. In the deep learning lit-
erature, a number of different approaches have been proposed
to address this problem (71–78), with some methods for other
models as well (79). These are often displayed in the form of
a heatmap highlighting important features. Note that feature
importance scores at the prediction level can offer much more
information than feature importance scores at the dataset level.
This is a result of heterogeneity in a nonlinear model: The impor-

tance of a feature can vary for different examples as a result of
interactions with other features.

While this area has seen progress in recent years, concerns
have been raised about the descriptive accuracy of these meth-
ods. In particular, ref. 80 shows that many popular methods
produce similar interpretations for a trained model versus a ran-
domly initialized one and are qualitatively very similar to an edge
detector. Moreover, it has been shown that some feature impor-
tance scores for CNNs are doing (partial) image recovery which
is unrelated to the network decisions (81).

Ex: When using ML models to predict sensitive outcomes,
such as whether a person should receive a loan or a criminal
sentence, it is important to verify that the algorithm is not dis-
criminating against people based on protected attributes, such
as race or gender. This problem is often described as ensuring
ML models are “fair.” In ref. 17, the authors introduce a vari-
able importance measure designed to isolate the contributions
of individual variables, such as gender, among a set of correlated
variables.

Based on these variable importance scores, the authors con-
struct transparency reports, such as the one displayed in SI
Appendix, Fig. S2, which displays the importance of features
used to predict that “Mr. Z” is likely to be arrested in the
future (an outcome which is often used in predictive polic-
ing), with each bar corresponding to a feature provided to the
classifier, and the y axis displaying the importance score for
that feature. In this instance, the race feature is the largest
value, indicating that the classifier is indeed discriminating based
on race. Thus, in this instance, prediction-level feature impor-
tance scores can identify that a model is unfairly discriminating
based on race.
B.2. Alternatives to feature importances. While feature impor-
tance scores can provide useful insights, they also have a number
of limitations (80, 82). For instance, they are unable to capture
when algorithms learn interactions between variables. There is
currently an evolving body of work centered around uncovering
and addressing these limitations. These methods focus on explic-
itly capturing and displaying the interactions learned by a neural
network (83, 84), alternative forms of interpretations such as tex-
tual explanations (85), influential data points (86), and analyzing
nearest neighbors (87, 88).

7. Future Work
Having introduced the PDR framework for defining and dis-
cussing interpretable machine learning, we now leverage it to
frame what we feel are the field’s most important challenges
moving forward. Below, we present open problems tied to each
of this paper’s 3 main sections: interpretation desiderata (Sec-
tion 4), model-based interpretability (Section 5), and post hoc
interpretability (Section 6).

A. Measuring Interpretation Desiderata. Currently, there is no
clear consensus in the community around how to evaluate inter-
pretation methods, although some recent works have begun to
address it (12–14). As a result, the standard of evaluation varies
considerably across different works, making it challenging both
for researchers in the field to measure progress and for prospec-
tive users to select suitable methods. Within the PDR frame-
work, to constitute an improvement, an interpretation method
must improve at least one desideratum (predictive accuracy,
descriptive accuracy, or relevancy) without unduly harming the
others. While improvements in predictive accuracy are easy to
measure, measuring improvements in descriptive accuracy and
relevancy remains a challenge.
A.1. Measuring descriptive accuracy. One way to measure an
improvement to an interpretation method is to demonstrate that
its output better captures what the ML model has learned, i.e.,
its descriptive accuracy. However, unlike predictive accuracy,
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descriptive accuracy is generally very challenging to measure or
quantify (82). As a fallback, researchers often show individual,
cherry-picked, interpretations which seem “reasonable.” These
kinds of evaluations are limited and unfalsifiable. In particular,
these results are limited to the few examples shown and not
generally applicable to the entire dataset.

While the community has not settled on a standard evalua-
tion protocol, there are some promising directions. In particular,
the use of simulation studies presents a partial solution. In this
setting, a researcher defines a simple generative process, gener-
ates a large amount of data from that process, and trains the ML
model on those data. Assuming a proper simulation setup, a suf-
ficiently powerful model to recover the generative process, and
sufficiently large training data, the trained model should achieve
near-perfect generalization accuracy. To compute an evaluation
metric, the researcher can then check whether the interpre-
tations recover aspects of the original generative process. For
example, refs. 59 and 89 train neural networks on a suite of gen-
erative models with certain built-in interactions and test whether
their method successfully recovers them. Here, due to the ML
model’s near-perfect generalization accuracy, we know that the
model is likely to have recovered some aspects of the generative
process, thus providing a ground truth against which to evalu-
ate interpretations. In a related approach, when an underlying
scientific problem has been previously studied, prior experimen-
tal findings can serve as a partial ground truth to retrospectively
validate interpretations (21).
A.2. Demonstrating relevancy to real-world problems. Another
angle for developing improved interpretation methods is to
improve the relevancy of interpretations for some audience or
problem. This is normally done by introducing a novel form of
output, such as feature heatmaps (71), rationales (90), or feature
hierarchies (84), or identifying important elements in the train-
ing set (86). A common pitfall in the current literature is to focus
on the novel output, ignoring what real-world problems it can
actually solve. Given the abundance of possible interpretations,
it is particularly easy for researchers to propose novel methods
which do not actually solve any real-world problems.

There have been 2 dominant approaches for demonstrating
improved relevancy. The first, and strongest, is to directly use the
introduced method in solving a domain problem. For instance,
in one example discussed above (21), the authors evaluated a
new interpretation method (iterative random forests) by demon-
strating that it could be used to identify meaningful biological
Boolean interactions for use in experiments. In instances like
this, where the interpretations are used directly to solve a domain
problem, their relevancy is indisputable. A second, less direct,
approach is the use of human studies, often through services
like Amazon’s Mechanical Turk. Here, humans are asked to
perform certain tasks, such as evaluating how much they trust
a model’s predictions (84). While challenging to properly con-
struct and perform, these studies are vital to demonstrate that
new interpretation methods are, in fact, relevant to any poten-
tial practitioners. However, one shortcoming of this approach is
that it is only possible to use a general audience of AMT crowd-
sourced workers, rather than a more relevant, domain-specific
audience.

B. Model Based. Now that we have discussed the general problem
of evaluating interpretations, we highlight important challenges
for the 2 main subfields of interpretable machine learning:
model-based and post hoc interpretability. Whenever model-
based interpretability can achieve reasonable predictive accuracy
and relevancy, by virtue of its high descriptive accuracy it is
preferable to fitting a more complex model and relying upon post
hoc interpretability. Thus, the main focus for model-based inter-
pretability is increasing its range of possible use cases by increas-
ing its predictive accuracy through more accurate models and

transparent feature engineering. It is worth noting that some-
times a combination of model-based and post hoc interpretations
is ideal.
B.1. Building accurate and interpretable models. In many in-
stances, model-based interpretability methods fail to achieve
a reasonable predictive accuracy. In these cases, practitioners
are forced to abandon model-based interpretations in search of
more accurate models. Thus, an effective way of increasing the
potential uses for model-based interpretability is to devise new
modeling methods which produce higher predictive accuracy
while maintaining their high descriptive accuracy and relevance.
Promising examples of this work include the previously dis-
cussed examples on estimating pneumonia risk from patient data
(7) and Bayesian models for generating rule lists to estimate a
patient’s risk of stroke (40). Detailed directions for this work are
suggested in ref. 91.
B.2. Tools for feature engineering. When we have more infor-
mative and meaningful features, we can use simpler modeling
methods to achieve a comparable predictive accuracy. Thus,
methods that can produce more useful features broaden the
potential uses of model-based interpretations. The first main cat-
egory of work lies in improved tools for exploratory data analysis.
By better enabling researchers to interact with and understand
their data, these tools (combined with domain knowledge) pro-
vide increased opportunities for them to identify helpful fea-
tures. Examples include interactive environments (92–94), tools
for visualization (95–97), and data exploration tools (98, 99).
The second category falls under unsupervised learning, which
is often used as a tool for automatically finding relevant struc-
ture in data. Improvements in unsupervised techniques such as
clustering and matrix factorization could lead to more useful
features.

C. Post Hoc. In contrast to model-based interpretability, much
of post hoc interpretability is relatively new, with many foun-
dational concepts still unclear. In particular, we feel that 2 of
the most important questions to be answered are what an inter-
pretation of an ML model should look like and how post hoc
interpretations can be used to increase a model’s predictive
accuracy. It has also been emphasized that in high-stakes deci-
sions practitioners should be very careful when applying post hoc
methods with unknown descriptive accuracy (91).
C.1. What an interpretation of a black box should look like. Given
a black-box predictor and real-world problem, it is generally
unclear what format, or combination of formats, is best to fully
capture a model’s behavior. Researchers have proposed a variety
of interpretation forms, including feature heatmaps (71), feature
hierarchies (84), and identifying important elements in the train-
ing set (86). However, in all instances there is a gap between
the simple information provided by these interpretations and
what the model has actually learned. Moreover, it is unclear
whether any of the current interpretation forms can fully cap-
ture a model’s behavior or whether a new format altogether is
needed. How to close that gap, while producing outputs relevant
to a particular audience/problem, is an open problem.
C.2. Using interpretations to improve predictive accuracy. In
some instances, post hoc interpretations uncover that a model
has learned relationships a practitioner knows to be incorrect.
For instance, prior interpretation work has shown that a binary
husky vs. wolf classifier simply learns to identify whether there
is snow in the image, ignoring the animals themselves (77). A
natural question to ask is whether it is possible for the practi-
tioner to correct these relationships learned by the model and
consequently increase its predictive accuracy. Given the chal-
lenges surrounding simply generating post hoc interpretations,
research on their uses has been limited (100, 101), particularly
in modern deep learning models. However, as the field of post
hoc interpretations continues to mature, this could be an exciting
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avenue for researchers to increase the predictive accuracy of
their models by exploiting prior knowledge, independently of any
other benefits of interpretations.
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