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Abstract

Hamiltonian Monte Carlo (HMC) is a state-of-the-art Markov chain Monte Carlo sampling
algorithm for drawing samples from smooth probability densities over continuous spaces.
We study the variant most widely used in practice, Metropolized HMC with the Störmer-
Verlet or leapfrog integrator, and make two primary contributions. First, we provide a
non-asymptotic upper bound on the mixing time of the Metropolized HMC with explicit
choices of step-size and number of leapfrog steps. This bound gives a precise quantification
of the faster convergence of Metropolized HMC relative to simpler MCMC algorithms such
as the Metropolized random walk, or Metropolized Langevin algorithm. Second, we provide
a general framework for sharpening mixing time bounds of Markov chains initialized at a
substantial distance from the target distribution over continuous spaces. We apply this
sharpening device to the Metropolized random walk and Langevin algorithms, thereby
obtaining improved mixing time bounds from a non-warm initial distribution.

1. Introduction

Markov Chain Monte Carlo (MCMC) methods date back to the seminal work of Metropolis
et al. (1953), and are the method of choice for drawing samples from high-dimensional
distributions. They are widely used in practice, including in Bayesian statistics for exploring
posterior distributions (Carpenter et al., 2017; Smith, 2014), in simulation-based methods
for reinforcement learning, and in image synthesis in computer vision, among other areas.
Since their origins in the 1950s, many MCMC algorithms have been introduced, applied
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and studied; we refer the reader to the handbook by Brooks et al. (2011) for a survey of
known results and contemporary developments.

There are a variety of MCMC methods for sampling from target distributions with
smooth densities (Robert and Casella, 1999; Roberts et al., 2004; Roberts and Stramer,
2002; Brooks et al., 2011). Among them, the method of Hamiltonian Monte Carlo (HMC)
stands out among practitioners: it is the default sampler for sampling from complex dis-
tributions in many popular software packages, including Stan (Carpenter et al., 2017),
Mamba (Smith, 2014), and Tensorflow (Abadi et al., 2015). We refer the reader to the
papers (Neal, 2011; Hoffman and Gelman, 2014; Durmus et al., 2017) for further examples
and discussion of the HMC method. There are a number of variants of HMC, but the most
popular choice involves a combination of the leapfrog integrator with Metropolis-Hastings
correction. Throughout this paper, we reserve the terminology HMC to refer to this partic-
ular Metropolized algorithm. The idea of using Hamiltonian dynamics in simulation first
appeared in Alder and Wainwright (1959). Duane et al. (1987) introduced MCMC with
Hamiltonian dynamics, and referred to it as Hybrid Monte Carlo. The algorithm was further
refined by Neal (1994), and later re-christened in the statistics community as Hamiltonian
Monte Carlo. We refer the reader to Neal (2011) for an illuminating overview of the history
of HMC and a discussion of contemporary work.

1.1. Past work on HMC

While HMC enjoys fast convergence in practice, a theoretical understanding of this behavior
remains incomplete. Some intuitive explanations are based on its ability to maintain a
constant asymptotic accept-reject rate with large step-size (Creutz, 1988). Others suggest,
based on intuition from the continuous-time limit of the Hamiltonian dynamics, that HMC
can suppress random walk behavior using momentum (Neal, 2011). However, these intuitive
arguments do not provide rigorous or quantitative justification for the fast convergence of
the discrete-time HMC used in practice.

More recently, general asymptotic conditions under which HMC will or will not be
geometrically ergodic have been established in some recent papers (Durmus et al., 2017;
Livingstone et al., 2016). Other work has yielded some insight into the mixing properties of
different variants of HMC, but it has focused mainly on unadjusted versions of the algorithm.
Mangoubi and Smith (2017) and Mangoubi and Vishnoi (2018) study versions of unadjusted
HMC based on Euler discretization or leapfrog integrator (but omitting the Metropolis-
Hastings step), and provide explicit bounds on the mixing time as a function of dimension
d, condition number κ and error tolerance ε > 0. Lee et al. (2018) studied an extended
version of HMC that involves applying an ordinary differential equation (ODE) solver;
they established bounds with sublinear dimension dependence, and even polylogarithmic
for certain densities (e.g., those arising in Bayesian logistic regression). The mixing time
for the same algorithm is further refined in recent work by Chen and Vempala (2019). In a
similar spirit, Lee and Vempala (2018a) studied the Riemannian variant of HMC (RHMC)
with an ODE solver focusing on sampling uniformly from a polytope. While their result
could be extended to log-concave sampling, the practical implementation of their ODE
solver for log-concave sampling is unclear. Moreover, it requires a regularity condition on
all the derivatives of density. One should note that such unadjusted HMC methods behave
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differently from the Metropolized version most commonly used in practice. In the absence
of the Metropolis-Hastings correction, the resulting Markov chain no longer converges to
the correct target distribution, but instead exhibits a persistent bias, even in the limit of
infinite iterations. Consequently, the analysis of such sampling methods requires controlling
this bias; doing so leads to mixing times that scale polynomially in 1/ε, in sharp contrast
with the log(1/ε) that is typical for Metropolis-Hastings corrected methods.

Most closely related to our paper is the recent work by Bou-Rabee et al. (2018), which
studies the same Metropolized HMC algorithm that we analyze in this paper. They use
coupling methods to analyze HMC for a class of distributions that are strongly log-concave
outside of a compact set. In the strongly log-concave case, they prove a mixing-time bound
that scales at least as d3/2 in the dimension d. We note that with a “warm” initialization,
this dimension dependence grows more quickly than known bounds for the MALA algo-
rithm (Dwivedi et al., 2019; Eberle, 2014), and so does not explain the superiority of HMC
in practice.

In practice, it is known that Metropolized HMC is fairly sensitive to the choice of its
parameters—namely the step-size η used in the discretization scheme, and the number of
leapfrog steps K. At one extreme, taking a single leapfrog step K = 1, the algorithm
reduces to the Metropolis adjusted Langevin algorithm (MALA). More generally, if too few
leapfrog steps are taken, HMC is likely to exhibit a random walk behavior similar to that
of MALA. At the other extreme, if K is too large, the leapfrog steps tend to wander back
to a neighborhood of the initial state, which leads to wasted computation as well as slower
mixing (Betancourt et al., 2014). In terms of the step size η, when overly large step size
is chosen, the discretization diverges from the underlying continuous dynamics leading to
a drop in the Metropolis acceptance probability, thereby slowing down the mixing of the
algorithm. On the other hand, an overly small choice of η does not allow the algorithm to
explore the state space rapidly enough. While it is difficult to characterize the necessary and
sufficient conditions on K and η to ensure fast convergence, many works suggest the choice
of these two parameters based on the necessary conditions such as maintaining a constant
acceptance rate (Chen et al., 2001). For instance, Beskos et al. (2013) showed that in the
simplified scenario of target density with independent, identically distributed components,
the number of leapfrog steps should scale as d1/4 to achieve a constant acceptance rate.
Besides, instead of setting the two parameters explicitly, various automatic strategies for
tuning these two parameters have been proposed (Wang et al., 2013; Hoffman and Gelman,
2014; Wu et al., 2018). Despite being introduced via heuristic arguments and with additional
computational cost, these methods, such as the No-U-Turn (NUTS) sampler (Hoffman and
Gelman, 2014), have shown promising empirical evidence of its effectiveness on a wide range
of simple target distributions.

1.2. Past work on mixing time dependency on initialization

Many proof techniques for the convergence of continuous-state Markov chains are inspired by
the large body of work on discrete-state Markov chains; for instance, see the surveys (Lovász
et al., 1993; Aldous and Fill, 2002) and references therein. Historically, much work has been
devoted to improving the mixing time dependency on the initial distribution. For discrete-
state Markov chains, Diaconis and Saloff-Coste (1996) were the first to show that the
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logarithmic dependency of the mixing time of a Markov chain on the warmness parameter1 of
the starting distribution can be improved to doubly logarithmic. This improvement—from
logarithmic to doubly logarithmic—allows for a good bound on the mixing time even when
a good starting distribution is not available. The innovation underlying this improvement
is the use of log-Sobolev inequalities in place of the usual isoperimetric inequality. Later,
closely related ideas such as average conductance (Lovász and Kannan, 1999; Kannan et al.,
2006), evolving sets (Morris and Peres, 2005) and spectral profile (Goel et al., 2006) were
shown to be effective for reducing dependence on initial conditions for discrete space chains.
Thus far, only the notion of average conductance (Lovász and Kannan, 1999; Kannan et al.,
2006) has been adapted to continuous-state Markov chains so as to sharpen the mixing time
analysis of the Ball walk (Lovász and Simonovits, 1990).

1.3. Our contributions

This paper makes two primary contributions. First, we provide a non-asymptotic upper
bound on the mixing time of the Metropolized HMC algorithm for smooth densities (see
Theorem 1). This theorem applies to the form of Metropolized HMC (based on the leapfrog
integrator) that is most widely used in practice. To the best of our knowledge, Theorem 1 is
the first rigorous confirmation of the faster non-asymptotic convergence of the Metropolized
HMC as compared to MALA and other simpler Metropolized algorithms.2 Other related
works on HMC consider either its unadjusted version (without accept-reject step) with dif-
ferent integrators (Mangoubi and Smith, 2017; Mangoubi and Vishnoi, 2018) or the HMC
based on an ODE solver (Lee et al., 2018; Lee and Vempala, 2018a). While the dimension
dependency for these algorithms is usually better than MALA, they have polynomial de-
pendence on the inverse error tolerance 1/ε while MALA’s mixing time scales as log(1/ε).
Moreover, our direct analysis of the Metropolized HMC with a leapfrog integrator provides
explicit choices of the hyper-parameters for the sampler, namely, the step-size and the num-
ber of leapfrog updates in each step. Our theoretical choices of the hyper-parameters could
potentially provide guidelines for parameter tuning in practical HMC implementations

Our second main contribution is formalized in Lemmas 3 and 4: we develop results
based on the conductance profile in order to prove quantitative convergence guarantees
general continuous-state space Markov chains. Doing so involves non-trivial extensions of
ideas from discrete-state Markov chains to those in continuous state spaces. Our results
not only enable us to establish the mixing time bounds for HMC with different classes of
target distributions, but also allow simultaneous improvements on mixing time bounds of
several Markov chains (for general continuous-state space) when the starting distribution
is far from the stationary distribution. Consequentially, we improve upon previous mixing
time bounds for Metropolized Random Walk (MRW) and MALA (Dwivedi et al., 2019),
when the starting distribution is not warm with respect to the target distribution (see
Theorem 5).

While this high-level road map is clear, a number of technical challenges arise en route in
particular in controlling the conductance profile of HMC. The use of multiple gradient steps

1. See equation (4) for a formal definition.
2. As noted earlier, previous results by Bou-Rabee et al. (2018) on Metropolized HMC do not establish

that it mixes more rapidly than MALA.
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in each iteration of HMC helps it mix faster but also complicates the analysis; in particular,
a key step is to control the overlap between the transition distributions of HMC chain at
two nearby points; doing so requires a delicate argument (see Lemma 6 and Section 5.3 for
further details).

Table 1 provides an informal summary of our mixing time bounds of HMC and how they
compare with known bounds for MALA when applied to log-concave target distributions.
From the table, we see that Metropolized HMC takes fewer gradient evaluations than MALA
to mix to the same accuracy for log-concave distributions. Note that our current analysis
establishes logarithmic dependence on the target error ε for strongly-log-concave as well as
for a sub-class of weakly log-concave distributions.3 Moreover, in Figure 1 we provide a
sketch-diagram of how the different results in this paper interact to provide mixing time
bounds for different Markov chains.

Strongly log-concave Weakly log-concave

Sampling algorithm Assumption (B) (κ� d) Assumption (C) Assumption (D)

MALA
(improved bound in

Thm 5 in this paper)

dκ log
1

ε
Dwivedi et al. (2019)

d2

ε
3
2

log
1

ε
Dwivedi et al. (2019)

d
3
2 log

1

ε
Mangoubi and Vishnoi (2019)

Metropolized HMC with
leapfrog integrator

[this paper]

d
11
12 κ log

1

ε
(Corollary 2)

d
11
6

ε
log

1

ε
(Corollary 18)

d
4
3 log

1

ε
(Corollary 18)

Table 1: Comparisons of the number of gradient evaluations needed by MALA and
Metropolized HMC with leapfrog integrator from a warm start to obtain an ε-
accurate sample in TV distance from a log-concave target distribution on Rd. The
second column corresponds to strongly log-concave densities with condition num-
ber κ, and the third and fourth column correspond to weakly log-concave densities
satisfying certain regularity conditions.

Organization: The remainder of the paper is organized as follows. Section 2 is devoted
to background on the idea of Monte Carlo approximation, Markov chains and MCMC
algorithms, and the introduction of the MRW, MALA and HMC algorithms. Section 3
contains our main results on mixing time of HMC in Section 3.2, followed by the general
framework for obtaining sharper mixing time bounds in Section 3.3 and its application to
MALA and MRW in Section 3.4. In Section 4, we describe some numerical experiments
that we performed to explore the sharpness of our theoretical predictions in some simple
scenarios. In Section 5, we prove Theorem 1 and Corollary 14, with the proofs of technical
lemmas and other results deferred to the appendices. We conclude in Section 6 with a
discussion of our results and future directions.

3. For comparison with previous results on unadjusted HMC or ODE based HMC refer to the discussion
after Corollary 2 and Table 7 in Appendix D.2.
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Theorem 1
general mixing-time

result for HMC

Lemma 3
mixing-time bound

via conductance profile

Lemma 4
conductance profile
via overlap bounds

Lemma 6
overlap bounds

for HMC

known overlap bounds
for MALA and MRW
Dwivedi et al. (2019)

Corollaries 2 and 18
HMC mixing-time for

different target distributions

Theorem 5
improved mixing-time
for MALA and MRW

Figure 1: High-level sketch diagram of the results and the proof techniques developed in
this paper. Lemmas 3 and 4 of this paper provide general machinery to develop
mixing time bounds for several Markov chains, provided that we have a control
over the overlap bounds of the respective transition distributions. Establishing
these overlap bounds for Metropolized HMC requires non-trivial machinery which
we develop in Lemma 6. Putting Lemmas 3, 4 and 6 together yields the general
mixing time bound for HMC in Theorem 1. Moreover, Theorem 1 easily implies
a faster mixing time bound for HMC over MALA and MRW for different target
distributions as shown in Corollaries 2 and 18, and summarized in Table 1. On the
other hand, Lemmas 3 and 4 in conjunction with overlap bounds from Dwivedi
et al. (2019) immediately yield Theorem 5 that provides improved mixing time
bounds for MALA and MRW from a non-warm start.

Notation: For two real-valued sequences {an} and {bn}, we write an = O(bn) if there
exists a universal constant c > 0 such that an ≤ cbn. We write an = Õ(bn) if an ≤ cnbn,
where cn grows at most poly-logarithmically in n. We use [K] to denote the integers from
the set {1, 2, . . . ,K}. We denote the Euclidean norm on Rd as ‖ · ‖2. We use X to denote
the (general) state space of a Markov chain. We denote B(X ) as the Borel σ-algebra of
the state space X . Throughout we use the notation c, c1, c2 to denote universal constants.
For a function f : Rd → R that is three times differentiable, we represent its derivatives at
x ∈ Rd by ∇f(x) ∈ Rd, ∇2f(x) ∈ Rd×d and ∇3f(x) ∈ Rd3

. Here

[∇f(x)]i =
∂

∂xi
f(x),

[
∇2f(x)

]
i,j

=
∂2

∂xi∂xj
f(x),

[
∇3f

]
i,j,k

=
∂3

∂xi∂xj∂xk
f(x).

Moreover for a square matrix A, we define its `2-operator norm |||A|||
op

: = max
‖v‖2=1

‖Av‖2.
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2. Background and problem set-up

In this section, we begin by introducing background on Markov chain Monte Carlo in
Section 2.1, followed by definitions and terminology for Markov chains in Section 2.2. In
Section 2.3, we describe several MCMC algorithms, including the Metropolized random
walk (MRW), the Metropolis-adjusted Langevin algorithm (MALA), and the Metropolis-
adjusted Hamiltonian Monte Carlo (HMC) algorithm. Readers familiar with the literature
may skip directly to the Section 3, where we set up and state our main results.

2.1. Monte Carlo Markov chain methods

Consider a distribution Π∗ equipped with a density π∗ : X → R+, specified explicitly up to
a normalization constant as follows

π∗(x) ∝ e−f(x). (1)

A standard computational task is to estimate the expectation of some function g : X → R—
that is, to approximate Π∗(g) = Eπ∗ [g(X)] =

∫
X g(x)π∗(x)dx. In general, analytical com-

putation of this integral is infeasible. In high dimensions, numerical integration is not
feasible either, due to the well-known curse of dimensionality.

A Monte Carlo approximation to Π∗(g) is based on access to a sampling algorithm that
can generate i.i.d. random variables Zi ∼ π∗ for i = 1, . . . , N . Given such samples, the
random variable Π̂∗(g) : = 1

N

∑N
i=1 g(Zi) is an unbiased estimate of the quantity Π∗(g),

and has its variance proportional to 1/N . The challenge of implementing such a method is
drawing the i.i.d. samples Zi. If π∗ has a complicated form and the dimension d is large, it
is difficult to generate i.i.d. samples from π∗. For example, rejection sampling (Gilks and
Wild, 1992), which works well in low dimensions, fails due to the curse of dimensionality.

The Markov chain Monte Carlo (MCMC) approach is to construct a Markov chain on
X that starts from some easy-to-simulate initial distribution µ0, and converges to π∗ as its
stationary distribution. Two natural questions are: (i) methods for designing such Markov
chains; and (ii) how many steps will the Markov chain take to converge close enough to the
stationary distribution? Over the years, these questions have been the subject of consider-
able research; for instance, see the reviews by Tierney (1994); Smith and Roberts (1993);
Roberts et al. (2004) and references therein. In this paper, we are particularly interested
in comparing three popular Metropolis-Hastings adjusted Markov chains sampling algo-
rithms (MRW, MALA, HMC). Our primary goal is to tackle the second question for HMC,
in particular via establishing its concrete non-asymptotic mixing-time bound and thereby
characterizing how HMC converges faster than MRW and MALA.

2.2. Markov chain basics

Let us now set up some basic notation and definitions on Markov chains that we use in the
sequel. We consider time-homogeneous Markov chains defined on a measurable state space
(X ,B(X )) with a transition kernel Θ : X ×B(X )→ R+. By definition, the transition kernel
satisfies the following properties:

Θ(x, dy) ≥ 0, for all x ∈ X , and

∫
y∈X

Θ(x, dy)dy = 1 for all x ∈ X .
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The k-step transition kernel Θk is defined recursively as Θk+1(x, dy) =
∫
z∈X Θk(x, dz)Θ(z, dy)dz.

The Markov chain is irreducible means that for all x, y ∈ X , there is a natural number
k > 0 such that Θk(x, dy) > 0. We say that a Markov chain satisfies the detailed balance
condition if

π∗(x)Θ(x, dy)dx = π∗(y)Θ(y, dx)dy for all x, y ∈ X . (2)

Such a Markov chain is also called reversible. Finally, we say that a probability measure Π∗

with density π∗ on X is stationary (or invariant) for a Markov chain with the transition
kernel Θ if ∫

x∈X
π∗(x)Θ(y, dx) = π∗(y) for all y ∈ X .

Transition operator: We use T to denote the transition operator of the Markov chain on
the space of probability measures with state space X . In simple words, given a distribution
µ0 on the current state of the Markov chain, T (µ0) denotes the distribution of the next
state of the chain. Mathematically, we have T (µ0)(A) =

∫
X Θ(x,A)µ0(x)dx for any A ∈

B(X ). In an analogous fashion, T k stands for the k-step transition operator. We use Tx as
the shorthand for T (δx), the transition distribution at x; here δx denotes the Dirac delta
distribution at x ∈ X . Note that by definition Tx = Θ(x, ·).

Distances between two distributions: In order to quantify the convergence of the
Markov chain, we study the mixing time for a class of distances denoted Lp for p ≥ 1.
Letting Q be a distribution with density q, its Lp-divergence with respect to the positive
density ν is defined as

dp(Q, ν) =

(∫
X

∣∣∣∣ q(x)

ν(x)
− 1

∣∣∣∣p ν(x)dx

) 1
p

. (3a)

Note that for p = 2, we get the χ2-divergence. For p = 1, the distance d1(Q, ν) represents
two times the total variation distance between Q and ν. In order to make this distinction
clear, we use dTV (Q, ν) to denote the total variation distance.

Mixing time of a Markov chain: Consider a Markov chain with initial distribution
µ0, transition operator T and a target distribution Π∗ with density π∗. Its Lp mixing time
with respect to Π∗ is defined as follows:

τp(ε;µ0) = inf
{
k ∈ N | dp

(
T k(µ0),Π∗

)
≤ ε
}
. (3b)

where ε > 0 is an error tolerance. Since distance dp(Q,Π
∗) increases as p increases, we have

τp(ε;µ0) ≤ τp′(ε;µ0) for any p′ ≥ p ≥ 1. (3c)

Warm initial distribution: We say that a Markov chain with state space X and sta-
tionary distribution Π∗ has a β-warm start if its initial distribution µ0 satisfies

sup
S∈B(X )

µ0(S)

Π∗(S)
≤ β, (4)

where B(X ) denotes the Borel σ-algebra of the state space X . For simplicity, we say that
µ0 is a warm start if the warmness parameter β is a small constant (e.g., β does not scale
with dimension d).
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Lazy chain: We say that the Markov chain is ζ-lazy if, at each iteration, the chain is
forced to stay at the previous iterate with probability ζ. We study 1

2 -lazy chains in this
paper. In practice, one is not likely to use a lazy chain (since the lazy steps slow down the
convergence rate by a constant factor); rather, it is a convenient assumption for theoretical
analysis of the mixing rate up to constant factors.4

2.3. From Metropolized random walk to HMC

In this subsection, we provide a brief description of the popular algorithms used for sampling
from the space X = Rd. We start with the simpler zeroth-order Metropolized random
walk (MRW), followed by the single-step first-order Metropolis adjusted Langevin algorithm
(MALA) and finally discuss the Hamiltonian Monte Carlo (HMC) algorithm.

2.3.1. MRW and MALA algorithms

One of the simplest Markov chain algorithms for sampling from a density of the form (1)
defined on Rd is the Metropolized random walk (MRW). Given state xi ∈ Rd at iterate i, it
generates a new proposal vector zi+1 ∼ N (xi, 2ηId), where η > 0 is a step-size parameter.5 It
then decides to accept or reject zi+1 using a Metropolis-Hastings correction; see Algorithm 1
for the details. Note that the MRW algorithm uses information about the function f only
via querying function values, but not the gradients.

The Metropolis-adjusted Langevin algorithm (MALA) is a natural extension of the
MRW algorithm: in addition to the function value f(·), it also assumes access to its gradient
∇f(·) at any state x ∈ Rd. Given state xi at iterate i, it observes (f(xi),∇f(xi)) and then
generates a new proposal zi+1 ∼ N (xi − η∇f(xi), 2ηId), followed by a suitable Metropolis-
Hastings correction; see Algorithm 2 for the details. The MALA algorithm has an interesting
connection to the Langevin diffusion, a stochastic process whose evolution is characterized
by the stochastic differential equation (SDE)

dXt = −∇f(Xt)dt+
√

2dWt. (5)

The MALA proposal can be understood as the Euler-Maruyama discretization of the SDE (5).

2.3.2. HMC sampling

The HMC sampling algorithm from the physics literature was introduced to the statistics
literature by Neal; see his survey (Neal, 2011) for the historical background. The method is
inspired by Hamiltonian dynamics, which describe the evolution of a state vector q(t) ∈ Rd
and its momentum p(t) ∈ Rd over time t based on a Hamiltonian function H : Rd×Rd → R
via Hamilton’s equations:

dq

dt
(t) =

∂H
∂p

(p(t), q(t)), and
dp

dt
(t) = −∂H

∂q
(p(t), q(t)). (6)

4. Any lazy (time-reversible) chain is always aperiodic and admits a unique stationary distribution. For
more details, see the survey (Vempala, 2005) and references therein.

5. The factor 2 in the step-size definition is a convenient notational choice so as to facilitate comparisons
with other algorithms.
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Algorithm 1: Metropolized Random Walk (MRW)

Input: Step size η > 0 and a sample x0 from a starting distribution µ0

Output: Sequence x1, x2, . . .
1 for i = 0, 1, . . . do
2 Proposal step: Draw zi+1 ∼ N (xi, 2ηId)
3 Accept-reject step:

4 compute αi+1 ← min

{
1,

exp (−f(zi+1))

exp (−f(xi))

}
5 With probability αi+1 accept the proposal: xi+1 ← zi+1

6 With probability 1− αi+1 reject the proposal: xi+1 ← xi
7 end

Algorithm 2: Metropolis adjusted Langevin algorithm (MALA)

Input: Step size η and a sample x0 from a starting distribution µ0

Output: Sequence x1, x2, . . .
1 for i = 0, 1, . . . do
2 Proposal step: Draw zi+1 ∼ N (xi − η∇f(xi), 2ηId)
3 Accept-reject step:

4 compute αi+1 ← min

{
1,

exp
(
−f(zi+1)− ‖xi − zi+1 + η∇f(zi+1)‖22 /4η

)
exp

(
−f(xi)− ‖zi+1 − xi + η∇f(xi)‖22 /4η

) }
5 With probability αi+1 accept the proposal: xi+1 ← zi+1

6 With probability 1− αi+1 reject the proposal: xi+1 ← xi
7 end

A straightforward calculation using the chain rule shows that the Hamiltonian remains
invariant under these dynamics—that is, H(p(t), q(t)) = C for all t ∈ R. A typical choice
of the Hamiltonian H : Rd × Rd → R is given by

H(p, q) = f(q) +
1

2
‖p‖22 . (7)

The ideal HMC algorithm for sampling is based on the continuous Hamiltonian dy-
namics; as such, it is not implementable in practice, but instead a useful algorithm for
understanding. For a given time T > 0 and vectors u, v ∈ Rd, let qT (u, v) denote the q-
solution to Hamilton’s equations at time T and with initial conditions (p(0), q(0)) = (u, v).
At iteration k, given the current iterate Xk, the ideal HMC algorithm generates the next
iterate Xk+1 via the update rule Xk+1 = qT (pk, Xk) where pk ∼ N(0, Id) is a standard
normal random vector, independent of Xk and all past iterates. It can be shown that with
an appropriately chosen T , the ideal HMC algorithm converges to the stationary distribu-
tion π∗ without a Metropolis-Hastings adjustment (see Neal (2011); Mangoubi and Vishnoi
(2018) for the existence of such a solution and its convergence).

However, in practice, it is impossible to compute an exact solution to Hamilton’s equa-
tions. Rather, one must approximate the solution qT (pk, Xk) via some discrete process.
There are many ways to discretize Hamilton’s equations other than the simple Euler dis-
cretization; see Neal (2011) for a discussion. In particular, using the leapfrog or Störmer-
Verlet method for integrating Hamilton’s equations leads to the Hamiltonian Monte Carlo
(HMC) algorithm. It simulates the Hamiltonian dynamics for K steps via the leapfrog inte-
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grator. At each iteration, given a integer K ≥ 1, a previous state q0 and fresh p0 ∼ N (0, Id),
it runs the following updates for k = 0, 1, . . . ,K − 1:

pk+ 1
2

= pk −
η

2
∇f(qk) (8a)

qk+1 = qk + ηpk+ 1
2

(8b)

pk+1 = pk+ 1
2
− η

2
∇f(qk+1). (8c)

Since discretizing the dynamics generates discretization error at each iteration, it is fol-
lowed by a Metropolis-Hastings adjustment where the proposal (pK , qK) is accepted with
probability

min

{
1,

exp (−H(pK , qK))

exp (−H(p0, q0))

}
. (9)

See Algorithm 3 for a detailed description of the HMC algorithm with leapfrog integrator.

Algorithm 3: Metropolized HMC with leapfrog integrator
Input: Step size η, number of internal leapfrog updates K,
and a sample x0 from a starting distribution µ0

Output: Sequence x1, x2, . . .
1 for i = 0, 1, . . . do
2 Proposal step:
3 q0 ← xi
4 Draw p0 ∼ N (0, Id)
5 for k = 1, . . . ,K do
6 (pk, qk)← Leapfrog(pk−1, qk−1, η)
7 end
8 % qK is now the new proposed state
9 Accept-reject step:

10 compute αi+1 ← min

{
1,

exp (−H(pK , qK))

exp (−H(p0, q0))

}
11 With probability αi+1 accept the proposal: xi+1 ← qK
12 With probability 1− αi+1 reject the proposal: xi+1 ← xi
13 end
14 Program Leapfrog(p, q, η):
15 p̃← p− η

2
∇f(q)

16 q̃ ← q + ηp̃
17 p̃← p̃− η

2
∇f(q̃)

18 return (p̃, q̃)

Remark: The HMC with leapfrog integrator can also be seen as a multi-step version of a
simpler Langevin algorithm. Indeed, running the HMC algorithm with K = 1 is equivalent
to the MALA algorithm after a re-parametrization of the step-size η. In practice, one also
uses the HMC algorithm with a modified Hamiltonian, in which the quadratic term ‖p‖22 is
replaced by a more general quadratic form pTMp. Here M is a symmetric positive definite
matrix to be chosen by the user; see Appendix D.1.1 for further discussion of this choice.
In the main text, we restrict our analysis to the case M = I.

11
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3. Main results

We now turn to the statement of our main results. We remind the readers that HMC refers
to Metropolized HMC with leapfrog integrator, unless otherwise specified. We first collect
the set of assumptions for the target distributions in Section 3.1. Following that in Sec-
tion 3.2, we state our results for HMC: first, we derive the mixing time bounds for general
target distributions in Theorem 1 and then apply that result to obtain concrete guaran-
tees for HMC with strongly log-concave target distributions. We defer the discussion of
weakly log-concave target distributions and (non-log-concave) perturbations of log-concave
distributions to Appendix C. In Section 3.3, we discuss the underlying results that are used
to derive sharper mixing time bounds using conductance profile (see Lemmas 3 and 4).
Besides being central to the proof of Theorem 1, these lemmas also enable a sharpening of
the mixing time guarantees for MALA and MRW (without much work), which we state in
Section 3.4.

3.1. Assumptions on the target distribution

In this section, we introduce some regularity notions and state the assumptions on the
target distribution that our results in the next section rely on.

Regularity conditions: A function f is called:

L-smooth : f(y)− f(x)−∇f(x)>(y − x) ≤ L

2
‖x− y‖22 , (10a)

m-strongly convex : f(y)− f(x)−∇f(x)>(y − x) ≥ m

2
‖x− y‖22 , (10b)

LH-Hessian Lipschitz :
∣∣∣∣∣∣∇2f(x)−∇2f(y)

∣∣∣∣∣∣
op
≤ LH ‖x− y‖2 , (10c)

where in all cases, the inequalities hold for all x, y ∈ Rd.
A distribution Π with support X ⊂ Rd is said to satisfy the isoperimetric inequality

(a = 0) or the log-isoperimetric inequality (a = 1
2) with constant ψa if given any partition

S1, S2, S3 of X , we have

Π(S3) ≥ 1

2ψa
· d(S1, S2) ·min {Π(S1),Π(S2)} · loga

(
1 +

1

min {Π(S1),Π(S2}

)
. (10d)

where the distance between two sets S1, S2 is defined as d(S1, S2) = infx∈S1,y∈S2 {‖x− y‖2}.
For a distribution Π with density π and a given set Ω, its restriction to Ω is the distribution
ΠΩ with the density πΩ(x) = π(x)1Ω(x)

Π(Ω) .

Assumptions on the target distribution: We introduce two sets of assumptions for
the target distribution:

(A) We say that the target distribution Π∗ is (L,LH, s, ψa,M)-regular if the negative log
density f is L-smooth (10a) and has LH-Lipschitz Hessian (10c), and there exists a
convex measurable set Ω such that the distribution Π∗Ω is ψa-isoperimetric (10d), and
the following conditions hold:

Π∗(Ω) ≥ 1− s and ‖∇f(x)‖2 ≤M, for all x ∈ Ω. (10e)

12
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(B) We say that the target distribution Π∗ is (L,LH,m)-strongly log-concave if the negative
log density is L-smooth (10a), m-strongly convex (10b), and LH-Hessian-Lipschitz (10c).
Moreover, we use x? to denote the unique mode of Π∗ whenever f is strongly convex.

Assumption (B) has appeared in several past papers on Langevin algorithms (Dalalyan,
2016; Dwivedi et al., 2019; Cheng and Bartlett, 2017) and the Lipschitz-Hessian condi-
tion (10c) has been used in analyzing Langevin algorithms with inaccurate gradients (Dalalyan
and Karagulyan, 2019) as well as the unadjusted HMC algorithm (Mangoubi and Vishnoi,
2018). It is worth noting Assumption (A) is strictly weaker than Assumption (B), since it
allows for distributions that are not log-concave. In Appendix B (see Lemma 15), we show
how Assumption (B) implies a version of Assumption (A).

3.2. Mixing time bounds for HMC

We start with the mixing time bound for HMC applied to any distribution Π∗ satisfying
Assumption (A). Let HMC-(K, η) denote the 1

2 -lazy Metropolized HMC algorithm with
η step size and K leapfrog steps in each iteration. Let τHMC

2 (ε;µ0) denote the L2-mixing
time (3b) for this chain with the starting distribution µ0. We use c to denote a universal
constant.

Theorem 1 Consider an (L,LH, s, ψa,M)-regular target distribution (cf. Assumption (A))
and a β-warm initial distribution µ0. Then for any fixed target accuracy ε ∈ (0, 1) such that
ε2 ≥ 2βs, there exist choices of the parameters (K, η) such that HMC-(K, η)chain with µ0

start satisfies

τHMC
2 (ε;µ0) ≤


c ·max

{
log β,

ψ2
a

K2η2
log

(
log β

ε

)}
if a = 1

2 [log-isoperimetric (10d)]

c · ψ2
a

K2η2
log

(
β

ε

)
if a = 0 [isoperimetric (10d)].

See Section 5.2 for the proof, where we also provide explicit conditions on η and K in terms
of the other parameters (cf. equation (26b)).

Theorem 1 covers mixing time bounds for distributions that satisfy isoperimetric or log-
isoperimetric inequality provided that: (a) both the gradient and Hessian of the negative
log-density are Lipschitz; and (b) there is a convex set that contains a large mass (1− s) of
the distribution. The mixing time only depends on two quantities: the log-isoperimetric (or
isoperimetric) constant of the target distribution and the effective step-size K2η2. As shown
in the sequel, these conditions hold for log-concave distributions as well as certain pertur-
bations of them. If the distribution satisfies a log-isoperimetric inequality, then the mixing
time dependency on the initialization warmness parameter β is relatively weak O(log log β).
On the other hand, when only an isoperimetric inequality (but not log-isoperimetric) is
available, the dependency is relatively larger O(log β). In our current analysis, we can
establish the ε-mixing time bounds up-to an error ε such that ε2 ≥ 2βs. If mixing time
bounds up to an arbitrary accuracy are desired, then the distribution needs to satisfy (10e)
for arbitrary small s. For example, as we later show in Lemma 15, arbitary small s can be
imposed for strongly log-concave densities (i.e., satisfying Assumption (B)).

Let us now derive several corollaries of Theorem 1. We begin with non-asymptotic
mixing time bounds for HMC-(K, η) chain for strongly-log concave target distributions.

13
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Then we briefly discuss the corollaries for weakly log-concave target and non-log-concave
target distributions and defer the precise statements to Appendix C. These results also
provide a basis for comparison of our results with prior work.

3.2.1. Strongly log-concave target

We now state an explicit mixing time bound of HMC for a strongly log-concave distribu-
tion. We consider an (L,LH,m)-strongly log-concave distribution (assumption (B)). We use
κ = L/m to denote the condition number of the distribution. Our result makes use of the
following function

r(s) : = 1 + max

{(
log(1/s)

d

)1/4

,

(
log(1/s)

d

)1/2
}
, (11a)

for s > 0, and involves the step-size choices

ηwarm =

√√√√ 1

cL · r
(
ε2

2β

)
d

7
6

, and ηfeas =

√√√√ 1

cL · r
(
ε2

2κd

) min

{
1

dκ
1
2

,
1

d
2
3κ

5
6

,
1

d
1
2κ

3
2

}
. (11b)

With these definitions, we have the following:

Corollary 2 Consider an (L,LH,m)-strongly log-concave target distribution Π∗ (cf. As-

sumption (B)) such that L
2/3
H = O(L), and any error tolerance ε ∈ (0, 1).

(a) Suppose that κ = O(d
2
3 ) and β = O

(
exp

(
d

2
3

))
. Then with any β-warm initial

distribution µ0, hyper-parameters K = d
1
4 and η = ηwarm, the HMC-(K, η) chain

satisfies

τHMC
2 (ε;µ0) ≤ c d

2
3 κ r

(
ε2

2β

)
log

(
log β

ε

)
. (12a)

(b) With the initial distribution µ† = N (x?, 1
LId), hyper-parameters K = κ

3
4 and η = ηfeas,

the HMC-(K, η) chain satisfies

τHMC
2 (ε;µ†) ≤ c r

(
ε2

2κd

)
max

{
d log κ,max

[
d, d

2
3κ

1
3 , d

1
2κ
]

log

(
d log κ

ε

)}
. (12b)

See Appendix B for the proof. In the same appendix, we also provide a more refined mixing
time of the HMC chain for a more general choice of hyper-parameters (see Corollary 14).

In fact, as shown in the proof, the assumption L
2/3
H = O(L) is not necessary in order to

control mixing; rather, we adopted it above to simplify the statement of our bounds. A
more detailed discussion on the particular choice for step size η is provided in Appendix D.
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MALA vs HMC—Warm start: Corollary 2 provides mixing time bounds for two cases.
The first result (12a) implies that given a warm start for a well-conditioned strongly log
concave distribution, i.e., with constant β and κ� d, the ε-L2-mixing time6 of HMC scales
Õ(d

2
3 log(1/ε)). It is interesting to compare this guarantee with known bounds for the MALA

algorithm. However since each iteration of MALA uses only a single gradient evaluation,
a fair comparison would require us to track the total number of gradient evaluations re-
quired by the HMC-(K, η) chain to mix. For HMC to achieve accuracy ε, the total number
of gradient evaluations is given by K · τHMC

2 (ε;µ0), which in the above setting, scales as

Õ(d
11
12κ log(1/ε)). This rate was also summarized in Table 1. On the other hand, Theorem

1 in Dwivedi et al. (2019) shows that the corresponding number of gradient evaluations for

MALA is Õ(dκ log(1/ε)). As a result, we conclude that the upper bound for HMC is d
1
12

better than the known upper bound for MALA with a warm start for a well-conditioned
strongly log concave target distribution. We summarize these rates in Table 2. Note that
MRW is a zeroth order algorithm, which makes use of function evaluations but not gradient
information.

Sampling algorithm Mixing time #Gradient evaluations

MRW (Dwivedi et al., 2019, Theorem 2) dκ2 · log 1
ε NA

MALA (Dwivedi et al., 2019, Theorem 1) dκ · log 1
ε dκ · log 1

ε

HMC-(K, η) [ours, Corollary 2] d
2
3κ · log 1

ε d
11
12κ · log 1

ε

Table 2: Summary of the ε-mixing time and the corresponding number of gradient evalua-
tions for MRW, MALA and HMC from a warm start with an (L,LH,m)-strongly-

log-concave target. These statements hold under the assumption L
2/3
H = O(L),

κ = L
m � d, and omit logarithmic terms in dimension.

MALA vs HMC—Feasible start: In the second result (12b), we cover the case when a
warm start is not available. In particular, we analyze the HMC chain with the feasible initial
distribution µ† = N (x?, 1

LId). Here x? denotes the unique mode of the target distribution
and can be easily computed using an optimization scheme like gradient descent. It is not
hard to show (see Corollary 1 in Dwivedi et al. (2019)) that for an L-smooth (10a) and m
strongly log-concave target distribution (10b), the distribution µ† acts as a κd/2-warm start
distribution. Once again, it is of interest to determine whether HMC takes fewer gradient
steps when compared to MALA to obtain an ε-accurate sample. We summarize the results
in Table 3, with log factors hidden, and note that HMC with K = κ3/4 is faster than MALA
for as long as κ is not too large. From the last column, we find that when κ � d

1
2 , HMC

is faster than MALA by a factor of κ
1
4 in terms of number of gradient evaluations. It is

worth noting that for the feasible start µ†, the mixing time bounds for MALA and MRW in

6. Note that r(ε2) ≤ 6 for ε ≥ 2

ed/2
and thus we can treat r as a small constant for a large range of ε.

Otherwise, if ε needs to be extremely small, the results still hold with an extra log
1
2
(

1
ε

)
dependency.
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Dwivedi et al. Dwivedi et al. (2019) were loose by a factor d when compared to the tighter
bounds in Theorem 5 derived later in this paper.

Sampling algorithm Mixing time # Gradient Evaluations

general κ κ� d
1
2

MRW [ours, Theorem 5] dκ2 NA NA

MALA [ours, Theorem 5] max
{
dκ, d

1
2κ

3
2

}
max

{
dκ, d

1
2κ

3
2

}
dκ

HMC-(K, η) [ours, Corollary 2] max
{
d, d

2
3κ

1
3 , d

1
2κ
}

max
{
dκ

3
4 , d

2
3κ

13
12 , d

1
2κ

7
4

}
dκ

3
4

Table 3: Summary of the ε-mixing time and the corresponding number of gradient evalua-
tions for MRW, MALA and HMC from the feasible start µ† = N (x?, 1

LId) for an
(L,LH,m)-strongly-log-concave target. Here x? denotes the unique mode of the

target distribution. These statements hold uner the assumption LH = O(L
3
2 ), and

hide the logarithmic factors in ε, d and κ = L/m.

Metropolized HMC vs Unadjusted HMC: There are many recent results on the
1-Wasserstein distance mixing of unadjusted versions of HMC (for instance, see the pa-
pers Mangoubi and Vishnoi (2018); Lee et al. (2018)). For completeness, we compare our
results with them in the Appendix D.2; in particular, see Table 7 for a comparative sum-
mary. We remark that comparisons of these different results is tricky for two reasons: (a)
The 1-Wasserstein distance and the total variation distance are not strictly comparable,
and, (b) the unadjusted HMC results always have a polynomial dependence on the error
parameter ε while our results for Metropolized HMC have a superior logarithmic dependence
on ε. Nonetheless, the second difference between these chains has a deeper consequence,
upon which we elaborate further in Appendix D.2. On one hand, the unadjusted chains have
better mixing time in terms of scaling with d, if we fix ε or view it as independent of d. On
the other hand, when such chains are used to estimate certain higher-order moments, the
polynomial dependence on ε might become the bottleneck and Metropolis-adjusted chains
would become the method of choice.

Ill-conditioned target distributions: In order to keep the statement of Corollary 2
simple, we stated the mixing time bounds of HMC-(K, η)-chain only for a particular choice
of (K, η). In our analysis, this choice ensures that HMC is better than MALA only when
condition number κ is small. For Ill-conditioned distributions, i.e., when κ is large, finer
tuning of HMC-(K, η)-chain is required. In Appendices B and D (see Table 4 for the hyper-
parameter choices), we show that HMC is strictly better than MALA as long as κ ≤ d and
as good as MALA when κ ≥ d.

Beyond strongly-log-concave: The proof of Corollary 2 is based on the fact that
(L,LH,m)-strongly-log-concave distribution is in fact an (L,LH, s, ψ1/2,Ms) -regular dis-
tribution for any s ∈ (0, 1). Here ψ1/2 = 1/

√
m is fixed and the bound on the gradient
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Ms = r(s)
√
d/m depends on the choice of s. The result is formally stated in Lemma 15

in Appendix B. Moreover, in Appendix C, we discuss the case when the target distribution
is weakly log concave (under a bounded fourth moment or bounded covariance matrix as-
sumption) or a perturbation of log-concave distribution. See Corollary 18 for specific details
where we provide explicit expressions for the rates that appear in third and fourth columns
of Table 1.

3.3. Mixing time bounds via conductance profile

In this section, we discuss the general results that form the basis of the analysis in this paper.
A standard approach to controlling mixing times is via worst-case conductance bounds. This
method was introduced by Jerrum and Sinclair (1988) for discrete space chains and then
extended to the continuous space settings by Lovász and Simonovits (1993), and has been
thoroughly studied. See the survey (Vempala, 2005) and the references therein for a detailed
discussion of conductance based methods for continuous space Markov chains.

Somewhat more recent work on discrete state chains has introduced more refined meth-
ods, including those based on the conductance profile (Lovász and Kannan, 1999), the spec-
tral and conductance profile (Goel et al., 2006), as well as the evolving set method (Morris
and Peres, 2005). Here we extend one of the conductance profile techniques from the paper
by Goel et al. (2006) from discrete state to continuous state chains, albeit with several
appropriate modifications suited for the general setting.

We first introduce some background on the conductance profile. Given a Markov chain
with transition probability Θ : X ×B (X )→ R, its stationary flow φ : B(X )→ R is defined
as

φ(S) =

∫
x∈S

Θ(x, Sc)π∗(x)dx for any S ∈ B(X ). (13)

Given a set Ω ⊂ X , the Ω-restricted conductance profile is given by

ΦΩ(v) = inf
Π∗(S∩Ω)∈(0,v]

φ(S)

Π∗(S ∩ Ω)
for any v ∈

(
0, Π∗(Ω)/2

]
. (14)

(The classical conductance constant Φ is a special case; it can be expressed as Φ = ΦX (1
2).)

Moreover, we define the truncated extension Φ̃Ω of the function ΦΩ to the positive real line
as

Φ̃Ω(v) =

ΦΩ(v), v ∈
(

0, Π∗(Ω)
2

]
ΦΩ(Π∗(Ω)/2), v ∈

[
Π∗(Ω)

2 ,∞
)
.

(15)

In our proofs we use the conductance profile with a suitably chosen set Ω.

Smooth chain assumption: We say that the Markov chain satisfies the smooth chain
assumption if its transition probability function Θ : X × B(X ) → R+ can be expressed in
the form

Θ(x, dy) = θ(x, y)dy + αxδx(dy) for all x, y ∈ X , (16)
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where θ is the transition kernel satisfying θ(x, y) ≥ 0 for all x, y ∈ X . Here δx denotes
the Dirac-delta function at x and consequently, αx denotes the one-step probability of the
chain to stay at its current state x. Note that the three algorithms discussed in this paper
(MRW, MALA and HMC) all satisfy the smooth chain assumption (16). Throughout the
paper, when dealing with a general Markov chain, we assume that it satisfies the smooth
chain assumption.

Mixing time via conductance profile: We now state our Lemma 3 that provides a
control on the mixing time of a Markov chain with continuous-state space in terms of its
restricted conductance profile. We show that this control (based on conductance profile)
allows us to have a better initialization dependency than the usual conductance based
control (see Lovász and Simonovits (1990, 1993); Dwivedi et al. (2019)). This method for
sharpening the dependence is known for discrete-state Markov chains; to the best of our
knowledge, the following lemma is the first statement and proof of an analogous sharpening
for continuous state space chains:

Lemma 3 Consider a reversible, irreducible, ζ-lazy and smooth Markov chain (16) with
stationary distribution Π∗. Then for any error tolerance ε, and a β-warm distribution µ0,
given a set Ω such that Π∗(Ω) ≥ 1− ε2

2β2 , the ε-L2 mixing time of the chain is bounded as

τ2(ε;µ0) ≤
∫ 8/ε2

4/β

4 dv

ζ · vΦ̃2
Ω(v)

, (17)

where Φ̃Ω denotes the truncated Ω-restricted conductance profile (15).

See Appendix A.1 for the proof, which is based on an appropriate generalization of the ideas
used by Goel et al. (2006) for discrete state chains.

The standard conductance based analysis makes use of the worst-case conductance
bound for the chain. In contrast, Lemma 3 relates the mixing time to the conductance
profile, which can be seen as point-wise conductance. We use the Ω-restricted conductance
profile to state our bounds, because often a Markov chain has poor conductance only in
regions that have very small probability under the target distribution. Such a behavior is
not disastrous as it does not really affect the mixing of the chain up to a suitable tolerance.
Given the bound (17), we can derive mixing time bound for a Markov chain readily if we
have a bound on the Ω-restricted conductance profile ΦΩ for a suitable Ω. More precisely,
if the Ω-restricted conductance profile ΦΩ of the Markov chain is bounded as

ΦΩ(v) ≥

√
B log

(
1

v

)
for v ∈

[
4

β
,
1

2

]
,

for some β > 0 and Ω such that Π∗(Ω) ≥ 1 − ε2

2β2 . Then with a β-warm start, Lemma 3
implies the following useful bound on the mixing time of the ζ-lazy Markov chain:

τ2(ε;µ0) ≤ 32

ζB
log

(
log β

2ε

)
. (18)

We now relate our result to prior work based on conductance profile.
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Prior work: For discrete state chains, a result similar to Lemma 3 was already proposed
by Lovász and Kannan (Theorem 2.3 in Lovász and Kannan (1999)). Later on, Morris and
Peres (2005) and Goel et al. (2006) used the notion of evolving sets and spectral profile
respectively to sharpen the mixing time bounds based on average conductance for discrete-
state space chains. In the context of continuous state space chains, Lovász and Kannan
claimed in their original paper (Lovász and Kannan, 1999) that a similar result should
hold for general state space chain as well, although we were unable to find any proof of
such a general result in that or any subsequent work. Nonetheless, in a later work an
average conductance based bound was used by Kannan et al. to derive faster mixing time
guarantees for uniform sampling on bounded convex sets for ball walk (see Section 4.3
in Kannan et al. (2006)). Their proof technique is not easily extendable to more general
distributions including the general log-concave distributions in Rd. Instead, our proof of
Lemma 3 for general state space chains proceeds by an appropriate generalization of the
ideas based on the spectral profile by Goel et al. (2006) (for discrete state chains).

Lower bound on conductance profile: Given the bound (18), it suffices to derive a
lower bound on the conductance profile ΦΩ of the Markov chain with a suitable choice
of the set Ω. We now state a lower bound for the restricted-conductance profile of a
general state space Markov chain that comes in handy for this task. We note that a closely
related logarithmic-Cheeger inequality was used for sampling from uniform distribution of a
convex body (Kannan et al., 2006) and for sampling from log-concave distributions (Lee and
Vempala, 2018b) without explicit constants. Since we would like to derive a non-asymptotic
mixing rate, we re-derive an explicit form of their result.

Let scalars s ∈ (0, 1/2], ω ∈ (0, 1) and ∆ > 0 be given and let Tx denote the one-step
transition distribution of the Markov chain at point x. Suppose that that chain satisfies

dTV (Tx, Ty) ≤ 1− ω whenever x, y ∈ Ω and ‖x− y‖2 ≤ ∆. (19)

Lemma 4 For a given target distribution Π∗, let Ω be a convex measurable set such that the
distribution Π∗Ω satisfies the isoperimetry (or log-isoperimetry) condition (10d) with a = 0
(or a = 1

2 respectively). Then for any Markov chain satisfying the condition (19), we have

ΦΩ(v) ≥ ω

4
·min

{
1,

∆

16ψa
· loga

(
1 +

1

v

)}
, for any v ∈

[
0,

Π∗(Ω)

2

]
. (20)

See Appendix A.2 for the proof; the extra logarithmic term comes from the logarithmic
isoperimetric inequality (a = 1

2).

Faster mixing time bounds: For any target distribution satisfying a logarithmic isoperi-
metric inequality (including the case of a strongly log-concave distribution), Lemma 4 is
a strict improvement of the conductance bounds derived in previous works (Lovász, 1999;
Dwivedi et al., 2019). Given this result, suppose that we can find a convex set Ω such that
Π∗(Ω) ≈ 1 and the conditions of Lemma 4 are met, then with a β-warm start µ0, a direct
application of the bound (18) along with Lemma 4 implies the following bound:

τ2(ε;µ0) ≤ O
(

1

ω2∆2
log

log β

ε

)
. (21)
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Results known from previous work for continuous state Markov chains scale like log(β/ε)
ω2∆2 ;

for instance, see Lemma 6 in Chen et al. (2018). In contrast, the bound (21) provides
an additional logarithmic factor improvement in the factor β. Such an improvement also
allows us to derive a sharper dependency on dimension d for the mixing time for sampling
algorithms other than HMC as we now illustrate in the next section.

3.4. Improved warmness dependency for MALA and MRW

As discussed earlier, the bound (21) helps derive a log log β
log β factor improvement in the mixing

time bound from a β-warm start in comparison to earlier conductance based results. In
many settings, a suitable choice of initial distribution has a warmness parameter that scales
exponentially with dimension d, e.g., β = O(ed). For such cases, this improvement implies a
gain of O( d

log d) in mixing time bounds. As already noted the distribution µ† = N (x∗, 1
LId)

is a feasible starting distribution, whose warmness scales exponentially with dimension d.
See Section 3.2 of the paper (Dwivedi et al., 2019), where the authors show that computing
x∗ is not expensive and even approximate estimates of x∗ and L are sufficient to provide
a feasible starting distribution. We now state sharper mixing time bounds for MALA and
MRW with µ† as the starting distribution. In the result, we use c1, c2 to denote positive
universal constants.

Theorem 5 Assume that the target distribution Π∗ satisfies the conditions (10a) and (10b)
(i.e., the negative log-density is L-smooth and m-strongly convex). Then given the initial
distribution µ† = N (x∗, 1

LId), the 1
2 -lazy versions of MRW and MALA (Algorithms 1 and 2)

with step sizes

ηMRW = c2 ·
1

Ldκ
, and ηMALA = c1 ·

1

Ld ·max
{

1,
√
κ/d

} (22)

respectively, satisfy the mixing time bounds

τMRW
2 (ε;µ0) = O

(
dκ2 log

d

ε

)
, and (23a)

τMALA
2 (ε;µ0) = O

(
dκ log

d

ε
·max

{
1,

√
κ

d

})
. (23b)

The proof is omitted as it directly follows from the conductance profile based mixing
time bound in Lemma 3, Lemma 4 and the overlap bounds for MALA and MRW provided
in our prior work (Dwivedi et al., 2019). Theorem 5 states that the mixing time bounds
for MALA and MRW with the feasible distribution µ† as the initial distribution scale as

Õ(dκ log (1/ε)) and Õ(dκ2 log (1/ε)). Once again, we note that in light of the inequality (3c)
we obtain same bounds for the number of steps taken by these algorithms to mix within
ε total-variation distance of the target distribution Π∗. Consequently, our results improve
upon the previously known mixing time bounds for MALA and MRW (Dwivedi et al.,
2019) for strongly log-concave distributions. With µ† as the initial distribution, the authors

had derived bounds of order Õ(d2κ log (1/ε)) and Õ(d2κ2 log (1/ε)) for MALA and MRW
respectively (cf. Corollary 1 in Dwivedi et al. (2019)). However, the numerical experiments
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in that work suggested a better dependency on the dimension for the mixing time. Indeed
the mixing time bounds from Theorem 5 are smaller by a factor of d

log d , compared to our
earlier bounds in the prior work (Dwivedi et al., 2019) for both of these chains thereby
resolving an open question. Nonetheless, it is still an open question how to establish a
lower bound on the mixing time of these sampling algorithms.

4. Numerical experiments

In this section, we numerically compare HMC with MALA and MRW to verify that our
suggested step-size and leapfrog steps lead to faster convergence for the HMC algorithm. We
adopt the step-size choices for MALA and MRW given in Dwivedi et al. (2019), whereas
the choices for step-size and leapfrog steps for HMC are taken from Corollary 2 in this
paper. When the Hessian-Lipschitz constant LH is small, our theoretical results suggest
that HMC can be run with much larger step-size and much larger number of leapfrog
steps (see Appendix D.1.1). Since our experiments make use of multivariate Gaussian
target distribution, the Hessian-Lipschitz constant LH is always zero. Consequently we also
perform experiments with a more aggressive choice of parameters, i.e., larger step-size and
number of leapfrog steps. We denote this choice by HMCagg.

In this simulation, we check the dimension d dependency and condition number κ depen-
dency in the multivariate Gaussian case under our step-size choices. We consider sampling
from the multivariate Gaussian distribution with density

Π∗(x) ∝ e−
1
2
x>Σ−1x, (24)

for some covariance matrix Σ ∈ Rd×d. The log density (disregarding constants) and its
deriviatives are given by

f(x) =
1

2
x>Σ−1x, ∇f(x) = Σ−1x, and ∇2f(x) = Σ−1.

Consequently, the function f is strongly convex with parameter m = 1/λmax(Σ) and smooth
with parameter L = 1/λmin(Σ). Since Lp-divergence can not be measure with finitely many
samples, we use the error in quantiles along different directions for convergence diagnostics.
Using the exact quantile information for each direction for Gaussians, we measure the error
in the 75% quantile of the relative sample distribution and the true distribution in the least
favorable direction, i.e., along the eigenvector of Σ corresponding to the eigenvalue λmax(Σ).
The quantile mixing time is defined as the smallest iteration when this relative error falls
below a constant δ = 0.04. We use µ0 = N

(
0, L−1Id

)
as the initial distribution. To make

the comparison with MRW and MALA fair, we compare the number of total function and
gradient evaluations instead of number of iterations. For HMC, the number of gradient
evaluations is K times the number of outer-loop iterations.

For every case of simulation, the parameters for HMC-(K, η) are chosen according to
the warm start case in Corollary 2 with K = 4 · d1/4, and for MRW and MALA are
chosen according to the paper Dwivedi et al. (2019). As alluded to earlier, we also run the
HMC chain a more aggressive choice of parameters, and denote this chain by HMCagg. For
HMCagg, both the step-size and leapfrog steps are larger (Appendix D.1.1): K = 4·d1/8κ1/4

where we take into account that LH is zero for Gaussian distribution. We simulate 100
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independent runs of the four chains, MRW, MALA, HMC, HMCagg, and for each chain at
every iteration we compute the quantile error across the 100 samples from 100 independent
runs of that chain. We compute the minimum number of total function and gradient
evaluations required for the relative quantile error to fall below δ = 0.04. We repeat
this computation 10 times and report the averaged number of total function and gradient
evaluations in Figure 2. To examine the scaling of the number of evaluations with the
dimension d, we vary d ∈ {2, 4, . . . , 128}. For each chain, we also fit a least squares line for
the number of total function and gradient evaluations with respect to dimension d on the
log-log scale, and report the slope in the figure. Note that a slope of α would denote that
the number of evaluations scales with d as dα.

(a) Dimension dependency for fixed κ: First, we consider the case of fixed condi-
tion number. We fix κ = 4 while we vary the dimensionality d of the target distribution
is varied over {2, 4, . . . , 128}. The Hessian Σ in the multivariate Gaussian distribution is
chosen to be diagonal and the square roots of its eigenvalues are linearly spaced between
1.0 to 2.0. Figure 2(a) shows the dependency of the number of total function and gradient
evaluations as a function of dimension d for the four Markov chains on the log-log scale.
The least-squares fits of the slopes for HMC, HMCagg, MALA and MRW are 0.80(±0.12),
0.58(±0.15), 0.93(±0.13) and 0.96(±0.10), respectively, where standard errors of the regres-
sion coefficient is reported in the parentheses. These numbers indicate close correspondence
to the theoretical slopes (reported in Table 2 and Appendix D.1.1) are 0.92, 0.63, 1.0, 1.0
respectively.

(b) Dimension dependency for κ = d2/3: Next, we consider target distributions such
that their condition number varies with d as κ = d2/3, where d is varied from 2 to 128.
To ensure such a scaling for κ, we choose the Hessian Σ for the multivariate Gaussian
distribution to be diagonal and set the square roots of its eigenvalues linearly spaced between
1.0 to d1/3. Figure 2(b) shows the dependency of the number of total function and gradient
evaluations as a function of dimension d for the four random walks on the log-log scale. The
least squares fits yield the slopes as 1.60(±0.09), 1.34(±0.17), 1.64(±0.11) and 2.25(±0.08)
for HMC, HMCagg, MALA and MRW, respectively, where standard errors of the regression
coefficient are reported in the parentheses. Recall that the theoretical guarantees for HMC
(Table 5), HMCagg (Table 6), MALA and MRW (Table 2) yield that these exponent should
be close to 1.58, 1.46, 1.67 and 2.33 respectively. Once again, we observe a good agreement
of the numerical results with that of our theoretical results.

Remark: We would like to caution that the aggressive parameter choices for HMCagg
are well-informed only when the Hessian-Lipschitz constant LH is small—which indeed
is the case for the Gaussian target distributions considered above. When general log-
concave distributions are considered, one may use the more general choices recommended
in Corollary 14. See Appendix D for an in-depth discussion on different scenarios and the
optimal parameter choices derived from our theory.

5. Proofs

This section is devoted primarily to the proof of Theorem 1. In order to do so, we begin
with the mixing time bound based on the conductance profile from Lemma 3. We then seek
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Figure 2: Average number of total function and gradient evaluations as a function of di-
mension for four random walks on multivariate Gaussian density (24) where the
covariance has a condition number κ that is (a) constant 4 and (b) scales with
dimension d. With suggested step-size and leapfrog steps in Corollary 2, the num-
ber of total function and gradient evaluations of HMC has a smaller dimension
dependency than that of MALA or MRW. Since the target distributon is Gaus-
sian and the Hessian-Lipschitz constant LH is zero, larger step-size and larger
number of leapfrog steps can be chosen according to Appendix D.1.1. The plots
does show that HMCagg with larger step-size and larger number of leapfrog steps
uses smaller number of total function and gradient evaluations to achieve the
same quantile mixing.

to apply Lemma 4 in order derive a bound on the conductance profile itself. However, in
order to do so, we need to derive bound on the overlap between the proposal distributions
of HMC at two nearby points and show that the Metropolis-Hastings step only modifies the
proposal distribution by a relatively small amount. This control is provided by Lemma 6,
stated in Section 5.1. We use it to prove Theorem 1 in Section 5.2. Finally, Section 5.3
is devoted to the proof of Lemma 6. We provide a sketch-diagram for how various main
results of the paper interact with each other in Figure 1.

5.1. Overlap bounds for HMC

In this subsection, we derive two important bounds for the Metropolized HMC chain: (1)
first, we quantify the overlap between proposal distributions of the chain for nearby points,
and, (2) second, we show that the distortion in the proposal distribution introduced by
the Metropolis-Hastings accept-reject step can be controlled if an appropriate step-size is
chosen. Putting the two pieces together enables us to invoke Lemma 4 to prove Theorem 1.

In order to do so, we begin with some notation. Let T denote the transition operator of
the HMC chain with leapfrog integrator taking step-size η and number of leapfrog updates
K. Let Px denote the proposal distribution at x ∈ X for the chain before the accept-reject
step and the lazy step. Let T before-lazy

x denote the corresponding transition distribution after
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the proposal and the accept-reject step, before the lazy step. By definition, we have

Tx(A) = ζδx(A) + (1− ζ)T before-lazy
x (A) for any measurable set A ∈ B(X ). (25)

Our proofs make use of the Euclidean ball Rs defined in equation (29). At a high level,
the HMC chain has bounded gradient inside the ball Rs for a suitable choice of s, and the
gradient of the log-density gets too large outside such a ball making the chain unstable in
that region. However, since the target distribution has low mass in that region, the chain’s
visit to the region outside the ball is a rare event and thus we can focus on the chain’s
behavior inside the ball to analyze its mixing time.

In the next lemma, we state the overlap bounds for the transition distributions of the
HMC chain. For a fixed univeral constant c, we require

K2η2 ≤ 1

4 max

{
d

1
2L, d

2
3L

2
3
H

} , and (26a)

η2 ≤ 1

cL
min

 1

K2
,

1

Kd
1
2

,
1

K
2
3d

1
3

(
M2

L

) 1
3

,
1

K M

L
1
2

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3
M

L
1
2

 L

L
2
3
H

 1
2

 . (26b)

Lemma 6 Consider a (L,LH, s, ψa,M)-regular target distribution (cf. Assumption (A))
with Ω the convex measurable set satisfying (10e). Then with the parameters (K, η) satis-
fying Kη ≤ 1

4L and condition (26a), the HMC-(K, η) chain satisfies

sup
‖q0−q̃0‖2≤

Kη
4

dTV (Pq0 ,Pq̃0) ≤ 1

2
. (27a)

If, in addition, condition (26b) holds, then we have

sup
x∈Ω

dTV

(
Px, T before-lazy

x

)
≤ 1

8
. (27b)

See Appendix 5.3 for the proof.
Lemma 6 is crucial to the analysis of HMC as it enables us to apply the conductance

profile based bounds discussed in Section 3.3. It reveals two important properties of the
Metropolized HMC. First, from equation (27a), we see that proposal distributions of HMC
at two different points are close if the two points are close. This is proved by controlling
the KL-divergence of the two proposal distributions of HMC via change of variable formula.
Second, equation (27b) shows that the accept-reject step of HMC is well behaved inside Ω
provided the gradient is bounded by M .

5.2. Proof of Theorem 1

We are now equipped to prove our main theorem. In order to prove Theorem 1, we begin
by using Lemma 4 and Lemma 6 to derive an explicit bound for on the HMC conductance
profile. Given the assumptions of Theorem 1, conditions (26a) and (26b) hold, enabling us
to invoke Lemma 6 in the proof.
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Define the function ΨΩ : [0, 1] 7→ R+ as

ΨΩ(v) =


1

32
·min

{
1,

Kη

64ψa
loga

(
1

v

)}
if v ∈

[
0, 1−s

2

]
.

Kη

2048ψa
, if v ∈

(
1−s

2 , 1
]
.

(28)

This function acts as a lower bound on the truncated conductance profile. Define the
Euclidean ball

Rs = B

(
x?, r(s)

√
d

m

)
, (29)

and consider a pair (x, y) ∈ Rs such that ‖x− y‖2 ≤
1
4Kη. Invoking the decomposition (25)

and applying triangle inequality for ζ-lazy HMC, we have

dTV (Tx, Ty) ≤ ζ + (1− ζ) dTV

(
T before-lazy
x , T before-lazy

y

)
≤ ζ + (1− ζ)

(
dTV

(
T before-lazy
x ,Py

)
+ dTV (Px,Py) + dTV

(
Px, T before-lazy

y

))
(i)

≤ ζ + (1− ζ)

(
1

4
+

1

2
+

1

4

)
= 1− 1− ζ

4
,

where step (i) follows from the bounds (27a) and (27b) from Lemma 6. For ζ = 1
2 , substi-

tuting ω = 1
8 , ∆ = 1

4Kη and the convex set Ω = Rs into Lemma 4, we obtain that

ΦΩ(v) ≥ 1

32
·min

{
1,

Kη

64ψa
loga

(
1 +

1

v

)}
, for v ∈

[
0,

1− s
2

]
.

Here a equals to 1
2 or 0, depending on the assumption (10d). By the definition of the

truncated conductance profile (15), we have that Φ̃Ω(v) ≥ Kη
2048ψa

for v ∈
[

1−s
2 , 1

]
. As a

consequence, ΨΩ is effectively a lower bound on the truncated conductance profile. Note
that the assumption (A) ensures the existence of Ω such that Π∗(Ω) ≥ 1 − s for s = ε2

2β2 .
Putting the pieces together and applying Lemma 3 with the convex set Ω concludes the
proof of the theorem.

5.3. Proof of Lemma 6

In this subsection, we prove the two main claims (27a) and (27b) in Lemma 6. Before going
into the claims, we first provide several convenient properties about the HMC proposal.

5.3.1. Properties of the HMC proposal

Recall the Hamiltonian Monte Carlo (HMC) with leapfrog integrator (8c). Using an induc-
tion argument, we find that the final states in one iteration of K steps of the HMC chain,
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denoted by qK and pK satisfy

pK = p0 −
η

2
∇f(q0)−

K−1∑
j=1

∇f(qj)−
η

2
∇f(qK), (30a)

and qK = q0 +Kηp0 −
Kη2

2
∇f(q0)− η2

K−1∑
j=1

(K − j)∇f(qj). (30b)

It is easy to see that for k ∈ [K], qk can be seen as a function of the initial state q0 and p0.
We denote this function as the forward mapping F ,

qk =: Fk(p0, q0) and qK =: FK(p0, q0) =: F (p0, q0) (30c)

where we introduced the simpler notation F : = FK for the final iterate. The forward
mappings Fk and F are deterministic functions that only depends on the gradient ∇f , the
number of leapfrog updates K and the step size η.

Denote JxF as the Jacobian matrix of the forward mapping F with respect to the first
variable. By definition, it satisfies

[JxF (x, q0)]ij =
∂

∂xj
[F (x, q0)]i , for all i, j ∈ [d] . (30d)

Similarly, denote JyF as the Jacobian matrix of the forward mapping F with respect to the
second variable. The following lemma characterizes the eigenvalues of the Jacobian JxF .

Lemma 7 Suppose the log density f is L-smooth. For the number of leapfrog steps and
step-size satisfying K2η2 ≤ 1

4L , we have

|||KηId − JxF (x, y)|||2 ≤
1

8
Kη, for all x, y ∈ X and i ∈ [d] .

Also all eigenvalues of JxF (x, y) have absolute value greater or equal to 7
8Kη.

See Appendix A.3.1 for the proof.

Since the Jacobian is invertible for K2η2 ≤ 1
4L , we can define the inverse function of F

with respect to the first variable as the backward mapping G. We have

F (G(x, y), y) = x, for all x, y ∈ X . (31)

Moreover as a direct consequence of Lemma 7, we obtain that the magnitude of the eigen-

values of the Jacobian matrix JxG(x, y) lies in the interval
[

8
9Kη ,

8
7Kη

]
. In the next lemma,

we state another set of bounds on different Jacobian matrices:

Lemma 8 Suppose the log density f is L-smooth. For the number of leapfrog steps and
step-size satisfying K2η2 ≤ 1

4L , we have

|||JyG(x, y)|||2 ≤
4

3Kη
, for all x, y ∈ X , and (32a)∣∣∣∣∣∣∣∣∣∣∣∣∂Fk(G(x, y), y)

∂y

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ 3, for all k ∈ [K] . (32b)
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See Appendix A.3.2 for the proof.

Next, we would like to obtain a bound on the quantity ∂ log detJxG(x,q0)
∂y . Applying the

chain rule, we find that

∂ log det JxG(x, q0)

∂y
=

trace
(
[JxG(x, q0)]−1Jxy1G(x, q0)

)
...

trace
(
[JxG(x, q0)]−1JxydG(x, q0)

)
 . (33)

Here JxyG(x, q0) is a third order tensor and we use JxylG(x, q0) to denote the matrix
corresponding to the l-th slice of the tensor which satisfies

[JxylG(x, q0)]ij =
∂∂

∂xjyl
[F (x, q0)]i , for all i, j, l ∈ [d] .

Lemma 9 Suppose the log density f is L-smooth and LH-Hessian Lipschitz. For the num-
ber of leapfrog steps and step-size satisfying K2η2 ≤ 1

4L , we have

∥∥∥∥∂ log det JxG(x, q0)

∂y

∥∥∥∥
2

=

∥∥∥∥∥∥∥
trace

(
[JxG(x, q0)]−1Jxy1G(x, q0)

)
...

trace
(
[JxG(x, q0)]−1JxydG(x, q0)

)

∥∥∥∥∥∥∥

2

≤ 2dK2η2LH.

See Appendix A.3.3 for the proof.

As a direct consequence of the equation (30b) at k-th step of leapfrog updates, we obtain
the following two bounds for the difference between successive Fk terms that come in handy
later in our proofs.

Lemma 10 Suppose that the log density f is L-smooth. For the number of leapfrog steps
and step-size satisfying K2η2 ≤ 1

4L , we have

‖Fk(p0, q0)− q0‖2 ≤ 2kη ‖p0‖2 + 2k2η2 ‖∇f(q0)‖2 for k ∈ [K] , and (34a)

‖Fk+1(p0, q0)− Fk(p0, q0)‖2 ≤ 2η ‖p0‖2 + 2(k + 1)η2 ‖∇f(q0)‖2 for k ∈ [K − 1] . (34b)

See Appendix A.3.4 for the proof.

We now turn to the proof the two claims in Lemma 6. Note that the claim (27a) states
that the proposal distributions at two close points are close; the claim (27b) states that the
proposal distribution and the transition distribution are close.

5.3.2. Proof of claim (27a) in Lemma 6

In order to bound the distance between proposal distributions of nearby points, we prove
the following stronger claim: For a L-smooth LH-Hessian-Lipschitz target distribution, the
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proposal distribution of the HMC algorithm with step size η and leapfrog steps K such that
Kη ≤ 1

4L satisfies

dTV (Pq0 ,Pq̃0) ≤

(
2 ‖q0 − q̃0‖22

K2η2
+ 3
√
dKηL ‖q0 − q̃0‖2 + 4dK2η2LH ‖q0 − q̃0‖2

)1/2

, (35)

for all q0, q̃0 ∈ Rd. Then for any two points q0, q̃0 such that ‖q0 − q̃0‖2 ≤
1
4Kη, under the

condition (26a), i.e., K2η2 ≤ 1

4 max

{
d

1
2L,d

2
3L

2
3
H

} , we have

dTV (Pq0 ,Pq̃0) ≤
(

1

8
+

3

64
+

1

64

)1/2

≤ 1

2
,

and the claim (27a) follows.

The proof of claim (35) involves the following steps: (1) we make use of the update
rules (30b) and change of variable formula to obtain an expression for the density of qn in
terms of q0, (2) then we use Pinsker’s inequality and derive expressions for the KL-divergence
between the two proposal distributions, and (3) finally, we upper bound the KL-divergence
between the two distributions using different properties of the forward mapping F from
Appendix 5.3.1.

According to the update rule (30b), the proposals from two initial points q0 and q̃0

satisfy respectively

qK = F (p0, q0), and q̃K = F (p̃0, q̃0),

where p0 and p̃0 are independent random variable from Gaussian distribution N (0, Id).
Denote ρq0 as the density function of the proposal distribution Pq0 . For two different

initial points q0 and q̃0, the goal is to bound the total variation distance between the two
proposal distribution, which is by definition

dTV (Pq0 ,Pq̃0) =
1

2

∫
x∈X
|ρq0(x)− ρq̃0(x)| dx. (36)

Given q0 fixed, the random variable qK can be seen as a transformation of the Gaussian
random variable p0 through the function F (·, q0). When F is invertible, we can use the
change of variable formula to obtain an explicit expression of the density ρq0 :

ρq0(x) = ϕ (G(x, q0)) det (JxG(x, q0)) , (37)

where ϕ is the density of the standard Gaussian distribution N (0, Id). Note that even
though explicit, directly bounding the total variation distance (36) using the complicated
density expression (37) is difficult. We first use Pinsker’s inequality (Cover and Thomas,
1991) to give an upper bound of the total variance distance in terms of KL-divergence

dTV (Pq0 ,Pq̃0) ≤
√

2KL(Pq0 ‖ Pq̃0), (38)
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and then upper bound the KL-divergence. Plugging the density (37) into the KL-divergence
formula, we obtain that

KL(Pq0 ‖ Pq̃0) =

∫
Rd
ρq0(x) log

(
ρq0(x)

ρq̃0(x)

)
dx

=

∫
Rd
ρq0(x)

[
log

(
ϕ (G(x, q0))

ϕ (G(x, q̃0))

)
+ log det JxG(x, q0)− log det JxG(x, q̃0)

]
dx

=

∫
Rd
ρq0(x)

[
1

2

(
−‖G(x, q0)‖22 + ‖G(x, q̃0)‖22

)]
dx︸ ︷︷ ︸

T1

+

∫
Rd
ρq0(x) [log det JxG(x, q0)− log det JxG(x, q̃0)] dx︸ ︷︷ ︸

T2

(39)

We claim the following bounds on the terms T1 and T2:

|T1| ≤
8

9

‖q0 − q̃0‖22
K2η2

+
3

2

√
dKηL ‖q0 − q̃0‖2 , and (40a)

|T2| ≤ 2dK2η2LH ‖q0 − q̃0‖2 , (40b)

where the bound on T2 follows readily from Lemma 9:

|T2| =
∣∣∣∣∫ ρq0(x) [log det JxG(x, q0)− log det JxG(x, q̃0)] dx

∣∣∣∣
≤
∥∥∥∥∂ log det JxG(x, q0)

∂y

∥∥∥∥
2

‖q0 − q̃0‖2

≤ 2dK2η2LH ‖q0 − q̃0‖2 . (41)

Putting together the inequalities (38), (39), (40a) and (40b) yields the claim (35).

It remains to prove the bound (40a) on T1.

Proof of claim (40a): For the term T1, we observe that

1

2

(
‖G(x, q̃0)‖22 − ‖G(x, q0)‖22

)
=

1

2
‖G(x, q0)−G(x, q̃0)‖22 − (G(x, q0)−G(x, q̃0))>G(x, q0).

The first term on the RHS can be bounded via the Jacobian of G with respect to the second
variable. Applying the bound (32a) from Lemma 8, we find that

‖G(x, q0)−G(x, q̃0)‖2 ≤ |||JyG(x, y)|||2 ‖q0 − q̃0)‖2 ≤
4

3Kη
‖q0 − q̃0)‖2 . (42)

For the second part, we claim that there exists a deterministic function C of q0 and q̃0 and
independent of x, such that

‖G(x, q0)−G(x, q̃0)− C(q0, q̃0)‖2 ≤
3

2
KηL ‖q0 − q̃0‖2 . (43)
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Assuming the claim (43) as given at the moment, we can further decompose the second
part of T1 into two parts:

(G(x, q0)−G(x, q̃0))>G(x, q0) = (G(x, q0)−G(x, q̃0)− C(q0, q̃0))>G(x, q0) + C(q0, q̃0)>G(x, q0)
(44)

Applying change of variables along with equation (37), we find that∫
ρq0(x)G(x, q0)dx =

∫
ϕ(x)xdx = 0.

Furthermore, we also have∫
x∈X

ρq0(x) ‖G(x, q0)‖2 dx =

∫
x∈X

ϕ(x) ‖x‖2 dx

(i)

≤
[(∫

x∈X
ϕ(x) ‖x‖22 dx

)(∫
x∈X

ϕ(x)dx

)]1/2

=
√
d,

where step (i) follows from Cauchy-Schwarz’s inequality. Combining the inequalities (42),
(43) and (44) together, we obtain the following bound on term T1:

|T1| =
∣∣∣∣∫ ρq0(x)

[
−1

2
‖G(x, q0)‖22 +

1

2
‖G(x, q̃0)‖22

]
dx

∣∣∣∣
≤ 1

2

∣∣∣∣∫ ρq0(x) ‖G(x, q0)−G(x, q̃0)‖22 dx
∣∣∣∣

+

∣∣∣∣∫ ρq0(x) ‖G(x, q0)−G(x, q̃0)− C(q0, q̃0)‖2 ‖G(x, q0)‖2 dx
∣∣∣∣

≤ 8

9

‖q0 − q̃0‖22
K2η2

+
3

2

√
dKη ‖q0 − q̃0‖2 , (45)

which yields the claimed bound on T1.

We now prove our earlier claim (43).

Proof of claim (43): For any pair of states q0 and q̃0, invoking the definition (31) of the
map G(x, ·), we obtain the following implicit equations:

x = q0 +KηG(x, q0)−Kη2

2
∇f(q0)− η2

K−1∑
j=1

(K − j)∇f(Fj(G(x, q0), q0)), and

x = q̃0 +KηG(x, q̃0)−Kη2

2
∇f(q̃0)− η2

K−1∑
j=1

(K − j)∇f(Fj(G(x, q̃0), q̃0)).

Taking the difference between the two equations above, we obtain

G(x, q0)−G(x, q̃0)− q0 − q̃0

Kη
− η

2
(∇f(q0)−∇f(q̃0))

=
η2

Kη

K−1∑
k=1

(K − j) (∇f(Fk(G(x, q0), q0))−∇f(Fk(G(x, q̃0), q̃0))) .
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Applying L-smoothness of f along with the bound (32b) from Lemma 8, we find that

‖∇f(Fk(G(x, q0), q0))−∇f(Fk(G(x, q̃0), q̃0))‖2 ≤ L
∣∣∣∣∣∣∣∣∣∣∣∣∂Fk(G(x, y), y)

∂y

∣∣∣∣∣∣∣∣∣∣∣∣
2

‖q0 − q̃0‖2

≤ 3L ‖q0 − q̃0‖2 .

Putting the pieces together, we find that∥∥∥∥G(x, q0)−G(x, q̃0)− q0 − q̃0

Kη
− 1

2
(∇f(q0)−∇f(q̃0))

∥∥∥∥
2

≤ 3KηL

2
‖q0 − q̃0‖2 ,

which yields the claim (43).

5.3.3. Proof of claim (27b) in Lemma 6

We now bound the distance between the one-step proposal distribution Px at point x and
the one-step transition distribution T before-lazy

x at x obtained after performing the accept-
reject step (and no lazy step). Using equation (30a), we define the forward mapping E for
the variable pK as follows

pK = E(p0, q0) : = p0 −
η

2
∇f(q0)− η

K−1∑
j=1

∇f(qj)−
η

2
∇f(qK).

Consequently, the probability of staying at x is given by

T before-lazy
x ({x}) = 1−

∫
X

min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}
ϕx(z)dz,

where the Hamiltonian H(q, p) = f(q) + 1
2 ‖p‖

2
2 was defined in equation (7). As a result,

the TV-distance between the proposal and transition distribution is given by

dTV

(
Px, T before-lazy

x

)
= 1−

∫
X

min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}
ϕx(z)dz

= 1− Ez∼N (0,Id)

[
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}]
. (46)

An application of Markov’s inequality yields that

Ez∼N (0,Id)

[
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}]
≥ αPz∼N (0,Id)

[
exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))
≥ α

]
, (47)

for any α ∈ (0, 1]. Thus, to bound the distance dTV

(
Px, T before-lazy

x

)
, it suffices to derive a

high probability lower bound on the ratio exp(−H(E(z, x), F (z, x)))/exp(−H(z, x)) when
z ∼ N (0, Id).
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We now derive a lower bound on the following quantity:

exp

(
−f(F (p0, q0)) + f(q0)− 1

2
‖E(p0, q0)‖22 +

1

2
‖p0‖22

)
, when p0 ∼ N (0, Id).

We derive the bounds on the two terms −f(F (p0, q0)) + f(q0) and ‖E(p0, q0)‖22 separately.

Observe that

f(F (p0, q0))− f(q0) =
K−1∑
j=0

[f(Fj+1(p0, q0))− f(Fj(p0, q0))] .

The intuition is that it is better to apply Taylor expansion on closer points. Applying the
third order Taylor expansion and using the smoothness assumptions (10a) and (10c) for the
function f , we obtain

f(x)− f(y) ≤ (x− y)>

2
(∇f(x) +∇f(y)) + LH ‖x− y‖32 .

For the indices j ∈ {0, . . . ,K − 1}, using Fj as the shorthand for Fj(p0, q0), we find that

f(Fj+1)− f(Fj) ≤
(Fj+1 − Fj)>

2
(∇f(Fj+1) +∇f(Fj)) + LH ‖Fj+1 − Fj‖32

=
1

2
ηp>0 (∇f(Fj+1) +∇f(Fj))

− η2

2

[
1

2
∇f(p0) +

j∑
k=1

∇f(Fk)

]>
(∇f(Fj+1) +∇f(Fj)) + LH ‖Fj+1 − Fj‖32 ,

(48)

where the last equality follows by definition (30c) of the operator Fj .

Now to bound the term E(p0, q0), we observe that

‖E(p0, q0)‖22
2

=

∥∥∥p0 − η
2∇f(q0)− η

∑K−1
j=1 ∇f(Fj)− η

2∇f(FK)
∥∥∥2

2

2

=
‖p0‖22

2
− ηp>0

(
1

2
∇f(q0) +

K−1∑
j=1

∇f(Fj) +
1

2
∇f(FK)

)

+
η2

2

∥∥1

2
∇f(q0) +

K−1∑
j=1

∇f(Fj) +
1

2
∇f(FK)

∥∥2

2
. (49)
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Putting the equations (48) and (49) together leads to cancellation of many gradient
terms and we obtain

− f(F (p0, q0)) + f(q0)− 1

2
‖E(p0, q0)‖22 +

1

2
‖p0‖22

≥ η2

8
(∇f(q0)−∇f(FK))> (∇f(q0) +∇f(FK))− LH

K−1∑
j=0

‖Fj+1 − Fj‖32

≥ −η
2L

4
‖q0 − F (p0, q0)‖2 ‖∇f(q0)‖2 −

η2L2

2
‖q0 − F (p0, q0)‖22 − LH

K−1∑
j=0

‖Fj+1 − Fj‖32

(50)

The last inequality uses the smoothness condition (10a) for the function f . Plugging the
bounds (34a) and (34b) in equation (50), we obtain a lower bound that only depends on
‖p0‖2 and ‖∇f(q0)‖2:

RHS of (50) ≥ −2K2η4L2 ‖p0‖22 − 2Kη3L ‖p0‖2 ‖∇f(q0)‖2 − 2K2η4L ‖∇f(q0)‖22
−LH

(
32Kη3 ‖p0‖32 + 8K4η6 ‖∇f(q0)‖32

)
. (51)

According to assumption (A), we have bounded gradient in the convex set Ω. For any
x ∈ Ω, we have ‖∇f(x)‖2 ≤M . Standard Chi-squared tail bounds imply that

P
[
‖p0‖22 ≤ dα1

]
≥ 1− 1

16
, for α1 = 1 + 2

√
log(16) + 2 log(16). (52)

Plugging the gradient bound and the bound (52) into equation (51), we conclude that there
exists an absolute constant c ≤ 2000 such that for η2 satisfying equation (26b), namely

η2 ≤ 1

cL
min

 1

K2
,

1

Kd
1
2

,
1

K
2
3d

1
3

(
M2

L

) 1
3

,
1

K M

L
1
2

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3
M

L
1
2

 L

L
2
3
H

 1
2

 ,

we have

P
[
−f(F (p0, q0)) + f(q0)− 1

2
‖E(p0, q0)‖22 +

1

2
‖p0‖22 ≥ −1/16

]
≥ 1− 1

16
.

Plugging this bound in the inequality (47) yields that

Ez∼N (0,Id)

[
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}]
≥ 1− 1

8
,

which when plugged in equation (46) implies that dTV

(
Px, T before-lazy

x

)
≤ 1/8 for any

x ∈ Rs, as claimed. The proof is now complete.
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6. Discussion

In this paper, we derived non-asymptotic bounds on mixing time of Metropolized Hamil-
tonian Monte Carlo for log-concave distributions. By choosing appropriate step-size and
number of leapfrog steps, we obtain mixing-time bounds for HMC that are smaller than the
best known mixing-time bounds for MALA. This improvement can be seen as the benefit of
using multi-step gradients in HMC. An interesting open problem is to determine whether
our HMC mixing-time bounds are tight for log-concave sampling under the assumptions
made in the paper.

Even though, we focused on the problem of sampling only from strongly and weakly
log-concave distribution, our Theorem 1 can be applied to general distributions including
nearly log-concave distributions as mentioned in Appendix C.2. It would be interesting to
determine the explicit expressions for mixing-time of HMC for more general target distri-
butions. The other main contribution of our paper is to improve the warmness dependency
in mixing rates of Metropolized algorithms that are proved previously such as MRW and
MALA (Dwivedi et al., 2019). Our techniques are inspired by those used to improve warm-
ness dependency in the literature of discrete-state Markov chains. It is an interesting future
direction to determine if this warmness dependency can be further improved to prove a
convergence sub-linear in d for HMC with generic initialization even for small condition
number κ.
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Appendix A. Proof of Lemmas 3, 4 and 6

In this appendix, we collect the proofs of Lemmas 3, and 4, as previously stated in Sec-
tion 3.3, that are used in proving Theorem 1. Moreover, we provide the proof of auxiliary
results related to HMC proposal that were used in the proof of Lemma 6.

A.1. Proof of Lemma 3

In order to prove Lemma 3, we begin by adapting the spectral profile technique (Goel
et al., 2006) to the continuous state setting, and next we relate conductance profile with
the spectral profile.

First, we briefly recall the notation from Section 2.2. Let Θ : X × B(X ) → R+ denote
the transition probability function for the Markov chain and let T be the corresponding
transition operator, which maps a probability measure to another according to the transition
probability Θ. Note that for a Markov chain satisfying the smooth chain assumption (16), if
the distribution µ admits a density then the distribution T (µ) would also admits a density.
We use Tx as the shorthand for T (δx), the transition distribution of the Markov chain at x.

Let L2(π∗) be the space of square integrable functions under function π∗. The Dirichlet
form E : L2(π∗)× L2(π∗)→ R associated with the transition probability Θ is given by

E(g, h) =
1

2

∫
(x,y)∈X 2

(g(x)− h(y))2 Θ(x, dy)π∗(x)dx. (53)

The expectation Eπ∗ : L2(π∗) → R and the variance Varπ∗ : L2(π∗) → R with respect to
the density π∗ are given by

Eπ∗(g) =

∫
x∈X

g(x)π∗(x)dx and Varπ∗(g) =

∫
x∈X

(g(x)− Eπ∗(g))2 π∗(x)dx. (54a)

Furthermore, for a pair of measurable sets (S,Ω) ⊂ X 2, the Ω-restricted spectral gap for the
set S is defined as

λΩ(S) = inf
g∈c+0 (S∩Ω)

E(g, g)

Varπ∗(g)
, (55a)

where c+
0 (S ∩ Ω) = {g ∈ L2(π∗) | supp(g) ⊂ S ∩ Ω, g ≥ 0, g 6= constant} . (55b)
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Finally, the Ω-restricted spectral profile ΛΩ is defined as

ΛΩ(v) = inf
Π∗(S∩Ω)∈[0,v]

λΩ(S ∩ Ω), for all v ∈
[
0,∞). (56)

Note that we restrict the spectral profile to the set Ω. Taking Ω to be X , our definition
agrees with the standard definition definitions of the restricted spectral gap and spectral
profile in the paper (Goel et al., 2006) for finite state space Markov chains to continuous
state space Markov chains.
We are now ready to state a mixing time bound using spectral profile.

Lemma 11 Consider a reversible irreducible ζ-lazy Markov chain with stationary distribu-
tion Π∗ satifying the smooth chain assumption (16). Given a β-warm start µ0, an error

tolerance ε ∈ (0, 1) and a set Ω ⊂ X with Π∗(Ω) ≥ 1− ε2

2β2 , the L2-mixing time is bounded
as

τ2(ε;µ0) ≤

⌈∫ 8/ε2

4/β

dv

ζ · vΛΩ(v)

⌉
, (57)

where ΛΩ denotes the Ω-restricted spectral profile (56) of the chain.

See Appendix A.1.1 for the proof.

In the next lemma, we state the relationship between the Ω-restricted spectral pro-
file (56) of the Markov chain to its Ω-restricted conductance profile (14).

Lemma 12 For a Markov chain with state space X and stationary distribution Π∗, given
any measurable set Ω ⊂ X , its Ω-restricted spectral profile (56) and Ω-restricted conductance
profile (14) are related as

ΛΩ(v) ≥


Φ2

Ω(v)

2
for all v ∈

[
0, Π∗(Ω)

2

]
Φ2

Ω(Π∗(Ω)/2)

4
for all v ∈

(Π∗(Ω)
2 ,∞).

(58)

See Appendix A.1.2 for the proof.

Lemma 3 now follows from Lemmas 11 and 12 as well as the definition (15) of Φ̃Ω.

A.1.1. Proof of Lemma 11

We need the following lemma, proved in for the case of finite state Markov chains in Goel
et al. (2006), which lower bounds the Dirichlet form in terms of the spectral profile.

Lemma 13 For any measurable set Ω ⊂ X , any non-constant function g : X → R+ such
that g ∈ L2(π∗) and supp(g) ⊂ Ω, we have

E(g, g)

Varπ∗(g)
≥ 1

2
ΛΩ

(
4 (Eπ∗(g))2

Varπ∗(g)

)
. (59)

The proof of Lemma 13 is a straightforward extension of Lemma 2.1 from Goel et al. (2006),
which deals with finite state spaces, to the continuous state Markov chain. See the end of
Section A.1.1 for the proof.
We are now equipped to prove Lemma 11.
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Proof of Lemma 11: We begin by introducing some notations. Recall that for any
Markov chain satisfying the smooth chain assumption (16), given an initial distribution µ0

that admits a density, the distribution of the chain at any step n also admits a density. As
a result, we can define the ratio of the density of the Markov chain at the n-th iteration
hµ0,n : X → R with respect to the target density π∗ via the following recursion

hµ0,0(x) =
µ0(x)

π∗(x)
and hµ0,n+1(x) =

T (π∗ · hµ0,n) (x)

π∗(x)
,

where we have used the notation T (µ)(x) to denote the density of the distribution T (µ) at
x. Note that

Eπ∗(hµ0,n) = 1 and Eπ∗(hµ0,n · 1Ω) ≤ 1 for all n ≥ 0, (60)

where Ω ⊂ X is a measurable set.
We also define the quantity J(n) : = Varπ∗(hµ0,n) (we prove the existence of this variance

below in Step (1)). Note that the L2-distance between the distribution of the chain at step
n and the target distribution is given by

d2,π∗(T n(µ0),Π∗) =

(∫
x∈Rd

(hµ0,n(x)− 1)2 π∗(x)dx

)1/2

= Varπ∗(hµ0,n).

Consequently, to prove the ε-L2 mixing time bound (57), it suffices to show that for any

measurable set Ω ⊂ X , with Π∗(Ω) ≥ 1− ε2

2β2 , we have

J(n) ≤ ε2 for n ≥

⌈∫ 8/ε2

4/β

dv

ζ · vΛΩ

⌉
(61)

We now establish the claim (61) via a three step argument: (1) we prove the existence of
the variance J(n) for all n ∈ N, (2) then we derive a recurrence relation for the difference
J(n+ 1)− J(n) in terms of Dirichlet forms that shows the J is a decreasing function, and
(3) finally, using an extension of the variance J from natural indices to real numbers, we
derive an explicit upper bound on the number of steps taken by the chain until J lies below
the required threshold.

Step (1): Using the reversibility (2) of the chain, we find that

hµ0,n+1(x)dx =

∫
y∈X Θ(y, dx)hµ0,n(y)π∗(y)dy

π∗(x)
=

∫
y∈X Θ(x, dy)hµ0,n(y)π∗(x)dx

π∗(x)

=

∫
y∈X

Θ(x, dy)hµ0,n(y)dx (62)

Applying an induction argument along with the relationship (62) and the initial condition
hµ0,0(x) ≤ β, we obtain that

hµ0,n(x) ≤ β, for all n ≥ 0. (63)

As a result, the variances of the functions hµ0,0 and hµ0,n · 1Ω under the target density π∗

are well-defined and

J(n) =

∫
X
h2
µ0,n(x)π∗(x)dx− 1 (64)

37



Chen, Dwivedi, Wainwright and Yu

Step (2): We now bound the difference between consecutive variance terms. We have

J(n)−Varπ∗(hµ0,n · 1Ω) = Varπ∗(hµ0,n)−Varπ∗(hµ0,n · 1Ω)

=

∫
x∈X\Ω

h2
µ0,n(x)π∗(x)dx−

(∫
x∈X

hµ0,n(x)π∗(x)dx

)2

+

(∫
x∈Ω

hµ0,n(x)π∗(x)dx

)2

≤ β2 (1−Π∗(Ω)) ≤ ε2

2
=: B, (65)

where the last inequality follows from the fact that Ω satisfies Π∗(Ω) ≥ 1− ε2/(2β2). Also
note the following bound on J(0):

J(0) =

∫
x∈X

µ0(x)2

π∗(x)
dx− 1 ≤ β

∫
x∈X

µ0(x)dx− 1 ≤ β − 1. (66)

Define the two step transition kernel Θ ◦Θ as

Θ ◦Θ(y, dz) =

∫
x∈X

Θ(y, dx)Θ(x, dz).

We have

J(n+ 1) : = Varπ∗(hµ0,n+1) =

∫
x∈X

h2
µ0,n+1(x)π∗(x)dx− 1

(i)
=

∫
x∈X

∫
y∈X

Θ(y, dx)hµ0,n(y)π∗(y)dy

∫
z∈X

Θ(x, dz)hµ0,n(z)− 1

=

∫
y,z∈X 2

Θ ◦Θ(y, dz)hµ0,n(y)hµ0,n(z)π∗(y)dy − 1,

where step (i) follows from the relation (62). Using the above expression for J(n+ 1) and
the expression from equation (64) for J(n), we find that

J(n+ 1)− J(n) =

∫
X 2

Θ ◦Θ(y, dz)hµ0,n(y)hµ0,n(z)π∗(y)dy −
∫
X
h2
µ0,n(x)π∗(x)dx,

(a)
= −EΘ◦Θ(hµ0,n, hµ0,n), (67)

where EΘ◦Θ is the Dirichlet form (53) with transition probability Θ being replaced by Θ◦Θ.
We come back to the proof of equality (a) at the end of this paragraph. Assuming it as
given at the moment, we proceed further. Since the Markov chain is ζ-lazy, we can relate
the two Dirichlet forms EΘ◦Θ and EΘ as follows: For any y, z ∈ X such that y 6= z, we have

Θ ◦Θ(y, dz) =

∫
x∈X

Θ(y, dx)Θ(x, dz) ≥ Θ(y, dy)Θ(y, dz) + Θ(y, dz)Θ(z, dz)

≥ 2ζΘ(y, dz). (68)
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We have

J(n+ 1)− J(n) = −EΘ◦Θ(hµ0,n, hµ0,n)
(i)

≤ −2ζEΘ(hµ0,n, hµ0,n)

(ii)

≤ −2ζEΘ(hµ0,n · 1Ω, hµ0,n · 1Ω)

(iii)

≤ −ζ Varπ∗(hµ0,n · 1Ω)ΛΩ

(
4 [Eπ∗(hµ0,n · 1Ω)]2

Varπ∗(hµ0,n · 1Ω)

)
(iv)

≤ −ζ · (J(n)−B) ΛΩ

(
4

J(n)−B

)
. (69)

where step (i) follows from inequality (68), step (ii) follows from the fact that Dirichlet forms
satisfy EΘ(hµ0,n, hµ0,n) ≥ EΘ(hµ0,n · 1Ω, hµ0,n · 1Ω), step (iii) follows from Lemma 13, and
finally step (iv) follows from inequality (65) which implies that Varπ∗(hµ0,n ·1Ω) ≥ J(n)−B,
and the fact that the spectral profile ΛΩ is a non-increasing function.

Proof of equality (a) in equation (67): Since the distribution Π∗ is stationary with
respect to the kernel Θ, it is also stationary with respect to the two step kernel Θ ◦ Θ.
We now prove a more general claim: For any transition kernel K which has stationary
distribution Π∗ and any measurable function h, the Dirichlet form EK , defined by replacing
Θ with K in equation (53), we have

EK(h, h) =

∫
X
h2(x)π∗(x)dx−

∫
X

∫
X
h(x)h(y)K(x, dy)π∗(x)dx. (70)

Note that invoking this claim with K = Θ◦Θ and h = hµ0,n implies step (a) in equation (67).
We now establish the claim (70). Expanding the square in the definition (53), we obtain
that

EK(h, h) =
1

2

∫
X

∫
X
h2(x)K(x, dy)π∗(x)dx+

1

2

∫
X

∫
X
h2(y)K(x, dy)π∗(x)dx

−
∫
X

∫
X
h(x)h(y)K(x, dy)π∗(x)dx

(i)
=

1

2

∫
X
h2(x)π∗(x)dx+

1

2

∫
X
h2(x)π∗(x)dx−

∫
X

∫
X
h(x)h(y)K(x, dy)π∗(x)dx,

where equality (i) follows from the following facts: For the first term, we use the fact that∫
X K(x, dy) = 1 since K is a transition kernel, and, for the second term we use the fact

that
∫
X K(x, dy)π∗(x)dx = π∗(y)dy, since Π∗ is the stationary distribution for the kernel

K. The claim now follows.

Step (3): Consider the domain extension of the function J from N to the set of non-
negative real numbers R+ by piecewise linear interpolation. We abuse notation and denote
this extension also by J . The extended function J is continuous and is differentiable on
the set R+\N. Let n∗ ∈ R+ ∪ {∞} denote the index such that J(n∗) < B. Since ΛΩ is
non-increasing and J is non-increasing, we have

J ′(t) ≤ −ζ · (J(t)−B) ΛΩ

(
4

J(t)−B

)
for all t ∈ R+\N such that t ≤ n∗. (71)
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Moving the J terms on one side and integrating for t ≤ n∗, we obtain∫ J(t)

J(0)

dJ

(J −B) · ΛΩ

(
4

J−B

) ≤ −ζt.
Using the change of variable v = 4/ (J −B), we obtain

ζt ≤
∫ 4/(J(t)−B)

4/(J(0)−B)

dv

vΛΩ(v)
(72)

Furthermore, equation (72) implies that for T ≥ 1
ζ

∫ 8/ε2

4/β
dv

vΛΩ(v) , we have

∫ 8/ε2

4/β

dv

vΛΩ(v)
≤
∫ 4/(J(T )−B)

4/(J(0)−B)

dv

vΛΩ(v)
.

The bound (66) and the fact that B = ε2/2 imply that 4/(J(0) − B) > 4/β. Using this
observation and the fact that 0 ≤ ΛΩ(v) <∞ for v ≥ 4/β, we conclude that

J(T ) ≤ B =
ε2

2
or

4

J(T )−B
≥ 8

ε2
for T ≥ 1

ζ

∫ 8/ε2

4/β

dv

vΛ(v)
,

which implies the claimed bound (61).

Finally, we turn to the proof of Lemma 13.

Proof of Lemma 13: Fix a non-constant function g : X → R+ such that g ∈ L2(π∗) and
supp(g) ⊂ Ω. Note that for any constant c ∈ R, we have

E(g, g) =
1

2

∫
(x,y)∈X 2

(g(x)− g(y))2 Θ(x, dy)Π∗(x)dx

=
1

2

∫
(x,y)∈Ω2

(g(x)− g(y))2 Θ(x, dy)Π∗(x)dx

=
1

2

∫
(x,y)∈Ω2

((g(x)− c)− (g(y)− c))2 Θ(x, dy)Π∗(x)dx

= E ((g − c) · 1Ω, (g − c) · 1Ω) .

Consequently, we obtain that

E(g, g) = E ((g − c) · 1Ω, (g − c) · 1Ω) ≥ E ((g − c)+ · 1Ω, (g − c)+ · 1Ω)

(i)

≥ Varπ∗ ((g − c)+ · 1Ω) inf
f∈c+0 ({g>c}∩Ω)

E(f, f)

Varπ∗ (f)

(ii)

≥ Varπ∗ ((g − c)+ · 1Ω) · ΛΩ(Π∗({g > c} ∩ Ω)). (73)
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Here (x)+ = max {0, x} denotes the positive part of x. Inequality (i) follows from the
infimum and inequality (ii) follows from the definition (56) of Ω-restricted spectral profile.
Additionally, we have

Varπ∗ ((g − c)+ · 1Ω) = Eπ∗ ((g − c)+ · 1Ω)2 − [Eπ∗ ((g − c)+ · 1Ω)]2

(i)

≥ Eπ∗ (g)2 − 2(cΠ∗(Ω)) · Eπ∗ (g)− [Eπ∗ (g)]2

≥ Varπ∗ (g)− 2cEπ∗ (g) , (74)

where inequality (i) follows from the fact that

(a− b)2
+ ≥ a2 − 2ab and (a− b)+ ≤ a, for scalars a, b ≥ 0.

Setting c = Varπ∗(g)/4Eπ∗ (g), we obtain from equation (74) that

Varπ∗ ((g − c)+1Ω) ≥ 1

2
Varπ∗ (g) (75)

Furthermore for any c > 0, applying Markov’s inequality for the non-negative function
g · 1Ω, we also have Π∗({g > c} ∩ Ω) ≤ Π∗({g > c}) ≤ [Eπ∗ (g)] /c. Combing equation (73)
and (75), together with the fact that ΛΩ is non-increasing, we obtain

E(g, g) ≥ 1

2
Varπ∗ (g) · ΛΩ

(
4 (Eπ∗(g))2

Varπ∗ (g)

)
,

as claimed in the lemma.

A.1.2. Proof of Lemma 12

The proof of the Lemma 12 follows along the lines of Lemma 2.4 in Goel et al. (2006), except
that we have to deal with continuous-state transition probability. This technical challenge
is the main reason for introducing the restricted conductance profile. At a high level, our
argument is based on reducing the problem on general functions to a problem on indicator
functions, and then using the definition of the conductance. Similar ideas have appeared
in the proof of the Cheeger’s inequality (Cheeger, 1969) and the modified log-Sobolev con-
stants (Houdré, 2001).

We split the proof of Lemma 12 in two cases based on whether v ∈ [ 4
β ,

Π∗(Ω)
2 ], referred

to as Case 1, or v ≥ Π∗(Ω)
2 , referred to as Case 2.

Case 1: First we consider the case when v ∈ [ 4
β ,

Π∗(Ω)
2 ]. First, we define D+ : L2(π∗) →

L2(π∗) as

D+(g)(x) =

∫
y∈X

(g(x)− g(y))+ Θ(x, dy) andD−(g)(x) =

∫
y∈X

(g(x)− g(y))−Θ(x, dy),

where (x)+ = max {0, x} and (resp. (·)−) denote the positive and negative part of x
respectively. We note that D+ and D− satisfy the following co-area formula:

Eπ∗D+(g) =

∫ +∞

−∞
Eπ∗D+1g>tdt. (76a)
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See Lemma 1 in Houdré (2001) or Lemma 2.4 in Goel et al. (2006) for a proof of the
equality (76a). Moreover, given any measurable set A ⊂ X , scalar t, and function g ∈ c+

0 (A∩
Ω), we note that the term Eπ∗D+(1g>t)(x) is equal to the flow φ (defined in equation (13))
of the level set Gt = {x ∈ Ω | g(x) > t}:

Eπ∗D+(1g>t) =

∫
x∈Gt

Θ(x,Gct)π
∗(x)dx = φ(Gt). (76b)

Since Gt ⊂ Ω, we have

φ(Gt) ≥ Π∗(Gt) · inf
0≤Π∗(S∩Ω)≤Π∗(A∩Ω)

φ(S)

Π∗(S ∩ Ω)
. (76c)

Combining the previous three equations, we find that7

Eπ∗D+(g) =

∫ +∞

−∞
Eπ∗D+1g>tdt ≥

∫ +∞

−∞
Π∗(Gt)dt · inf

0≤Π∗(S∩Ω)≤Π∗(A∩Ω)

φ(S)

Π∗(S ∩ Ω)

= Eπ∗(g) · ΦΩ(Π∗(A ∩ Ω)).

In a similar fashion, we also obtain that

Eπ∗D−(g) ≥ Eπ∗(g) · ΦΩ(Π∗(A ∩ Ω)).

Combining these two bounds, we find that∫
X

∫
X
|g(x)− g(y)|Θ(x, dy)π∗(x)dx = Eπ∗D+(g) + Eπ∗D−(g) ≥ 2Eπ∗(g) · ΦΩ(Π∗(A ∩ Ω)).

Applying this inequality with the function g2, we have

2Eπ∗(g2) · ΦΩ(Π∗(A ∩ Ω))

≤
∫
X

∫
X

∣∣g2(x)− g2(y)
∣∣Θ(x, dy)π∗(x)dx

=

∫
X

∫
X
|g(x)− g(y)| |g(x) + g(y)|Θ(x, dy)π∗(x)dx

(i)

≤
(∫
X

∫
X
|g(x)− g(y)|2 Θ(x, dy)π∗(x)dx

)1/2

·
(∫
X

∫
X
|g(x) + g(y)|2 Θ(x, dy)π∗(x)dx

)1/2

(ii)

≤ (2E(g, g))1/2 ·
(∫
X

∫
X

2
(
g(x)2 + g(y)2

)
Θ(x, dy)π∗(x)dx

)1/2

= (2E(g, g))1/2 (4Eπ∗(g2)
)1/2

.

Rearranging the last equation, we obtain that

E(g, g)

Eπ∗(g2)
≥

Φ2
Ω(Π∗(A ∩ Ω))

2
. (77)

7. Note that this step demonstrates that the continuous state-space treatment is different from the discrete
state-space one in Lemma 2.4 of Goel et al. (2006).
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In the above sequence of steps, inequality (i) follows from the Cauchy-Schwarz inequality,
and inequality (ii) from the definition (53) and the fact that (a+ b)2 ≤ 2(a2 + b2). Taking
infimum over g ∈ c+

0 (A ∩ Ω) in equation (77), we obtain

λΩ(A) = inf
g∈c+0 (A∩Ω)

E(g, g)

Varπ∗(g)
≥ inf

g∈c+0 (A∩Ω)

E(g, g)

Eπ∗(g2)
≥

Φ2
Ω(Π∗(A ∩ Ω))

2
,

where the first inequality follows from the fact that Eπ∗(g2) ≥ Varπ∗(g). Given v ∈ [0, Π∗(Ω)
2 ],

taking infimum over Π∗(A ∩ Ω) ≤ v on both sides, we conclude the claimed bound for this
case:

ΛΩ(v) = inf
Π∗(A∩Ω)∈[0,v]

λΩ(A) ≥ inf
Π∗(A∩Ω)∈[0,v]

Φ2
Ω(Π∗(A ∩ Ω))

2
=

Φ2
Ω(v)

2
,

where the last equality follows from the fact that the conductance profile ΦΩ defined in
equation (14) is non-increasing over its domain [0, Π∗(Ω)

2 ].

Case 2: Next, we consider the case when v ≥ Π∗(Ω)
2 . We claim that

ΛΩ(v)
(i)

≥ ΛΩ(Π∗(Ω))
(ii)

≥ ΛΩ(Π∗(Ω)/2)

2

(iii)

≥ ΦΩ(Π∗(Ω)/2)2

4
, (78)

where step (i) follows from the fact that the spectral profile Λ is a non-increasing function,
and step (iii) from the result of Case 1. Note that the bound from Lemma 12 for this case
follows from the bound above. It remains to establish inequality (ii), which we now prove.

Note that given the definition (56), it suffices to establish that

E (g, g)

Varπ∗(g)
≥ ΛΩ(Π∗(Ω)/2)

2
for all functions g ∈ c+

0 (Ω). (79)

Consider any fixed g ∈ c+
0 (Ω) and let ν ∈ R be such that

Π∗({g > ν} ∩ Ω) = Π∗({g < ν} ∩ Ω) =
Π∗(Ω)

2
.

Using the same argument as in the proof of Lemma 13, we have

E (g, g) = E ((g − ν) · 1Ω, (g − ν) · 1Ω)

≥ E ((g − ν)+ · 1Ω, (g − ν)+ · 1Ω) + E ((g − ν)− · 1Ω, (g − ν)− · 1Ω) . (80)

We have

E ((g − ν)+ · 1Ω, (g − ν)+ · 1Ω) ≥ Eπ∗
(
(g − ν)2

+ · 1Ω

)
· inf
f∈c+0 ({g>ν}∩Ω)

E (f, f)

Eπ∗f2
, (81)

and similarly

E ((g − ν)− · 1Ω, (g − ν)− · 1Ω) ≥ Eπ∗
(
(g − ν)2

− · 1Ω

)
· inf
f∈c+0 ({g<ν}∩Ω)

E (f, f)

Eπ∗f2
. (82)
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For f ∈ c+
0 ({g > ν} ∩ Ω), using Cauchy-Schwarz inequality, we have

Eπ∗f2 =

∫
x∈{g>ν}∩Ω

f(x)2Π∗(x)dx ≥

(∫
x∈{g>ν}∩Ω |f(x)|Π∗(x)dx

)2

Π∗({g > ν} ∩ Ω)

Using this bound and noting the ν is chosen such that Π∗({g > ν} ∩ Ω) = Π∗(Ω)/2, for
f ∈ c+

0 ({g > ν} ∩ Ω), we have

Varπ∗(f) = Eπ∗f2 − (Eπ∗f)2 ≥ Eπ∗f2 ·
(

1− Π∗(Ω)

2

)
. (83)

Putting the equations (80), (81), (82) and (83) together, we obtain

E (g, g) ≥ Eπ∗
(
(g − ν)2 · 1Ω

)
·
(

1− Π∗(Ω)

2

)
· inf

Π∗(S)∈[0,
Π∗(Ω)

2
]

inf
f∈c+0 (S∩Ω)

E(f, f)

Varπ∗(f)

= Varπ∗(g) · 1

2
· ΛΩ(Π∗(Ω)/2).

which implies the claim (79) and we are done.

A.2. Proof of Lemma 4

The proof of this lemma is similar to the conductance based proof for continuous Markov
chains (see, e.g., Lemma 2 in our past work Dwivedi et al. (2019)). In addition to it, we
have to deal with the case when target distribution satisfies the logarithmic isoperimetric
inequality.

For any setA1 such that Π∗(A1∩Ω) ≤ Π∗(Ω)
2 , with its complement denoted byA2 = X\A1,

we have Π∗(A2 ∩ Ω) ≥ Π∗(Ω)
2 ≥ Π∗(A1 ∩ Ω), since Π∗(A1 ∩ Ω) + Π∗(A2 ∩ Ω) = Π∗(Ω). We

claim that∫
x∈A1

Θ(x,A2)π∗(x)dx ≥ Π∗(A1 ∩ Ω) · ω
4
·min

{
1,

∆

16ψa
· loga

(
1 +

1

Π∗(A1 ∩ Ω)

)}
. (84)

Note that the claim (20) of Lemma 4 can be directly obtained from the claim (84), by di-
viding both sides by Π∗(A1∩Ω), taking infimum with respect to A1 such Π∗(A1∩Ω) ∈ (0, v]

and noting that inft∈(0,v] log
1
2 (1 + 1/t) = log

1
2 (1 + 1/v).

We now prove the claim (84).

Define the following sets,

A′1 : =
{
x ∈ A1 ∩ Ω | Θ(x,A2) <

ω

2

}
, A′2 : =

{
x ∈ A2 ∩ Ω | Θ(x,A1) <

ω

2

}
, (85)

along with the complement A′3 : = Ω \ (A′1 ∪A′2). Note that A′i ⊂ Ω for i = 1, 2, 3. We split
the proof into two distinct cases:

• Case 1: Π∗(A′1) ≤ Π∗(A1 ∩ Ω)/2 or Π∗(A′2) ≤ Π∗(A2 ∩ Ω)/2.

• Case 2: Π∗(A′1) > Π∗(A1 ∩ Ω)/2 and Π∗(A′2) > Π∗(A2 ∩ Ω)/2.

Note that these cases are mutually exclusive and exhaustive. We now consider these cases
one by one.
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Case 1: If we have Π∗(A′1) ≤ Π∗(A1 ∩ Ω)/2, then

Π∗(A1 ∩ Ω \A′1) ≥ Π∗(A1 ∩ Ω)/2. (86)

We have∫
x∈A1

Θ(x,A2)π∗(x)dx ≥
∫
x∈A1∩Ω\A′1

Θ(x,A2)π∗(x)dx
(i)

≥ ω

2

∫
x∈A1∩Ω\A′1

π∗(x)dx

(ii)

≥ ω

4
Π∗(A1 ∩ Ω),

where inequality (i) follows from the definition of the set A′1 in equation (85) and inequal-
ity (ii) follows from equation (86). For the case Π∗(A′2) ≤ Π∗(A2 ∩ Ω)/2, we use a similar
argument with the role of A1 and A2 exchanged to obtain∫

x∈A1

Θ(x,A2)π∗(x)dx =

∫
x∈A2

Θ(x,A1)π∗(x)dx ≥ ω

4
Π∗(A2 ∩ Ω).

Putting the pieces together for this case, we have established that∫
x∈A1

Θ(x,A2)π∗(x)dx ≥ ω

4
min {Π∗(A1 ∩ Ω),Π∗(A2 ∩ Ω)} =

ω

4
Π∗(A1 ∩ Ω). (87)

Case 2: We have Π∗(A′1) > Π∗(A1 ∩ Ω)/2 and Π∗(A′2) > Π∗(A2 ∩ Ω)/2. We first show
that in this case the sets A′1 and A′2 are far away, and then we invoke the logarithmic
isoperimetry inequality from Lemma 16.

For any two vectors u ∈ A′1 and v ∈ A′2, we have

dTV (Tu, Tv) ≥ Θ(u,A1)−Θ(v,A1) = 1−Θ(u,A2)−Θ(v,A1) > 1− ω.

Consequently, the assumption of the lemma implies that

d(A′1, A
′
2) ≥ ∆. (88)

Using the fact that under the stationary distribution, the flow from A1 to A2 is equal to
that from A2 to A1, we obtain∫
x∈A1

Θ(x,A2)π∗(x)dx =
1

2

(∫
x∈A1

Θ(x,A2)π∗(x)dx+

∫
x∈A2

Θ(x,A1)π∗(x)dx

)
≥ 1

4

(∫
x∈A1∩Ω\A′1

Θ(x,A2)π∗(x)dx+

∫
x∈x∈A2∩Ω\A′2

Θ(x,A1)π∗(x)dx

)
≥ ω

8
Π∗(Ω \ (A′1 ∪A′2)), (89)

where the last inequality follows from the definition of the set A′1 in equation (85). Note
that the sets A′1, A′2 and X \ (A′1 ∪ A′2) partition X . Using the condition (10d) with the
Ω-restricted distribution Π∗Ω with density π∗Ω defined as

π∗Ω(x) =
π∗(x)1Ω(x)

Π∗(Ω)
,
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we obtain

Π∗(Ω \ (A′1 ∩A′2))

= Π∗(Ω) ·Π∗Ω(X \ (A′1 ∩A′2))

(i)

≥ Π∗(Ω) · d(A′1, A
′
2)

2ψa
·min

{
Π∗Ω(A′1),Π∗Ω(A′2)

}
· loga

(
1 +

1

min
{

Π∗Ω(A′1),Π∗Ω (A′2)
})

(ii)

≥ Π∗(Ω) · ∆

4ψa
min {Π∗(A1 ∩ Ω),Π∗(A2 ∩ Ω)} · loga

(
1 +

2

min {Π∗(A1 ∩ Ω),Π∗(A2 ∩ Ω)}

)
≥ 1

2
· ∆

4ψa
·Π∗(A1 ∩ Ω) · loga

(
1 +

1

Π∗(A1 ∩ Ω)

)
, (90)

where step (i) follows from the assumption (10d), step (ii) from the bound (88) and the
facts that Π∗Ω(A′i) ≥ Π∗(A′i) ≥ 1

2Π∗(Ai ∩ Ω) and that the map x 7→ x loga(1 + 1/x) is an
increasing function for either a = 1

2 or a = 0. Putting the pieces (89) and (90) together, we
conclude that∫

x∈A1

Θ(x,A2)π∗(x)dx ≥ ω

16
· ∆

4ψa
·Π∗(A1 ∩ Ω) · loga

(
1 +

1

Π∗(A1 ∩ Ω)

)
. (91)

Finally, the claim (84) follows from combining the two bounds (87) and (91) from the two
separate cases.

A.3. Proofs related to Lemma 6

We now present the proof of the intermediate results related to the HMC chain that were
used in the proof of Lemma 6, namely, Lemmas 7, 8, 9 and 10. For simplicity, we adopt
following the tensor notation.

Notations for tensor: Let T ∈ Rd×d×d be a third order tensor. Let U ∈ Rd×d1 ,
V ∈ Rd×d2 , and W ∈ Rd×d3 be three matrices. Then the multi-linear form applied on
(U, V,W ) is a tensor in Rd1×d2×d3 :

[T (U, V,W )]p,q,r =
∑

i,j,k∈[d]

TijkUipVjqWkr.

In particular, for the vectors u, v, w ∈ Rd, the quantity T (u, v, w) is a real number that
depends linearly on u, v, w (tensor analogue of the quantity u>Mv in the context of matrices
and vector). Moreover, the term T (u, v, Id) denotes a vector in Rd (tensor analogue of the
quantity Mv in the context of matrices and vector). Finally, the term T (u, Id, Id) represents
a matrix in Rd×d.

A.3.1. Proof of Lemma 7

We will prove an equivalent statement: for K2η2 ≤ 1
4L , there is a matrix Q(x, y) ∈ Rd×d

with |||Q|||2 ≤
1
8 such that

JxF (x, y) = Kη (Id −Q(x, y)) , for all x, y ∈ X . (92)
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Recall from equation (30b) that the intermediate iterate qk is defined recursively as

qk = Fk(p0, q0) = q0 + kηp0 −
kη2

2
∇f(q0)− η2

k−1∑
j=1

(k − j)∇f(qj) for 1 ≤ k ≤ K.

Taking partial derivative with respective to the first variable, we obtain

∂

∂p0
qk = Jp0Fk(p0, q0) = kηId − η2

k−1∑
j=1

(k − j)∇2f qjJp0Fj(p0, q0), (93)

where ∇2f qj is the Hessian of f at qj . We claim that for 1 ≤ k ≤ K, there is a matrix

Qk ∈ Rd×d with |||Qk|||2 ≤
1
8 such that

Jp0Fk(p0, q0) = kη (Id −Qk) . (94)

Note that substituting k = K in this claim yields the result of the lemma. We now prove
the claim (94) using strong induction.

Base case (k = 1, 2): For the base case k = 1, 2, using equation (93), we have

Jp0F1(p0, q0) = ηId, and

Jp0F2(p0, q0) = 2ηId − η2∇2f q1Jp0F1(p0, q0) = 2η

(
Id −

η2

2
∇2f q1

)
.

Combining the inequality
∣∣∣∣∣∣∇2f q1

∣∣∣∣∣∣
2
≤ L from smoothness assumption and the assumed

stepsize bound η2 ≤ 1
4L yields

∣∣∣∣∣∣∣∣∣∣∣∣η2

2
∇2f q1

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ 1

8
.

The statement in equation (94) is verified for k = 1, 2.

Inductive step: Assuming that the hypothesis holds for all iterations up to k, we now
establish it for iteration k + 1. We have

Jp0Fk+1(p0, q0) = (k + 1)ηId − η2
k∑
j=1

(k + 1− j)∇2f qjJp0Fj(p0, q0)

(i)
= (k + 1)ηId − η2

k∑
j=1

(k + 1− j)∇2f qj · jη (Id −Qj)

= (k + 1)η(Id −Qk+1),
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where Qk+1 = η2

k+1

∑k
j=1(k+1−j)j∇2f qj (Id−Qj). Equality (i) follows from the hypothesis

of the induction. Finally, we verify that the spectral norm of Qk+1 is bounded by 1
8 ,

|||Qk+1|||2 ≤
1

k + 1

k∑
j=1

∣∣∣∣∣∣∣∣∣η2(k + 1− j)j∇2f qj

∣∣∣∣∣∣∣∣∣
2
|||Id −Qj |||2

(i)

≤ 1

k + 1

k∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣η2K
2

4
∇2f qj

∣∣∣∣∣∣∣∣∣∣∣∣
2

|||Id −Qj |||2

(ii)

≤ 1

k + 1

k∑
j=1

1

16

(
1 +

1

8

)
≤ 1

8
.

Inequality (i) follows from the inequality (k + 1− j)j ≤
(
k+1−j+j

2

)2
≤ K2

4 . Inequalilty (ii)

follows from the assumption K2η2 ≤ 1
4L and the hypothesis |||Qj |||2 ≤

1
8 . This completes the

induction.

A.3.2. Proof of Lemma 8

Recall that the backward mapping G is defined implicitly as

x = y +KηG(x, y)− Kη2

2
∇f(y)− η2

K−1∑
k=1

(K − k)∇f (Fk(G(x, y), y)) . (95)

First we check the derivatives of Fk(G(x, y), y). Since Fk(G(x, y), y) satisfies

Fk(G(x, y), y) = y + kηG(x, y)− kη2

2
∇f(y)− η2

k−1∑
j=1

(k − j)∇f(Fj(G(x, y), y)),

taking derivative with respect to y, we obtain

∂

∂y
Fk(G(x, y), y) = Id + kηJyG(x, y)− kη2

2
∇2f(y)

− η2
k−1∑
j=1

(k − j)∇2f(Fj(G(x, y), y))
∂

∂y
Fj(G(x, y), y). (96)

Using the same proof idea as in the previous lemma, we show by induction that for 1 ≤ k ≤
K, there exists matrices Ak, Bk ∈ Rd×d with |||Ak|||2 ≤

1
6 and |||Bk|||2 ≤

1
8 such that

∂

∂y
Fk(G(x, y), y) = (Id −Ak) + kη (Id −Bk) JyG(x, y). (97)

Case k = 1: The case k = 1 can be easily checked according to equation (96), we have

∂

∂y
F1 (G(x, y), y) = Id −

η2

2
∇2f(y) + ηJyG(x, y)

It is sufficient to set A1 = η2

2 ∇
2f(y) and B1 = 0.
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Case k to k+ 1: Assume the statement is verified until k ≥ 1. For k+ 1 ≤ K, according
to equation (96), we have

∂

∂y
Fk+1(G(x, y), y)

= Id + (k + 1)ηJyG(x, y)− (k + 1)η2

2
∇2f(y)− η2

k∑
j=1

(k + 1− j)∇2f(Fj(G(x, y), y))
∂

∂y
Fj(G(x, y), y)

= Id −
(k + 1)η2

2
∇2f(y) + (k + 1)ηJyG(x, y)

− η2
k∑
j=1

(k + 1− j)∇2f(Fj(G(x, y), y)) ((Id −Aj) + jη (Id −Bj) JyG(x, y))

= Id −
(k + 1)η2

2
∇2f(y)− η2

k∑
j=1

(k + 1− j)∇2f(Fj(G(x, y), y))(Id −Aj)

+ (k + 1)ηJyG(x, y)− η2
k∑
j=1

(k + 1− j)∇2f(Fj(G(x, y), y)) (jη (Id −Bj) JyG(x, y))

To conclude, it suffices to note the following values of Ak+1 and Bk+1:

Ak+1 =
(k + 1)η2

2
∇2f(y) + η2

k∑
j=1

(k + 1− j)∇2f(Fj(G(x, y), y))(Id −Aj), and

Bk+1 =
1

k + 1
η2

k∑
j=1

(k + 1− j)j∇2f(Fj(G(x, y), y)) (Id −Bj) .

We now have the following operator norm bounds:

|||Ak+1|||2 ≤
k + 1

2
η2L+ η2

k∑
j=1

(k + 1− j)L(1 +
1

6
) ≤ 7

12
(k + 1)2η2L ≤ 1

6
, and

|||Bk+1|||2 ≤
1

k + 1
η2(1 +

1

8
)L

k∑
j=1

(k + 1− j)j =
9

8 · 6
k(k − 1)η2L ≤ 1

8
.

This concludes the proof of equation (97). As a particular case, for k = K, we observe that

FK (G(x, y), y) = x.

Plugging it into equation (97), we obtain that

JyG(x, y) =
1

Kη
(Id −BK)−1 (Id −AK) =⇒ |||JyG(x, y)|||2 ≤

4

3Kη
.

Plugging the bound on |||JyG(x, y)|||2 back to equation (97) for other k, we obtain∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂yFk(G(x, y), y)

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ 3.

This concludes the proof of Lemma 8.
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A.3.3. Proof of Lemma 9

Recall that the backward mapping G is defined implicitly as

x = y +KηG(x, y)− Kη2

2
∇f(y)− η2

K−1∑
k=1

(K − k)∇f (Fk(G(x, y), y)) . (98)

First we check the derivatives of Fk(G(x, y), y). Since Fk(G(x, y), y) satisfies

Fk(G(x, y), y) = y + kηG(x, y)− kη2

2
∇f(y)− η2

k−1∑
j=1

(k − j)∇f(Fj(G(x, y), y)),

we have

∂

∂x
Fk(G(x, y), y) = kηJxG(x, y)− η2

k−1∑
j=1

(k − j)∇2f(Fj(G(x, y), y))
∂

∂x
Fj(G(x, y), y).

(99)

Similar to the proof of equation (94), we show by induction (proof omitted) that for

1 ≤ k ≤ K, there exists matrices Q̃k ∈ Rd×d with
∣∣∣∣∣∣∣∣∣Q̃k∣∣∣∣∣∣∣∣∣

2
≤ 1

2 such that

∂

∂x
Fk(G(x, y), y) = kη

(
Id − Q̃k

)
JxG(x, y). (100)

Then, by taking another derivative with respect to yi in equation (99), we obtain

∂∂

∂x∂yi
Fk(G(x, y), y) = kηJxyiG(x, y)

− η2
k−1∑
j=1

(k − j)

{
∇3fFj(G(x,y),y)

(
∂Fj(G(x, y), y)

∂yi
, Id, Id

)
∂

∂x
Fj(G(x, y), y)

+∇2fFj(G(x,y),y)

∂∂

∂x∂yi
Fj(G(x, y), y)

}
(101)

Now we show by induction that for 1 ≤ k ≤ K, for any α ∈ Rd, we have∥∥∥∥∥
d∑
i=1

αi

(
∂∂

∂x∂yi
Fk(G(x, y), y)JxG(x, y)−1

)∥∥∥∥∥
2

≤ 2kη

∥∥∥∥∥
d∑
i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)∥∥∥∥∥
2

+ 2 ‖α‖2 k
3η3LH. (102)

Case k = 1: We first examine the case k = 1. According to equation (101), we have

d∑
i=1

αi

(
∂∂

∂x∂yi
F1(G(x, y), y)JxG(x, y)−1

)
= η

d∑
i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)
.

The statement in equation (102) is easily verified for k = 1.
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Case k to k+1: Assume the statement (102) is verified until k. For k+1 ≤ K, according
to equation (101), we have

d∑
i=1

αi

(
∂∂

∂x∂yi
Fk+1(G(x, y), y)JxG(x, y)−1

)

= (k + 1)η

d∑
i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)
− η2

k∑
j=1

(k + 1− j)

{
∇3fFj(G(x,y),y)

(
d∑
i=1

αi
∂Fj(G(x, y), y)

∂yi
, Id, Id

)
∂

∂x
Fj(G(x, y), y)JxG(x, y)−1

}

− η2
k∑
j=1

(k + 1− j)∇2fFj(G(x,y),y)

d∑
i=1

αi

(
∂∂

∂x∂yi
Fj(G(x, y), y)JxG(x, y)−1

)
.

In the last equality, we have used the fact that ∇3fFj(G(x,y),y) is a multilinear form to enter
the coefficients αi in the tensor. Let

Mα =

∥∥∥∥∥
d∑
i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)∥∥∥∥∥
2

.

Applying the hypothesis of the induction, we obtain∥∥∥∥∥
d∑
i=1

αi

(
∂∂

∂x∂yi
Fk+1(G(x, y), y)JxG(x, y)−1

)∥∥∥∥∥
2

(i)

≤ (k + 1)ηMα + η2
k∑
j=1

4(k + 1− j)jLH ‖α‖2 + η2
k∑
j=1

(k + 1− j)L
(
2jηM + 2 ‖α‖2 j

3η3LH

)
≤ 2(k + 1)ηMα + 2 ‖α‖2 (k + 1)3η3LH.

The first inequality (i) used the second part of Lemma 8 to bound
∣∣∣∣∣∣∂
∂Fk(G(x, y), y)

∣∣∣∣∣∣
2
. This

completes the induction. As a particular case for k = K, we note that

FK(G(x, y), y) = F (G(x, y), y) = x,

and equation (101) for k = K gives

0 = KηJxyiG(x, y)

− η2
K−1∑
j=1

(K − j)

{
∇3fFj(G(x,y),y)

(
∂Fj(G(x, y), y)

∂yi
, Id, Id

)
∂

∂x
Fj(G(x, y), y)

+∇2fFj(G(x,y),y)

∂∂

∂x∂yi
Fj(G(x, y), y)

}
.

Using the bound in equation (102), we have

Kη

∥∥∥∥∥
d∑
i=1

αiJxyiG(x, y)JxG(x, y)−1

∥∥∥∥∥
2

≤ ‖α‖2K
3η3LH +

1

2
Kη

∥∥∥∥∥
d∑
i=1

αiJxyiG(x, y)JxG(x, y)−1

∥∥∥∥∥
2

.
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Hence, we obtain

trace

(
d∑
i=1

αiJxyiG(x, y)JxG(x, y)−1

)
≤ 2d ‖α‖2K

2η2LH.

This is valid for any α ∈ Rd, as a consequence, we have∥∥∥∥∥∥∥
trace

(
[JxG(x, q0)]−1Jxy1G(x, q0)

)
...

trace
(
[JxG(x, q0)]−1JxydG(x, q0)

)

∥∥∥∥∥∥∥

2

≤ 2dK2η2LH.

This concludes the proof of Lemma 9.

A.3.4. Proof of Lemma 10

We first show equation (34b) by induction. Then equation (34a) is a direct consequence of
equation (34b) by summing k terms together.

Case k = 0: We first examine the case k = 0. According to the definition of Fk in
equation (30b), we have

F1(p0, q0) = q0 + ηp0 −
η2

2
∇f(q0).

Then the case k = 0 is verified automatically via triangle inequality,

‖F1(p0, q0)− q0‖2 ≤ η ‖p0‖2 +
η2

2
‖∇f(q0)‖2 .

Case k to k + 1: Assume that the statement is verified until k ≥ 0. For k + 1, using Fj
as the shorthand for Fj(p0, q0), we obtain

Fk+2 − Fk+1

=ηp0 −
η2

2
∇f(q0)− η2

k+1∑
j=1

∇f(Fj).

Taking the norm, we have

‖Fk+2 − Fk+1‖2 ≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2

k+1∑
j=1

‖∇f(Fj)−∇f(q0)‖2

(i)

≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2

k+1∑
j=1

j∑
l=0

‖∇f(Fl+1)−∇f(Fl)‖2

(ii)

≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2L

k+1∑
j=1

j∑
l=0

‖Fl+1 − Fl‖2

(iii)

≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2L

k+1∑
j=1

j∑
l=0

(
2η ‖p‖2 + 2(l + 1)η2 ‖∇f(q0)‖2

)
(iv)

≤ 2η ‖p0‖2 + (2k + 2)η2 ‖∇f(q0)‖2 .
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Inequality (i) uses triangular inequality. Inequality (ii) uses L-smoothness. Inequality (iii)
applies the hypothesis of the induction and inequalities relies on the condition K2η2 ≤ 1

4L .
This completes the induction.

Appendix B. Proof of Corollary 2

In order to prove Corollary 2, we first state a more general corollary of Theorem 1 that
does not specify the explicit choice of step size η and leapfrog steps K. Then we specify
two choices of the initial distribution µ0 and hyper-parameters (K, η) to obtain part (a)
and part (b) of Corollary 2.

Corollary 14 Consider an (L,LH,m)-strongly log-concave target distribution Π∗ (cf. As-

sumption (B)). Fix s = ε2

2β . Then the 1
2 -lazy HMC algorithm with initial distribution

µ† = N (x∗, 1
LId), step size η and leapfrog steps K chosen under the condition

η2 ≤ 1

cL
min

 1

K2d
1
2

,
1

K2d
2
3

L

L
2
3
H

,
1

Kd
1
2

,
1

K
2
3d

2
3κ

1
3 r(s)

2
3

,
1

Kd
1
2κ

1
2 r(s)

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3d

1
2κ

1
2 r(s)

 L

L
2
3
H

 1
2


(103)

satisfies the mixing time bounds

τHMC
2 (ε;µ0) ≤ c ·max

{
log β,

1

K2η2m
log

(
d log κ

ε

)}
.

Proof of part (a) in Corollary 2: Taking the hyper-parameters K = d
1
4 and η = ηwarm

in equation (11b), we verify that η satisfies the condition (103). Given the warmness

parameter β = O
(

exp
(
d

2
3κ
))

, we have

1

K2η2m
≥ log(β).

Plugging in the choice of K and η into Corollary 14, we obtain the desired result.

Proof of part (b) in Corollary 2: We notice that the initial distribution µ† = N (x?, 1
LId)

is κd/2-warm (see Corollary 1 in Dwivedi et al. (2019)). It is sufficient to plug in the hyper-

parameters K = κ
3
4 and η = ηfeasible into Corollary 14 to obtain the desired result.

Now we turn back to prove Corollary 14. In order to prove Corollary 14, we require the
the following lemma, which relates a (L,LH,m)-strongly-logconcave target distribution to
a regular target distribution.

Lemma 15 An (L,LH,m)-strongly log-concave distribution is (L,LH, s, ψ 1
2
,M)-general with

high mass set Ω = Rs, log-isoperimetric constant ψ 1
2

= m−
1
2 and M = L

(
d
m

) 1
2 r(s), where

the radius is defined in equation (11a) and the convex measurable set Rs defined in equa-
tion (29).
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Taking Lemma 15 as given, Corollary 14 is a direct consequence of Theorem 1 by
plugging the specific values of (Ω, ψ 1

2
,M) as a function of strong convexity parameter m.

The optimal choices of step-size η and leapfrog steps K in Corollary 14 are discussed in
Appendix D.1.

We now proceed to prove Lemma 15.

B.1. Proof of Lemma 15

We now prove Lemma 15, which shows that any (L,LH,m)-strongly-logconcave target dis-
tribution is in fact (L,LH, s, ψ 1

2
,M)-regular.

First, we set Ω toRs as defined in equation (29). It is known that this ball has probability
under the target distribution lower bounded as Π∗(Rs) ≥ 1 − s (e.g. Lemma 1 in the
paper Dwivedi et al. (2019)). Second, the gradient bound is a consequence of the bounded
domain. For any x ∈ Rs, we have

‖∇f(x)‖2 = ‖∇f(x)−∇f(x?)‖2 ≤ L ‖x− x
?‖2 ≤ L

(
d

m

) 1
2

r(s). (104)

Third, we make use of a logarithmic isoperimetric inequality for log-concave distribution.
We note that the logarithmic isoperimetric inequality has been introduced in Kannan et al.
(2006) for the uniform distribution on convex body and in Lee and Vempala (2018b) for
log-concave distribution with a diameter. We extend this inequality to strongly log-concave
distribution on Rd following a similar road-map and provide explicit constants.

Improved logarithmic isoperimetric inequality We now state the improved logarith-
mic isoperimetric inequality for strongly log-concave distributions.

Lemma 16 Let γ denote the density of the standard Gaussian distribution N
(
0, σ2Id

)
,

and let Π∗ be a distribution with density π∗ = q · γ, where q is a log-concave function. Then
for any partition S1, S2, S3 of Rd, we have

Π∗(S3) ≥ d(S1, S2)

2σ
min {Π∗(S1),Π∗(S2)} log

1
2

(
1 +

1

min {Π∗(S1),Π∗(S2)}

)
. (105)

See Appendix B.2 for the proof.

Taking Lemma 16 as given for the moment, we turn to prove the logarithmic isoperi-
metric inequality for the Ω-restricted distribution Π∗Ω with density

π∗Ω(x) =
π∗(x)1Ω(x)

Π∗(Ω)
.

Since f is m-strongly convex, the function x→ f(x)− m
2 ‖x− x

?‖22 is convex. Noting that
the class of log-concave function is closed under multiplication and that the indicator func-
tion 1Ω is log-concave, we conclude that the restricted density π∗Ω can be expressed as a
product of a log-concave density and the density of the Gaussian distribution N (x?, 1

mId).
Applying Lemma 16 with σ =

(
1
m

) 1
2 , we obtain the desired logarithmic isoperimetric in-

equality with ψ 1
2

=
(

1
m

) 1
2 , which concludes the proof of Lemma 15.
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B.2. Proof of Lemma 16

The main tool for proving general isoperimetric inequalities is the localization lemma in-
troduced by Lovász and Simonovits (1993). Similar result for the infinitesimal version of
equation (105) have appeared as Theorem 1.1 in Ledoux (1999) and Theorem 30 in Lee and
Vempala (2018b). Intuitively, the localization lemma reduces a high-dimensional isoperi-
metric inequality to a one-dimensional inequality which is much easier to verify directly. In
a few key steps, the proof follows a similar road map as the proof of logarithmic Cheeger
inequality (Kannan et al., 2006).

We first state an additional lemma that comes in handy for the proof.

Lemma 17 Let γ be the density of the one-dimensional Gaussian distribution N
(
ν, σ2

)
with mean ν and variance σ2. Let ρ be a one-dimensional distribution with density given
by ρ = q · γ, where q is a log-concave function supported on [0, 1]. Let J1, J2, J3 partition
[0, 1], then

ρ(J3) ≥ d(J1, J2)

2σ
min {ρ(J1), ρ(J2)} log

1
2

(
1 +

1

min {ρ(J1), ρ(J2)}

)
. (106)

See Appendix B.3 for the proof.

We now turn to proving Lemma 16 via contradiction: We assume that the claim (105) is
not true for some partition, and then using well known localization techniques, we construct
a one-dimensional distribution that violates Lemma 17 resulting in a contradiction.

Suppose that there exists a partition S1, S2, S3 of Rd, such that

Π∗(S3) <
d(S1, S2)

2σ
min {Π∗(S1),Π∗(S2)} log

1
2

(
1 +

1

min {Π∗(S1),Π∗(S2)}

)
. (107)

Let ν > 0 denote a sufficiently small number (to be specified exactly later), such that
ν < min {Π∗(S1),Π∗(S2)}.

We now explain the construction of the one-dimensional density that is crucial for the
rest of the argument. We define two functions g : X → R and h : X → R as follows

g(x) =
π∗(x) · 1S1(x)

Π∗(S1)− ν
− π∗(x) and h(x) =

π∗(x) · 1S2(x)

Π∗(S2)− ν
− π∗(x).

Clearly, we have ∫
X
g(x)dx > 0 and

∫
X
h(x)dx > 0.

By the localization lemma (Lemma 2.5 in Lovász and Simonovits (1993); see the corrected
form stated as Lemma 2.1 in Kannan et al. (1995)), there exist two points a ∈ Rd, b ∈ Rd
and a linear function l : [0, 1]→ R+, such that∫ 1

0
l(t)d−1g ((1− t)a+ tb) dt > 0 and

∫ 1

0
l(t)d−1h ((1− t)a+ tb) dt > 0. (108)
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Define the one-dimensional density ρ : [0, 1]→ R+ and the sets Ji, i ∈ {1, 2, 3} as follows:

ρ(t) =
l(t)d−1π∗ ((1− t)a+ tb)∫ 1

0 l(u)d−1π∗ ((1− u)a+ ub) du
, and (109)

Ji = {t ∈ [0, 1] | (1− t)a+ tb ∈ Si} for i ∈ {1, 2, 3} . (110)

We now show how the hypothesis (107) leads to a contradiction for the density ρ.
Plugging in the definiton of g and h into equation (108), we find that

ρ(J1) > Π∗(S1)− ν and ρ(J2) > Π∗(S2)− ν.

Since J1, J2, J3 partition [0, 1], it follows that

ρ(J3) < Π∗(S3) + 2ν.

Since the function x 7→ x log
1
2 (1 + 1/x) is monotonically increasing on [0, 1], we have

d(S1, S2)

2σ
min {ρ(J1), ρ(J2)} log

1
2

(
1 +

1

min {ρ(J1), ρ(J2)}

)
− ρ(J3)

≥ d(S1, S2)

2σ
min {(ρ(S1)− ν) , (ρ(S2)− ν)} ·

log
1
2

(
1 +

1

min {(ρ(S1)− ν) , (ρ(S2)− ν)}

)
− (ρ(S3) + 2ν)

The hypothesis (107) of the contradiction implies that we can find ν sufficiently small such
that the RHS in the inequality above will be strictly positive. Consequently, we obtain

d(S1, S2)

2σ
min {ρ(J1), ρ(J2)} log

1
2

(
1 +

1

min {ρ(J1), ρ(J2)}

)
> ρ(J3). (111)

Additionally, for t1 ∈ J1, t2 ∈ J2, we have (1− t1)a+ t1b ∈ S1 and (1− t2)a+ t2b ∈ S2. As
a result, we have

|t1 − t2| =
1

‖b− a‖2
‖[(1− t1)a+ t1b]− [(1− t2)a+ t2b]‖2 ≥

1

‖b− a‖2
d(S1, S2),

which implies that

d(J1, J2) ≥ 1

‖b− a‖2
d(S1, S2). (112)

Combining equations (111) and (112), we obtain that

‖b− a‖2 · d(J1, J2)

2σ
min {ρ(J1), ρ(J2)} log

1
2

(
1 +

1

min {ρ(J1), ρ(J2)}

)
> ρ(J3), (113)

which contradicts Lemma 17. Indeed, this contradiction is immediate once we note that
the new density ρ can also be written as a product of log-concave density and a Gaussian
density with variance σ2

‖b−a‖22
.
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B.3. Proof of Lemma 17

We split the proof into three cases. Each one is more general than the previous one. First,
we consider the case when q is a constant function on [0, 1] and the sets J1, J2, J3 are all
intervals. In the second case, we consider a general log-concave q supported on [0, 1] while
we still assume that the sets J1, J2, J3 are all intervals. Finally, in the most general case,
we consider a general log-concave q supported on [0, 1] and J1, J2, J3 consist of an arbitrary
partition of [0, 1]. The proof idea follows roughly that of Theorem 4.6 in Kannan et al.
(2006).

Our proof makes use of the Gaussian isoperimetric inequality which we now state (see
e.g., equation (1.2) in Bobkov (1999)): Let Γ denote the standard univariate Gaussian
distribution and let φΓ and Φ−1

Γ denote its density and inverse cumulative distribution
function respectively. Given a measurable set A ⊂ R, define its Γ-perimeter Γ+(A) as

Γ+(A) = lim infh→0+
Γ(A+ h)− Γ(A)

h
,

where A + h = {t ∈ R | ∃a ∈ A, |t− a| < h} denotes an h-neighborhood of A. Then, we
have

Γ+(A) ≥ φΓ(Φ−1
Γ (Γ(A))), (114)

Furthermore, standard Gaussian tail bounds8 estimate imply that

φΓ(Φ−1
Γ (t)) ≥ 1

2
t log

1
2

(
1 +

1

t

)
, for t ∈ (0,

1

2
]. (115)

Case 1: First, we consider the case when the function q is constant on [0, 1] and all
of the sets J1, J2, J3 are intervals. Without loss of generality, we can shift and scale the
density function by changing the domain, and assume that the density ρ is of the form

ρ(t) ∝ e−
t2

2 1[a,d]. Additionally, we can assume that J1, J2, J3 are of the form

J1 = [a, b), J3 = [b, c], and J2 = (c, d], (116)

because the case when J3 is not in the middle is a trivial case.

Applying the inequalities (114) and (115) with A = J2 = (c, d], we obtain that

φγ(c) = Γ+(J2) ≥ φγ(Φ−1
γ (Γ(J2))) ≥ Γ(J2)

2
log

1
2

(
1 +

1

Γ(J2)

)
. (117)

8. E.g., see the discussion before equation 1 in Barthe and Maurey (2000). The constant 1/2 was estimated
by plotting the continuous function on the left hand side via Mathematica.
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Note that ρ(t) =
φγ(t)

Φγ(d)−Φγ(a)1[a,d](t) and ρ(J2) = Γ(J2)
Φγ(d)−Φγ(a) . We have

ρ(J3) =

∫ c

b
ρ(t)dt ≥ (c− b) · ρ(c) = (c− b) φγ(c)

Φγ(d)− Φγ(a)

(i)

≥ (c− b)
2

Γ(J2)

Φγ(d)− Φγ(a)
log

1
2

(
1 +

1

Γ(J2)

)
(ii)

≥ c− b
2

ρ(J2) log
1
2

(
1 +

Φγ(d)− Φγ(a)

Γ(J2)

)
(iii)
=

c− b
2

ρ(J2) log
1
2

(
1 +

1

ρ(J2)

)
(iv)

≥ c− b
2

min {ρ(J1), ρ(J2)} log
1
2

(
1 +

1

min {ρ(J1), ρ(J2)}

)
,

where step (i) follows from the bound (117) and step (ii) follows from the relationship be-
tween ρ and Γ and the facts that log is an increasing function and that Φγ(d)−Φγ(a) ≤ 1.
Step (iii) follows from the definition of ρ and finally step (iv) follows from the increasing
nature of the map t 7→ t log1/2

(
1 + 1

t

)
. This concludes the argument for Case 1.

Case 2: We now consider the case when q is a general log-concave function on [0, 1] and
J1, J2, J3 are all intervals. Again we can assume that J1, J2, J3 are of the form (116), i.e.,
they are given by J1 = [a, b), J3 = [b, c], and J2 = (c, d].

We consider a function h(t) = αeβt−
t2

2σ2 such that h(b) = q(b) and h(c) = q(c).9 Define
Q(t1, t2) =

∫ t2
t1
q(t)dt and H(t1, t2) =

∫ t2
t1
h(t)dt. Then since q has an extra log-concave

component compared to h, we have

H(a, b) ≥ Q(a, b), H(c, d) ≥ Q(c, d), but H(b, c) ≤ Q(b, c). (118)

Using the individual bounds in equation (118), we have

H(a, b)

H(b, c)
+
H(c, d)

H(b, c)
≥ Q(a, b)

Q(b, c)
+
Q(c, d)

Q(b, c)
.

From the equation above and the fact that H(a, b) +H(b, c) +H(c, d) = H(a, d), we obtain

H(b, c)

H(a, d)
≤ Q(b, c)

Q(a, d)
. (119)

To prove the inequality in Case 2, here are two subcases depending on whether H(a, d) ≥
Q(a, d) or H(a, d) < Q(a, d).

9. This idea of introducing exponential function appeared in Corollary 6.2 of Kannan et al. Kannan et al.
(2006).
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• If H(a, d) ≥ Q(a, d), then

Q(b, c)

Q(a, d)

(i)

≥ H(b, c)

Q(a, d)

(ii)

≥ c− b
2
· H(a, d)

Q(a, d)
· min(H(a, b), H(c, d))

H(a, d)
· log

1
2

(
1 +

H(a, d)

min(H(a, b), H(c, d))

)
(iii)

≥ c− b
2
· H(a, d)

Q(a, d)
· min(Q(a, b), Q(c, d))

H(a, d)
· log

1
2

(
1 +

H(a, d)

min(Q(a, b), Q(c, d))

)
(iv)

≥ c− b
2
· min(Q(a, b), Q(c, d))

Q(a, d)
· log

1
2

(
1 +

Q(a, d)

min(Q(a, b), Q(c, d))

)
.

Inequality (i) follows from equation (118); inequality (ii) follows from equation Case
1 because H is covered by Case 1; inequality (iii) uses the fact that the function

t 7→ t log
1
2

(
1 + 1

t

)
is increasing; inequality (iv) follows from the assumption in this

subcase H(a, d) ≥ Q(a, d).

• Otherwise H(a, d) < Q(a, d), then we have from equation (118)

H(a, b)

H(a, d)
≥ Q(a, b)

Q(a, d)
,

H(c, d)

Q(a, d)
≥ Q(c, d)

Q(a, d)
.

Q(b, c)

Q(a, d)

(i)

≥ H(b, c)

H(a, d)

(ii)

≥ c− b
2
· min(H(a, b), H(c, d))

H(a, d)
· log

1
2

(
1 +

H(a, d)

min(H(a, b), H(c, d))

)
(iii)

≥ c− b
2
· min(Q(a, b), Q(c, d))

Q(a, d)
· log

1
2

(
1 +

Q(a, d)

min(Q(a, b), Q(c, d))

)
.

Inequality (i) follows from equation (119); inequality (ii) follows from equation Case

1; inequality (iii) uses the fact that the function t 7→ t log
1
2

(
1 + 1

t

)
is increasing.

In both subcases above, we conclude Case 2 using the results established in Case 1.

Case 3: Finally, we deal with the general case where J1, J2, J3 each can be union of
intervals and q is a general log-concave function on [0, 1]. We show that this case can be
reduced to the case of three intervals, namely, the previous case.

Let {(bi, ci)}i∈I be all non-empty maximal intervals contained in J3. Here the intervals
can be either closed, open or half. That is, (·, ·) can be [·, ·], ]·, ·[, [·, ·[ or ]·, ·]. For an interval
(bi, ci), we define its left surround LS((bi, ci)) as

LS((bi, ci)) =


2, if ∃x2 ∈ J2, (x2 ≤ bi) and (@x1 ∈ J1, x2 < x1 ≤ bi)
1, if ∃x1 ∈ J1, (x1 ≤ bi) and (@x2 ∈ J2, x1 < x2 ≤ bi)
0, otherwise .
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Similarly, we define RS((bi, ci)) as

RS((bi, ci)) =


2, if ∃x2 ∈ J2, (x2 ≥ ci) and (@x1 ∈ J1, x2 > x1 ≥ ci)
1, if ∃x1 ∈ J1, (x1 ≥ ci) and (@x2 ∈ J2, x1 > x2 ≥ ci)
0, otherwise .

We distinguish two types of intervals. Denote G2 ⊂ I the set containing the indices of all
intervals that are surrounded by either 1 or 2 but different.

G2 : = {i ∈ I | (LS((bi, ci)), RS((bi, ci))) = (1, 2) or (2, 1)} .

Denote G1 : = I \G2 to be its complement. By the result settled in case 2, for i ∈ G2, we
have

ρ([bi, ci]) ≥
d(J1, J2)

2σ
ρ(Ii) log

1
2

(
1 +

1

ρ(Ii)

)
where Ii is either [a, bi] or [ci, d]. Summing over all i ∈ G2, we have

ρ(J3) ≥
∑
i∈G2

ρ([bi, ci]) ≥
d(J1, J2)

2σ

∑
i∈G2

ρ(Ii) log
1
2

(
1 +

1

ρ(Ii)

)
≥ d(J1, J2)

2σ
ρ(∪i∈G2Ii) log

1
2

(
1 +

1

ρ(∪i∈G2Ii)

)
. (120)

The last inequality follows from the sub-additivity of the map: x 7→ x log
1
2 (1 + x), i.e., for

x > 0 and y > 0, we have

x log
1
2

(
1 +

1

x

)
+ y log

1
2

(
1 +

1

y

)
≥ (x+ y) log

1
2

(
1 +

1

x+ y

)
.

Indeed the sub-additivity follows immediately from the following observation:

x log
1
2

(
1 +

1

x

)
+ y log

1
2

(
1 +

1

y

)
− (x+ y) log

1
2

(
1 +

1

x+ y

)
= x

[
log

1
2

(
1 +

1

x

)
− log

1
2

(
1 +

1

x+ y

)]
+ y

[
log

1
2

(
1 +

1

y

)
− log

1
2

(
1 +

1

x+ y

)]
≥ 0.

Finally, we remark that either J1 or J2 is a subset of ∪i∈G2Ii. If not, there exists u ∈ J1 \
∪i∈G2Ii and v ∈ J2\∪i∈G2Ii, such that u and v are separated by some inverval (bi∗ , ci∗) ⊂ J3

with i∗ ∈ G2. This is contradictory with the fact that either u or v must be included in Ii∗ .

Given equation (120), we use the fact that the function x 7→ x log
1
2

(
1 + 1

x

)
is monotonically

increasing:

ρ(J3) ≥ d(J1, J2)

2σ
min {ρ(J1), ρ(J2)} log

1
2

(
1 +

1

min {ρ(J1), ρ(J2)}

)
to conclude the proof.
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Appendix C. Beyond strongly log-concave target distributions

In this appendix, we continue the discussion of mixing time bounds of Metropolized HMC
from Section 3.2. In the next two subsections, we discuss the case when the target is weakly
log-concave distribution or a perturbation of log-concave distribution, respectively.

C.1. Weakly log-concave target

The mixing rate in the weakly log-concave case differs depends on further structural as-
sumptions on the density. We now consider two different scenarios where either a bound
on fourth moment is known or the covariance of the distribution is well-behaved:

(C) The negative log density of the target distribution is L-smooth (10a) and has LH-
Lipschitz Hessian (10c). Additionally for some point x?, its fourth moment satisfies
the bound ∫

Rd
‖x− x?‖42 π

∗(x)dx ≤ d2ν2

L
. (121)

(D) The negative log density of the target distribution is L-smooth (10a) and has LH-
Lipschitz Hessian (10c). Additionally, its covariance matrix satisfies∣∣∣∣∣∣∣∣∣∣∣∣∫

x∈Rd
(x− E[x])(x− E[x])>π∗(x)dx

∣∣∣∣∣∣∣∣∣∣∣∣
op

≤ 1, (122)

and the norm of the gradient of the negative log density f is bounded by a constant
in the ball B

(
E [x] , log

(
1
s

)
d3/4

)
for small enough s ≥ s0.

When the distribution satisfies assumption (C) we consider HMC chain with slightly
modified target and assume that the µ0 is β-warm with respect to this modified target
distribution (see the discussion after Corollary 18 for details). Moreover, In order to simplify

the bounds in the next result, we assume that L
2/3
H = O(L). A more general result with

without this condition can be derived in a similar fashion.

Corollary 18 (HMC mixing for weakly-log-concave) Let µ0 be a β-warm start, ε ∈
(0, 1) be fixed and consider 1

2 -lazy HMC chain with leapfrog steps K = d
1
2 and step size

η2 = 1

cLd
4
3

.

(a) If the distribution satisfies assumption (C), then we have

τHMC
TV (ε;µ0) ≤ c ·max

{
log β,

d
4
3 ν

ε
log

(
log β

ε

)}
. (123)

(b) If the distribution satisfies assumption (D) such that s0 ≤ ε2

2β , then we have

τHMC
2 (ε;µ0) ≤ c · d

5
6 log

(
log β

ε

)
. (124)
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As an immediate consequence, we obtain that the number of gradient evaluations in the
two cases is bounded as

B1 = max

{
d

1
2 log β,

d
11
6 ν

ε
log

(
log β

ε

)}
and B2 = d

4
3 log

(
log β

ε

)
.

We remark that the bound B1 for HMC chain improves upon the bound for number of
gradient evaluations required by MALA to mix in a similar set-up. Dwivedi et al. (2019)
showed that under assumption (C) (without the Lipschitz-Hessian condition), MALA takes

O(d
2

νε log β
ε ) steps to mix. Since each step of MALA uses one gradient evaluation, our result

shows that HMC takes O(d
1
6 ) fewer gradient evaluations. On the other hand, when the

target satisfies assumption (D), Mangoubi and Vishnoi (2019) showed that MALA takes

O(d
3
2 log β

ε ) steps.10 Thus even for this case, our result shows that HMC takes O(d
1
6 ) fewer

gradient evaluations when compared to MALA.

Proof sketch: When the target distribution has a bounded fourth moment (assump-
tion (C)), proceeding as in Dalalyan (2016), we can approximate the target distribution Π∗

by a strongly log-concave distribution Π̃ with density given by

π̃(x) =
1∫

Rd e
−f̃(y)dy

e−f̃(x) where f̃(x) = f(x) +
λ

2
‖x− x?‖22 .

Setting λ : = 2Lε
dν yields that f̃ is λ/2-strongly convex, L + λ/2 smooth and LH-Hessian

Lipschitz and that the TV distance dTV

(
Π∗, Π̃

)
≤ ε/2 is small. The new condition number

becomes κ̃ : = 1+dν/ε. The new logarithmic-isoperimetric constant is ψ̃1/2 = (dν/(Lε))1/2.
Thus, in order to obtain an ε-accurate sample with respect to Π∗, it is sufficient to run
HMC chain on the new strongly log-concave distribution Π̃ upto ε/2-accuracy. Invoking
Corollary 2 for Π̃ and doing some algebra yields the bound (123).

For the second case (assumption (D)), Lee and Vempala (2017) showed that when the
covariance of Π∗ has a bounded operator norm, it satisfies isoperimetry inequality (10d) with

ψ0 ≤ O(d
1
4 ). Moreover, using the Lipschitz concentration (Gromov and Milman, 1983), we

have

Px∼Π∗

(
‖x− EΠ∗ [x]‖2 ≥ tψ0 ·

√
d
)
≤ e−ct,

which implies that for Ωs = B
(
EΠ∗ [x] , 1

c log
(

1
s

)
ψ0 ·
√
d
)

, we have Π∗(Ωs) ≥ 1 − s. In

addition, assuming that the gradient is bounded in this ball Ωs for s = ε2

2β enables us to
invoke Theorem 1 and obtain the bound (124) after plugging in the values of ψ0,K and η.

10. Note that Mangoubi and Vishnoi (2019) assume an infinity-norm third order smoothness which is a
stronger assumption than the LH-Lipschitz Hessian assumption that we made here. Under our setting,
the infinity norm third order smoothness is upper bounded by

√
dLH and plugging in this bound changes

their rate of MALA from d7/6 to d3/2.
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C.2. Non-log-concave target

We now briefly discuss how our mixing time bounds in Theorem 1 can be applied for distri-
butions whose negative log density may be non-convex. Let Π be a log-concave distribution
with negative log density as f and isoperimetric constant ψ0. Suppose that the target dis-
tribution Π̃ is a perturbation of Π with target density π̃(x) such that π̃(x) ∝ e−f(x)−ξ(x),
where the perturbation ξ : Rd → R is uniformly lower bounded by some constant −b with
b ≥ 0. Then it can be shown that the distribution Π̃ satisfies isoperimetric inequality (10d)
with a constant ψ̃0 ≥ e−2bψ0. For example, such type of a non-log-concave distribution
distribution arises when the target distribution is that of a Gaussian mixture model with
several components where all the means of different components are close to each other (see
e.g. Ma et al. (2018)). If a bound on the gradient is also known, Theorem 1 can be applied
to obtain a suitable mixing time bound. However deriving explicit bounds in such settings
is not the focus of the paper and thereby we omit the details here.

Appendix D. Optimal choice for HMC hyper-parameters

In this section, we provide a detailed discussion about the optimal leapfrog steps choice
for Metropolized HMC with strongly log-concave target distribution (Corollary 2). We
also discuss a few improved convergence rates for Metropolized HMC under additional
assumptions on the target distribution. Finally, we compare our results for Metropolized
HMC with other versions of HMC namely unadjusted HMC and ODE-solved based HMC
in Subsection D.2.

D.1. Optimal choices for Corollary 14

Corollary 14 provides an implicit condition that the step size η and leapfrog steps K should
satisfy and provides a generic mixing time upper bound that depends on the choices made.
We claim that the optimal choices of η and K according to Table 4 lead to the following
upper bound on number of gradient evaluations required by HMC to mix to ε-tolerance:

K · τHMC
TV (ε;µ0) ≤ O

(
max

{
dκ

3
4 , d

11
12κ, d

3
4κ

5
4 , d

1
2κ

3
2

}
· log

1

ε

)
. (125)

This (upper) bound shows that HMC always requires fewer gradient evaluations when com-
pared to MALA for mixing in total variation distance. However, such a bound requires a
delicate choice of the leap frog steps K and η depending on the condition number κ and
the dimension d, which might be difficult to implement in practice. We summarize these
optimal choices in Table 4.

Proof of claim (125): Recall that under the condition (103) (restated for reader’s con-
venience)

η2 ≤ 1

cL
min

 1

K2d
1
2

,
1

K2d
2
3

L

L
2
3
H

,
1

Kd
1
2

,
1

K
2
3d

2
3κ

1
3 r(s)

2
3

,
1

Kd
1
2κ

1
2 r(s)

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3d

1
2κ

1
2 r(s)

 L

L
2
3
H

 1
2

 ,
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Case K η2

κ ∈ (0, d
1
3 ) κ

3
4

1

cL
· d−1κ−

1
2

κ ∈ [d
1
3 , d

2
3 ] d

1
4

1

cL
· d−

7
6

κ ∈ (d
2
3 , d] d

3
4κ−

3
4

1

cL
· d−

3
2κ

1
2

κ ∈ (d,∞) 1
1

cL
· d−

1
2κ−

1
2

Table 4: Optimal choices of leapfrog steps K and the step size η for the HMC algorithm
for an (m,L,LH)-regular target distribution such that LH = O(L

3
2 ) used for the

mixing time bounds in Corollary 14. Here c denotes a universal constant.

Corollary 2 guarantees that the HMC mixing time for the κ
d
2 -warm initialization µ† =

N (x?, L−1Id), is

τHMC
2 (ε;µ0) = O

(
d+

κ

K2η2L

)
,

where we have ignored logarithmic factors. In order to compare with MALA and other
sampling methods, our goal is to optimize the number of gradient evaluations Geval taken
by HMC to mix:

Geval := K · τHMC
TV (ε;µ0) = O

(
Kd+

κ

Kη2L

)
. (126)

Plugging in the condition on η stated above, we obtain

Geval ≤ max

{
Kd︸︷︷︸
=:T1

, K max
(
d

1
2κ, d

2
3κϑ

)
︸ ︷︷ ︸

=:T2

, d
1
2κ

3
2︸ ︷︷ ︸

=:T3

, K−
1
3d

2
3κ

4
3︸ ︷︷ ︸

=:T4

, K−
1
3dκ · ϑ︸ ︷︷ ︸
=:T5

, K
1
3d

1
2κ

3
2 · ϑ

1
2︸ ︷︷ ︸

=:T6

}
(127)

where ϑ = L
2
3
H/L. Note that this bound depends only on the relation between d, κ and the

choice of K. We now summarize the source of all of these terms in our proofs:

• T1: This term is attributed to the warmness of the initial distribution. The distri-
bution µ† is O(κd)-warm. This term could be improved if we have a warmer initial
distribution.

• T2: This term appears in the proposal overlap bound from equation (27a) of Lemma 6
and more precisely, it comes from equation (35).

• T3, T4, T5 and T6: These terms pop-out from the accept-reject bound from equa-
tion (27b) of Lemma 6. More precisely, T3 and T4 are a consequence of the first three
terms in equation (51), and T5 and T6 arise the last two terms in equation (51).
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In Table 5, we summarize how these six terms can be traded-off to derive the optimal
parameter choices for Corollary 14. The effective bound on Geval-the number of gradient
evaluations required by HMC to mix, is given by the largest of the six terms.

κ versus d optimal choice K T1 T2 T3 T4 T5 T6

Kd Kd
2
3κ d

1
2κ

3
2 K−

1
3d

2
3κ

4
3 K−

1
3dκ K

1
3d

1
2κ

3
2

κ ∈ [1, d
1
3 ) K = κ

3
4 dκ

3
4 d

2
3κ

7
4 d

1
2κ

3
2 d

2
3κ

13
12 dκ

3
4 d

1
2κ

7
4

κ ∈ [d
1
3 , d

2
3 ] K = d

1
4 d

5
4 d

11
12κ d

1
2κ

3
2 d

7
12κ

4
3 d

11
12κ d

7
12κ

3
2

κ ∈ (d
2
3 , d] K = d

3
4κ−

3
4 d

7
4κ−

3
4 d

19
12κ

1
4 d

1
2κ

3
2 d

5
12κ

19
12 d

3
4κ

5
4 d

3
4κ

5
4

κ ∈ (d,∞] K = 1 d d
2
3κ d

1
2κ

3
2 d

2
3κ

4
3 dκ d

1
2κ

3
2

Table 5: Trade-off between the the six terms Ti, i = 1, . . . 6, from the bound (127) under the

assumption ϑ = L
2/3
H /L ≤ 1. In the second column, we provide the optimal choice

of K for the condition on κ stated in first column such that the maximum of the
Ti’s is smallest. For each row the dominant (maximum) term, and equivalently
the effective bound on Geval is displayed in bold (red).

D.1.1. Faster mixing time bounds

We now derive several mixing time bounds under additional assumptions: (a) when a warm
start is available, and (b) the Hessian-Lipschitz constant is small.

Faster mixing time with warm start: When a better initialization with warmness

β ≤ O(ed
2
3 κ) is available, and suppose that κ is much smaller than d. In such a case,

the optimal choice turns out to be K = d
1
4 (instead of κ

3
4 ) which implies a bound of

O
(
d

11
12κ log

(
1
ε

))
on Geval (this bound was also stated in Table 1).

Faster mixing time with small LH: Suppose in addition to warmness being not too

large, β ≤ O(ed
2
3 κ), the Hessian-Lipschitz constant LH is small enough L

2
3
H � L. In such a

scenario, the terms T5 and T6 become negligible because of small LH and T1 is negligible
because of small β. The terms T3 and T4 remain unchanged, and the term T2 changes

slightly. More precisely, for the case L
2
3
H ≤

L

d
1
2 κ

1
2

we obtain a slightly modified trade-off

for the terms in the (127) for Geval (summarized in Table 6). If κ is small too, then we

obtain a mixing time bound of order d
5
8 . Via this artificially constructed example, we

wanted to demonstrate two things. First, faster convergence rates are possible to derive
under additional assumptions directly from our results. Suitable adaptation of our proof
techniques might provide a faster rate of mixing for Metropolized HMC under additional
assumptions like infinity semi-norm regularity condition made in other works (Mangoubi
and Vishnoi, 2018) (but we leave a detailed derivation for future work). Second, it also
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demonstrates the looseness of our proof techniques since we were unable to recover an O(1)
mixing time bound for sampling from a Gaussian target.

κ versus d K optimal choice T1 T2 T3 T4 T5 T6

- Kd
1
2κ d

1
2κ

3
2 K−

1
3d

2
3κ

4
3 - -

κ ∈ (0, d
1
2 ) K = d

1
8κ

1
4 - d

5
8κ

5
4 d

1
2κ

3
2 d

5
8κ

5
4 - -

Table 6: Six terms in the HMC number of gradient evaluations bound under small hessian-
Lipschitz constant and very warm start. The dominant term is highlighted in
red.

Linearly transformed HMC (effect of mass function): In practice, it is often ben-
eficial to apply linear transformations in HMC (cf. Section 4 in Neal (2011)). At a high
level, such a transformation can improve the conditioning of the problem and help HMC
mix faster. For the target distribution Π∗ with density proportional to e−f , we can define
a new distribution Πh with density e−h (up to normalization) such that h(x) = f(M−

1
2x)

where M ∈ Rd×d is an invertible matrix. Then for a random sample q̃ ∼ Πh, the distribu-
tion of M

1
2 q̃ is Π∗. When the new distribution h has a better condition number κh than the

condition number κ of f , we can use HMC to draw approximate sample from Πh and then
transform the samples using the matrix M . Clearly the bound from Corollary 14 guarantees
that when κh is much smaller than κ, HMC on the new target Πh would mix much faster
than the HMC chain on Π∗. This transformation is equivalent to the HMC algorithm with
modified kinetic energy

dqt
dt

= M−1pt and
dpt
dt

= −∇f(qt),

which is easier to implement in practice. For a detailed discussion of this implementation,
we refer the readers to the paper by Neal (2011).

D.2. Comparison with guarantees for unadjusted versions of HMC

In this appendix, we compare our results with mixing time guarantees results on unadjusted
and ODE solver based HMC chains. We summarize the number of gradient evaluations
needed for Metropolized HMC to mix and those for other existing sampling results in
Table 7. Note that all the results summarized here are the best upper bounds in the
literature for log-concave sampling. We present the results for a (L,LH,m)-regular target
distribution. We remark that all methods presented in Table 7 requires the regularity
assumptions (10a) and (10b), even though some do not require assumption (10c).

Two remarks are in order. First, the error metric for the guarantees in the works (Man-
goubi and Vishnoi, 2018; Cheng et al., 2017; Lee et al., 2018) is 1-Wasserstein distance,
while our results make use of L2 or TV distance. As a result, a direct comparison between
these results is not possible although we provide an indirect comparison below. Second, the
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Sampling algorithm #Grad. evals

‡,�Unadjusted HMC with
leapfrog integrator (Mangoubi and Vishnoi, 2018)

d
1
4κ

11
4 · 1

ε1/2

‡Underdamped Langevin (Cheng et al., 2017) d
1
2κ2 · 1

ε

‡HMC with ODE solver, Thm 1.6 in (Lee et al., 2018) d
1
2κ

7
4 · 1

ε

?MALA (Dwivedi et al., 2019)[this paper] max
{
dκ, d

1
2κ

3
2

}
· log 1

ε

?Metropolized HMC with
leapfrog integrator [this paper]

max
{
dκ

3
4 , d

11
12κ, d

3
4κ

5
4 , d

1
2κ

3
2

}
· log 1

ε

Table 7: Summary of the number of gradient evaluations needed for the sampling algorithms
to converge to a (m,L,LH)-regular target distribution with LH = O(L

3
2 ) within

ε error from the target distribution (in total-variation distance? or 1-Wasserstein
distance‡) (and � certain additional regularity conditions for the result by Man-
goubi and Vishnoi (2018)). Note that the unadjusted algorithms suffer from an
exponentially worse dependency on ε when compared to the Metropolis adjusted
chains. For MALA, results by Dwivedi et al. (2019) had an extra d factor which
is sharpened in Theorem 5 of this paper.

previous guarantees have a polynomial dependence on the inverse of error-tolerance 1/ε.
In contrast, our results for MALA and Metropolized HMC have a logarithmic dependence
log(1/ε). For a well-conditioned target, i.e., when κ is a constant, all prior results have a
better dependence on d when compared to our bounds.

Logarithmic vs polynomial dependence on 1/ε: We now provide an indirect compar-
ison, between prior guarantees based on Wasserstein distance and our results based on TV-
distance, for estimating expectations of Lipschitz-functions on bounded domains. MCMC
algorithms are used to estimate expectations of certain functions of interest. Given an arbi-
trary function g and an MCMC algorithm, one of the ways to estimate Π∗(g) := EX∼Π∗ [g(X)]

is to use the k-th iterate from N independent runs of the chain. Let X
(k)
i for i = 1, . . . , N

denote the N i.i.d. samples at the k-th iteration of the chain and let µk denote the distribu-

tion of X
(k)
i , namely the distribution of the chain after k iterations. Then for the estimate

Π̂k(g) : = 1
N

∑N
i=1 g(X

(k)
i ), the estimation error can be decomposed as

Π∗(g)− Π̂k(g) =

∫
Rd
g(x)π∗(x)dx− 1

N

N∑
i=1

g(X
(k)
i )

=

∫
Rd
g(x) [π∗(x)− µk(x)] dx︸ ︷︷ ︸

=:J1 (Approximation bias)

+Eµk [g(X)]− 1

N

N∑
i=1

g(X
(k)
i )︸ ︷︷ ︸

=:J2 (Finite sample error)

. (128)
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To compare different prior works, we assume that Varµk [g(X1)] is bounded and thereby
that the finite sample error J2 is negligible for large enough N .11 It remains to bound the
error J1 which can be done in two different ways depending on the error-metric used to
provide mixing time guarantees for the Markov chain.

If the function g is ω-Lipschitz and k is chosen such that W1(Π∗, µk) ≤ ε, then we have
J1 ≤ ωε =: JWass. On the other hand, if the function g is bounded by B, and k is chosen
such that dTV (Π∗, µk) ≤ ε, then we obtain the bound J1 ≤ Bε =: JTV. We make use of these
two facts to compare the number of gradient evaluations needed by unadjusted HMC or
ODE solved based HMC and Metropolized HMC. Consider an ω-Lipschitz function g with
support on a ball of radius R. Note that this function is uniformly bounded by B = ωR.
Now in order to to ensure that J1 ≤ δ (some user-specified small threshold), the choice of
ε in the two cases (Wasserstein and TV distance) would be different leading to different
number of gradient evaluations required by the two chains. More precisely, we have

J1 ≤ JWass = ωε ≤ δ =⇒ εwass =
δ

ω
and

J1 ≤ JTV = Bε = ωRε ≤ δ =⇒ εTV =
δ

ωR
.

To simplify the discussion, we consider well-conditioned (constant κ) strongly log-concave
distributions such that most of the mass is concentrated on a ball of radius O(

√
d) (cf.

Appendix B.1) and consider R =
√
d. Then plugging the error-tolerances from the display

above in Table 7, we obtain that the number of gradient evaluations GMC for different
chains12 would scale as

Gunadj.-HMC ≤ O(

√
dω

δ
), GODE-HMC ≤ O(

ω
√
d

δ
), and GMetro.-HMC ≤ O(d log

ω
√
d

δ
)

Clearly, depending on ω and the threshold δ, different chains would have better guarantees.
When ω is large or δ is small, our results ensure the superiority of Metropolized-HMC
over other versions. For example, higher-order moments can be functions of interest, i.e.,
g(x) = ‖x‖1+ν for which the Lipschitz-constant ω = O(dν) scales with d. For this function,
we obtain the bounds:

Gunadj.-HMC ≤ O(
d

1+ν
2

√
δ

), GODE-HMC ≤ O(
d

1
2

+ν

δ
), and GMetro.-HMC ≤ O(d(1 + ν) log

d

δ
)

and thus Metropolized HMC takes fewer gradient evaluations than ODE-based HMC for ν >
1/2 and unadjusted HMC for ν > 1 (to ensure J1 ≤ δ (128)). We remark that the bounds for
unadjusted-HMC require additional regularity conditions. From this informal comparison,
we demonstrate that both the dimension dependency d and error dependency ε should be
accounted for comparing unadjusted algorithms and Metropolized algorithms. Especially
for estimating high-order moments, Metropolized algorithms with log(1

ε ) dependency will
be advantageous.

11. Moreover, this error should be usually similar across different sampling algorithms since several algo-
rithms are designed in a manner agnostic to a particular function g.

12. The results for other HMCs often assume (different) additional conditions so that a direct comparison
should be taken with a fine grain of salt.
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Christian Houdré. Mixed and isoperimetric estimates on the log-Sobolev constants of graphs
and Markov chains. Combinatorica, 21(4):489–513, 2001.

70



Fast mixing of Metropolized HMC

Mark Jerrum and Alistair Sinclair. Conductance and the rapid mixing property for Markov
chains: The approximation of permanent resolved. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pages 235–244. ACM, 1988.
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