
An Implementation of a Coupled
Dual-Porosity-Stokes Model with FEniCS

Xiukun Hu1 and Craig C. Douglas2(&)

1 Department of Mathematics and Statistics, University of Wyoming,
Laramie, WY 82071-3036, USA
xiukun.hu@outlook.com

2 School of Energy Resources and Department of Mathematics and Statistics,
University of Wyoming, Laramie, WY 82071-3036, USA

craig.c.douglas@gmail.com

Abstract. Porous media and conduit coupled systems are heavily used in a
variety of areas. A coupled dual-porosity-Stokes model has been proposed to
simulate the fluid flow in a dual-porosity media and conduits coupled system. In
this paper, we propose an implementation of this multi-physics model. We solve
the system with the automated high performance differential equation solving
environment FEniCS. Tests of the convergence rate of our implementation in
both 2D and 3D are conducted in this paper. We also give tests on performance
and scalability of our implementation.

Keywords: Domain decomposition ! Finite element method ! Multi-physics !
Parallel computing ! FEniCS

1 Introduction

The coupling of porous media flow and free flow is of importance in multiple areas,
including groundwater system, petroleum extraction, and biochemical transport [1–3].
The Stokes-Darcy equation is widely applied in these areas and has been studied
thoroughly over the past decade [4–6]. Variants of Stokes-Darcy mode, have also been
studied extensively [7–10].

In a traditional Stokes-Darcy system, Darcy’s law is applied to the fluid in porous
media. Darcy’s law, along with its variants, is great in modeling single porosity model
with limited Reynolds number, and is widely used in hydrogeology and reservoir
engineering. However, for a porous medium with multiple porosities, for example a
naturally fractured reservoir, the accuracy of Darcy’s law is limited. In contrast, a dual-
porosity model assumes two different systems inside a porous media-: the matrix
system and the microfracture system. These two systems have significantly different
fluid storage and conductivity properties. It gives a better representation of the fractured
porous media encountered in hydrology, carbon sequestration, geothermal systems, and
petroleum extraction [11–13].

The dual-porosity model itself fails to consider large conduits inside porous media.
Thus, the need of coupling both a dual-porosity model with free flow arises [14].

© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11539, pp. 60–73, 2019.
https://doi.org/10.1007/978-3-030-22747-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22747-0_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22747-0_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22747-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-22747-0_5

Our paper expands on a coupled Dual-Porosity-Stokes model [15]. Similar to the
Stokes-Darcy model, this coupled model contains two nonoverlapping but contiguous
regions: one filled with porous media and the other represents conduits. The dual-
porosity model describes the porous media and the Stokes equation governs the free
flow in the conduits.

In Sect. 2, we define the Dual-Porosity-Stokes model. The equations are presented
as well as the variational form. In Sect. 3, we describe the numerical implementation
using FEniCS. In Sect. 4, we analyze the accuracy, speed performance, memory usage,
and scalability of our implementation. In Sect. 5, we draw some conclusions and
discuss future work.

2 Dual-Porosity-Stokes Model

The Dual-Porosity-Stokes model was first presented in [15]. This paper demonstrated
the well-posedness of the model and derived a numerical solution in 2D using a finite
element method. Several numerical experiments are also in the paper. In this section we
will demonstrate this model in detail as well as present the variational form.

To better understand the model, let us first take a look at a simple 2D example
presented in Fig. 1. The model consists of a dual-porosity subdomain Xd and a conduit
subdomain Xc, with an interface Ccd in between. Two subdomains are non-
overlapping, and only communicate to each other through the interface Ccd . Cd and
Cc are boundaries of each subsystem.

Two fluid pressures are presented in Xd , pm and pf , for fluids in matrix and fractures
respectively. The m subscript stands for matrix and f is for fracture. We use these two
subscripts for other model parameters. The dual-porosity model can be expressed as:

/mCmt
@pm
@t

"r ! km
l
rpm ¼ "Q; ð1Þ

Fig. 1. Coupled model in 2D

An Implementation of a Coupled Dual-Porosity-Stokes Model 61

/f Cft
@pf
@t

"r ! kf
l
rpf ¼ Qþ qp: ð2Þ

The constant r is a shape factor ranging from 0 to 1. It measures the connectivity
between the microfracture and the matrix. l is the dynamic viscosity. k is the intrinsic
permeability. / denotes the porosity. Cmt and Cft denote the total compressibility for
the two systems respectively. qp is the sink/source term. Q is the mass exchange
between matrix and microfracture systems and can be derived from Q ¼ rkm

l pm " pf
! "

.
In the conduit subdomain, we use the linear incompressible Stokes equation to

describe the free flow:

@uc
@t

"r ! T uc; pð Þ ¼ f ; ð3Þ

r ! uc ¼ 0: ð4Þ

The flow velocity uc and pressure p together describe the free flow. m is the kinematic
viscosity. f is a general source term. T uc; pð Þ := 2mD ucð Þ " pI is the stress tensor,
where D ucð Þ := 1

2 ruc þrTucð Þ is the deformation tensor, and I is the N ' N identity
matrix.

On the interface Ccd , a no-exchange condition between the matrix and the conduit
is used,

" km
l rpm ! "ncdð Þ ¼ 0; ð5Þ

where ncd is the unit normal vector on the interface pointing toward Xd . This equation
forces the fluid in the matrix to stay in the porous media. It is based on the fact that the
permeability of the matrix system is usually 105 to 107 times smaller than the
microfracture permeability [16–19].

Three more interface conditions are derived from Stokes-Darcy model:

uc ! ncd ¼ " kf
l
rpf ! ncd ; ð6Þ

"nTcdT uc; pð Þncd ¼
pf
q
; ð7Þ

"Ps T uc; pð Þncdð Þ ¼ am
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace Pð Þ

p uc þ
kf
l
rpf

$ %
: ð8Þ

q is the density of the fluid. Ps is the projection operator onto the local tangent plane of
the interface Ccd . a is a dimensionless parameter which depends on the properties of the
fluid and the permeable material, N is the space dimension, and P ¼ kf I is the intrinsic
permeability of the fracture media. Condition (6) is the conservation of mass on the

62 X. Hu and C. C. Douglas

interface. Equation (7) represents the balance of forces on the interface [20, 21].
Equation (8) is the Beavers-Joseph interface condition [22].

If we introduce a vector valued test function ~v ¼ wm;wf ; vT ; q
& 'T , the variational

form for our model can be written as

Z

Xd
/mCmt

@pm
@t

wm þ km
l
rpm !rwm þ rkm

l
pm " pf
! "

wm

$ %
dX ð9aÞ

þ Z

Xd
/f Cft

@pf
@t

wf þ
kf
l
rpf !rwf þ

rkm
l

pf " pm
! "

wf

$ %
dX ð9bÞ

þ g
Z

Xc

@uc
@t

! vþ 2mD ucð Þ : D vð Þ " pr ! v
$ %

dX ð9cÞ

þ g
Z

Ccd

1
q
pf v ! ncd þ

am
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace Pð Þ

p Ps uc þ
kf
l
rpf

$ %
! v

 !

dC ð9dÞ

þ g
Z

Xc
r ! ucqdX" Z

Ccd
uc ! ncdwf dC ð9eÞ

¼ g
Z

Xc
f ! vdXþ Z

Xd
qpwf dX: ð9fÞ

g is a scale factor applied to equations in the conduit subdomain to ensure the whole
system is of the same scale.

3 Implementation

Hou et al. [15] numerically solved such a system in 2D using a finite element method
with Taylor-Hood elements for the conduit domain and demonstrated the stability and
convergence rate of their method.

In this section we describe an implementation of a finite element solver based on
FEniCS [23, 24], which allows us to run our model in both 2D and 3D, in parallel, and
can be easily modified and extended. FEniCS is a popular open source computing
platform for solving partial differential equations (PDEs). The automatic code gener-
ation of FEniCS enables people to implement a FEM code using the Unified Form
Language (UFL) [25], which is close to a mathematical description of the variational
form.

Many multi-physics models have been implemented using FEniCS, e.g., the
adaptive continuum mechanics solver Unicorn (Unified Continuum modeling) [26, 27].
It can solve continuum mechanics with moving meshes adaptively. As the coupled
systems Unicorn solves always consist of moving meshes, subsystems are solved
independently and iteratively until a satisfied error is reached. In our case, we prefer to
solve the coupled system as a whole as they together form a linear system and can be
solved directly.

An Implementation of a Coupled Dual-Porosity-Stokes Model 63

A solution to the coupled Navier-Stokes-Darcy model has been implemented with
FEniCS by Ida Norderhaug Drøsdal [28]. In the coupled Navier-Stokes-Darcy model,
the conduit subdomain and the porosity subdomain contain the same two variables:
fluid velocity and pressure. The solver regards the two subsystems as a whole and the
variables exist on both subdomains. The interface conditions then are implemented by
interior facet integration. However, in our coupled Stokes-Dual-Porosity model, we
have two scalar variables pf and pm in the dual-porosity domain, but one vector
variable uc and one scalar variable p in the conduit domain.

The disagreement of the variable dimensions on the two subdomains differentiates
our model from Navier-Stokes-Darcy model. Here we expand every variable to the
whole system and force them to be zero in the opposite subdomain.

3.1 Implementation with FEniCS

Our implementation in Python is described in this section. Since our model involves
interior interface integration, adjacent cells need to share information from the common
facet. In order for our implementation to run in parallel, the following parameter in
FEniCS needs to be set correctly.

from fenics import *
parameters['ghost_mode'] = 'shared_facet'

For any given mesh object mesh, with any geometric dimension, our function space
can be created as:

Given mesh and degree
velem = VectorElement('CG', mesh.ufl_cell(), degree)
selem = FiniteElement('CG', mesh.ufl_cell(), degree)
pelem = FiniteElement('CG', mesh.ufl_cell(), degree-1)

V = FunctionSpace(mesh, MixedElement(selem,selem,
velem,pelem))

The four ordered elements selem, selem, velem, pelem in the last statement are
for pf , pm, uc and p respectively. Note that since the Taylor-Hood method is applied,
the degree of p should be less than that of uc.

Initiate constants phim ¼ um, phif ¼ uf , km ¼ km, kf ¼ kf , mu ¼ l, nu ¼ m,
rho ¼ q, sigma ¼ r, Cmt ¼ Cmt, Cft ¼ Cft, alpha ¼ a, and eta ¼ g, and
function expressions qp ¼ qp and f ¼ f . Also define initial conditions for all variables,
interpolated into our function space V, and stored in the variable x0. The variational
form can be defined in UFL as below. Note the one-to-one correspondence between the
variational form below and the one presented in (9a)–(9f).

64 X. Hu and C. C. Douglas

Note that the backward Euler scheme can be easily extended to h method. dC, dD and
dI are predefined Measure objects in UFL, and represents integrations on Xc, Xd and
Ccd respectively. Note that the sign in n('+') needs to be adjusted for different
domain structures. The signs of other variables for interface integration terms are not
affecting the result of the model in any of our test cases.

Now we constrain pm, pf , uc, p on opposite subdomains by defining the following
Dirichlet boundary conditions.

n = FacetNormal(V.mesh()) #
proj = lambda u: u-dot(u,n('+'))*n('+') #
pm0, pf0, u0, p0 = x0.split()
avN = alpha*nu/math.sqrt(kf) # ¥N)/¥(trace()
pm, pf, u, p = TrialFunctions(V)
psim, psif, v, q = TestFunctions(V)
F = ((phim*Cmt*(pm-pm0)/dt*psim
 + km/mu*dot(grad(pm), grad(psim))
 + sigma*km/mu*(pm-pf)*psim)*dD # (9a)
 + (phif*Cft*(pf-pf0)/dt*psif
 + kf/mu*dot(grad(pf), grad(psif))
 + sigma*km/mu*(pf-pm)*psif)*dD # (9b)
 + eta*

(dot((u-u0)/dt,v)
 + 2*nu*inner(epsilon(u),epsilon(v))
 - p*div(v))*dC # (9c)
 + eta*

(1/rho*pf('-')*dot(v('+'),n('+'))
 + avN*dot(proj(u('+')+kf/mu*grad(pf('-'))),

v('+')))*dI # (9d)
 + (eta*(div(u)*q)*dC
 - dot(u('+'),n('+'))*psif('-')*dI) # (9e)
 - eta*dot(f, v)*dC - qp*psif*dD) # (9f)
a, L = lhs(F), rhs(F)

fix_pm = DirichletBC(V.sub(0), Constant(0),
on_conduit_but_not_interface,
method='pointwise')

fix_pf = DirichletBC(V.sub(1), Constant(0),
on_conduit_but_not_interface,
method='pointwise')

fix_u = DirichletBC(V.sub(2), Constant([0]*N),
on_dual_but_not_interface,
method='pointwise')

fix_p = DirichletBC(V.sub(3), Constant(0),
on_dual_but_not_interface,
method='pointwise')

fix_bcs = [fix_pm, fix_pf, fix_u, fix_p]

An Implementation of a Coupled Dual-Porosity-Stokes Model 65

The boundary markers on_conduit/dual_but_not_interface, as their
names might suggest, should not include the interface Ccd . Note that we need to use the
method “pointwise” for these special “boundary” conditions.

After creating other Dirichlet boundary conditions bcs, we can solve the PDE as
follows.

A, b = assemble(a), assemble(L)
for bc in fix_bcs + bcs:

bc.apply(A, b)
solver = KrylovSolver(A, method='bicgstab',

preconditioner='hypre_euclid')
now = 0
while now <= T: # T is endtime

now += dt # dt is length of timestep
for expr in [pm, pf, u, p, qp, f]:

expr.t = now
 b = assemble(L)

for bc in bcs:
bc.apply(b)

solver.solve(x.vector(), b)
x0.assign(x)

Due to the interface conditions our matrix A is nonsymmetric. Hence, methods like
conjugate gradients and Cholesky decomposition might not work as expected.

4 Result

The implementation works in 2D and 3D with the same code. Here we test our
implementation on a unit cubic mesh defined by X ¼ 0; 1½) ' 0; 1½) ' 0; 1½). Let
Xd ¼ x; y; zð Þ 2 X x* yjf g;Xc ¼ x; y; zð Þ 2 X x+ yjf g. We simulate our model on the
time interval 0; 1½).

For the constants, we let km ¼ 0:1 and all the rest be 1. We set up our coefficients
and essential boundary conditions so that the following is our solution:

pm ¼ 1
5
sin xþ yþ zð Þ cos ptð Þ

pf ¼ "2p sin ptð Þ sin xþ yþ zð Þþ 4
5
sin xþ yþ zð Þ cos ptð Þ

uc ¼
2p sin ptð Þ cos 3x" yþ zð Þ " 4

5 cos ptð Þ cos 3y" xþ zð Þ
2p sin ptð Þ cos 3y" xþ zð Þ " 4

5 cos ptð Þ cos 3x" yþ zð Þ
2p sin ptð Þ cos xþ yþ zð Þ " 4

5 cos ptð Þ cos xþ yþ zð Þ

2

4

3

5

66 X. Hu and C. C. Douglas

p ¼ "8 p sin ptð Þþ 2
5
cos ptð Þ

$ %
sin 3y" xþ zð Þþ sin 3x" yþ zð Þð Þ

þ 2
2
5
cos ptð Þ " p sin ptð Þ

$ %
sin xþ yþ zð Þ

It is not hard to verify that the above solution satisfies Eq. (1) and (5)–(8). Source terms
qp and f can be calculated from (2) and (3) respectively. However, the divergence of
the free flow velocity uc is not zero, so we need to modify (4) to a more general case
r ! uc ¼ g, and calculate g from it.

For the boundary conditions, we apply corresponding essential boundaries for all
variables except for p.

We tested our implementation on the University of Wyoming’s Teton HPC
cluster [29].

4.1 Convergence

We examine the convergence rate of our implementation for different timestep length
Dt’s. To make the result reproducible, all of the experiments are run in a single
processor with the direct linear solver MUMPS (Multifrontal Massively Parallel sparse
direct Solver) [30, 31]. Piecewise quadratic functions are used for pm, pf , and uc.
Degree 1 Lagrange elements are used for p.

We examine the convergence rate for both Dt ¼ h and Dt ¼ h2, where h is the cell
size. Recall that our domain is a unit cube. A model with cell size h means our domain
is partitioned into h' h' h small cubes. Each cube contains 6 tetrahedral cells. The L2

norm of each variable’s error at time T ¼ 1 is calculated. The convergence rate is
calculated as ln ei=ei"1ð Þ=ln hi=hi"1ð Þ. The result is shown in Tables 1 and 2.

Table 1. The L2 error at T ¼ 1 with Dt ¼ h.

h pm pf uc p
Error Rate Error Rate Error Rate Error Rate

1/2 3.56e−2 0.60 1.46e−1 1.12 3.93e−2 3.78 1.50 56.40
1/4 2.01e−2 0.82 5.64e−2 1.37 1.35e−2 1.54 3.48e−1 2.10
-1/8 1.07e−2 0.91 2.17e−2 1.38 4.80e−3 1.49 8.87e−2 1.97
1/16 5.54e−3 0.95 9.04e−3 1.27 1.89e−3 1.34 3.51e−2 1.34

Table 2. The L2 error at T ¼ 1 with Dt ¼ h2.

h pm pf uc p
Error Rate Error Rate Error Rate Error Rate

1/2 2.03e−2 1.41 5.59e−2 2.51 1.68e−2 5.01 9.10e−1 57.12
1/4 5.69e−3 1.83 9.38e−3 2.57 2.26e−3 2.90 1.72e−1 2.41
-1/8 1.44e−3 1.97 1.95e−3 2.26 4.08e−4 2.47 3.90e−2 2.14
1/16 3.62e−4 2.00 4.58e−4 2.08 9.98e−5 2.16 9.35e−3 2.06

An Implementation of a Coupled Dual-Porosity-Stokes Model 67

4.2 Performance

The solver consists of two major parts: linear system assembling and linear system
solving. Below we investigate the performance of our implementation in these two
parts separately.

Assembling. Despite that the linear form L is assembled at each time step, the
assembling of the bilinear form a is usually more time consuming. Figures 2 and 3
show the time spent for assembling the bilinear form under different conditions.

Figure 2 shows the assembling time when using a single CPU versus degrees of
freedom (DoF) of our system. We can see that the assembling time is linear to total DoF.

Figure 3 presents the performance of assembling along different number of pro-
cessors. Each line presents the scalability with fixed problem size. We can see that
assembling scales well when the problem size is large enough. However, too many
processors may lead to a performance drop.

Fig. 2. Assembling time is linear to DoF.

Fig. 3. Assembling scales well in large systems.

68 X. Hu and C. C. Douglas

Solving. For our time-dependent model, the same linear system is solved at each
timestep with varying right hand side. In this case, direct linear solvers can benefit from
reuse of decompositions, as we will see in Figs. 4 and 5.

Fig. 4. Time for solving a single step.

Fig. 5. Time for solving 100 steps.

An Implementation of a Coupled Dual-Porosity-Stokes Model 69

A collection of high performance solvers and preconditioners are available (call-
able) from FEniCS, assuming it was built with corresponding packages. To reduce
complexity, we choose the ILU preconditioner hypre_euclid from Livermore’s
HYPRE package [32] for all iterative solvers we use.

For a single solve, direct solvers like MUMPS and superlu_dist (Supernodal
LU [33, 34]) is slower than iterative solvers, as shown in Fig. 4. But if we simulate for
100 steps, the direct solver MUMPS can overpass iterative solvers in not too large
systems.

However, we can see in both figures, superlu_dist suffers from scalability. For
large systems, a direct solver can still be slower and is much more memory consuming.

Memory Usage. Figures 6 and 7 present the memory usages of our model under
different situations. All memory usages are measured as the “Resident Set Size” of
running processes. The memory usage is measured by the Resident Set Size used when
running a simulation for Dt ¼ 0:01; t 2 0; 1½), with specific solver. Note that the
memory usage for iterative solvers are very similar: all their lines are overlapped with
each other and some becomes invisible.

For large systems, the memory usages of iterative solvers are about linear with
respect to DoF and are worse than linear for direct solvers. In the case of h ¼ 1=32, the
total memory usage of a system with superlu_dist is about 7 times as large as that
of a system with an iterative solver, as shown in Fig. 6.

Figure 7 shows how memory usage scales if we add more processors. The memory
usage is the memory used by a single processor.

Fig. 6. Memory usage versus degrees of freedom.

70 X. Hu and C. C. Douglas

5 Conclusions and Future Work

We have presented an implementation of a coupled dual-porosity-Stokes model using
the automated FEM solver FEniCS. We proposed a solution to modeling the coupled
interface by using FEniCS’ built-in interface integration and expanding variables to the
whole domain. This approach enables us to simulate both 2D and 3D models in parallel
with minimum coding. Future work will include adding data assimilation from active
sensors and experimenting with different interface conditions to see better solutions can
be computed. Another approach is to implement one of the non-iterative domain
decomposition methods that have been developed for Stokes-Darcy systems [35, 36],
which can decompose our asymmetric matrix into two small symmetric matrices and
reduce communications between two subsystems.

Acknowledgment. This research was supported in part by NSF grant 1722692.

References

1. Çeşmelioğlu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent
coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)

2. Arbogast, T., Brunson, D.: A computational method for approximating a Darcy-Stokes
system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)

3. Cao, S., Pollastrini, J., Jiang, Y.: Separation and characterization of protein aggregates and
particles by field flow fractionation. Curr. Pharm. Biotechnol. 10(4), 382–390 (2009)

4. Babuška, I., Gatica, G.: A residual-based a posteriori error estimator for the Stokes-Darcy
coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)

Fig. 7. Memory usage versus number of processors.

An Implementation of a Coupled Dual-Porosity-Stokes Model 71

5. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy
coupling. Numer. Math. 115(2), 195–227 (2010)

6. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes-Darcy
problems with boundary integrals. SIAM J. Sci. Comput. 35(1), B82–B106 (2013)

7. Badia, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the
Darcy problems. SIAM J. Numer. Anal. 47(3), 1971–2000 (2009)

8. Bernardi, C., Hecht, F., Pironneau, O.: Coupling Darcy and Stokes equations for porous
media with cracks. ESAIM: Math. Model. Numer. Anal. 39(1), 7–35 (2005)

9. Amara, M., Capatina, D., Lizaik, L.: Coupling of Darcy-Forchheimer and compressible
Navier-Stokes equations with heat transfer. SIAM J. Sci. Comput. 31(2), 1470–1499 (2009)

10. Dawson, C.: Analysis of discontinuous finite element methods for ground water/surface
water coupling. SIAM J. Numer. Anal. 44(4), 1375–1404 (2006)

11. Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single
phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

12. Carneiro, J.: Numerical simulations on the influence of matrix diffusion to carbon
sequestration in double porosity fissured aquifers. Int. J. Greenhouse Gas Control 3(4), 431–
443 (2009)

13. Gerke, H., Genuchten, M.: Evaluation of a first‐order water transfer term for variably
saturated dual‐porosity flow models. Water Resour. Res. 29(4), 1225–1238 (1993)

14. Douglas, C., Hu, X., Bai, B., He, X., Wei, M., Hou, J.: A data assimilation enabled model for
coupling dual porosity flow with free flow. In: 2018 17th International Symposium on
Distributed Computing and Applications for Business Engineering and Science (DCABES),
Wuxi, pp. 304–307 (2018)

15. Hou, J., Qiu, M., He, X., Guo, C., Wei, M., Bai, B.: A dual-porosity-stokes model and finite
element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38,
B710–B739 (2016)

16. Bello, R., Wattenbarger, R.: Multi-stage hydraulically fractured horizontal shale gas well rate
transient analysis. In: North Africa Technical Conference and Exhibition (2010)

17. Brohi, I., Pooladi-Darvish, M., Aguilera, R.: Modeling fractured horizontal wells as dual
porosity composite reservoirs-application to tight gas, shale gas and tight oil cases. In: SPE
Western North American Region Meeting (2011)

18. Carlson, E., Mercer, J.: Devonian shale gas production: mechanisms and simple models.
J. Pet. Technol. 43(04), 476–482 (1991)

19. Guo, C., Wei, M., Chen, H., Xiaoming, H., Bai, B.: Improved numerical simulation for shale
gas reservoirs. In: Offshore Technology Conference-Asia (2014)

20. Çeşmelioğlu, A., Rivière, B.: Analysis of time-dependent Navier-Stokes flow coupled with
Darcy flow. J. Numer. Math. 16(4), 249–280 (2008)

21. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy
equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)

22. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech.
30(1), 197–207 (1967)

23. Alnæs, M., et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)
24. Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the

Finite Element Method. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
23099-8

25. Alnæs, M.S.: UFL: a finite element form language. In: Logg, A., Mardal, K.-A., Wells, G.
(eds.) Automated Solution of Differential Equations by the Finite Element Method. LNCS,
vol. 84, pp. 303–338. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
23099-8_17

72 X. Hu and C. C. Douglas

http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8_17
http://dx.doi.org/10.1007/978-3-642-23099-8_17

26. Hoffman, J., Jansson, J., Degirmenci, C., Jansson, N., Nazarov, M.: Unicorn: a unified
continuum mechanics solver. In: Logg, A., Mardal, KA., Wells, G. (eds.) Automated
Solution of Differential Equations by the Finite Element Method. LNCS, vol. 84, pp. 339–
361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23099-8_18

27. Hoffman, J., Jansson, J., Jansson, N.: FEniCS-HPC: automated predictive high-performance
finite element computing with applications in aerodynamics. In: PPAM 2015, vol. 9573,
pp. 356–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-32149-3_34

28. Drøsdal, I.: Porous and viscous modeling of cerebrospinal fluid flow in the spinal canal
associated with syringomyelia. Master’s thesis (2011)

29. Advanced Research Computing Center: Teton Computing Environment, Intel x86_64
cluster. University of Wyoming, Laramie (2018). https://doi.org/10.15786/M2FY47

30. Amestoy, P., Duff, I., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

31. Amestoy, P., Cuermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the
parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

32. Falgout, R., Yang, U.: hypre: a library of high performance preconditioners. In: Sloot, P.,
Hoekstra, A., Tan, C., Dongarra, J. (eds.) ICCS 2002, vol. 2331, pp. 631–641. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6_66

33. Li, X., Demmel, J., Gilbert, J., Grigori, I., Yamazaki, M.: SuperLU Users’ Guide. Lawrence
Berkeley National Laboratory LBNL-44289 (2005). http://crd.lbl.gov/*xiaoye/SuperLU/

34. Li, X., Demmel, J.: SuperLU_DIST: a scalable distributed-memory sparse direct solver for
unsymmetric linera systems. ACM Trans. Math. Softw. 29(2), 110–140 (2003)

35. Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain
decomposition methods for time-dependent Stokes-Darcy systems. 83, 1617–1644 (2014)

36. Feng, W., He, X., Wang, Z., Zhang, X.: Non-iterate domain decomposition methods for a
non-stationary Stokes-Darcy model with Beavers-Joseph interface condition. Appl. Math.
Comput. 219, 453–463 (2012)

An Implementation of a Coupled Dual-Porosity-Stokes Model 73

http://dx.doi.org/10.1007/978-3-642-23099-8_18
http://dx.doi.org/10.1007/978-3-319-32149-3_34
http://dx.doi.org/10.15786/M2FY47
http://dx.doi.org/10.1007/3-540-47789-6_66
http://crd.lbl.gov/~xiaoye/SuperLU/

