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a b s t r a c t

Left ventricular assist device (LVAD) recently has been used in advanced heart failure (HF),

which supports a failing heart to meet blood circulation demand of the body. However, the

pumping power of LVADs is typically set as a constant and cannot be freely adjusted to

incorporate blood need from resting or mild exercise such as walking stairs. To promote the

adoption of LVADs in clinical use as a long-term treatment option, a feedback controller is

needed to regulate automatically the pumping power to support a time-varying blood

demand, according to different physical activities. However, the tuning of pumping power

induces suction, which will collapse the heart and cause sudden death. It is essential to

consider suction when developing control strategy to adjust the pumping power. Further,

hemodynamic of a failing heart exhibits variability, due to patient-to-patient heterogeneity

and inherent stochastic nature of the heart. Such variability poses challenges for controller

design. In this work, we develop a feedback controller to adjust the pumping power of an

LVAD without inducing suction, while incorporating variability in hemodynamic. To effi-

ciently quantify variability, the generalized polynomial chaos (gPC) theory is used to design a

robust self-tuning controller. The efficiency of our control algorithm is illustrated with three

case scenarios, each representing a specific change in physical activity of HF patients.

© 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish

Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Heart failure (HF) is a critical condition that a failing heart
cannot eject appropriate amount of blood and oxygen to
maintain the body healthy. The well-known therapy for severe
HF is transplant [1]; but only about 5000 patients per year
worldwide can receive transplants, due to limited donor
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hearts. Larger numbers of patients are eligible for transplants,
but about 30% of them die while waiting for donor hearts [2]. As
an alternative, mechanical assist devices, e.g., Left Ventricular
Assist Devices (LVAD), have been used in clinical practice to
support a failing heart either before a donor heart is available
or until cardiomyocyte function recovers [1,3].

In clinical practices, the pumping power of an LVAD is set
up typically by physicians with knowledge gleaned in surgery,
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ngineering, Clarkson University, Potsdam, NY, USA

gineering of the Polish Academy of Sciences. Published by Elsevier

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbe.2020.01.014&domain=pdf
https://doi.org/10.1016/j.bbe.2020.01.014
mailto:ydu@clarkson.edu
http://www.sciencedirect.com/science/journal/02085216
www.elsevier.com/locate/bbe
https://doi.org/10.1016/j.bbe.2020.01.014


b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 5 5 9 – 5 7 3560
which cannot be adjusted afterwards [4,5]. But the physiologi-
cal demand of blood changes with respect to various physical
activities—resting or mild exercising such as walking stairs. To
meet a time-varying blood demand, it is essential to
automatically adjust the pumping power of an LVAD.

One challenge to adjust the pumping power is to avoid
suction. When the pumping power is increased above a certain
limit, it will induce ventricular suction, which is a state that
the pump seeks to draw out more blood from the left ventricle
than the available blood in it [4]. Suction will collapse the heart
and consequently cause sudden death. Of paramount impor-
tance is to develop robust controllers to automatically adjust
the pump speed with respect to time-varying physical activity
to satisfy blood demands, while preventing the ventricular
suction. Several control algorithms have been previously
reported [4,6–11], and each addresses a particular issue for
the tuning of the pumping power of an LVAD.

In addition, the activity level of HF patients is very limited
[12], since the blood supplied with constant pump speed
cannot meet perfusion demand during even mild exercise, e.g.,
walking stairs. To address this, controllers were developed to
adjust pumping speed. For example, the value of the systemic
vascular resistance (SVR) in a model was used to describe
different levels of physical activities for controller design [2,13–
15]. But the right heart, including the right atrium and
ventricle, and the pulmonary circulation, were often assumed
to be strong and healthy, thus their effects on the tuning of
pumping speed were not studied. Importantly, as the activity
level changes, hemodynamics of the right heart and pulmo-
nary circulation, e.g., the right ventricle contractility and the
pulmonary vascular resistance, will vary [4]. Thus, it is
essential to consider these hemodynamic parameters, while
developing control strategy to adjust the pumping speed.
Notably, parameters such as the SVR are often assumed to be
given a priori for control design in existing works. However,
values of these parameters cannot be known with certainty,
since the heart condition of the same patient varies over time
and since there is heterogeneity among individual HF patients.
These will introduce uncertainty, which will affect the control
design and deteriorate the control performance.

To address the challenges noted above, a detailed model of
the heart managed by an LVAD is first presented in this work,
which includes both the left and right sides of the heart. Using
Fig. 1 – Schematic of the deterministic model of a failing heart m
model is based on existing works in the literature [2,4,9,14,23,2
the model, a robust control algorithm is developed to adjust
the pumping speed of an LVAD to account for different
physical activities, while preventing suction. To consider the
effect of the inter-and/or intra-patient uncertainty on the
controller design, uncertainty analysis (UA) technique is used
in this work [16].

Monte Carlo (MC) simulation is the most popular tool for UA
since it only requires repetitive executions of models with
various samples of uncertainty. However, MC is computation-
ally prohibitive, since it requires larger number of samples to
ensure UA accuracy. To alleviate the computational burden,
generalized polynomial chaos (gPC) expansion can be used,
which has shown its efficiency in several modelling, control,
and optimization problems [17–21]. Compared to MC, gPC
mathematically approximates an uncertainty with an analyti-
cal expression and further efficiently quantify its effect on
model predictions in real time [22]. Since our objective is to
rapidly adjust the pumping speed to meet blood need for time-
varying physical activity, gPC is thus used for controller design,
due to its computational efficacy.

Specifically, in this work the controller will adjust the
pumping speed to provide appropriate blood without inducing
suction, while considering uncertainty in hemodynamic
parameters (e.g., SVR), which are related to different physical
activities. In summary, contributions in this work include: (i)
development of a stochastic cardiovascular model managed
by an LVAD based on existing models in the literature; (ii)
implementation of the gPC to efficiently quantify the impact of
parametric uncertainty on model predictions (e.g., pump flow)
that are essential for LVAD control; (iii) formulation of an
optimization problem to identify the most favourable control-
ler parameters, such that the LVAD can appropriately adjust
the pumping speed without inducing suction; and (iv) the
design of a self-tuning controller to regulate the pumping
speed of an LVAD and to quickly bring it back to a safe
operating condition under suction, resulting from unexpected
and sudden changes in heart condition of subjects.

This paper is organized as follows. Section 2 presents a
deterministic nonlinear model of a failing heart managed by
an LVAD and the theoretical background of gPC. Details of the
control algorithm are given in Section 3, followed by results of
computer experiments and a brief discussion in Sections 4 and
5, respectively. Conclusions are given in Section 6.
anaged by an LVAD. The presentation of the deterministic
4].
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2. Theoretical background

2.1. Cardiovascular-LVAD model

Based on existing works [2,4,9,14,23,24], a model is first
presented to describe the cardiovascular system supported
by an LVAD, which is a comprehensive combination of models
noted above. For example, the right heart is considered, as
compared to previous works [2,14], where the right heart was
assumed to be healthy and was not included in the model.
Compared to the model of Fernandez de Canete et al. [24], the
effect of an LVAD on the failing heart is studied. Also the
‘‘double hill’’ function is used to describe the contractility of
the heart in order to reduce model complexity, compared to
other works in Refs. [4,9,23,24]. Note that other elastance
models can be used to describe elastance properties based on
systole and diastole periods [23,24] or based on ECG signals
[25–27], but it is not considered here for brevity.

Fig. 1 shows a schematic of the equivalent circuit model;
and Table 1 lists its corresponding state variables used in the
model, for which model parameters are defined with fixed
constants as in Table 2. It is important to note that the model is
hereafter referred to as deterministic models, compared to the
stochastic model developed in the results section, for which
model parameters will be described by probability density
function (PDF) rather than a constant.

The deterministic model in Fig. 1 is described by the
systemic and pulmonary circulations, left atrium (LA), left
ventricle (LV), right atrium (RA), and right ventricle (RV). In
each cardiac cycle, blood leaves the pulmonary circulation and
flows into the LA, and then flows into the LV via mitral valve
(DM). Due to heart contraction and mechanical supports of an
LVAD, the blood is ejected into the systemic circulation via the
aortic valve (DA) and LVAD simultaneously.

Once the blood has supplied the body with oxygen and
nutrients, it returns the deoxygenated blood into RA, RV, and
the pulmonary system by passing through the tricuspid (DT)
and the pulmonary (DP) valves. The pulmonary circulation in
Fig. 1 is described by the pulmonary artery and arterial
pulmonary compliances (CPA & CAP), resistances (RPA & RPm),
and inertances (LPA & LPm). Similarly, compliances (CA & CAS),
resistances (RAS & RS), and inertances (LAS & LS) are used to
Table 1 – Variables used in the deterministic model of the hea
follows similar definition as noted in previous works [2,4,9,14,

Variables Physiological me

x1(t), AoP(t) Aortic pressure 

x2(t), QAS(t) Arterial systemic circ
x3(t), ASP(t) Arterial systemic pre
x4(t), QVS(t) Venous systemic circ
x5(t), RAP(t) Right venous-atrial p
x6(t), RVP(t) Right ventricular pre
x7(t), PAP(t) Pulmonary artery pre
x8(t), QAP(t) Arterial pulmonary c
x9(t), APP(t) Arterial pulmonary p
x10(t), QVP(t) Venous pulmonary c
x11(t), LAP(t) Left venous-atrial pr
x12(t), LVP(t) Left ventricular press
x13(t), QP(t) LVAD Pump flow 
describe the systemic circulation [9]. Following the literature
[2,13,14], the systemic vascular resistance (SVR), i.e., RS in Fig. 1,
is used to describe physical activity in this work. For example,
when a HF patient implanted with an LVAD starts to exercise,
e.g., walking stairs, the value of RS will be decreased. Similarly,
pulmonary vascular resistance (PVR), i.e., RPm in Fig. 1, is
another variable considered here to describe different levels of
physical activity. For example, PVR (or RPm) decreases as the
patient becomes more active, e.g., from resting to mild exercise
[4,15]. Further, the contractility of both ventricles is defined
with the reciprocal of CRV and CLV, respectively [14,28,29],
which are also used to define physical activity. As the literature
reported [4], the contractility of both ventricles increases as the
patients become more active.

In addition, resistors, i.e., RA, RM, RT, and RP in Fig. 1, are
used to describe the aortic valve, mitral valve, tricuspid
valve, and pulmonary valve, respectively. The diodes, i.e., DM,
DA, DT, and DP, describe dynamic behaviors of valves with
respect to four separated phases of a cardiac cycle, e.g., the
isovolumic relaxation, filling, isovolumic contraction, and
ejection [14].

Further, Ri, Ro, Li, and Lo in Fig. 1 are the resistances and
inertances of the inflow and outflow of the pump cannulas,
and suction is mathematically defined with the suction
resistance Rc as follows [9]:

Rc ¼ 0; i f LVPðtÞ > LVP
�3:5 LVP tð Þ � LVPð Þ; otherwise

�
(1)

where LVP is the threshold of the LV, which is set to 1 mmHg.
Details of each model parameter can be found in the literature
[2,4,9,14,23,24].

For time-varying compliances in Fig. 1, i.e., CLV(t) and CRV(t),
their inverse is defined as the elastance function to describe
the contractility of each ventricle, which is defined as a
function of pressure and volume in each ventricle as below
[14,28–30]:

E tð Þ ¼ 1
CðtÞ ¼

VPðtÞ
VV tð Þ � V0

(2)

where VP(t) is the pressure of the left or right ventricles, i.e., x6
or x12 in Table 1, VV(t) and V0 are the time-varying ventricular
rt managed by an LVAD. Description of model variables
23,24].

aning (definition) Units

mmHg
ulation blood flow ml/s
ssure mmHg
ulation blood flow ml/s
ressure mmHg
ssure mmHg
ssure mmHg
irculation blood flow ml/s
ressure mmHg
irculation blood flow ml/s
essure mmHg
ure mmHg

ml/s



Table 2 – Description of model parameters and their values used in the cardiovascular-LVAD model. Description and values
of model parameters follow previously reported work in the literature [2,4,9,14,23,24].

Parameter Physiological meaning/definition (Units) Values

RAS Aortic-systemic resistance (mmHg�s/ml) 0.03980
RS Systemic vascular resistance (mmHg�s/ml) 1.00000
RT Tricuspid valve resistance (mmHg�s/ml) 0.00500
RP Pulmonary valve resistance (mmHg�s/ml) 0.00100
RPA Pulmonary artery resistance (mmHg�s/ml) 0.03376
RPm Pulmonary vascular resistance (mmHg�s/ml) 0.10100
RM Mitral valve resistance (mmHg/ml/s) 0.00500
RA Aortic valve resistance (mmHg/ml/s) 0.00100
Ri Inlet resistance of cannulae (mmHg/ml/s) 0.06770
Ro Outlet resistance of cannulae (mmHg/ml/s) 0.06770
Rc Suction Resistance (mmHg/ml/s) Eq. (1)
LAS Aortic-systemic inertance (mmHg�s2/ml) 0.00050
Ls Systemic inertance (mmHg�s2/ml) 0.00360
LPA Pulmonary artery inertance (mmHg�s2/ml) 0.00075
LPm Pulmonary inertance (mmHg�s2/ml) 0.00308
Li Inlet inertance of cannulae (mmHg�s2/ml) 0.01270
Lo Outlet inertance of cannulae (mmHg�s2/ml) 0.01270
CA Aortic compliance (ml/mmHg) 0.08000
CAS Arterial systemic compliance (ml/mmHg) 1.33000
CVS Venous systemic compliance (ml/mmHg) 7.50000
CRV Right ventricular compliance (ml/mmHg) Time-varying
CPA Pulmonary artery compliance (ml/mmHg) 0.03270
CAP Arterial pulmonary compliance (ml/mmHg) 2.67000
CVP Venous pulmonary compliance (ml/mmHg) 4.40000
CLV Left ventricular compliance (ml/mmHg) Time-varying
DT Tricuspid valve –

DP Pulmonary valve –

DM Mitral valve –

DA Aortic valve –
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volume and the theoretical volume of the left or right ven-
tricles with a pressure of 0 mmHg, respectively. In (2), E(t) is
further defined as in [2,14,31]:

E tð Þ ¼ Emax � Eminð ÞEn tnð Þ þ Emin (3)

En tnð Þ ¼ 1:55
tn
0:7

� �1:9
1 þ tn

0:7

� �1:9
" #

1

1 þ tn
1:17

� �21:9
" #

(4)

where En tnð Þ is the normalized elastance function, which is
often referred to as ‘‘double hill’’ function [31]; and Emax and
Emin are the maximum and the minimum elastance in the
systole and diastole, respectively. Notably, Emax can be altered
to define different physical activities [4].

In addition, tn in (3) and (4) is defined as: tn= tm/tp, where tm is
the time period calculated with modular arithmetic function
as: tm = mod(t, tc), and tc is the cardiac cycle that is the
reciprocal of the heart rate (HR, beat per minute or bpm). Also, tp is
the time to reach the peak elastance, depending the ratio of the
systole to diastole of a patient and HR [4,31]. It is important to
note that the ratio of tp to tc is fixed in this work to maintain a
constant ratio between the systolic and diastolic periods in
each cardiac cycle.

In addition, the pressure difference D p across an LVAD, i.e.,
the difference between the LV pressure (LVP, x12) and aortic
pressure (AoP, x1), can be described as in [2,32]:
Dp ¼ LVPðtÞ � AoPðtÞ

¼ Ri þ Ro þ Rc þ aoð ÞQP þ Li þ Lo þ a1ð Þ dQP

dt
� a2v2 (5)

where a0, a1, and a2 are model parameters describing an LVAD.
As others noted [2], a0, a1, and a2 were set to 0.1707, 0.02177,
and 9.9025e-07, respectively, which were calibrated to fit a
totally implantable LVAD pump from the Nimbus Inc. in Ran-
cho Cordova, CA.

In summary, the deterministic cardiovascular system with
an LVAD can be described as in:

x_ ¼ A tð Þx þ B tð Þb xð Þ þ cuðtÞ (6)

where x is a vector of 13 variables defined in Table 1, A(t) and B
(t) are (13 � 13) and (13 � 4) time-varying matrices, b(x) and c
are (4 � 1) and (13 � 1) vectors, and uðtÞ is related to the pump
speed vðtÞ, i.e., uðtÞ ¼v2ðtÞ, which will be tuned by a controller,
explained below. Again, this model will be modified to build a
stochastic model explained later, using the gPC theory.

2.2. Generalized polynomial chaos (gPC) expansion

To consider uncertainty (e.g., patient heterogeneity and
variability in model parameters), the gPC expansion is used
[16,22], which will convert the cardiovascular-LVAD model in
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(6) into a number of coupled stochastic models. For illustra-
tion, we focus on parametric uncertainty and describe a model
parameter with a probability density function (PDF) instead of
a fixed value. For example, it is hypothesized that the exact
value of SVR is unknown to modelers, but its PDF can be
estimated or given by physicians. Following this, it can be
approximated with a random variable with prescribed PDF in
the Wiener-Askey theory [33].

For simplicity, we rewrite the deterministic cardiovascular-
LVAD system in (6) as in:

x_ ¼ f ðt; x; v; g; uÞ (7)

where f represents nonlinear functions; v are fixed and con-
stant model parameters; g are used to define parametric un-
certainty (e.g., uncertain parameters such as SVR) that are
described by PDFs; and x are state variables described in
Table 1.

To evaluate the impact of uncertainty g on x, the first step is
to approximate each parameter in g with a random variable j.
For example, (8) shows the gPC approximation of the SVR (RS in
Fig. 1) as follows [22]:

RSðt; jÞ ¼
X1
i ¼ 0

r iðtÞci jð Þ �
Xq
i ¼ 0

r iðtÞci jð Þ (8)

where rif g are appropriately selected gPC coefficients such that
RS follows a priori prescribed PDF, and ci jð Þf g are polynomial
basis functions, which are selected with respect to the PDF. For
example, if RS is normally distributed, the best choice of ci jð Þ is
Hermite polynomial basis function [22,33].

Since uncertainty in g can affect x, each variable in x is also
estimated with j and polynomial basis functions C lðjÞ as in
[33]:

x j t; jð Þ ¼
X1
l ¼ 0

x j; lðtÞC lðjÞ �
XQ
l ¼ 0

x j; lðtÞC lðjÞ (9)

where { x j; l } are the gPC coefficients of the jth variable in x at t.
Notably, { x j; lg in (9) will be calculated by substituting (8) and (9)
into the model (7) and by using a Galerkin projection. In this
way, (7) is projected onto each basis function C lðjÞ with an
inner product as in [22]:

hx_ t; jð Þ; C lðjÞi ¼ h f ðt; x; v; g; uÞ; C lðjÞi (10)

This yields a set of coupled models to describe uncertainty
in x, e.g., variance in x resulting from uncertainty in g. It is
worth mentioning that finite numbers of terms, q+1 and Q + 1
(including zeroth term) are often used in (8) and (9), instead of
infinite number of terms. The number of terms in (9), i.e., Q + 1,
is calculated with a heuristic formula as below [33]:

Q þ 1 ¼ n þ qð Þ!
n!q!

(11)

where q is the polynomial order in (8) required to estimate a
priori known PDF of RS, and n represents the number of uncer-
tainties, which is set to 1 in this work, since only uncertainty in
SVR (RS) is considered.

The inner product in (10) is mathematically defined as in
[33]:

h’ðjÞ;’0ðjÞi ¼
Z

’ðjÞ’0ðjÞWðjÞdj (12)

where the integral is calculated over the domain generated by
all random variables j, and WðjÞ is a weighting function, i.e.,
PDF of j, conditioned on polynomial basis functions [22].

When the gPC coefficients of x in (9) are obtained, the mean
and variance of x at a given time point t can be rapidly
estimated as follows [22]:

E x j tð Þ� � ¼ E
XQ
l¼0

x̂ j;l tð Þcl

" #
¼ x̂ j;0 tð ÞE c0½ � þ

XQ
l¼1

x̂ j;l tð ÞE cl½ �

¼ x̂ j;0 tð Þ (13)

Var x j tð Þ� � ¼ E xj tð Þ � E xj tð Þ� �� �2
h i

¼ E
XQ
l¼0

xj; l tð ÞC l � xj; ðl¼0Þ tð Þ
( )2

2
4

3
5

¼ E
XQ
l¼1

xj; l tð ÞC l

( )2
2
4

3
5 ¼

XQ
l¼1

xj; l tð Þ� �2E C2
l

� �
(14)

As seen, the mean and variance are related to different gPC
coefficients. For example, the first coefficient is the mean value
of x, whereas the variance is calculated with higher order gPC
coefficients [22]. Since the mean and variance can be
calculated online, it motivates us to use the gPC and to
integrate it with the deterministic model in Section 2.1 to
develop a stochastic model of the cardiovascular-LVAD
system for robust control design in this work.

3. Control design under uncertainty

3.1. Parameters related to different physical activities

For the deterministic cardiovascular-LVAD model in Section 2,
five parameters can be used to describe the physical activity.
These parameters are the heart rate (HR), the contractility of
the left and right heart chambers (Emax), and the systemic
vascular resistance (SVR or RS in Fig. 1), and the pulmonary
vascular resistance (PVR or RPm in Fig. 1). In this work, we focus
on SVR (RS), since it is closely related to the left ventricle
afterload and the tuning of the pumping speed is more
sensitive to changes in SVR, as reported in clinical studies
[9,34]. Further, it is assumed that the exact value of RS is
unknown, but its PDF can be estimated, which describes the
inter- and/or intra-patient uncertainty. Specifically, RS has
perturbations around the mean values given in Fig. 2, where
the blue dash line shows two mean values and the solid line
represents random perturbations around a specific mean
value. Each mean value defines a particular level of physical



Fig. 3 – Dynamic changes in pump flow with a linearly increasing pump speed. For illustration, RS in the model is set to
1.0 mmHg‧s/ml, and the suction occurs when the pump speed reaches about 1.35 T 104 krpm [16].

Fig. 2 – Diagram to illustrate a time-varying systemic vascular resistance (RS, SVR) for two physical activity levels, following
our previous work [16].
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activity. For example, 0.75 mmHg�s/ml is used to represent
mild exercise and 1 mmHg�s/ml is used to define resting. The
PDF of RS is assumed to be available, since it can be determined
by clinicians and the variation around the mean values is used
to incorporate patient heterogeneity and model uncertainty.

In the presence of uncertainty in RS, our objective is to tune
the pumping speed with respect to changes in physical activity
to satisfy different blood needs, while preventing suction. The
controller of LVAD should adjust the pumping speed online
using the available information. In this work, the pump flow is
assumed to be available to identify an appropriate pumping
speed, since it can be estimated with indirect techniques (e.g.,
contrast echocardiography) [35] in clinics or it can be
calculated with the pump information (e.g., pump power or
speed) and the pressure difference between the inflow and
outflow of cannula [36]. This ensures the applicability of the
control strategy in clinical practices for commercialized LVAD
products.

3.2. Relationship between pump flow and suction

Since suction means the pump seeks to draw more blood out
than the available one in the left ventricle, the pump flow is
used as an indicator for suction detection. As others noted
[2,37–39], there is a relationship between suction and pump
flow. For example, Fig. 3 shows the simulation results of the
pump flow under a linearly increasing pump speed over time.
As can be seen, the pulsatility of the pump flow decreases as
the pumping speed increases. Especially, the pulsatility is
minimized when suction happens and then increases gradu-
ally after the onset of suction. Further, as literature reported
[2], there is a sign change in the slope calculated by the
minimum pump flow in consecutive cardiac cycles before and
directly after the onset of suction. As can be observed in the
inset of Fig. 3, the slope calculated with the pump flow is
positive before suction happens. When the pumping speed
increases, the pulsatility decreases gradually and approaches
zero eventually. This speed can be defined as a breakpoint, at
which if the pumping speed is further increased, suction will
happen. In the presence of suction, the sign of the slope
changes from positive to negative as can be observed in Fig. 3.

The pulsatility and the sign change of slopes provide useful
information to adjust the pumping speed. It is important to
note that the deterministic model of the cardiovascular-LVAD
system was used for simulations in Fig. 3 to illustrate the
relationship between the pump flow (i.e., QP in Table 1) and
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suction. However, using the gPC as discussed in Section 2, it is
possible to predict both the mean and variance of the pump
flow under uncertainty in RS. To capitalize on predictions, in
this work the mean value of pump flow is used for suction
prevention, whereas the variance is used as a criterion for fine-
tuning of the controller parameter. This will be further
discussed in the following sections.

3.3. Feedback controller design

Based on the discussion above, the tuning of pumping speed
can be mathematically defined as in [2]:

vðzþ1Þ ¼ vðzÞ þ Kp
dQ � p

dt
(15)

where vð_Þ is the pumping speed, Kp is the controller gain,
dQ � p=dt is the slope calculated with available measurements
of pump flow, and Q � p represents the measurements of the
minimum pump flow in a cardiac cycle. It is worth mentioning
that measurements of the minimum pump flow in three
consecutive cardiac cycles are used in this work to alleviate
the effect of noise on the tuning of pump speed. That is,
dQ � p=dt is calculated with the minimum values of pump
flows in three continuous cardiac cycles. In this way, the value
of pump speed is recursively updated every three cardiac
cycles, which is defined with z in (15).

3.4. Design of self-tuning controller

The controller in (15) adjusts the pumping speed to satisfy
blood demand, but the control performance can be impacted
by Kp and uncertainty. Additionally, uncertainty can introduce
mismatch between the model and the failing heart managed
by an LVAD. To improve control performance, an adaptive
tuning rule of Kp is proposed in this work, which is described
as:

Kp ¼ k if dQ � p=dt � 0
k þ md if dQ � p=dt < 0

�
(16)

where k is a fixed and patient specific controller parameter
that determines the tuning rate of pumping speed to avoid
suction. For example, a small k can be used for severe HF
supported with an LVAD, since changes in pumping speed
may result in large adjustment in pump flow, which may be
harmful for the left ventricle. To find a trade-off between
changes in the pump flow and the blood demand, an optimi-
zation problem is designed to optimally identify k as in:

min
l¼k

J ¼ w1

XR
j¼1

CO � COre fð Þ2 þ w2

XR
j¼1

ðDVar½Q p�Þ2 (17)

where l is the decision variable, the controller gain k; and CO is
the cardiac output calculated with the stochastic model of the
cardiovascular-LVAD system under uncertainty, which is gen-
erated by integrating the gPC theory with the deterministic
model described in Section 2. Note that CO here refers to the
total outflow generated by both the pump and the native heart
[14,40]. In (17), COref is a predefined reference value of cardiac
output, which is selected according to different levels of phys-
ical activities, and R is the total number of data points used in
optimization (17). It is important to note that the second term
in (17) calculates the changes in pump flow for all cardiac
cycles used for optimization, which are computed with the
higher order gPC coefficients using (14). Also, COref can be
predetermined offline based on possible activity levels of a
specific subject—for example, two reference values will be
required if there are two different physical activity levels,
resting vs. mild exercise (e.g., walking stairs).

As seen in (17), the optimization penalizes the contribution
of the desired perfusion demand and the change rate of pump
flow to the total cost. The first term determines how to
increase or decrease the pump speed to meet desired cardiac
outputs (COref), while the second term is used to prevent
sudden changes in the pumping speed to ensure a safe
operation of an LVAD. It is also worth mentioning that w1 and
w2 in (17) are two weights, penalizing the contribution of each
term in (17) to the total cost. These two weights are patient
specific and can be selected by physicians. Based on the heart
condition of a subject, these weights can be predetermined via
simulations using the stochastic models and treated as fixed
constants in clinical practices. For example, if the health
condition of the subject is sensitive to the changes in pump
speed because of a failing heart and/or its associated
complications, the ratio of w1 to w2 can be set to a smaller
value. This means a larger value of w2 (as compared to w1 ) will
be used and the second term in (17) contributes significantly to
the total cost, which will prevent larger changes in pump flow
in consecutive cardiac cycles.

Additionally, as discussed above, it is assumed here that
the PDF of Rs is known. However, it is possible that there is a
mismatch between the prior information and the actual PDF of
RS. For example, the physiological state of HF patients may
vary as patients recover, and any direct or indirect interactions
of subsystems in the circulatory-LVAD system may result in
changes in hemodynamics that are unknown to the modeler.
In this case, the controller gain k calculated with (17) may not
be the optimal value that can simultaneously satisfy the
perfusion demand and avoid suction. If the nonoptimal
controller gain is used, it is possible to induce suction, when
the pump speed is adjusted to meet different blood needs. To
address this issue, we will adjust the controller gain to quickly
bring the pumping speed back to the safe operation zone. Since
the sign of slope calculated with the pump flow switches from
positive to negative when suction happens, it is used as an
indicator to adjust the controller gain. Once a sign change has
been identified, the self-tuning process will be executed. That
is, the controller gain will be adaptively selected using the
rules as shown in (16), i.e., KP ¼ k þ md. Details about the self-
tuning rules are discussed below.

3.5. Update rules of self-tuning controller

In (16), m is a weight to adjust the tuning rate of pump speed to
avoid detrimental effects of significant changes in pump speed
on the failing heart. As compared to m, d is the key of the self-
tuning rules, which depends on the time-varying pump flow.
Since uncertainty in SVR (RS) is considered, d is recursively
updated with a stochastic model of the cardiovascular-LVAD



Fig. 4 – Schematic to identify the PDF of RS with the PDF profiles of pump flow (Qp, x13).
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system. The procedures to calculate d in (16) are described as
follows.

Step i: Using gPC, stochastic models of the cardiovascular-
LVAD system are formulated by considering the PDF profiles of
RS, which can be obtained with offline calibration or domain
knowledge [4,41].

Step ii: The gPC coefficients for each state variable in x (see
Table 1) at the end of the systole are simulated and stored to
build an offline lookup table for different mean values of RS.

Step iii: The gPC coefficients of pump flow x13 obtained from
the previous step are used to produce a family of PDF profiles of
pump flow. Fig. 4 shows two PDF profiles of the pump flow
when two different distributions of RS are considered. When a
measurement of the pump flow is available; a particular mean
value of RS can be identified using the PDF profiles of pump
flow. Notably, the PDF profiles of pump flow can be estimated
by generating random samples in the domain defined by j and
Fig. 5 – Schematic of the self-tunin
by substituting them into the gPC model (9). This provides the
probability distribution of pump flow over time. For simplicity,
a binning algorithm, as noted in other works [42,43], is used to
form the PDF of pump flow to improve computational
efficiency.

Step iv: When a measurement of pump flow is available (e.g.,
the red star in Fig. 4), it can be referred to the PDF profiles of
pump flow to infer the mean value of RS. As seen in Fig. 4, two
different probabilities (i.e., green dots) can be identified with
this measurement, indicating the possibility of the patient
being in specific activity level. The red star is inferred as R2

s due
to the higher probability, indicating that the level of activity is
the second mean value. This will help the controller to learn
the PDF information (e.g., mean value) of SVR or RS in Fig. 1.

Step v: Based on the identified mean value of RS and the
lookup table of gPC coefficients, the dynamic behaviors of each
state variable in x can be predicted. Importantly, the latest
g feedback control of an LVAD.
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pump flow measurement will be used to replace the mean
value of pump flow (i.e., gPC model of pump flow) in the lookup
table to calculate model predictions for each state variable in x,
while maintaining other coefficients unchanged.

Step vi: Using the prediction of pump flow over a finite future
control horizon, the variance of pump flow can be calculated in
a real time manner. The variance in pump flow is estimated
with (14) using these higher order gPC coefficients in (9). To
adjust the controller gain in (16), only the variance of one step
ahead prediction is assigned to d. Following this, the controller
gain in (16) will be updated, once a suction has been identified.
This can quickly bring the LVAD to a safe operation zone and
avoid significant change in the pump speed. The efficiency of
the self-tuning controller will be demonstrated in Section 4.

3.6. Schematic of the proposed control design

A schematic of the control algorithm for automatic tuning of
the pumping speed of an LVAD is given in Fig. 5. Once the
measurements of pump flow are available, the minimum
values of the pump flow in three consecutive cardiac cycles
will be extracted to calculate the slope in order to adjust the
pumping speed.

When the slope calculated with the pump flow is found to
be negative, the self-tuning procedure will be executed to
update the controller parameter, so that the controller keeps
the pump speed within a safe operation zone. Otherwise, the
pump speed is modulated by a fixed controller to satisfy the
blood needs. It is important to note that the controller gain in
(16) is optimized with (17). The variation in the pump flow in
(17) is recursively calculated with the stochastic model, which
are highlighted in green in Fig. 5.

4. Results and discussion

4.1. Parameters setup to describe physical activities

Five parameters will be adjusted to describe physiological
changes resulting from different physical activities based on
other works [4,13,15]. For the left and right ventricles, the
contractility is defined by the maximum elastance, i.e., EL,max

and ER,max, which were set to 1.2 and 0.56 mmHg/ml,
respectively. To simulate the time-varying changes in physio-
logical conditions, e.g., changes from resting to mild exercis-
ing, it was assumed that the elastance can increase by 20% and
25%, respectively. Further, it was assumed that the heart rate
can vary between 90 and 120 bpm, depending on the physical
activity of subjects—resting or mild exercise. The pulmonary
vascular resistance (PVR or RPm in Fig. 1) was set to 0.06 for
exercising and was decreased by 40%, when the patient is
resting. Note that two different mean values were used for the
systemic vascular resistance (SVR or RS in Fig. 1), i.e., 1 mmHg/
ml/s was used to describe resting, whereas 0.75 mmHg/ml/s
was used for mild exercise. It is also worth mentioning that
only the systemic vascular resistance in this work was defined
as parametric uncertainty—approximated with (8) for algo-
rithm illustration, but the stochastic modeling and control
design can be easily extended to other uncertainties such as
the heart rate, which is not discussed for brevity.
4.2. Uncertainty propagation and formulation of gPC
models

In this work, it was assumed that SVR (or RS) follows a normal
distribution rather than a fixed constant to describe the
inter- and/or intra-patient uncertainty. As noted above, two
mean values were used (i.e., 1 and 0.75 mmHg/ml/s). Further,
perturbations were introduced to account for uncertainty,
which was equivalent to 10% changes around each of these
mean values.

To build a stochastic gPC model, the first step is to rewrite
SVR with a gPC expansion as shown in (8). Since uncertainty
follows a normal distribution, the polynomial order q in (8) is 1.
Since one uncertainty is considered, i.e., n = 1, and q is 1, the
total number of terms to estimate each variable in Table 1 is 2,
i.e., Q = 1. This implies that each variable in x will be described
with 2 coupled equations, thus resulting in 26 equations in
total for the stochastic cardiovascular-LVAD model. The
calculation of the gPC coefficients for x follows the steps as
described in Section 2. As an example, Fig. 6 shows the results
for three variables defined in Table 1, the left ventricular
pressure (LVP, x12), aortic pressure (AoP, x4), and pump flow (QP,
x13).

Fig. 6 shows the results of three consecutive cardiac cycles,
for which the mean of RS was set to 1 mmHg/ml/s, indicating
that the patient is resting. The PVR used for simulations was
0.101 mmHg/ml/s, and the HR was set to 90 bpm. The
maximum elastances of the left and right ventricles, i.e., EL,
max and ER,max, describing the contractility of the left and right
heart, were set to 1.2 and 0.56 mmHg/ml/s, respectively. The
pump speed was set to 10 krpm.

The first row in Fig. 6 shows the gPC coefficients of three
aforementioned state variables, while the second row shows
dynamic changes of each variable under uncertainty. Using
the gPC coefficients, the upper and lower limits of each
variable in x can be computed at any time point of
simulations. For example, s in the second column is the
standard deviation computed with (14), using the gPC
coefficients in (9), i.e., 0 < l 	 Q. It was found that uncertainty
has significant impact on the pump flow after the systole
period in a cardiac cycle, see the circled region in Fig. 6(f). This
provides useful information to adjust the pumping speed as
discussed below. In addition, it is worth mentioning that gPC
coefficients of x can be saved as an offline lookup table, which
will be used to predict the dynamic behaviors of each variable
over a finite future control horizon for the tuning of the
controller.

4.3. Optimization of the controller gain

To improve control performance, it is essential to identify an
optimal controller gain in (16). The optimization defined in (17)
can find a trade-off between the desired cardiac output and the
change rate in pumping speed. To find k, (17) was executed and
solved with interior-point optimization method in Matlab with
different pairs of optimization weights, i.e., w1 and w2 in (17). It
is imporant to note that different combinatons of weights
provide differnet optimization results, i.e., different values of
k, which penalizes the contribution of each term in (17) to the
total cost. The appropriate selction of weights is patient



Fig. 7 – Simulations results with the feedback controller for a constant level of activity (resting): (a) controlled pump speed and
(b) the corresponding pump flow with pump speed in (a).

Fig. 6 – Dynamic behaviour of hemodynamic variables in Table 1 in the presence of uncertainty in RS when the patient is
resting. The first row shows the gPC coefficients of aortic pressure (AoP, x1) in (a), the gPC coefficients of left ventricular
pressure (LVP, x12) in (b), and the gPC coefficients of pump flow (QP, x13) in (c). The second row shows the mean and
confidence level of model predictions, for which the aortic pressure (AoP, x1) is shown in (d), the left ventricular pressure
(LVP, x12) is given in (e), and the pump flow (QP, x13) in displayed in (f).
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specific. For algorithm illustration, both weights were set to
1 in (17) and the optimized result of k was found to be �0.44.
This value was further used in the following case studies. For
brevity, the controller gain k obtained with different optimi-
zation weights is not shown.

4.4. Case 1: constant physical activity

In this case study, the activity level of an LVAD recipient was
assumed to be unchanged (i.e., resting) for a period of time to
ensure that the pumping speed can be adjusted properly by
the controller, while avoiding suction. To describe hemody-
namics when patients are resting, the HR was set to 90 bpm.
The mean value of RS and constant RPm were set to 1 and
0.101 mmHg/ml/s, respectively. Fig. 7 shows the results of the
LVAD pumping speed tuned by the controller and the
corresponding pump flow. Since uncertainty (RS) is consid-
ered, Fig. 7 also displays the predicted upper and lower limits
of the pump flow, which were approximated with the gPC
model. The controller gain was set to 0.44, which is the
optimization result obtained in previous section. The self-
tuning procedure was not executed during the simulation,
since the sign of the slope calculated with minimum values of
pump flow remain unchanged.

As seen in Fig. 7, the pump speed is initially increased by
the controller to satisfy the physiological demands, and



Fig. 8 – Simulations results with the feedback controller for the time-varying physical activity: (a) the controlled pumping
speed, (b) the resulting pump flow and (c) the profile of cardiac outputs.

Fig. 9 – Simulation results with the feedback controller under unknown change in RS: (a) a fixed controller gain and (b)
automatically adjusted controller gain with the self-tuning procedures.
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eventually stabilizes at �1.13 � 104 rpm. Notably, suction can
be prevented during the adjustment of the pump speed, since
there are no sign switches of slope and the pulsatility of the
pump flow remains unchanged. The upper and lower limits in
Fig. 7 (b) represent the 99% confidence level of pump flow that
is estimated with gPC coefficients.

4.5. Case 2: time-varying physical activity

To describe a time-varying physical activity of patients, such
as switches between resting to exercising, a few assumptions
were made in this case study following previous works in
[4,13,15]. When a patient becomes more active, i.e., starts to do
exercise from resting, the following assumptions were used:
the HR was increased gradually from 90 to 120 bpm in 35
cardiac cycles, which is equivalent to approximately 20 s
simulations; elastance EL,max and ER,max, describing the
contractility of the left ventricle and right ventricle, were
increased by 20% and 25%, respectively; the SVR and PVR, i.e.,
RS and Rpm, were decreased by 25% and 40%, respectively.
Similarly, when the patient becomes less active, i.e., stops mild
exercising and returns to resting, parameters used for
simulations were changed back to their original values. As
done in the first case study, 10% variations were introduced
around each mean value of RS to show the effect of uncertainty
on the cardiovascular-LVAD system and the control perfor-
mance. Also, for algorithm illustration, it was assumed that a
patient was initially resting for a period of time and started to
perform mild exercise for �25 s and then gradually stopped
exercising and returned back to resting. The simulation results
are given in Fig. 8.

As can be observed in Fig. 8 (a), the controller can adjust the
pump speed appropriately with respect to changes in physical
activities to meet blood perfusion demands. Based on the
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results in Fig. 8 (a), Fig. 8 (b) and (c) show the results of the
pump flow and cardiac output. As seen, the pump flow was
adjusted properly to ensure proper cardiac outputs without
inducing any suction. Similar to the first case study, Fig. 8 (b)
also shows the 99% confidence interval of the predicted pump
flow under uncertainty. It is worth mentioning that we
assumed in this case study that there is no mismatch between
the model and the actual cardiovascular-LVAD system, i.e., the
PDF of RS. is accurate. Thus, the self-tuning procedure was not
executed, and the controller gain remained unchanged for the
simulations shown in Fig. 8.

4.6. Case 3: self-tuning controller under unknown changes

It is assumed in previous case studies that the PDF of RS is a priori
given, i.e., the patient's health condition can be closely monitored
and evaluated by physicians. In this case, depending on the
physiological condition of the patient, the mean value of RS can be
identified based on the PDFs of RS as shown in Fig. 4, and the
model involved in the controller can be updated. However, as
mentioned previously, it is possible that the physiological
condition of HF patients changes over time. For example, anemia,
hyperthermia and myocardial infraction can decrease SVR. In
addition, side effects of medication such as histamine releasing
drugs can also cause the blood flow resistance in the systemic
circulation to decrease [44,45]. Further, it is also possible that the
health condition of the heart of an LVAD recipient can become
worse due to complications such as aortic insufficiency [46]. The
changes in SVR can result in mismatch between the model and
the actual cardiovascular-LVAD system. In this case, the
controller gain solved with optimization (17) may not be the
optimal controller parameter, which may result in suction and
consequently deteriorate the control performance, when pump
speed is adjusted. To address this, the self-tuning controller is
executed to ensure a safe operation of an LVAD.

Following the discussion above, it was assumed in this case
study that unknown change in RS can happen and the self-
tuning controller is automatically executed to tune the
pumping speed to meet blood needs. To illustrate the
efficiency, the controller with fixed controller gain was also
used and compared with the self-tuning controller in terms of
control performance. Fig. 9 shows the simulation results. For
algorithm illustration, the value of RS was changed from 1 to
0.65 mmHg/ml/s at �25.3 s to describe unexpected variations
that are unknown to modelers. Fig. 9 shows the simulation
results of the pump flow when different controllers were used.

As can be seen in Fig. 9(a), when the fixed controller was
used, the pump flow was increased due to the sudden decrease
in SVR, indicating that the patient is more active than the mild
exercise. This means more blood is required to satisfy perfusion
demand. This subsequently increases the pumping speed to
increase the pump flow. However, since the change in SVR is
unknown to the modeler, the controller gain k optimized with
(17) is not the optimal parameter. This consequently results in
sustained suction when the pumping speed is adjusted, as seen
in Fig. 9(a), since there are sign switches between the slopes
computed from the pump flow data.

Compared to the fixed controller, the simulation results
given in Fig. 9 b) shows that the self-tuning controller can
quickly bring the pump speed back to a safe operating
condition and prevent sustained suction. As can be seen in
Fig. 9(b), it took about 3 s for the controller to identify a new
operating condition of pump and prevent sustained suction.

5. Discussion

Our objective is to develop a stochastic model to incorporate
intrinsic variability—uncertainty in systemic vascular resistance
(SVR or RS), which is related to the afterload of the left ventricle
and to design a robust self-tuning controller using predictions of
the stochastic model to adjust automatically the pumping power
of an LVAD. Despite several models of the cardiovascular-LVAD
system are available in the literature, stochastic models that can
account for inter- and/or intra-variability in subjects have not
been previously reported to the best of our knowledge. As a proof
of concept study, the effect of uncertainty on hemodynamic of
the heart was investigated, which was further used for the
controller design. In the presence of uncertainty, the self-tuning
controller in this work can adjust the pump speed with respect to
different activity levels and can bring the controller back to the
safe operating condition, when dealing with unexpected and
sudden changes in RS. This indicates the possibility to apply the
self-tuning controller in clinical use since SVR of HF patients may
vary over time and these changes may not be accurately and
closely monitored [45,47,48].

Compared to existing control strategies of LVADs, the
controller developed in this work has several unique
characteristics. For example, a gain-scheduling controller
was developed to tune the pumping speed using the pressure
difference between the left ventricle and the aorta [6]; and a
Gaussian process model was used to predict blood viscosity
to adjust the pumping power [8]. A main issue of these
control strategies is that the control performance can be
constrained by the model uncertainty, since models are often
calibrated with limited training dataset and the values of
model parameters cannot be known with certainty. In this
case, control performance can be deteriorated. To address
this, the stochastic model of the cardiovascular-LVAD
system incorporates uncertainty and provides a probabilistic
description of model predictions, which will provide useful
information for tuning of an LVAD. It is also worth
mentioning that fuzzy logic rules were previously used for
control design [6,9–11], but these methods require a refer-
ence of pulsatility or blood flow for control tuning and cannot
consider variability in heart function [4], such as various
stages of HF. Thus, they may not be suitable for long term
clinical uses. We also would like to point out that only
uncertainty in the systemic vascular resistance was studied
here, but the modeling and control strategy can be easily
extended to other uncertainties. In addition, to expand this
work, other factors, such as different time-varying elastance
functions and the effect of ventilation on an LVAD, can be
investigated in the future.

6. Conclusion

In this paper, we present a deterministic cardiovascular-LVAD
model, including the systemic and pulmonary circulations, to
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describe the heart managed by an LVAD. The model is further
integrated with the gPC theory to build a stochastic surrogate
model that can efficiently evaluate the effect of uncertainty
(e.g., patient heterogeneity) on physiological states (e.g., aortic
pressure). Using the predictions of stochastic models, an
optimization was designed to identify the optimal feedback
controller parameter, which can be used to automatically
adjust the pumping speed and to prevent suction. In addition,
a self-tuning controller was developed to deal with unexpected
mismatch between the stochastic model and the actual
cardiovascular-LVAD system in order to further improve the
control performance.

To show the efficacy of the proposed control algorithm,
three different case studies were investigated, which mimic
changes in patients' activity levels. The results show that the
self-tuning controller can adjust the pumping speed to provide
appropriate cardiac output with respect to different physical
activities, while preventing suction. Further, it was found that
the self-tuning controller can quickly adjust the pump speed
and maintain an LVAD to be operated within a safe operating
zone, compared to a fixed controller with constant controller
parameter.
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Appendix A. Simulation results for the
cardiovascular system

For model validation, Fig. A1 here shows the simulation
results of the cardiovascular system in the absence of an
LVAD. For both sides of the heart, nine cardiac cycles were
simulated, and the last three cardiac cycles were shown in Fig.
A1. For simulations in Fig. A1, heart rate (HR) was set to 90 bpm,
and RS (SVR) and RPm (PVR) were set to 1 and 0.101 mmHg/ml/s,
respectively. In addition, the maximum elastance of the left
and right ventricles used in the simulations was 1.2 and
0.56 mmHg/ml, respectively.
g patient without an LVAD: (a) Aortic pressure (AoP) and left
 (c) Pulmonary artery pressure (PAP) and right ventricular

 (QAP).
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