Computers and Chemical Engineering 134 (2020) 106685

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Comparison of intrusive and nonintrusive polynomial chaos )
expansion-based approaches for high dimensional parametric et
uncertainty quantification and propagation

Jeongeun Son, Yuncheng Du*

Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 26 September 2019
Revised 7 November 2019
Accepted 20 December 2019
Available online 24 December 2019

Keywords:

Generalized dimension reduction
Generalized polynomial chaos
Parametric uncertainty

Stochastic collocation

Penicillin production

Autocrine signalling of living cells

We present an uncertainty quantification (UQ) algorithm using the intrusive generalized polynomial chaos
(gPC) expansion in combination with dimension reduction techniques and compare the UQ accuracy and
computational efficiency of the intrusive gPC-based UQ algorithm to other sampling-based nonintrusive
methods. The successful application of intrusive gPC-based UQ is associated with the stochastic Galerkin
(SG) projection, which yields a family of models described by several coupled equations of gPC coeffi-
cients. Using these coefficients, the evolution of uncertainty in a dynamic system can be quickly deter-
mined when there is probabilistic uncertainty in the system. While elegant, when dealing with models
that involve complex functions (e.g., nonpolynomial terms) and larger numbers of uncertainties, SG pro-
jection becomes computationally intractable and cannot be applied directly to solve gPC coefficients in
real-time. To address this issue, the generalized dimension reduction method (gDRM) is used to convert a
high-dimensional integral involved in the SG projection into several lower-dimensional integrals that can
be easily solved. To show the accuracy of UQ, the algorithm in this work is compared to sampling-based
approaches such as the nonintrusive stochastic collocation (SC) and Monte Carlo (MC) simulations using
three cases: a nonlinear algebraic benchmark, a penicillin manufacturing process, and autocrine signalling

networks of living cells.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modelling and simulations are important tools to
describe dynamic behaviour of complex systems. However, mod-
els often involve uncertainty, which reduces their accuracy because
of assumptions and simplifications made in a model’s formulation.
To improve the accuracy of a simulation in the presence of un-
certainty, a probabilistic description of model prediction is desired.
This strategy is useful for developing control algorithms, optimiza-
tion techniques, and fault diagnosis tools for chemical processes as
previously reported by others (Ma and Braatz, 2003; Mandur and
Budman, 2014; Schenkendorf et al., 2019). The focus in this work is
parametric uncertainty, and our objective is to quantify accurately
how such an uncertainty impacts model prediction.

Uncertainty quantification (UQ) techniques are classified as
either intrusive or nonintrusive approaches (Gel et al., 2013;
Najm, 2009). For intrusive methods, which require modification
of source code, stochastic models are developed from first princi-
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ples of a system. In contrast, nonintrusive approaches rely on sam-
pling techniques: deterministic models derived from first princi-
ples are iteratively executed with various sampling points of un-
certainty (Gel et al.,, 2013). We present an intrusive UQ algorithm
in this work and compare its UQ accuracy versus other intrusive
and nonintrusive techniques using three cases: a benchmark non-
linear algebraic example, autocrine cell signalling networks, and a
penicillin production process in chemical engineering.

For UQ, the intrusive generalized polynomial chaos (gPC) ex-
pansion is an extension of the polynomial chaos theory in the
Wiener-Askey framework (Xiu and Karniadakis, 2002). For gPC, un-
certainty is approximated by a random variable and its orthogonal
polynomial basis functions. The parameters used to describe the
relationship between the random variable and its polynomial ba-
sis functions are referred to as gPC coefficients. The resulting ex-
pression of uncertainty can then be substituted into a determin-
istic model to yield a stochastic model, from which the effect of
uncertainty on model response can be predicted (Xiu, 2010). For
intrusive gPC-based UQ, the formulation of stochastic models is
based on a spectral representation in a random space, which is de-
fined by random variables. In addition, the accuracy of UQ with
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gPC can be affected by the type of polynomial basis function used
to approximate uncertainty. For example, in cases of normally dis-
tributed uncertainty Hermite polynomial basis functions are most
appropriate (Eldred and Burkardt, 2009).

For intrusive gPC-based UQ, gPC coefficients of parametric un-
certainty can be calculated with parameter estimation techniques
such as maximum likelihood (Myung, 2003). However, the gPC
coefficients of model predictions have to be calculated with a
stochastic Galerkin (SG) projection to quantify the effect of un-
certainty on model predictions. For SG, model predictions are pro-
jected against each polynomial basis function via an inner product,
and each coefficient of model responses is extracted by the poly-
nomial orthogonality property (Xiu, 2010). This generates a set of
coupled models of gPC coefficients to describe the original stochas-
tic system. Since the model has been changed with SG, the existing
computer code to simulate the original system must be modified,
which is why the SG-based UQ is classified as an intrusive method.

Although the literature reports that gPC-based UQ is an ef-
ficient approach (Xiu and Karniadakis, 2002), the SG projection
poses great challenges, especially when the model involves non-
polynomial functions and when the number of uncertainties is
large. This is because the inner product in the SG projection yields
a high dimensional integral, which is difficult to solve in real-
time (Debusschere et al.,, 2004). To address this issue, we pre-
viously used approximations to estimate high dimensional inte-
grals in the SG projection with the bivariable dimension reduc-
tion method (Son and Du, 2019), which can deal with several un-
certainties. Here we expand that work by presenting an intrusive
UQ method that integrates a generalized dimension reduction with
the SG projection to consider larger numbers of uncertainties (up
to 10). Specifically, the generalized dimension reduction method
(gDRM) (Xu and Rahman, 2004) is used to convert a high dimen-
sional integral into several lower dimensional ones to calculate ac-
curately gPC coefficients in a computationally efficient way.

Compared to intrusive UQ methods, nonintrusive techniques
such as Monte Carlo (MC) simulations and its variants are me-
thodically straightforward (Spanos and Zeldin, 1998). For MC, de-
terministic models are iteratively evaluated using different sam-
ples of uncertainty. Despite its simplicity, MC can be computa-
tionally demanding. Stochastic collocation (SC) is another power-
ful nonintrusive UQ tool based on the gPC theory. Like MC, SC is
implemented by repeated simulations with different samples. Sam-
ples in SC are called collocation points, which are chosen based on
sampling rules such as Lagrange polynomial interpolation or Gauss
quadrature (Eldred and Burkardt, 2009; Xiu, 2007). The goal of SC-
based UQ is to formulate a nodal set of collocation points in a
random space. The simplest way is to use a tensor product that
is based on the one-dimensional quadrature rule. However, use of
a tensor product is not computationally efficient, especially when
larger numbers of uncertainties are considered. In such cases, the
number of collocation points grows exponentially as the number
of uncertainties increases, which is the well-recognized curse of
dimensionality. To reduce significantly the number of collocation
points, a sparse grid-based sampling scheme constructed by the
Smolyak algorithm following either Clenshaw-Curtis or Gaussian
quadrature rules can be used (Xiu, 2010). Another way to generate
collocation points is to use high-order unscented transformation
(HOUT) (Julier and Uhlmann, 1997; Zhang et al., 2014). High-order
unscented transformation was recently used to estimate uncertain-
ties with different distributions, and its accuracy was verified with
several examples (Xu and Dang, 2019).

The gPC-based UQ has been shown to be an efficient tool in dif-
ferent applications, including dynamic modelling, control, and op-
timization problems in chemical engineering (Duong et al., 2016;
Najm, 2009; Shen and Braatz, 2016; Zhang and Sahinidis, 2013;
Du et al., 2017). For example, the SC-based UQ was used for

model predictive control design in a batch process to account for
parametric and state uncertainties (Bradford and Imsland, 2019).
The SG-based UQ method was used to improve simulation ac-
curacy of a two-dimensional electrochemical microchannel flow
(Debusschere et al., 2003). In process monitoring, gPC was used
together with least-angle regression to optimally identify an auxil-
iary input to improve fault detection accuracy (Schenkendorf et al.,
2019).

These successful applications suggest that the use of gPC-based
UQ has much promise to improve process performance and safety
in chemical engineering, but its broader use is likely limited by
computational expense when larger numbers of uncertainties have
to be considered in a nonlinear and complex system. Thus, to im-
prove the computational efficiency of gPC-based UQ methods, we
present a UQ method that integrates the gDRM with the gPC and
report the detailed comparison between intrusive and nonintru-
sive UQ methods, which are discussed in Section 2 and Section 3,
respectively. Our objective is to show the accuracy of the gDRM-
based gPC approach when dealing with larger numbers of uncer-
tainties in a nonlinear dynamic system, which is challenging for
existing methods as others reported (Debusschere et al., 2004).
Three cases are used for algorithm verification and presented in
Section 4. Our conclusions are presented in Section 5.

2. Intrusive uncertainty quantification methods
2.1. Generalized polynomial chaos (gPC) expansion

For intrusive gPC-based UQ, uncertainty is generally approxi-
mated with a distribution using a predefined probability density
function (PDF) of another random variable (e.g., £); a set of cou-
pled equations of gPC coefficients are used to provide a probabilis-
tic description of model outputs. Assume a system can be defined
with (ordinary) differential equations (ODEs) over a period of time
(T > tp) as in Xiu (2010):

u=g(t.u0.p). tetT] (M

where g are nonlinear functions, u = (Ujoq, ... Ujp) € R are
model responses (or outputs) over a given time domain (ty,T] with
initial values of ug at t = ty, and J > 1, @ define deterministic model
parameters that are fixed constants, p are uncertain parameters
where p = (01, .... py) € RN, and N ( > 1) is the number of para-
metric uncertainties. In this work, the parameters in p are inde-
pendent and identically distributed, and each of which can be de-
scribed with a PDF following a predefined distribution.

To quantify the effect of uncertainty on u, the first step is to
approximate each parameter p; (i = 1, 2, ..., N) in p with a random
variable &; as in Xiu (2010):

9] P
oi=piE) = Y Pin Yn&) ~ D Pin¥n (&) (2)

n=0 n=0

where {p;,} are the gPC coefficients used to approximate the
ith parametric uncertainty, and {yn(£;)} are the polynomial basis
functions depending on the PDF of p;. Importantly, the orthogonal
polynomial basis functions must be appropriately selected with re-
spect to the PDF of p;. Some frequently used basis functions can
be found in Eldred and Burkardt (2009), Xiu (2010).

Since parametric uncertainty affects model responses, each
model output u; is approximated with random variables &=
(&1,---,&,---,&y) that are used to approximate {p;}, which can
be described as in Xiu (2010):

Nk

ui(t. &) = > " 0jm(O)Wm(€) ~ > 0jm(t) V() 3)

0

3
I
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where {il;,} are the gPC coefficients of the jth output at time t,
and Wp,(&) is a multivariate polynomial basis function calculated
with ¥rp(;) as follows (Eldred and Burkardt, 2009):

N
Wn(&) = [[var &) (4)
i=0

where df" is an index of basis function. For instance, when a two-
dimensional random space having two parametric uncertainties is
considered (i = 1 and 2), then d} = 1 and d} = 0 with m = 1.
Details about the calculation of W,(§) can be found in Eldred and
Burkardt (2009).

For practical applications, a finite number of terms as seen in
(2) and (3), P+ 1 and M + 1 (including a zeroth term) are used in
gPC expansions instead of an infinite number of terms. Note that
P in (2) is also called as polynomial order, which is selected such
that a priori PDF of uncertainty can be optimally approximated fol-
lowing the gPC theory. The total number of terms of u; in (3) (i.e,
M + 1) is calculated as (5), which is a function of P and the total
number of uncertainties N (Debusschere et al., 2004; Xiu, 2010).

1= (137

Unlike the gPC expansions of p;, which can be determined with
prior knowledge or offline calibration, the gPC coefficients of u;
in (3) (e.g., Gijm(t)) have to be calculated by substituting (2) and
(3) into (1), and subsequently by using an SG projection as in
Xiu (2010):

(Uj(t, &), Wm(&)) = (g(t. u;(t. £). 0. p(§)). Wm(£)) (6)
where ( - ) is the inner product operator. Following (6), (1) is
then converted into a family of coupled models of gPC coefficients
{1l ;m}. The inner product between any two vectors in (6) is calcu-
lated as in Xiu (2010):

(@(6).¢'() = [, #(E)s (B ()ag 7

where the multi-dimensional integral is calculated over the do-
main RN defined by random variables & and W(£) is the weight
function (i.e., the joint PDF of random variables &).

The gPC coefficients of u can be used to predict statistical mo-
ments of model outputs at any given time point t. For example, the
first and second moments, the mean and variance of the j output
u;j, can be calculated as in Debusschere et al. (2003), Xiu (2010):

M
E[u(t)] = E[Z ﬁ,-,m(twm} =1j0(t)E[Wo]

m=0

M
+ Y ljm(OE[Wn] = 1), o(t) (8)
m=1

Var[u;(t)] = E[{uj(f) —E[u;(0)] }2]

o

{

where E[ - ] denotes expectation. As seen in (8) and (9), the mean
of u; can be estimated with the first gPC coefficient i} ,_o, while
the variance of u; is approximated using other higher-order gPC
coefficients il ;.o and the expectation of W2 (Debusschere et al.,
2003; Xiu, 2010).

M=

2
Ujm(E)Wm — 0 (t) }
0

3
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M
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n

2.2. Stochastic Galerkin (SG) projection based on dimension reduction

The calculation of gPC coefficients {ii; ,,} with the SG projection
can be computationally prohibitive or even impossible, when non-
polynomial functions appear as in (1) (Debusschere et al., 2004).
To address this, in this work we combine the gDRM (Xu and Rah-
man, 2004) with the gPC theory. Following the SG procedure, the
calculation of gPC coefficients {il;,,} of u; in (3) can be defined
with an integral as in Xiu (2010):

[ (e &) wn(E)W (6)ct (10)
Ym JRN

where yn is the expectation of the square of the polynomial ba-
sis function W, ym = E[W2]. To quickly calculate gPC coefficients
of u;, the gDRM is used to estimate the high-dimensional integral
in (10) with several lower dimensional ones (e.g., one-, two-, and
three-dimensional integrals).

Let us define y(§) at a particular time point t in (10) as
y(&) =u;(t,§)Wn(§), which is a continuous, differentiable, and
real-valued function. Following this, the integral in (10) can be
rewritten as in Xu and Rahman (2004):

E[y(§)]= /RNY(S)W(E)dS (11)

Following the definition of gDRM, y(&) is estimated with an S-
variate approximation as in Xu and Rahman (2004):

s (N—S+r—1

LAlj,m(t) =

J(E) = 1)

r=0

)ySh S<N (12)
r

where S is an index defining the maximum number of random
variables in the N-dimensional random space. These random vari-
ables will define a new subdomain to approximate y(&) and S <« N.
For example, when S is 2, the N-dimensional integral is converted
into several one- and two-dimensional integrals. In this work, we
focus on two cases, S = 2 and S = 3, hereafter referred to as bi-
variable dimension reduction method (BiDRM) and trivariable di-
mension reduction method (TriDRM), respectively. However, it is
important to note that a larger value of S (> 3) can be used to
improve UQ accuracy.

Based on the definition of gDRM, each term ys_, in (12) is de-
fined as in Xu and Rahman (2004):

Yse= > y(0.....0.&,.0.....0.£,.0,....0.&, .0) (13)

li<h<-<ls_;

where Iy, I, ..., Is_; € {1, 2, ..., N}, and yg = y(0) by assigning all
variables in & to 0. Thus, the mean value of (&) can be defined as
in Huang and Du (2006), Xu and Rahman (2004):

s N-S —1
E[5(§)] = (1)’<r o )E[ys:r] (14)
r=0

where E[ys_;] is a lower-dimensional integral used to estimate
E[y(&)]. For example, in TriDRM when S is 3, each term E[ys_;]
in (14) can be defined as in Huang and Du (2006), Xu and Rah-
man (2004):

Elyo] =y(0) =y0 =y(0..... 0) (15)

Ely:]=) E[y(0.....0.&.0, ....0)]. I=1,....N (16)
l

E[y2]= > E[y(0.....0.&,.0.....0.&,.0,....0)] (17)
Li<ly

Elys]= Y E[y(0.....0.&,.0.....0.&,.0.....0,&,0)] (18)

Li<h<l3
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where each term involves at most three random variables of & in
(3) to approximate uncertainty. For instance, y(0) in (15) is calcu-
lated by setting & to 0, and (16) through (18) are calculated with
summations of integrals involving one-, two-, and three-random
variables, respectively. Examples of different integrations in (16) to
(18) are shown as follows (Xu and Rahman, 2004).

E[y(o,...,ossho, ...,0)]5/_00}1(0,...,0,5[,0, ’O)W(gl)da
(19)
E[y(0....,0,,.0,....0,&,,0,...,0)]
z/_f”y(o,..,,o,éxl,o,...,o,g,z,o,...,o)W@dE 20
E[y(0.....0.8,.0.....0.£,.0.....0.,.0)]

E[my(o,...,0,5,_0,...,0,5,2,0,...,0,5,3,0)W(§>d§
(21)

where £ is a subdomain of & (ie, & = {§, . &,} in (20) and & =
{&,. &,. &,)in (21)) and W (&) is the joint PDF of & Notably, E[y;]
is approximated with a summation of N different one-dimensional
integrals, whereas E[y,] and E[y3] are calculated using summations

of (g) two- and (I;l) three-dimensional integrals, respectively.

Using the approximation of a high dimensional integral as
shown in (14), the gPC coefficients in (10) can be calculated as:

S N-S -1
12( 1)( o )E[ySrl

Gn®= 5 E[7(E)] =53

(22)

where E[ys_,] is calculated following (15) through (18).

Therefore, using the gDRM, the difficulty to calculate a high-
dimensional integral involved in the SG projection (e.g., E[y(&)]
in (11)) can be alleviated by calculating a few lower-dimensional
integrals. To illustrate UQ accuracy of the proposed algorithm,
BiDRM- and TriDRM-based SG projections are used in this work;
results are compared to other nonintrusive techniques including
Monte Carlo simulations, stochastic collocation, and a recently de-
veloped high-order unscented transformation method (Julier and
Uhlmann, 1997; Xu and Dang, 2019; Zhang et al., 2014).

3. Nonintrusive uncertainty quantification methods
3.1. Stochastic collocation (SC)

Compared to intrusive SG, nonintrusive stochastic collocation
(SC) is straightforward. Its implementation is methodologically
similar to MC (Xiu, 2007). Details about SC can be found in
Eldred and Burkardt (2009), Xiu (2010). To approximate uncer-
tainty in the model’s output u;, which results from parametric un-
certainties in the model, the following gPC expansions are defined
(Xiu, 2010, 2007):

M
u;~vj(t.§) = Z im () W (£) (23)
7 1 2 k k\ ~k
Djm(®) = =3 uj (€. P) Y (P)e (24)

Ym i3

where vj(t,§) in (23) is the gPC approximation of u; and the to-
tal number of terms in (23), M + 1 (including zeroth term), can be
calculated with (5). In (24), Q is the total number of nodal points
used to approximate gPC coefficients, and {p*, ak}kQ=1 denotes a set
of nodes and weights. Here, p* = (pk, ..., pk) is the k™ set of
nodes in a random space defined by Nrandom variables, and its
corresponding weight is defined as a.

To calculate gPC coefficients, ¥; ,, in (24), an interpolating oper-
ator to construct quadrature rules is defined as below (Xiu, 2010,
2007):

w0 =y )= [ rlewie)as 25)

F(P) = uj(t. p*)Wn(p") (26)

Importantly, the nodal set in (25), {pk,ak}kQ=1, must be appro-
priately selected to ensure the accuracy of the integral in (25).
(among the rules available to optimally select a nodal set, Gauss
quadrature rules are often used due to their simplicity.) Each point
and its corresponding weight in the nodal set may also be re-
ferred to as collocation points. For each random variable, a one-
dimensional quadrature operator can be constructed as in Xiu
(2010, 2007):

qi
Ut =3 f(pf)ef (27)
k=1

where i is the i" random variable, and the nodal sets used in
(27) can be given as in Xiu (2007):

©!=(pl....p¥) T (28)

whereI'; is a random space of the i random variable such that
I'= ]‘[L I'; ¢ RN (Xiu, 2007). To generate collocation points for a
multidimensional random variable space, two approximations are
available: use of a full tensor product grid or a sparse grid with a
smaller number of collocation points, discussed below.

3.1.1. Tensor products

The easiest way to approximate a high-dimensional integral is a
full tensor product, which consists of one-dimensional integration
rules for each random variable and can be defined as (Xiu, 2007):

ullfl= (u-‘“ ®---@Uy)f]
= Z Zf(m o) (e e e (29)
k=1 kn=1

The total number of points, Q in (29), can be calculated as
Q= ]‘[f’=1 gi, where g; is the number of nodal sets used for each
variable. Thus, as the number of random variables increases, the
total number of collocation points also increases exponentially. In
this case, a sparse grid using the Smolyak algorithm can be used
to reduce the number of collocation points.

3.1.2. Sparse grids

The sparse grid method is computationally efficient for high di-
mensional problems. It uses linear combinations of carefully se-
lected tensor products to preserve the interpolation property for
a high-dimensional random space (Judd et al., 2014). To estimate a
multidimensional integral, the sparse grid formula can be defined
as in Nobile et al. (2008), Xiu (2007):

w+HN—|i N-1
U(f) = Aw.N) = WMZWN (=1 <W+N— |i|>
'(Uil ®...®Z/{l-N) (30)
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Fig. 1. Illustration of collocation points for two-dimensional space (N = 2) with an approximation level w = 3 (Eldred and Burkardt, 2009). (a) full tensor product grid and
(b) Smolyak sparse grid from the extrema of Chebyshev polynomials (Clenshaw-Curtis quadrature).

where |i| =i + --- + iy, N is the total number of uncertainties, and
w is an approximation level that controls the number of elements
in the tensor product involved in the Smolyak grid. As the approx-
imation level increases, the quality of approximation is improved
by increasing the number of collocation points (Judd al., 2014).
The isotropic Smolyak method is used in this work to calculate
A(w,N) in (30) for simplicity. To calculate A(w, N), the function
value f defined in (26) must be computed. This can be estimated
with sparse grid points used in (30), H(w, N), which is defined as
in Xiu (2007):

®N = H(W, N) = U

w+1<|i|<w+N

(0] x---x©}) 31)

Note that when nodal sets of each dimension are nested, such
that Gg,w c ®2W+1, the total number of nodal sets in (31) can be
significantly reduced since H(w, N) c H(w + 1, N). Details to calcu-
late a set of nodes and their corresponding weights in the sparse
grid can be found in Judd et al. (2014), Smolyak (1963). In this
work, the isotropic Smolyak algorithm is used to construct sparse
grids using the most popular Clenshaw-Curtis and the Gaussian-
Hermite quadrature rules, but other approaches can be also con-
sidered (Eldred and Burkardt, 2009).

To illustrate the use of the Clenshaw-Curtis quadrature, Fig. 1
shows collocation points of a two-dimensional space with two ran-
dom variables, when the full tensor product and the Smolyak algo-
rithm were used to generate the nodal points with the same ap-
proximation level w. The sparse grid significantly reduces the num-
ber of collocation points, compared to the full tensor grid. The im-
plementation of SC with sparse grids is discussed in Section 4.

3.1.3. High-order unscented transformation

Another SC-based UQ approach is the unscented transforma-
tion (UT) whose members of the nodal set are often referred to as
sigma points. Since UT only requires 2N + 1 sigma points, which
may fail to provide an accurate estimation of high-order statisti-
cal moments (Wang and Cheng, 2015; Xiao and Lu, 2018), a high-
order unscented transformation (HOUT) was recently developed
using 2N2 + 1 sigma points to estimate the high-order statistical
moments of random variables (Julier and Uhlmann, 1997; Xiao and
Lu, 2018; Xu and Dang, 2019; Zhang et al., 2014). The HOUT is also
used in this work to compare UQ accuracy.

Critical to HOUT is the appropriate selection of three classes of
sigma points. As an example, Fig. 2 shows sigma points required
for a two-dimensional random space (N =2). The first class has a
single point sg, lying at the origin with a weight of ,. For the
second class, there are 2N points located on the coordinates, which
have identical distance s; from the origin and a weight of 2. The

third class consists of 2N(N — 1) points, which lie at (0, ..., =+ s,
..., £ 5,...,0) and a weight of €,. Notably, sigma points in the
second class only have one nonzero element, (0, ..., % sy, ..., 0),

while sigma points in the third class have two nonzero elements

A
(0, sy) with Q
l’ B
\JJ
(sy,s,) with Q,
(0,0) with Q, (s1,0) with Q,
r\ l’-\ .
\V S i

Fig. 2. Illustration of sigma points for two-dimensional space involved in HOUT:
The blue circle at the origin represents the first class of sigma points, the red circles
represent the second class of sigma points, and the green circle represents the third
class of sigma points (Zhang et al., 2014).

in the random space (Cheng et al., 2016; Xu and Dang, 2019). In
addition, the total number of sigma points can be calculated as
2N(N —1)+2N+1=2N2 + 1. Details of HOUT can be found in
Cheng et al., 2016, Xiao and Lu (2018), Zhang et al. (2014), but
three types of sigma points and their corresponding weights are
given as follows for clarity.

Class 1:
5,-0. Q- —2N? 4+ (4 - 2N)B? + (48 + 4)N (32)
(N+B2)(4—N)
Class 2:
_ (4—-N)(N+p)
S, =+ a1 Ny €y,
V (B+2-N) (33)
s __[A-NN+p),
w1 +N = (/3+2—N) w1
2
(B+2-N) (34)

1= —
2(N+B)’(4-N)
where w; =1, 2, ..., N, and e, has 1 at the w; element, e,
=[0, ..., 0, 1,0, ...0].
Class 3:

$u, = +/(n+ PSS,
S0, +0.5N(N-1) = —\/mszf)z (35)
SoniNiN-1) = +y/ (N + B)S,,
S0, +15N(N-1) = —\/m W,
1

= N1p? 0)
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where w, =1, 2, ..
below:

., 0.5N(N-1), and sgz and s, are given as

o, = \/z(e,(+ek):fc<)h, Kk, A=1,2, ..., N (37)

Sy, = \/g(e,(—ex):/c<)», Kk, A=1,2, ..., N (38)

The free parameter 8 in (32) through (36) is a problem-specific
value used to ensure UQ accuracy. For example, it can be set to
0.835 and 1.417, when the number of uncertainties is 2 and 3, re-
spectively; otherwise, B can be set to 2. Details for calculating 8
can be found in Xiao and Lu (2018), Zhang et al. (2014).

3.2. Monte Carlo simulations

Monte Carlo (MC) simulations are the most frequently used
method for UQ (Spanos and Zeldin, 1998). However, it requires re-
peated executions of deterministic models with different samples,
which increase computational burden, especially when the num-
ber of uncertainties is large. However, since the convergence of
MC is unaffected by the dimension of uncertainties (Xiu and Hes-
thaven, 2005), in this work we use MC simulation as a benchmark
for comparison of different UQ techniques’ accuracy.

4. Implementation of numerical examples

Three case studies were chosen here to compare the perfor-
mance of different intrusive and nonintrusive UQ methods in terms
of UQ accuracy. A nonlinear algebraic example was first used as a
benchmark test to compare the accuracy of gDRM-based gPC al-
gorithm (BiDRM and TriDRM) to several other existing methods.
Two examples in chemical engineering, a penicillin manufacturing
process, and living-cell signalling networks, were selected to show
both accuracy and computing efficiency of the gDRM-based gPC for
UQ when dealing with nonlinear and complex systems that involve
larger numbers of uncertainties (up to 10). Since MC is the most
common technique and generally provides good UQ results, it was
chosen as a reference to verify the accuracy of other intrusive and
nonintrusive techniques.

4.1. Case 1: nonlinear algebraic problem

The accuracy of different UQ methods is first compared using a
nonlinear algebraic case, for which the model response, Z, can be
defined as in Xiu (2007), Xu and Rahman (2004):

Z=+/1+05XXTIn (% +xxT) (39)

where X is a vector defining N parametric uncertainties, X; (i =
1, ..., N). We assume that uncertainties in X are independent and
identically distributed and follow a normal distribution with a
mean value of uy and a variance of oy2. Two mean values of {X;}
were used (0 and 1) as were several values of oy of X (See Fig. 3)
to demonstrate how UQ accuracy of different UQ methods can be
affected by the magnitude of uncertainty. Since uncertainty in X
follows a normal distribution, Hermite polynomials were used as
polynomial basis functions for SG- and SC-based UQ. To show UQ
accuracy, N was set to 4 in (39). To quantify UQ accuracy, the rela-
tive error of the mean value of Z was used and calculated as:

€= %‘ (40)

where u is the predicted model response evaluated with (39) us-
ing the mean values of X, and i, is the mean value of Z calculated
with different methods, including BiDRM- and TriDRM-based SG,
nonintrusive SC, and MC simulations.

4.1.1. Results of case 1 - Nonlinear algebraic benchmark

For intrusive UQ methods, BiDRM and TriDRM were used to
convert a high-dimensional integral in the SG projection into
several lower dimensional ones. The calculation of gPC coeffi-
cients of Z followed the procedures described in Section 2. The
BiDRM-based SG converts the N-dimensional integral into N one-

dimensional and (g) two-dimensional ones. While the TriDRM-
based SG converts the high dimensional integral into N one-
dimensional, (g) two-dimensional, and (I;l) three-dimensional

ones. Once the gPC coefficients of Z were determined, the mean
and variance of Z were estimated using (8) and (9).

To demonstrate the efficiency of the gDRM-based UQ, the trape-
zoidal rule was also used in this case to estimate the high-
dimensional integrals in SG. The trapezoidal rule is one of the most
common and simplest techniques to approximate a numerical inte-
gration. This is achieved by dividing the integral domain into sev-
eral small and equal segments called trapezoids, and evaluating the
integrand at each subinterval, followed by a summation of esti-
mates (Hill and Moore, 2004; Yeh, 2002). In this case study, the
number of subintervals in each dimension was set to 100.

For nonintrusive UQ, we used a full tensor grid (SC-FT) and a
sparse grid (SC-SP). The full tensor grid was constructed based on
one-dimensional Gauss-Hermite quadrature rules, which has the
same number of collocation points for each uncertainty, g = 5.
Since the total number of collocation points in the full grid can be
defined as Q = ¢" and N was set to 4, 54 collocation points were
required in total for the full tensor grid points based UQ.

For SC-SP, the Smolyak algorithm with the Gauss-Hermite
quadrature was used to construct collocation points for two dif-
ferent approximation levels, w = 3 and 5, to show the effect of
approximation levels on UQ accuracy. When w was set to 3, 289
grid points were required and when wwas 5, 4994 grid points
were needed. The sigma points-based HOUT was also used for
comparison among different nonintrusive UQ methods. Since the
total number of sigma points associated with the dimension of
uncertainties is Q = 2N% + 1, 33 points in total were required, an
amount significantly lower than other SC-based methods. Further,
105 samples were used for MC; its results were used as the refer-
ence benchmark to compare UQ accuracy.

Fig. 3 shows the UQ results using different methods, where the
first row and the second row of graphs show the results of Z, when
the mean value of X; was 1 and 0, respectively. Also, for compar-
ison purposes, the standard deviation oy was varied from 0.05 to
0.7. For different mean values of X, the first column in Fig. 3 shows
the relative error of Z. As seen, all methods provide accurate UQ
results as compared to MC, when uncertainty is small (e.g., when
oy is less than 0.5). In addition, we found that the UQ accuracy
can be affected by uncertainty, especially when the mean value of
uncertainty is smaller.

Further, the variance in Z, resulting from uncertainty in X, is
also calculated and shown in the second column of Fig. 3 for
comparison. As seen, the accuracy of the variance in Z with dif-
ferent methods can be affected by uncertainty in X. For exam-
ple, as seen in Fig. 3(d), the discrepancy between BiDRM-based
SG and MC becomes larger, as uncertainty (o) increases, when
the mean value is 0. It is also important to note that the dis-
crepancy can be eliminated, when TriDRM is used. Specifically, as
seen in Fig. 3(c) and (d), the intrusive TriDRM-based UQ method
provides results as accurate as other nonintrusive methods. This
clearly shows the potential of the gDRM-based SG for dealing with
higher dimensional problems that involve nonpolynomial func-
tions, which was previously found challenging with intrusive gPC-
based UQ (Debusschere et al., 2004). Based on this, the efficiency
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Fig. 3. Comparison of relative errors €, and standard deviations o, of Z. For (a) and (b), the mean value of {X;} was set to 1, while the mean value of {X;} was set to 0 in

(c) and (d). Note that “Trap.” here represents the trapezoidal rules-based UQ method.

of the gDRM-based SG method in terms of UQ accuracy will be
further discussed in case studies 2 and 3 below.

As compared to the intrusive UQ method, we found that the
accuracy of the nonintrusive SC methods can be affected by the
number of collocation points and/or the approximation levels. For
example, the difference of relative errors between the SC-SP con-
structed by the Smolyak algorithm and MC is smaller when w is
5, as compared to the case where w is 3. Also as seen in Fig. 3,
trapezoidal rules can provide accurate UQ results, when they were
used to estimate the integral involved in SG projection. However,
it is important to note that when the number of uncertainties in-
creases (e.g., N = 10 in this work discussed later), we found that
the total number of nodes required to estimate the integral in the
SG becomes significantly large with trapezoidal rules. For exam-
ple, when the number of uncertainties is 10 and when 10 dis-
cretised subintervals in each dimension are used, the total num-
ber of points required to approximate an integral involved in SG
is (10 + 1)'° (Hill and Moore, 2004), which is time prohibitive for
solving gPC coefficients. This is also the reason that a smaller num-
ber of uncertainties, N = 4, is considered in this benchmark test,
since our main objective here is to show and compare the accuracy
of different methods.

4.2. Case 2: fed-batch penicillin manufacturing process

In the second case study, a fed-batch penicillin production pro-
cess is used to demonstrate the computing efficiency of the pro-
posed intrusive UQ method. In this case, a modified model devel-
oped in Birol et al. (2002) is used. Notably, we assumed that tem-
perature and pH value remained unchanged, and oxygen was not
limiting (Mandur and Budman, 2014). The model consists of sub-
strate, biomass, and penicillin concentrations, which is described
as in Bajpai and ReuR (1980), Birol et al. (2002), Mandur and Bud-
man (2014):

dcx ( xCsCx
dt — KxCx + Cs

Cx dv

v dt (41)

% _ MPCSCXCZ — KyGCp — %‘(ITV (42)
Lo\K+G+ t
a6 (1 mxGG \ _ [ 1 meCslx
dt Yx/s KxCx +Gs Yois Kp + G + S
Ki
FSf Cs dv
—meX-FV—VE (43)
'Z—‘; =F—-6.226 x 107V (44)

where Cy, Cp, and Cs are the concentrations of biomass, penicillin,
and substrate, respectively; and V is the culture volume. The de-
scription and values of model parameters can be found in previous
work (Bajpai and Reuf3, 1980; Birol et al., 2002; Mandur and Bud-
man, 2014).

To better evaluate the effect of uncertainty in model parameters
on the penicillin production, we first used the half-norm graph-
based sensitivity analysis method developed in our previous work
(Son et al., 2018), which is not discussed further for brevity. The
effect of parameters on model responses can be described as fol-
lowing in descending order: up> sp>F> Ky> ux> Yyjs> K> Kx>
my> Yps> Kp. Using this, different numbers of parametric uncer-
tainties were considered to show the efficiency of the proposed UQ
method for dealing with many uncertainties. For example, when
the number of uncertainty N was set to 6, the first six param-
eters, p = (up, SpF Ky, ux Yxis), were considered, generating a
six-dimensional random space. In this case study, each uncertainty
was mathematically defined as: p; = (p;) (1 + or;), where (p;) is
the mean value of the model parameter, which can be found in
Mandur and Budman (2014), and o was set to 0.05. Further, r; is
a random variable which is uniformly distributed in the range of
[-1,1]. The product of or; was used in this work to define un-
certainty in each parameter. Note that, all random variables were
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Fig. 4. UQ results of Cp with different methods and number of uncertainties (N = 6, 8 and 10): (a-1) to (a-3) results of BiDRM-based SG projection; (b-1) to (b-3) results
(c-3) results of SC-SP with w = 3; (d-1) to (d-3) results of SC-SP with w = 5; (e-1) to (e-3) results of MC. For the SC-SP, the
Clenshaw-Curtis quadrature rules were used to generate sparse grid points. When w was set to 3, the number of sparse grid points was 389, 849, and 1581 for N = 6, 8,
and 10, respectively. When w was 5, 4865, 15,713, and 41,265 sparse grids were required for N = 6, 8, and 10, respectively. Moreover, MC simulations with 10°> samples
were used to validate the UQ accuracy. Note that the number of samples used in MC was selected based on sensitivity analysis by varying the total number of samples used
in the simulations and by checking the relative error with respect to the deterministic model. We found, when 10> samples were used, as compared to larger numbers of

of TriDRM-based SG projection; (c-1) to

samples (>10%), the change in relative error was negligible. Thus, 105 samples were used to reduce computational cost in this case study.
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Fig. 5. Normalized relative errors of the mean values of Cp for different UQ meth-
ods, where N is the total number of uncertainties.

assumed to be independent and identically distributed in this case
study.

4.2.1. Results of case 2—Fed-batch penicillin manufacturing process

Based on the UQ results in the first case study, BiDRM- and
TriDRM-based gPC were compared to nonintrusive SC-SP method
with two different approximation levels, w = 3 and w = 5, re-
spectively. We excluded the HOUT-based SC since it was found to
be less accurate in the benchmark case. And the full tensor grid
points-based method (SC-FT) was not used for comparison, since
we found that its accuracy is highly dependent on the number of
grid points. When the number of uncertainties is increased and
larger numbers of grid point are used, SC-FT increases the com-
putational burden greatly.

The simulation results with different UQ methods are shown in
Fig. 4, where each row of graphs presents the results of a specific
UQ method, and each column presents the results with respect to
different numbers of uncertainties (e.g., N = 6, 8, and 10). In ad-
dition, the solid line in each graph shows the mean value of the
model response, the penicillin concentration Cp, while the error
bars represent the uncertainty in Cp at a specific time point of sim-
ulations. The results of MC simulations are shown in the last row
of Fig. 4 for comparison purposes. As seen, the intrusive UQ meth-
ods provide accurate UQ results as compared to other sampling-
based nonintrusive UQ techniques. To quantify the accuracy of the
proposed methods, the relative errors of mean response €, defined
in (40) were calculated for each method, and Fig. 5 shows the sim-
ulation results of the relative errors of Cp.

In Fig. 5, the relative error of Cp was calculated by averaging rel-
ative errors calculated at 20 time points over 400 h of simulations
in Fig. 4. The relative error was also normalized with respect to the
relative error calculated with MC for comparison purposes. As seen
in Fig. 5, the normalized relative errors of Cp calculated with dif-
ferent UQ methods have similar results for a given N, the number
of uncertainties. Compared to MC, intrusive and nonintrusive gPC-
based methods provide accurate UQ results, since the normalized
relative error is close to 1 as seen in Fig. 5. Specifically, we found
that the relative error calculated with the TriDRM-based SG is al-
most identical to the result obtained with the SC-SP method, when
the approximation level w was set to 5. And the relative error cal-
culated with the BiDRM is similar to the result of SC-SP when
w was set to 3. This shows that the proposed intrusive gDRM-
based UQ can successfully address UQ challenges involving non-
polynomial functions in the presence of many uncertainties. The
efficiency of the gDRM-based UQ method will be further discussed
in Section 4.4 in terms of computational time.

4.3. Case 3: autocrine signalling of live cells
In this case study, mathematical models describing the

mitogen-activated protein kinase cascade were used to predict the
dynamic behaviours of enzymes at three different stages of the

cascade (Shvartsman et al., 2002; Xiu, 2007). This model has three
enzymes, eyp, €p, and esp, which describe the dimensionless con-
centrations of the active forms of enzymes as follows:

der, _ I(t)  Vmar (1-ep)  Viaaerp (45)
dt 1+ G4€’3p Km.l + (] —_ e]p) Km,2 —+ €1p
dezp _ Vrnaxjelp(‘l - e2p) Vmax,492p (46)

At~ Kns+(1-eyp) Kmatez

d€3p _ Vmux.532p(‘l - eBp) _ Vmax,693p (47)
dt Kns+(1—esp)  Kno+esp

where G4 is the gain of negative feedback, and the input signal
is defined as I(t). Model parameters in (45) through (47) include
the maximal reaction velocity V;,;x 1_¢ and equilibrium Michaelis
constant Ky 1_g. Details about the biological description of this
model, including the model parameter values, can be found in
Shvartsman et al. (2002). Uncertainty in model response es, re-
sulting from parametric uncertainty, is considered in this work.

Like the second case study, intrusive and nonintrusive UQ
methods were investigated. Following the sensitivity analysis de-
scribed in our previous work (Son et al., 2018), simulations were
first performed to rank the effect of parametric uncertainty on the
model response, es,. Parameters Viax 1-6 and K, 1_¢ can be ranked
in descending order as: Vg 3> Vinax, 4> Vinax, 1> Vinax, 2> Vinax, 5>
Vmax' 6> Km, 4> Km' 1> Km' 3> Km, 2> Km' 6> Km 5. Following thiS,
we considered three levels of parametric uncertainty: N = 6, 8, and
10. For example, the first six parameters, Vingx 3, Vinax, 40 Vimax, 1-
Vinax, 20 Vmax, 5. and Vg 6, were considered when N was set to
6. Further, uncertain parameters were mathematically defined as:
oi = (p;))(1 +or;), where p; is the i uncertain parameter in p,
and (p;) is the mean of each individual parametric uncertainty,
which can be found in Shvartsman et al. (2002). In this case, o
was increased and set to 0.1 (in contrast to 0.05 in the previous
case study) to verify UQ accuracy with respect to different levels
of uncertainty. Additionally, a random variable r; was used to intro-
duce uncertainty, which is a constant number randomly selected in
the range of [-1,1].

4.3.1. Results for case 3—Autocrine signalling of live cells

As in the second case study, BiDRM- and TriDRM-based SG, and
SC-SP with different approximation levels were used to approxi-
mate uncertainty in the model response es,, which results from
perturbations in parametric uncertainty. The results are shown in
Fig. 6, where each row of graphs shows the results of a particu-
lar UQ method, and each column presents the results for a spe-
cific number of uncertainties. Legendre polynomials were chosen
as the gPC basis functions for random variables, since we assumed
that uncertainty was uniformly distributed. As seen in Fig. 6, the
first two rows show simulation results calculated with the BiDRM
and TriDRM methods, respectively. The third and fourth rows show
the UQ results of the nonintrusive SC-SP method with different ap-
proximation levels. The solid line in each subplot shows the mean
value of es,, while the error bars in each subplot show the vari-
ances estimated from the gPC at a particular time point. In addi-
tion, the last row in Fig. 6 shows the re