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a b s t r a c t 

We present an uncertainty quantification (UQ) algorithm using the intrusive generalized polynomial chaos 

(gPC) expansion in combination with dimension reduction techniques and compare the UQ accuracy and 

computational efficiency of the intrusive gPC-based UQ algorithm to other sampling-based nonintrusive 

methods. The successful application of intrusive gPC-based UQ is associated with the stochastic Galerkin 

(SG) projection, which yields a family of models described by several coupled equations of gPC coeffi- 

cients. Using these coefficients, the evolution of uncertainty in a dynamic system can be quickly deter- 

mined when there is probabilistic uncertainty in the system. While elegant, when dealing with models 

that involve complex functions (e.g., nonpolynomial terms) and larger numbers of uncertainties, SG pro- 

jection becomes computationally intractable and cannot be applied directly to solve gPC coefficients in 

real-time. To address this issue, the generalized dimension reduction method (gDRM) is used to convert a 

high-dimensional integral involved in the SG projection into several lower-dimensional integrals that can 

be easily solved. To show the accuracy of UQ, the algorithm in this work is compared to sampling-based 

approaches such as the nonintrusive stochastic collocation (SC) and Monte Carlo (MC) simulations using 

three cases: a nonlinear algebraic benchmark, a penicillin manufacturing process, and autocrine signalling 

networks of living cells. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mathematical modelling and simulations are important tools to

escribe dynamic behaviour of complex systems. However, mod-

ls often involve uncertainty, which reduces their accuracy because

f assumptions and simplifications made in a model’s formulation.

o improve the accuracy of a simulation in the presence of un-

ertainty, a probabilistic description of model prediction is desired.

his strategy is useful for developing control algorithms, optimiza-

ion techniques, and fault diagnosis tools for chemical processes as

reviously reported by others ( Ma and Braatz, 2003 ; Mandur and

udman, 2014 ; Schenkendorf et al., 2019 ). The focus in this work is

arametric uncertainty, and our objective is to quantify accurately

ow such an uncertainty impacts model prediction. 

Uncertainty quantification (UQ) techniques are classified as

ither intrusive or nonintrusive approaches ( Gel et al., 2013 ;

ajm, 2009 ). For intrusive methods, which require modification

f source code, stochastic models are developed from first princi-
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les of a system. In contrast, nonintrusive approaches rely on sam-

ling techniques: deterministic models derived from first princi-

les are iteratively executed with various sampling points of un-

ertainty ( Gel et al., 2013 ). We present an intrusive UQ algorithm

n this work and compare its UQ accuracy versus other intrusive

nd nonintrusive techniques using three cases: a benchmark non-

inear algebraic example, autocrine cell signalling networks, and a

enicillin production process in chemical engineering. 

For UQ, the intrusive generalized polynomial chaos (gPC) ex-

ansion is an extension of the polynomial chaos theory in the

iener-Askey framework ( Xiu and Karniadakis, 2002 ). For gPC, un-

ertainty is approximated by a random variable and its orthogonal

olynomial basis functions. The parameters used to describe the

elationship between the random variable and its polynomial ba-

is functions are referred to as gPC coefficients. The resulting ex-

ression of uncertainty can then be substituted into a determin-

stic model to yield a stochastic model, from which the effect of

ncertainty on model response can be predicted ( Xiu, 2010 ). For

ntrusive gPC-based UQ, the formulation of stochastic models is

ased on a spectral representation in a random space, which is de-

ned by random variables. In addition, the accuracy of UQ with

https://doi.org/10.1016/j.compchemeng.2019.106685
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gPC can be affected by the type of polynomial basis function used

to approximate uncertainty. For example, in cases of normally dis-

tributed uncertainty Hermite polynomial basis functions are most

appropriate ( Eldred and Burkardt, 2009 ). 

For intrusive gPC-based UQ, gPC coefficients of parametric un-

certainty can be calculated with parameter estimation techniques

such as maximum likelihood ( Myung, 2003 ). However, the gPC

coefficients of model predictions have to be calculated with a

stochastic Galerkin (SG) projection to quantify the effect of un-

certainty on model predictions. For SG, model predictions are pro-

jected against each polynomial basis function via an inner product,

and each coefficient of model responses is extracted by the poly-

nomial orthogonality property ( Xiu, 2010 ). This generates a set of

coupled models of gPC coefficients to describe the original stochas-

tic system. Since the model has been changed with SG, the existing

computer code to simulate the original system must be modified,

which is why the SG-based UQ is classified as an intrusive method.

Although the literature reports that gPC-based UQ is an ef-

ficient approach ( Xiu and Karniadakis, 2002 ), the SG projection

poses great challenges, especially when the model involves non-

polynomial functions and when the number of uncertainties is

large. This is because the inner product in the SG projection yields

a high dimensional integral, which is difficult to solve in real-

time ( Debusschere et al., 2004 ). To address this issue, we pre-

viously used approximations to estimate high dimensional inte-

grals in the SG projection with the bivariable dimension reduc-

tion method ( Son and Du, 2019 ), which can deal with several un-

certainties. Here we expand that work by presenting an intrusive

UQ method that integrates a generalized dimension reduction with

the SG projection to consider larger numbers of uncertainties (up

to 10). Specifically, the generalized dimension reduction method

(gDRM) ( Xu and Rahman, 2004 ) is used to convert a high dimen-

sional integral into several lower dimensional ones to calculate ac-

curately gPC coefficients in a computationally efficient way. 

Compared to intrusive UQ methods, nonintrusive techniques

such as Monte Carlo (MC) simulations and its variants are me-

thodically straightforward ( Spanos and Zeldin, 1998 ). For MC, de-

terministic models are iteratively evaluated using different sam-

ples of uncertainty. Despite its simplicity, MC can be computa-

tionally demanding. Stochastic collocation (SC) is another power-

ful nonintrusive UQ tool based on the gPC theory. Like MC, SC is

implemented by repeated simulations with different samples. Sam-

ples in SC are called collocation points, which are chosen based on

sampling rules such as Lagrange polynomial interpolation or Gauss

quadrature ( Eldred and Burkardt, 20 09 ; Xiu, 20 07 ). The goal of SC-

based UQ is to formulate a nodal set of collocation points in a

random space. The simplest way is to use a tensor product that

is based on the one-dimensional quadrature rule. However, use of

a tensor product is not computationally efficient, especially when

larger numbers of uncertainties are considered. In such cases, the

number of collocation points grows exponentially as the number

of uncertainties increases, which is the well-recognized curse of

dimensionality. To reduce significantly the number of collocation

points, a sparse grid-based sampling scheme constructed by the

Smolyak algorithm following either Clenshaw–Curtis or Gaussian

quadrature rules can be used ( Xiu, 2010 ). Another way to generate

collocation points is to use high-order unscented transformation

(HOUT) ( Julier and Uhlmann, 1997 ; Zhang et al., 2014 ). High-order

unscented transformation was recently used to estimate uncertain-

ties with different distributions, and its accuracy was verified with

several examples ( Xu and Dang, 2019 ). 

The gPC-based UQ has been shown to be an efficient tool in dif-

ferent applications, including dynamic modelling, control, and op-

timization problems in chemical engineering ( Duong et al., 2016 ;

Najm, 2009 ; Shen and Braatz, 2016 ; Zhang and Sahinidis, 2013 ;

Du et al., 2017 ). For example, the SC-based UQ was used for
odel predictive control design in a batch process to account for

arametric and state uncertainties ( Bradford and Imsland, 2019 ).

he SG-based UQ method was used to improve simulation ac-

uracy of a two-dimensional electrochemical microchannel flow

 Debusschere et al., 2003 ). In process monitoring, gPC was used

ogether with least-angle regression to optimally identify an auxil-

ary input to improve fault detection accuracy ( Schenkendorf et al.,

019 ). 

These successful applications suggest that the use of gPC-based

Q has much promise to improve process performance and safety

n chemical engineering, but its broader use is likely limited by

omputational expense when larger numbers of uncertainties have

o be considered in a nonlinear and complex system. Thus, to im-

rove the computational efficiency of gPC-based UQ methods, we

resent a UQ method that integrates the gDRM with the gPC and

eport the detailed comparison between intrusive and nonintru-

ive UQ methods, which are discussed in Section 2 and Section 3 ,

espectively. Our objective is to show the accuracy of the gDRM-

ased gPC approach when dealing with larger numbers of uncer-

ainties in a nonlinear dynamic system, which is challenging for

xisting methods as others reported ( Debusschere et al., 2004 ).

hree cases are used for algorithm verification and presented in

ection 4 . Our conclusions are presented in Section 5 . 

. Intrusive uncertainty quantification methods 

.1. Generalized polynomial chaos (gPC) expansion 

For intrusive gPC-based UQ, uncertainty is generally approxi-

ated with a distribution using a predefined probability density

unction (PDF) of another random variable (e.g., ξ ); a set of cou-
led equations of gPC coefficients are used to provide a probabilis-

ic description of model outputs. Assume a system can be defined

ith (ordinary) differential equations (ODEs) over a period of time

 T > t 0 ) as in Xiu (2010) : 

˙  = g 
(
t, u , θ, ρ

)
, t ∈ ( t 0 , T ] (1)

here g are nonlinear functions, u = ( u j=1 , . . . , u j= J ) ∈ R 
J are

odel responses (or outputs) over a given time domain ( t 0 , T ] with

nitial values of u 0 at t = t 0 , and J ≥ 1, θ define deterministic model

arameters that are fixed constants, ρ are uncertain parameters

here ρ = ( ρ1 , . . . , ρN ) ∈ R 
N , and N ( ≥ 1) is the number of para-

etric uncertainties. In this work, the parameters in ρ are inde-

endent and identically distributed, and each of which can be de-

cribed with a PDF following a predefined distribution. 

To quantify the effect of uncertainty on u , the first step is to

pproximate each parameter ρ i ( i = 1, 2, …, N ) in ρ with a random

ariable ξ i as in Xiu (2010) : 

i = ρi ( ξi ) = 

∞ ∑ 

n =0 

ˆ ρi,n ψ n ( ξi ) ≈
P ∑ 

n =0 

ˆ ρi,n ψ n ( ξi ) (2)

here { ̂  ρi,n } are the gPC coefficients used to approximate the

 
th parametric uncertainty, and { ψ n ( ξ i )} are the polynomial basis

unctions depending on the PDF of ρ i . Importantly, the orthogonal

olynomial basis functions must be appropriately selected with re-

pect to the PDF of ρ i . Some frequently used basis functions can

e found in Eldred and Burkardt (2009) , Xiu (2010) . 

Since parametric uncertainty affects model responses, each

odel output u j is approximated with random variables ξ =
(ξ1 , · · · , ξi , · · · , ξN ) that are used to approximate { ρ i }, which can

e described as in Xiu (2010) : 

 j 

(
t, ξ

)
= 

∞ ∑ 

m =0 

ˆ u j,m ( t ) �m 

(
ξ
)

≈
M ∑ 

m =0 

ˆ u j,m ( t ) �m 

(
ξ
)

(3)
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here { ̂  u j,m 
} are the gPC coefficients of the j th output at time t ,

nd �m ( ξ) is a multivariate polynomial basis function calculated

ith ψ n ( ξ i ) as follows ( Eldred and Burkardt, 2009 ): 

m 

(
ξ
)

= 

N ∏ 

i =0 

ψ d m 
i 
( ξi ) (4) 

here d m 

i 
is an index of basis function. For instance, when a two-

imensional random space having two parametric uncertainties is

onsidered ( i = 1 and 2), then d 1 1 = 1 and d 1 2 = 0 with m = 1.

etails about the calculation of �m ( ξ) can be found in Eldred and
urkardt (2009) . 

For practical applications, a finite number of terms as seen in

2) and (3) , P + 1 and M + 1 (including a zeroth term) are used in

PC expansions instead of an infinite number of terms. Note that

 in (2) is also called as polynomial order, which is selected such

hat a priori PDF of uncertainty can be optimally approximated fol-

owing the gPC theory. The total number of terms of u j in (3) (i.e.,

 + 1 ) is calculated as (5) , which is a function of P and the total

umber of uncertainties N ( Debusschere et al., 2004 ; Xiu, 2010 ). 

 + 1 = 

(
N + P 
N 

)
= 

( N + P ) ! 

P ! N! 
(5)

Unlike the gPC expansions of ρ i , which can be determined with

rior knowledge or offline calibration, the gPC coefficients of u j 
n (3) (e.g., ˆ u j,m 

(t) ) have to be calculated by substituting (2) and

3) into (1) , and subsequently by using an SG projection as in

iu (2010) : 

 ̇ u j 
(
t, ξ

)
, �m 

(
ξ
) 〉 = 〈 g (t , u j (t , ξ), θ, ρ

(
ξ
))

, �m 

(
ξ
)〉 (6) 

here 〈 · 〉 is the inner product operator. Following (6) , (1) is

hen converted into a family of coupled models of gPC coefficients

 ̂  u j,m 
} . The inner product between any two vectors in (6) is calcu-

ated as in Xiu (2010) : 

 φ
(
ξ
)
, φ′ (ξ)〉 = 

∫ 
R 

N 
φ
(
ξ
)
φ′ (ξ)W 

(
ξ
)
dξ (7) 

here the multi-dimensional integral is calculated over the do-

ain R 
N defined by random variables ξ, and W ( ξ) is the weight

unction (i.e., the joint PDF of random variables ξ). 
The gPC coefficients of u can be used to predict statistical mo-

ents of model outputs at any given time point t . For example, the

rst and second moments, the mean and variance of the j th output

 j , can be calculated as in Debusschere et al. (2003) , Xiu (2010) : 

 

[
u j ( t ) 

]
= E 

[ 

M ∑ 

m =0 

ˆ u j,m ( t ) �m 

] 

= ˆ u j, 0 ( t ) E [ �0 ] 

+ 

M ∑ 

m =1 

ˆ u j,m ( t ) E [ �m ] = ˆ u j, 0 ( t ) (8) 

 ar 
[
u j ( t ) 

]
= E 

[ {
u j ( t ) − E 

[
u j ( t ) 

]}2 
] 

= E 

⎡ 

⎣ 

{ 

M ∑ 

m =0 

ˆ u j,m ( t ) �m − ˆ u j, 0 ( t ) 

} 2 
⎤ 

⎦ 

= E 

⎡ 

⎣ 

{ 

M ∑ 

m =1 

ˆ u j,m ( t ) �m 

} 2 
⎤ 

⎦ = 

M ∑ 

m =1 

{
ˆ u j,m ( t ) 

}2 
E 
[
�2 

m 

]
(9) 

here E [ · ] denotes expectation. As seen in (8) and (9) , the mean

f u j can be estimated with the first gPC coefficient ˆ u j,m =0 , while

he variance of u j is approximated using other higher-order gPC

oefficients ˆ u j,m 
 =0 and the expectation of �
2 
m 

( Debusschere et al.,

003 ; Xiu, 2010 ). 
.2. Stochastic Galerkin (SG) projection based on dimension reduction

The calculation of gPC coefficients { ̂  u j,m 
} with the SG projection

an be computationally prohibitive or even impossible, when non-

olynomial functions appear as in (1) ( Debusschere et al., 2004 ).

o address this, in this work we combine the gDRM ( Xu and Rah-

an, 2004 ) with the gPC theory. Following the SG procedure, the

alculation of gPC coefficients { ̂  u j,m 
} of u j in (3) can be defined

ith an integral as in Xiu (2010) : 

ˆ  j,m ( t ) := 

1 

γm 

∫ 
R 

N 
u j 

(
t, ξ

)
�m 

(
ξ
)
W 

(
ξ
)
d ξ (10) 

here γm is the expectation of the square of the polynomial ba-

is function �m , γm = E[ �2 
m 
] . To quickly calculate gPC coefficients

f u j , the gDRM is used to estimate the high-dimensional integral

n (10) with several lower dimensional ones (e.g., one-, two-, and

hree-dimensional integrals). 

Let us define y( ξ) at a particular time point t in (10) as

(ξ) = u j (t, ξ)�m (ξ) , which is a continuous, differentiable, and

eal-valued function. Following this, the integral in (10) can be

ewritten as in Xu and Rahman (2004) : 

 

[
y 
(
ξ
)]

= 

∫ 
R 

N 
y 
(
ξ
)
W 

(
ξ
)
dξ (11) 

Following the definition of gDRM, y ( ξ) is estimated with an S -

ariate approximation as in Xu and Rahman (2004) : 

ˆ  
(
ξ
)

= 

S ∑ 

r=0 

( −1 ) 
r 

(
N − S + r − 1 

r 

)
y S−r , S ≤ N (12) 

here S is an index defining the maximum number of random

ariables in the N -dimensional random space. These random vari-

bles will define a new subdomain to approximate y ( ξ) and S � N .

or example, when S is 2, the N -dimensional integral is converted

nto several one- and two-dimensional integrals. In this work, we

ocus on two cases, S = 2 and S = 3, hereafter referred to as bi-

ariable dimension reduction method (BiDRM) and trivariable di-

ension reduction method (TriDRM), respectively. However, it is

mportant to note that a larger value of S ( > 3) can be used to

mprove UQ accuracy. 

Based on the definition of gDRM, each term y S−r in (12) is de-

ned as in Xu and Rahman (2004) : 

 S−r = 

∑ 

l 1 < l 2 < ···< l S−r 

y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 , ξl S−r 

, 0 
)

(13) 

here l 1 , l 2 , …, l S−r ∈ {1, 2, …, N }, and y 0 = y (0 ) by assigning all

ariables in ξ to 0. Thus, the mean value of ˆ y (ξ) can be defined as

n Huang and Du (2006) , Xu and Rahman (2004) : 

 

[
ˆ y 
(
ξ
)]

= 

S ∑ 

r=0 

( −1 ) 
r 

(
N − S + r − 1 

r 

)
E [ y S−r ] (14) 

here E[ y S−r ] is a lower-dimensional integral used to estimate

 [ y ( ξ)]. For example, in TriDRM when S is 3, each term E[ y S−r ]

n (14) can be defined as in Huang and Du (2006) , Xu and Rah-

an (2004) : 

 [ y 0 ] = y ( 0 ) = y 0 = y ( 0 , . . . , 0 ) (15) 

 [ y 1 ] = 

∑ 

l 

E [ y ( 0 , . . . , 0 , ξl , 0 , . . . , 0 ) ] , l = 1 , . . . , N (16)

 [ y 2 ] = 

∑ 

l 1 < l 2 

E 
[
y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 

)]
(17) 

 [ y 3 ] = 

∑ 

l 1 < l 2 < l 3 

E 
[
y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 , ξl 3 , 0 

)]
(18) 
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where each term involves at most three random variables of ξ in

(3) to approximate uncertainty. For instance, y ( 0 ) in (15) is calcu-

lated by setting ξ to 0, and (16) through (18) are calculated with

summations of integrals involving one-, two-, and three-random

variables, respectively. Examples of different integrations in (16) to

(18) are shown as follows ( Xu and Rahman, 2004 ). 

E [ y ( 0 , . . . , 0 , ξl , 0 , . . . , 0 ) ] ≡
∫ ∞ 

−∞ 

y ( 0 , . . . , 0 , ξl , 0 , . . . , 0 ) W ( ξl ) d ξl 

(19)

E 
[
y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 

)]
≡

∫ ∞ 

−∞ 

y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 

)
W 

(
ξ
)
d ξ (20)

E 
[
y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 , ξl 3 , 0 

)]
≡

∫ ∞ 

−∞ 

y 
(
0 , . . . , 0 , ξl 1 , 0 , . . . , 0 , ξl 2 , 0 , . . . , 0 , ξl 3 , 0 

)
W 

(
ξ
)
d ξ

(21)

where ξ is a subdomain of ξ, (i.e., ξ = { ξl 1 , ξl 2 } in (20) and ξ =
{ ξl 1 , ξl 2 , ξl 3 } in (21) ) and W ( ξ) is the joint PDF of ξ. Notably, E [ y 1 ]
is approximated with a summation of N different one-dimensional

integrals, whereas E [ y 2 ] and E [ y 3 ] are calculated using summations

of ( 
N 

2 
) two- and ( 

N 

3 
) three-dimensional integrals, respectively. 

Using the approximation of a high dimensional integral as

shown in (14) , the gPC coefficients in (10) can be calculated as: 

ˆ u j,m ( t ) ∼= 

1 

γm 

E 
[
ˆ y 
(
ξ
)]

= 

1 

γm 

S ∑ 

r=0 

( −1 ) 
r 

(
N − S + r − 1 

r 

)
E [ y S−r ] 

(22)

where E[ y S−r ] is calculated following (15) through (18) . 

Therefore, using the gDRM, the difficulty to calculate a high-

dimensional integral involved in the SG projection (e.g., E [ y ( ξ)]
in (11) ) can be alleviated by calculating a few lower-dimensional

integrals. To illustrate UQ accuracy of the proposed algorithm,

BiDRM- and TriDRM-based SG projections are used in this work;

results are compared to other nonintrusive techniques including

Monte Carlo simulations, stochastic collocation, and a recently de-

veloped high-order unscented transformation method ( Julier and

Uhlmann, 1997 ; Xu and Dang, 2019 ; Zhang et al., 2014 ). 

3. Nonintrusive uncertainty quantification methods 

3.1. Stochastic collocation (SC) 

Compared to intrusive SG, nonintrusive stochastic collocation

(SC) is straightforward. Its implementation is methodologically

similar to MC ( Xiu, 2007 ). Details about SC can be found in

Eldred and Burkardt (2009) , Xiu (2010) . To approximate uncer-

tainty in the model’s output u j , which results from parametric un-

certainties in the model, the following gPC expansions are defined

( Xiu, 2010 , 2007) : 

u j ≈ v j 
(
t, ξ

)
= 

M ∑ 

m =0 

ˆ v j,m ( t ) �m 

(
ξ
)

(23)

ˆ v j,m ( t ) = 

1 

γm 

Q ∑ 

k =1 

u j 
(
t, p k 

)
�m 

(
p k 

)
αk (24)
here v j ( t , ξ) in (23) is the gPC approximation of u j and the to-

al number of terms in (23) , M + 1 (including zeroth term), can be

alculated with (5) . In (24) , Q is the total number of nodal points

sed to approximate gPC coefficients, and { p k , αk } Q k =1 denotes a set

f nodes and weights. Here, p k = ( p k 
1 
, . . . , p k 

N 
) is the k th set of

odes in a random space defined by N random variables, and its

orresponding weight is defined as αk . 

To calculate gPC coefficients, ˆ v j,m 
in (24) , an interpolating oper-

tor to construct quadrature rules is defined as below ( Xiu, 2010 ,

007) : 

 
Q ≡

Q ∑ 

k =1 

f 
(
p k 

)
αk ∼= 

∫ 
f 
(
ξ
)
W 

(
ξ
)
d ξ (25)

f 
(
p k 

)
= u j ( t , p 

k 
)
�m 

(
p k 

)
(26)

Importantly, the nodal set in (25) , { p k , αk } Q k =1 , must be appro-

riately selected to ensure the accuracy of the integral in (25) .

among the rules available to optimally select a nodal set, Gauss

uadrature rules are often used due to their simplicity.) Each point

nd its corresponding weight in the nodal set may also be re-

erred to as collocation points. For each random variable, a one-

imensional quadrature operator can be constructed as in Xiu

2010 , 2007) : 

 

q i 
i 

≡
q i ∑ 

k =1 

f 
(
p k i 

)
αk 
i (27)

here i is the i th random variable, and the nodal sets used in

27) can be given as in Xiu (2007) : 

1 
i = 

(
p 1 i , . . . , p 

q i 
i 

)
⊂ 	i (28)

here 	i is a random space of the i th random variable such that

≡ ∏ N 
i =1 	i ⊂ R 

N ( Xiu, 2007 ). To generate collocation points for a

ultidimensional random variable space, two approximations are

vailable: use of a full tensor product grid or a sparse grid with a

maller number of collocation points, discussed below. 

.1.1. Tensor products 

The easiest way to approximate a high-dimensional integral is a

ull tensor product, which consists of one-dimensional integration

ules for each random variable and can be defined as ( Xiu, 2007 ): 

 
Q [ f ] ≡

(
U 

q i 
i 

� · · · � U 

q N 
N 

)
[ f ] 

= 

q 1 ∑ 

k 1 =1 

· · ·
q N ∑ 

k N =1 

f 
(
p k 1 
1 

, · · · , p k N 
N 

)
·
(
αk 1 
1 

� · · · � αk N 
N 

)
(29)

The total number of points, Q in (29) , can be calculated as

 = 

∏ N 
i =1 q i , where q i is the number of nodal sets used for each

ariable. Thus, as the number of random variables increases, the

otal number of collocation points also increases exponentially. In

his case, a sparse grid using the Smolyak algorithm can be used

o reduce the number of collocation points. 

.1.2. Sparse grids 

The sparse grid method is computationally efficient for high di-

ensional problems. It uses linear combinations of carefully se-

ected tensor products to preserve the interpolation property for

 high-dimensional random space ( Judd et al., 2014 ). To estimate a

ultidimensional integral, the sparse grid formula can be defined

s in Nobile et al. (2008) , Xiu (2007) : 

 
Q ( f ) ≡ A ( w, N ) = 

∑ 

w +1 ≤| i | ≤w + N 
( −1 ) 

w + N−| i | ·
(

N − 1 
w + N − | i | 

)

·
(
U i 1 � · · · � U i N 

)
(30)
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Fig. 1. Illustration of collocation points for two-dimensional space ( N = 2) with an approximation level w = 3 ( Eldred and Burkardt, 2009 ). (a) full tensor product grid and 

(b) Smolyak sparse grid from the extrema of Chebyshev polynomials (Clenshaw-Curtis quadrature). 
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Fig. 2. Illustration of sigma points for two-dimensional space involved in HOUT: 

The blue circle at the origin represents the first class of sigma points, the red circles 

represent the second class of sigma points, and the green circle represents the third 

class of sigma points ( Zhang et al., 2014 ). 
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here | i | = i 1 + · · · + i N , N is the total number of uncertainties, and

 is an approximation level that controls the number of elements

n the tensor product involved in the Smolyak grid. As the approx-

mation level increases, the quality of approximation is improved

y increasing the number of collocation points ( Judd al., 2014 ).

he isotropic Smolyak method is used in this work to calculate

 ( w, N ) in (30) for simplicity. To calculate A ( w, N ) , the function

alue f defined in (26) must be computed. This can be estimated

ith sparse grid points used in (30) , H( w, N ) , which is defined as

n Xiu (2007) : 

N ≡ H ( w, N ) = ∪ 

w +1 ≤| i | ≤w + N 

(
�1 

i 1 
× · · · × �1 

i N 

)
(31) 

Note that when nodal sets of each dimension are nested, such

hat �1 
i,w 

⊂ �1 
i,w +1 

, the total number of nodal sets in (31) can be

ignificantly reduced since H( w, N ) ⊂ H( w + 1 , N ) . Details to calcu-

ate a set of nodes and their corresponding weights in the sparse

rid can be found in Judd et al. (2014) , Smolyak (1963) . In this

ork, the isotropic Smolyak algorithm is used to construct sparse

rids using the most popular Clenshaw-Curtis and the Gaussian-

ermite quadrature rules, but other approaches can be also con-

idered ( Eldred and Burkardt, 2009 ). 

To illustrate the use of the Clenshaw-Curtis quadrature, Fig. 1

hows collocation points of a two-dimensional space with two ran-

om variables, when the full tensor product and the Smolyak algo-

ithm were used to generate the nodal points with the same ap-

roximation level w . The sparse grid significantly reduces the num-

er of collocation points, compared to the full tensor grid. The im-

lementation of SC with sparse grids is discussed in Section 4 . 

.1.3. High-order unscented transformation 

Another SC-based UQ approach is the unscented transforma-

ion (UT) whose members of the nodal set are often referred to as

igma points. Since UT only requires 2 N + 1 sigma points, which

ay fail to provide an accurate estimation of high-order statisti-

al moments ( Wang and Cheng, 2015 ; Xiao and Lu, 2018 ), a high-

rder unscented transformation (HOUT) was recently developed

sing 2 N 
2 + 1 sigma points to estimate the high-order statistical

oments of random variables ( Julier and Uhlmann, 1997 ; Xiao and

u, 2018 ; Xu and Dang, 2019 ; Zhang et al., 2014 ). The HOUT is also

sed in this work to compare UQ accuracy. 

Critical to HOUT is the appropriate selection of three classes of

igma points. As an example, Fig. 2 shows sigma points required

or a two-dimensional random space ( N = 2). The first class has a

ingle point s 0 , lying at the origin with a weight of 
0 . For the

econd class, there are 2 N points located on the coordinates, which

ave identical distance s 1 from the origin and a weight of 
1 . The

hird class consists of 2 N( N − 1 ) points, which lie at (0, …, ± s 2 ,

, ± s 2 , …,0) and a weight of 
2 . Notably, sigma points in the

econd class only have one nonzero element, (0, …, ± s 1 , …, 0),

hile sigma points in the third class have two nonzero elements
n the random space ( Cheng et al., 2016 ; Xu and Dang, 2019 ). In

ddition, the total number of sigma points can be calculated as

 N( N − 1 ) + 2 N + 1 = 2 N 
2 + 1 . Details of HOUT can be found in

heng et al., 2016 , Xiao and Lu (2018) , Zhang et al. (2014) , but

hree types of sigma points and their corresponding weights are

iven as follows for clarity. 

Class 1: 

¯ 0 = 0 , 
0 = 

−2 N 
2 + ( 4 − 2 N ) β2 + ( 4 β + 4 ) N (

N + β2 
)
( 4 − N ) 

(32) 

Class 2: 
 

 
 
 

 
 
 

s̄ ω 1 = + 

√ 

( 4 − N ) ( N + β) 

( β + 2 − N ) 
e ω 1 

s̄ ω 1 + N = −
√ 

( 4 − N ) ( N + β) 

( β + 2 − N ) 
e ω 1 

(33) 

1 = 

( β + 2 − N ) 
2 

2 ( N + β) 
2 
( 4 − N ) 

(34) 

here ω 1 = 1 , 2 , . . . , N, and e ω 1 has 1 at the ω 1 element, e ω 1 
 [ 0 , . . . , 0 , 1 , 0 , . . . 0 ] T . 

Class 3: 
 

 
 
 

 
 
 

s̄ ω 2 = + 

√ 

( n + β) s + ω 2 

s̄ ω 2 +0 . 5 N ( N−1 ) = −
√ 

( n + β) s + ω 2 

s̄ ω 2 + N ( N−1 ) = + 

√ 

( n + β) s −ω 2 
s̄ ω 2 +1 . 5 N ( N−1 ) = −

√ 

( n + β) s −ω 2 

(35) 

2 = 

1 

( N + β) 
2 

(36) 
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where ω 2 = 1 , 2 , . . . , 0 . 5 N( N − 1 ) , and s + ω 2 
and s −ω 2 are given as

below: 

s + ω 2 
= 

{ √ 

1 

2 
( e κ + e λ) : κ < λ, κ, λ = 1 , 2 , . . . , N 

} 

(37)

s −ω 2 = 

{ √ 

1 

2 
( e κ − e λ) : κ < λ, κ, λ = 1 , 2 , . . . , N 

} 

(38)

The free parameter β in (32) through (36) is a problem-specific

value used to ensure UQ accuracy. For example, it can be set to

0.835 and 1.417, when the number of uncertainties is 2 and 3, re-

spectively; otherwise, β can be set to 2. Details for calculating β
can be found in Xiao and Lu (2018) , Zhang et al. (2014) . 

3.2. Monte Carlo simulations 

Monte Carlo (MC) simulations are the most frequently used

method for UQ ( Spanos and Zeldin, 1998 ). However, it requires re-

peated executions of deterministic models with different samples,

which increase computational burden, especially when the num-

ber of uncertainties is large. However, since the convergence of

MC is unaffected by the dimension of uncertainties ( Xiu and Hes-

thaven, 2005 ), in this work we use MC simulation as a benchmark

for comparison of different UQ techniques’ accuracy. 

4. Implementation of numerical examples 

Three case studies were chosen here to compare the perfor-

mance of different intrusive and nonintrusive UQ methods in terms

of UQ accuracy. A nonlinear algebraic example was first used as a

benchmark test to compare the accuracy of gDRM-based gPC al-

gorithm (BiDRM and TriDRM) to several other existing methods.

Two examples in chemical engineering, a penicillin manufacturing

process, and living-cell signalling networks, were selected to show

both accuracy and computing efficiency of the gDRM-based gPC for

UQ when dealing with nonlinear and complex systems that involve

larger numbers of uncertainties (up to 10). Since MC is the most

common technique and generally provides good UQ results, it was

chosen as a reference to verify the accuracy of other intrusive and

nonintrusive techniques. 

4.1. Case 1: nonlinear algebraic problem 

The accuracy of different UQ methods is first compared using a

nonlinear algebraic case, for which the model response, Z , can be

defined as in Xiu (2007) , Xu and Rahman (2004) : 

Z = 

√ 

1 + 0 . 5 X X 
T ln 

(
1 

2 
+ X X 

T 
)

(39)

where X is a vector defining N parametric uncertainties, X i ( i =
1, …, N ). We assume that uncertainties in X are independent and

identically distributed and follow a normal distribution with a

mean value of μx and a variance of σ x 
2 . Two mean values of { X i }

were used (0 and 1) as were several values of σ x of X (See Fig. 3 )

to demonstrate how UQ accuracy of different UQ methods can be

affected by the magnitude of uncertainty. Since uncertainty in X

follows a normal distribution, Hermite polynomials were used as

polynomial basis functions for SG- and SC-based UQ. To show UQ

accuracy, N was set to 4 in (39) . To quantify UQ accuracy, the rela-

tive error of the mean value of Z was used and calculated as: 

εμ = 

∣∣∣μr − μ

μ

∣∣∣ (40)

where μ is the predicted model response evaluated with (39) us-

ing the mean values of X , and μr is the mean value of Z calculated

with different methods, including BiDRM- and TriDRM-based SG,

nonintrusive SC, and MC simulations. 
.1.1. Results of case 1 - Nonlinear algebraic benchmark 

For intrusive UQ methods, BiDRM and TriDRM were used to

onvert a high-dimensional integral in the SG projection into

everal lower dimensional ones. The calculation of gPC coeffi-

ients of Z followed the procedures described in Section 2 . The

iDRM-based SG converts the N -dimensional integral into N one-

imensional and ( 
N 

2 
) two-dimensional ones. While the TriDRM-

ased SG converts the high dimensional integral into N one-

imensional, ( 
N 

2 
) two-dimensional, and ( 

N 

3 
) three-dimensional

nes. Once the gPC coefficients of Z were determined, the mean

nd variance of Z were estimated using (8) and (9) . 

To demonstrate the efficiency of the gDRM-based UQ, the trape-

oidal rule was also used in this case to estimate the high-

imensional integrals in SG. The trapezoidal rule is one of the most

ommon and simplest techniques to approximate a numerical inte-

ration. This is achieved by dividing the integral domain into sev-

ral small and equal segments called trapezoids, and evaluating the

ntegrand at each subinterval, followed by a summation of esti-

ates ( Hill and Moore, 2004 ; Yeh, 2002 ). In this case study, the

umber of subintervals in each dimension was set to 100. 

For nonintrusive UQ, we used a full tensor grid (SC-FT) and a

parse grid (SC-SP). The full tensor grid was constructed based on

ne-dimensional Gauss-Hermite quadrature rules, which has the

ame number of collocation points for each uncertainty, q = 5.

ince the total number of collocation points in the full grid can be

efined as Q = q N and N was set to 4, 5 4 collocation points were

equired in total for the full tensor grid points based UQ. 

For SC-SP, the Smolyak algorithm with the Gauss-Hermite

uadrature was used to construct collocation points for two dif-

erent approximation levels, w = 3 and 5, to show the effect of

pproximation levels on UQ accuracy. When w was set to 3, 289

rid points were required and when w was 5, 4994 grid points

ere needed. The sigma points-based HOUT was also used for

omparison among different nonintrusive UQ methods. Since the

otal number of sigma points associated with the dimension of

ncertainties is Q = 2 N 
2 + 1 , 33 points in total were required, an

mount significantly lower than other SC-based methods. Further,

0 6 samples were used for MC; its results were used as the refer-

nce benchmark to compare UQ accuracy. 

Fig. 3 shows the UQ results using different methods, where the

rst row and the second row of graphs show the results of Z , when

he mean value of X i was 1 and 0, respectively. Also, for compar-

son purposes, the standard deviation σ x was varied from 0.05 to

.7. For different mean values of X , the first column in Fig. 3 shows

he relative error of Z . As seen, all methods provide accurate UQ

esults as compared to MC, when uncertainty is small (e.g., when

x is less than 0.5). In addition, we found that the UQ accuracy

an be affected by uncertainty, especially when the mean value of

ncertainty is smaller. 

Further, the variance in Z , resulting from uncertainty in X , is

lso calculated and shown in the second column of Fig. 3 for

omparison. As seen, the accuracy of the variance in Z with dif-

erent methods can be affected by uncertainty in X . For exam-

le, as seen in Fig. 3 (d), the discrepancy between BiDRM-based

G and MC becomes larger, as uncertainty ( σ x ) increases, when

he mean value is 0. It is also important to note that the dis-

repancy can be eliminated, when TriDRM is used. Specifically, as

een in Fig. 3 (c) and (d), the intrusive TriDRM-based UQ method

rovides results as accurate as other nonintrusive methods. This

learly shows the potential of the gDRM-based SG for dealing with

igher dimensional problems that involve nonpolynomial func-

ions, which was previously found challenging with intrusive gPC-

ased UQ ( Debusschere et al., 2004 ). Based on this, the efficiency
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Fig. 3. Comparison of relative errors εμ and standard deviations σz of Z . For (a) and (b), the mean value of { X i } was set to 1, while the mean value of { X i } was set to 0 in 

(c) and (d). Note that “Trap.” here represents the trapezoidal rules-based UQ method. 
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f the gDRM-based SG method in terms of UQ accuracy will be

urther discussed in case studies 2 and 3 below. 

As compared to the intrusive UQ method, we found that the

ccuracy of the nonintrusive SC methods can be affected by the

umber of collocation points and/or the approximation levels. For

xample, the difference of relative errors between the SC-SP con-

tructed by the Smolyak algorithm and MC is smaller when w is

, as compared to the case where w is 3. Also as seen in Fig. 3 ,

rapezoidal rules can provide accurate UQ results, when they were

sed to estimate the integral involved in SG projection. However,

t is important to note that when the number of uncertainties in-

reases (e.g., N = 10 in this work discussed later), we found that

he total number of nodes required to estimate the integral in the

G becomes significantly large with trapezoidal rules. For exam-

le, when the number of uncertainties is 10 and when 10 dis-

retised subintervals in each dimension are used, the total num-

er of points required to approximate an integral involved in SG

s ( 10 + 1 ) 10 ( Hill and Moore, 2004 ), which is time prohibitive for

olving gPC coefficients. This is also the reason that a smaller num-

er of uncertainties, N = 4, is considered in this benchmark test,

ince our main objective here is to show and compare the accuracy

f different methods. 

.2. Case 2: fed-batch penicillin manufacturing process 

In the second case study, a fed-batch penicillin production pro-

ess is used to demonstrate the computing efficiency of the pro-

osed intrusive UQ method. In this case, a modified model devel-

ped in Birol et al. (2002) is used. Notably, we assumed that tem-

erature and pH value remained unchanged, and oxygen was not

imiting ( Mandur and Budman, 2014 ). The model consists of sub-

trate, biomass, and penicillin concentrations, which is described

s in Bajpai and Reuß (1980) , Birol et al. (2002) , Mandur and Bud-

an (2014) : 

d C X 
dt 

= 

(
μX C S C X 
K C + C 

)
− C X 

V 

dV 

dt 
(41) 
X X S 
d C P 
dt 

= 

( 

μP C S C X 

K P + C S + 
C S 

2 

K I 

) 

− K H C P − C P 
V 

dV 

dt 
(42) 

dC S 
dt 

= −
(

1 

Y X/ S 

μX C S C X 
K X C X + C S 

)
−

( 

1 

Y P/ S 

μP C S C X 

K P + C S + 
C S 

2 

K I 

) 

−m X C X + 

F s f 

V 
− C S 

V 

dV 

dt 
(43) 

dV 

dt 
= F − 6 . 226 × 10 −4 V (44)

here C X , C P , and C S are the concentrations of biomass, penicillin,

nd substrate, respectively; and V is the culture volume. The de-

cription and values of model parameters can be found in previous

ork ( Bajpai and Reuß, 1980 ; Birol et al., 2002 ; Mandur and Bud-

an, 2014 ). 

To better evaluate the effect of uncertainty in model parameters

n the penicillin production, we first used the half-norm graph-

ased sensitivity analysis method developed in our previous work

 Son et al., 2018 ), which is not discussed further for brevity. The

ffect of parameters on model responses can be described as fol-

owing in descending order: μP > s f > F > K H > μx > Y X / S > K I > K X >

 x > Y P / S > K P . Using this, different numbers of parametric uncer-

ainties were considered to show the efficiency of the proposed UQ

ethod for dealing with many uncertainties. For example, when

he number of uncertainty N was set to 6, the first six param-

ters, ρ = ( μP , s f , F, K H , μx , Y X / S ), were considered, generating a

ix-dimensional random space. In this case study, each uncertainty

as mathematically defined as: ρi = 〈 ρi 〉 ( 1 + σ r i ) , where 〈 ρ i 〉 is
he mean value of the model parameter, which can be found in

andur and Budman (2014) , and σ was set to 0.05. Further, r i is

 random variable which is uniformly distributed in the range of

 −1 , 1] . The product of σ r i was used in this work to define un-

ertainty in each parameter. Note that, all random variables were
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Fig. 4. UQ results of C P with different methods and number of uncertainties ( N = 6, 8 and 10): (a-1) to (a-3) results of BiDRM-based SG projection; (b-1) to (b-3) results 

of TriDRM-based SG projection; (c-1) to (c-3) results of SC-SP with w = 3; (d-1) to (d-3) results of SC-SP with w = 5; (e-1) to (e-3) results of MC. For the SC-SP, the 

Clenshaw-Curtis quadrature rules were used to generate sparse grid points. When w was set to 3, the number of sparse grid points was 389, 849, and 1581 for N = 6, 8, 

and 10, respectively. When w was 5, 4865, 15,713, and 41,265 sparse grids were required for N = 6, 8, and 10, respectively. Moreover, MC simulations with 10 5 samples 

were used to validate the UQ accuracy. Note that the number of samples used in MC was selected based on sensitivity analysis by varying the total number of samples used 

in the simulations and by checking the relative error with respect to the deterministic model. We found, when 10 5 samples were used, as compared to larger numbers of 

samples ( > 10 5 ), the change in relative error was negligible. Thus, 10 5 samples were used to reduce computational cost in this case study. 
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Fig. 5. Normalized relative errors of the mean values of C P for different UQ meth- 

ods, where N is the total number of uncertainties. 
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ssumed to be independent and identically distributed in this case

tudy. 

.2.1. Results of case 2—Fed-batch penicillin manufacturing process 

Based on the UQ results in the first case study, BiDRM- and

riDRM-based gPC were compared to nonintrusive SC-SP method

ith two different approximation levels, w = 3 and w = 5, re-

pectively. We excluded the HOUT-based SC since it was found to

e less accurate in the benchmark case. And the full tensor grid

oints-based method (SC-FT) was not used for comparison, since

e found that its accuracy is highly dependent on the number of

rid points. When the number of uncertainties is increased and

arger numbers of grid point are used, SC-FT increases the com-

utational burden greatly. 

The simulation results with different UQ methods are shown in

ig. 4 , where each row of graphs presents the results of a specific

Q method, and each column presents the results with respect to

ifferent numbers of uncertainties (e.g., N = 6, 8, and 10). In ad-

ition, the solid line in each graph shows the mean value of the

odel response, the penicillin concentration C P , while the error

ars represent the uncertainty in C P at a specific time point of sim-

lations. The results of MC simulations are shown in the last row

f Fig. 4 for comparison purposes. As seen, the intrusive UQ meth-

ds provide accurate UQ results as compared to other sampling-

ased nonintrusive UQ techniques. To quantify the accuracy of the

roposed methods, the relative errors of mean response εμ defined

n (40) were calculated for each method, and Fig. 5 shows the sim-

lation results of the relative errors of C P . 

In Fig. 5 , the relative error of C P was calculated by averaging rel-

tive errors calculated at 20 time points over 400 h of simulations

n Fig. 4 . The relative error was also normalized with respect to the

elative error calculated with MC for comparison purposes. As seen

n Fig. 5 , the normalized relative errors of C P calculated with dif-

erent UQ methods have similar results for a given N , the number

f uncertainties. Compared to MC, intrusive and nonintrusive gPC-

ased methods provide accurate UQ results, since the normalized

elative error is close to 1 as seen in Fig. 5 . Specifically, we found

hat the relative error calculated with the TriDRM-based SG is al-

ost identical to the result obtained with the SC-SP method, when

he approximation level w was set to 5. And the relative error cal-

ulated with the BiDRM is similar to the result of SC-SP when

 was set to 3. This shows that the proposed intrusive gDRM-

ased UQ can successfully address UQ challenges involving non-

olynomial functions in the presence of many uncertainties. The

fficiency of the gDRM-based UQ method will be further discussed

n Section 4.4 in terms of computational time. 

.3. Case 3: autocrine signalling of live cells 

In this case study, mathematical models describing the

itogen-activated protein kinase cascade were used to predict the

ynamic behaviours of enzymes at three different stages of the
ascade ( Shvartsman et al., 2002 ; Xiu, 2007 ). This model has three

nzymes, e 1 p , e 2 p , and e 3 p , which describe the dimensionless con-

entrations of the active forms of enzymes as follows: 

d e 1 p 

dt 
= 

I ( t ) 

1 + G 4 e 3 p 

V max, 1 

(
1 − e 1 p 

)
K m, 1 + 

(
1 − e 1 p 

) − V max, 2 e 1 p 

K m, 2 + e 1 p 
(45) 

d e 2 p 

dt 
= 

V max, 3 e 1 p 
(
1 − e 2 p 

)
K m, 3 + 

(
1 − e 2 p 

) − V max, 4 e 2 p 

K m, 4 + e 2 p 
(46) 

d e 3 p 

dt 
= 

V max, 5 e 2 p 
(
1 − e 3 p 

)
K m, 5 + 

(
1 − e 3 p 

) − V max, 6 e 3 p 

K m, 6 + e 3 p 
(47) 

here G 4 is the gain of negative feedback, and the input signal

s defined as I ( t ). Model parameters in (45) through (47) include

he maximal reaction velocity V max, 1 −6 and equilibrium Michaelis

onstant K m, 1 −6 . Details about the biological description of this

odel, including the model parameter values, can be found in

hvartsman et al. (2002) . Uncertainty in model response e 3 p re-

ulting from parametric uncertainty, is considered in this work. 

Like the second case study, intrusive and nonintrusive UQ

ethods were investigated. Following the sensitivity analysis de-

cribed in our previous work ( Son et al., 2018 ), simulations were

rst performed to rank the effect of parametric uncertainty on the

odel response, e 3 p . Parameters V max , 1 −6 and K m, 1 −6 can be ranked

n descending order as: V max , 3 > V max , 4 > V max , 1 > V max , 2 > V max , 5 >

 max , 6 > K m , 4 > K m , 1 > K m , 3 > K m , 2 > K m , 6 > K m , 5 . Following this,

e considered three levels of parametric uncertainty: N = 6, 8, and

0. For example, the first six parameters, V max , 3 , V max , 4 , V max , 1 ,

 max , 2 , V max , 5 , and V max , 6 , were considered when N was set to

. Further, uncertain parameters were mathematically defined as:

i = 〈 ρi 〉 ( 1 + σ r i ) , where ρ i is the i 
th uncertain parameter in ρ,

nd 〈 ρ i 〉 is the mean of each individual parametric uncertainty,

hich can be found in Shvartsman et al. (2002) . In this case, σ
as increased and set to 0.1 (in contrast to 0.05 in the previous

ase study) to verify UQ accuracy with respect to different levels

f uncertainty. Additionally, a random variable r i was used to intro-

uce uncertainty, which is a constant number randomly selected in

he range of [ −1 , 1] . 

.3.1. Results for case 3—Autocrine signalling of live cells 

As in the second case study, BiDRM- and TriDRM-based SG, and

C-SP with different approximation levels were used to approxi-

ate uncertainty in the model response e 3 p , which results from

erturbations in parametric uncertainty. The results are shown in

ig. 6 , where each row of graphs shows the results of a particu-

ar UQ method, and each column presents the results for a spe-

ific number of uncertainties. Legendre polynomials were chosen

s the gPC basis functions for random variables, since we assumed

hat uncertainty was uniformly distributed. As seen in Fig. 6 , the

rst two rows show simulation results calculated with the BiDRM

nd TriDRM methods, respectively. The third and fourth rows show

he UQ results of the nonintrusive SC-SP method with different ap-

roximation levels. The solid line in each subplot shows the mean

alue of e 3 p , while the error bars in each subplot show the vari-

nces estimated from the gPC at a particular time point. In addi-

ion, the last row in Fig. 6 shows the results of MC simulations. As

een in Fig. 6 , we found that all methods provide accurate results

s compared to MC. 

As was done in case 2, the normalized relative error εμ of e 3 p 
as calculated to compare UQ accuracy. Specifically, the average

f relative errors at 20 simulation time points was first calculated

nd further normalized with respect to the average relative er-

or of MC. Fig. 7 shows the normalized relative error for intrusive

nd nonintrusive methods. As seen, all methods provide almost

dentical relative errors for each specific number of uncertainties.
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Fig. 6. UQ results of e 3 p with different methods in N = 6, 8 and 10: (a-1) to (a-3) results of BiDRM-based SG; (b-1) to (b-3) results of TriDRM-based SG in N = 6, 8 and 10 

respectively; (c-1) to (c-3) results of SC-SP with w = 3; (d-1) to (d-3) results of SC-SP with w = 5; (e-1) to (e-3) results of MC in N = 6, 8 and 10 respectively. For SC-SP 

method, the approximation level was set to 3 in the third row, which means that 389, 849, and 1581 sparse grid points were used, when N is set to 6, 8, and 10, respectively. 

Whereas, the fourth row shows the results of SC-SP, when the approximation level was set to 5. Thus, 4865, 15,713, and 41,265 sparse grid points were used for N = 6, 8, 

and 10, respectively. For MC, 10 5 samples were used for each of the input parametric uncertainty. 
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Fig. 7. Normalized relative errors of the mean values of e 3 p for different UQ meth- 

ods, where N is the total number of uncertainties. 

Fig. 8. Number of function evaluations with different UQ approaches. For the non- 

intrusive stochastic collocation (SC) method with a full tensor product grid, 5 collo- 

cation points were used for each uncertainty. In contrast, for the SC-based Smolyak 

method (SP), the approximation level was set to 5. 
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his further shows the potential of the proposed gDRM-based SG

ethod to deal with complex problems. 

.4. Computational efficiency 

The efficiency of different UQ methods can be also evaluated

n terms of computational time. For each method, computational

ime was estimated from the required simulation runs. For exam-

le, the time required to calculate lower-dimensional integrals was

easured for the gDRM, since these integrals are used to approxi-

ate high dimensional ones in SG projection and their calculation

ccounts for most of the computational effort. As seen in (22) , N

ne-dimensional and ( 
N 

2 
) two-dimensional integrals must be com-

uted for the BiDRM. Similarly, the TriDRM requires calculating N

ne-dimensional, ( 
N 

2 
) two-dimensional, and ( 

N 

3 
) three-dimensional

ntegrals. In contrast, for the nonintrusive UQ methods such as the

C-SP, computational time is closely related to the total number of

ollocation (or sparse grid) points. Thus, the computational time

as quantified in terms of the number of collocation points re-

uired for calculating gPC coefficients in (24) . For clarity, Fig. 8

hows the total number of simulation-runs for each method under

ifferent numbers of uncertainties. To generate sparse grid points

or SC-SP in Fig. 8 , Clenshaw-Curtis quadrature rules were used. 

As seen in Fig. 8 , the number of simulation runs required for

ach method is distinct, especially when the number of uncertain-

ies is greater than 8. For example, the total number of simula-

ion runs increases significantly for nonintrusive methods, as com-

ared to intrusive methods. To better quantify computational time,

ase 2 was chosen. For the intrusive gDRM method, on average
.04785, 0.02097, 0.01818, and 0.01123 s were required to calculate

he three-, two-, one-dimensional integrals, and the constant term

 S = r) in (22) , respectively. When the number of uncertainties was

et to 10, 1.137 and 6.879 s were required to calculate a gPC coef-

cient with the BiDRM and TriDRM methods, respectively. In con-

rast, when the SC-SP was used and the approximation level was

et to 5, 41,265 grid points were required to calculate a gPC co-

fficient. Thus, 1.609 s were required to calculate gPC coefficients,

ince the time required for each grid point was about 3.9E-05 s.

ompared to the SC-SP, the computational time required by BiDRM

s about 29 percent points less than SC-SP. However, it can be ar-

ued that the computational time of TriDRM is larger than the

onintrusive SC-SP method. 

To further assess the computational efficiency of the DRM-

ased UQ method, we estimated computational time by assuming

he number of uncertainties can be as large as 40, since this will

ignificantly increase the total number of required grid points for

Q with SC-SP. In this case, approximately 17 s and 8 min would

e required to calculate a gPC coefficient using the BiDRM and

riDRM, respectively. In contrast, the SC-SP would need 29,458,657

rid points, which would take about 19 min, when the approxima-

ion level is set to 5. The obvious difference in computational cost

etween the intrusive gDRM and nonintrusive SC-SP is that for the

atter, the number of required sparse grid points increases expo-

entially as the number of uncertainties increases. The significant

eduction in computational cost for gDRM-based gPC is primarily

he result of the smaller number of simulations required. For ex-

mple, as seen in Fig. 8 , the total number of gDRM simulations

ncreases gradually as the number of uncertainties increases. Com-

ared to SC-SP, this clearly shows the potential of gDRM to deal

ith many uncertainties. Note that the computational time was

ested on a Core(TM) i5-8400 CPU 2.80 GHz office desktop with

2.0 GB of RAM. Additionally, recall that the difference in the nor-

alized relative errors between the BiDRM and TriDRM is insignif-

cant, 1.026 vs. 1.018, when N is 6 ( Fig. 5 ). This shows the over-

ll performance of the intrusive gDRM-based gPC in terms of UQ

ccuracy and computational time is superior to nonintrusive SC-

P and demonstrates its capability to deal with more complicated

roblems. 

. Conclusion 

We present an intrusive uncertainty quantification (UQ) algo-

ithm that provides an accurate quantification of how paramet-

ic uncertainty affects model predictions in nonlinear and complex

ystems. To alleviate the difficulty in calculating high-dimensional

ntegrals involved in the stochastic Galerkin (SG) projection, the

eneralized dimension reduction method (gDRM) was combined

ith the generalized polynomial chaos (gPC) expansion. This con-

erts a high-dimensional integral involved in the SG projection

nto several lower-dimensional ones that can be quickly calculated.

he performance of the gDRM-based gPC was compared to other

Q methods in terms of UQ accuracy and computational time, in-

luding nonintrusive stochastic collocation and Monte Carlo simu-

ations. Our results show the gDRM-based gPC can provide accu-

ate UQ results and is computationally efficient when dealing with

arger numbers of uncertainties (up to 10), thus laying the founda-

ion to pursue more complicated problems in future work. 
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