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ABSTRACT: We present a network model of the United States (U.S.)
interstate food transfers to analyze the trade dependency with respect to
participating regions and embodied irrigation impacts from a food−energy−
water (FEW) nexus perspective. To this end, we utilize systems analysis
methods including the pointwise mutual information (PMI) measure to
provide an indication of interdependencies by estimating probability of trade
between states. PMI compares observed trade with a benchmark of what is
statistically expected given the structure and flow in the network. This helps
assess whether dependencies arising from empirically observed trade occur
due to chance or preferential attachment. The implications of PMI values are
demonstrated by using Texas as an example, the largest importer in the U.S.
grain transfer network. We find that strong dependencies exist not only just
with states (Kansas, Oklahoma, Nebraska) providing high volume of transfer
to Texas but also with states that have comparatively lower trade (New
Mexico). This is due to New Mexico’s reliance on Texas as an important revenue source compared to its other connections. For
Texas, import interdependencies arise from geographical proximity to trade. As these states primarily rely on the commonly
shared High Plains aquifer for irrigation, overreliance poses a risk for water shortage for food supply in Texas. PMI values also
indicate the capacity to trade more (the states are less reliant on each other than expected), and therefore provide an indication
of where the trade could be shifted to avoid groundwater scarcity. However, some of the identified states rely on GHG emission
intensive fossil fuels such as diesel and gasoline for irrigation, highlighting a potential tradeoff between crop water footprint and
switching to lower emissions pumping fuels.

■ INTRODUCTION

The United Nations General Assembly adopted the
Sustainable Development Goals (SDGs) in 2015 to provide
a roadmap for tackling 17 distinct issues with the overarching
theme of human health and well-being, economic security, and
environment sustainability. While diverse in subjects, these
goals are termed as an “indivisible whole” and require
managing for overlap in policymaking to avoid suboptimal
outcomes.1 For instance, SDG 2 outlines ending hunger,
providing nutrition, achieving food security, and promoting
sustainable agriculture. It directly ties in with Goal 12 of
sustainable production and consumption of resources, which in
turn requires planning for quality and plentiful supply of water
(Goal 6) and renewable, affordable energy (Goal 7). As such, a
single goal cannot be achieved in isolation while disregarding
effects of others as it may result in unintended consequences.
Instead, a holistic systems perspective is required that
considers the complexity of interconnections. A crucial
dilemma in applying a systems perspective is to avoid falling
into an abyss of an infinitely connected system. Therefore, an

appropriate boundary can help constrain the system and limit
relevant interactions within and with the system. The study of
interactions within food, energy, and water resources, termed
as food−energy−water (FEW) nexus, can be seen as an
example of drawing such a system boundary from many other
interwoven and equally important SDGs. Albeit, FEW nexus
itself represents a complex web of interconnections as energy
and water are consumed across the entire food supply chain,
energy is needed for abstraction, treatment, and distribution of
water, and a large amount of water is consumed for power
generation. Therefore, systems analysis needs to be com-
plemented with a context-specific study at specific geographic
scales and sectors to understand effects of interconnections.
Recently, many such studies have adopted nexus approach to
assess a variety of interactions at different spatial scales2−5

Received: December 25, 2018
Revised: July 12, 2019
Accepted: August 9, 2019
Published: August 9, 2019

Article

pubs.acs.org/estCite This: Environ. Sci. Technol. 2019, 53, 10941−10950

© 2019 American Chemical Society 10941 DOI: 10.1021/acs.est.8b07288
Environ. Sci. Technol. 2019, 53, 10941−10950

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
PI

TT
SB

U
R

G
H

 o
n 

Ja
nu

ar
y 

12
, 2

02
0 

at
 1

9:
54

:0
8 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/est
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.8b07288
http://dx.doi.org/10.1021/acs.est.8b07288


including wastewater management to simultaneously reduce
water energy demand and boost nutrient cycling for London,6

developing a scenario analysis for competing water use in
transboundary Brahmaputra River Basin,7 impact of city-level
FEW nexus actions in Delhi,8 and China’s increasing
environmental impacts due to focus on international exports.9

The FEW nexus challenges associated with an agriculture-
centric nation such as the United States (U.S.) are different
from developed countries that rely on agriculture imports or
developing agro-economies. For the U.S., one critical piece in
understanding FEW nexus challenges is the energy and
greenhouse gas (GHG) emission burden of irrigated food
production.10 Irrigation adds significant value to food and feed
production in the U.S.,11 providing a crucial link to study the
domestic FEW systems. Irrigation is the second largest
freshwater withdrawal sector in the U.S.,12 while irrigation
pumping accounts for substantial agricultural energy ex-
penses.13 Additionally, regional variation exists between
agricultural resources availability and densely populated food
demand centers. For instance, the High Plains in the U.S. is
labeled the “breadbasket region” due to significant grain
production; California provides a sizable portion of fruits, nuts,
and vegetables for domestic and international consumption.
On the other hand, Illinois, Louisiana, Texas, and Florida
import a large amount of food due to their large population or
geographically strategic position as ports.14 As the imbalance
between consumption and production increases, understand-
ing the patterns of trade dependencies becomes an important
consideration for regional food security.
Trading partner selections, and the subsequent depend-

encies, economic pressures, and vulnerabilities of such
preferences, have been discussed widely in the trade
literature.15−17 Specific to food trade, dependency is a complex
issue as it may strengthen food security (through diversifying
trade partners) or harm food supply (reducing self-sufficiency).
Prior work has investigated dependencies arising from indirect
resource use to produce traded food commodities (referred to
as virtual/embodied trade of resources).18−20 Virtual resource
trade (popularized by the virtual water concept21) refers to the
trade of resource that is not physically embedded but used in
producing the traded food commodity. Through virtual
resource trade, regions can sustain greater food demand than
local production capacity by depending on external virtual
water and land imports to meet the demand.22,23Dependencies
can also arise due to the structure and arrangement of how
trade links are formed. Prior work has investigated community
patterns,24 central players,10,25 robustness and resilience,26,27

and dynamics of the networks28,29 by quantifying structural
properties of trade networks through graph theory-based
approaches. However, the dependencies arising from inter-
linkages between food, energy, and water resources and trading
partners have been understudied due to the complexity of the
issue. Additionally, prior work addressing these issues have
focused on larger components and backbones,28,30 and
dominant flows in the network.10,31 However, little emphasis
has been placed on examining weaker links and their role in the
network structure.
The importance of considering ties with weaker strength was

outlined by Granovetter32 in his essay on social networks.
Granovetter noted that weak ties between individuals (i.e.,
acquaintances) are instrumental in maximum diffusion of
information, mobility, and community organization. From a
trade perspective, this translates to the fact that dependency

exists in both directions and weaker links may be important
when all connections are considered. Therefore, we combine
the resource and structure dependency narrative and examine
the importance of weak ties in the network. Specifically, we
analyze the pattern of regional food trade dependencies in the
U.S. food trade. Here, a dependency denotes a level of
preferential attachment (structural dependency) and reliance
on resources (embodied resource dependency). We do this by
comparing observed trade to a null model of trade. The null
model represents the most probable trade given each state’s
import needs and export supply with no other specific
preference in how links are formed.33 The emergent patterns
in actual trade, not observed in the null model, provide insights
into dependence (level of preferential attachment) in the
network. Additionally, we extend the analysis to quantify
virtual water (accounting for only irrigation), irrigation-related
embodied energy (referred to as embodied energy in the
manuscript), and irrigation energy-related embodied GHG
emissions (referred to as embodied GHG emissions) to assess
a state’s indirect dependency on resources through trade.
While trade typically refers to international exchanges, we limit
the analysis and discussion to the U.S. and refer to interstate
trade as transfers.25

Specifically, we leverage empirical data and compare existing
patterns of domestic transfers with calculated probabilities of
association between participating states. To this end, we create
four distinct networks: (i) interstate physical food flows (U.S.
tons), (ii) virtual water (m3),
(iii) embodied energy (MJ), and (iv) embodied GHG

emissions (kg CO2 equivalent). Building on the framework for
the network analysis of physical food trade and embodied
impacts first presented in our previous work,10 we limit the
focus of the present study to grain and feed crop transfers with
states representing nodes in the network and volume of
transfers and embodied environmental impacts represented by
links (edges) between nodes. In this study, we assess how
much more often than chance do two events occur together.34

This is valuable information to gain for an extremely well-
connected network such as the U.S. domestic trade. Our
previous analysis noted that on average, a state is connected to
36 other states out of 51 states.10 Therefore, if a state produces
a specific crop, unlike international trade, it is not restricted to
trade with a particular state (no political conflicts, trade
agreements, etc.).14 Therefore, by comparing observed trade
connections (empirical network) to those that may occur by
chance (null model), we highlight the presence of preferential
attachment. Instead of purely empirical analysis, this provides
statistical support to understand the significance of what we are
observing and provides valuable contribution to the literature.
The rest of the article is organized as follows: material and
methods section discusses the data behind constructing four
networks and introduces the PMI measure. Result and
discussion section applies the PMI measure to the system
under study and discusses insights with the case of Texas as an
example. Details regarding the PMI measure, including
relevant derivations, are provided in the Supporting
Information.

■ MATERIALS AND METHODS
Domestic Food Transfer Network. We built the

domestic food transfer and embodied impact networks using
existing empirical datasets. The framework along with data
sources are detailed in the Supporting Information, Table S1.
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The bilateral domestic food transfer data were obtained from
the Freight Analysis Framework (FAFv4).35 FAF provides
estimates for tonnage and value of freight transported by origin
and destination, commodity type, and transportation mode.
The latest available data are for 2012 and serve as the base year
for this analysis. FAF data are for groups of commodities based
on Standard Classification of Transported Goods (SCTG)
classification system. The US agriculture is quite oligopolistic
in terms of mass-producing selected agricultural crops, with
cereal and animal feed alone constituting 53% of the national
agricultural production.36 Additionally, compared to fruits and
vegetables, grains are widely produced by many states,
providing sufficient data to compare production practices
and assess resulting dependencies arising from embodied
impacts. Therefore, in this work, we focused on commodities
covered by SCTG 02 (cereal grains) and SCTG 04 (animal
feed, eggs, honey, and products of other origin). For SCTG 04,
we specifically focus on only the animal feed related
commodities as they comprise the majority of this group.25,35

We included wheat, corn, rice, sorghum, rye, barley, and oats
for grains and corn silage, sorghum silage, alfalfa hay, and hay
for animal feed. Corn diverted to bioethanol production was
excluded based on the national corn use statistics for 2012.37

We note that some of the grains from the cereal grains category
may end up as animal feed for nonruminant livestock;
however, accounting for all final uses falls outside the scope
of this study.
The embodied impacts are estimated for specific commod-

ities, while the trade data exists for aggregated groups of
commodities. To disaggregate shipment data, we assumed that
composition of grains in a shipment is similar to composition
of production at origin. Therefore, if rice production in
Arkansas was 80% of total grains production, the grain
shipments coming out of Arkansas would consist of 80% rice.
While transport-based surveys provide a best available
substitute for interregional transfers accounting, they suffer
from several limitations such as overassigning inflows to
transport hubs and not distinguishing between point of
production versus point of last value added.38 We corrected
for this limitation as follows: we limited the analysis to transfer
of raw grains, animal feed, and associated impacts and did not
track processed products. Therefore, food transfers to a
particular location may not represent the final consumption
of a food item but the first set of consumers (e.g., processing
plants) in the supply chain. As such, the discussion on
dependency still remains relevant, but we avoid overestimating
environmental impacts of processed goods. Additionally, by
disaggregating transfers based on state production data, we
overcome the possibility of incorrectly attributing production
to nonproducing states. Similar approach for interregional
disaggregation has been employed previously.10,25,39 A brief
discussion on regional commodity transfer limitations and
reconciliation issues is provided in the Section S2. Next, we
constructed weighted and directed matrices of food transfer
referred to as flow matrices (T). Each matrix element (Tij)
represents flow of mass of grains and animal feed from origin
(i) state to destination (j) state. The focus of this work is
limited to irrigation impacts of food trade. By irrigation
impacts, we specifically mean irrigation water, embodied
energy, and embodied GHG emissions related to irrigation.
A discussion on GHG impacts of U.S. food transport can be
found elsewhere.40−42

Embodied Energy and GHG Emission Networks. First,
we calculated the fraction of irrigated food transfers by
assuming proportional shares to irrigated production. We
converted food transfer matrices into distinct matrices of
virtual water, embodied energy, and embodied GHG emissions
by using data from the Farm and Ranch Irrigation Survey,43

U.S. agriculture census,44 Energy Information Administration
data45 combined with life cycle assessment methods. In
particular, we use cumulative energy demand46 and IPCC
100 year global warming potential to calculate our life cycle
impacts.47 The detailed methodology and assumptions were
first described by framework provided by Vora et al.10

Pointwise Mutual Information (PMI). We analyze state-
wise trade dependencies through pointwise mutual information
(PMI) measure. The PMI measure is based on concepts from
information theory, graph theory, probability, and statistics.48

Commonly applied in linguistics,34,49,50 PMI calculates the
probability of co-occurrence or colocation of two words
(events). A classic example involves comparing two synonym
adjectives “strong” and “powerful” from the English language.
A set of specific words is used more commonly with one or the
other. As an example, “strong tea” and “powerful car” have a
higher probability of appearing together than “powerful tea”
and “strong car”; although the adjectives convey the same
message.51 In a set containing these four, if the information of
the first word being “strong” is known, then “tea” has a higher
probability of being the next word, thereby reducing
indeterminacy of the system.52 We extend the same logic to
assess trade dependencies by asking, for example, if we know a
state is importing food, can we predict any information about
its partners given the set of data? We perform this exercise not
to predict new links but as a way of assessing statistical
significance of empirically observed data. PMI is defined by the
following eq 1. The complete derivation of PMI measure is
provided in the Supporting Information

k
p

p p
PMI logij

ij

i j
2

. .

=
(1)

pij is the probability of i and j co-occurring. k is a scalar
constant. If events i and j are independent of each other, then
the probability of their co-occurrence is given by their marginal
probability of occurrences. Marginal probability of occurrence
for event i is pi. (eq 2) and for j is given as p.j (eq 3)

p pi
j

ij. ∑=
(2)

p pj
i

ij. ∑=
(3)

For flow networks such as the system under consideration, we
can replace the probabilities of occurrence with measured
frequency of flow in the network. Tij represents flow of trade
from origin (i) to destination (j). A “dot” notation is used to
represent summation over that index such that Ti. gives the
total outgoing flows of i, T.j gives the total incoming flows to j,
and T.. gives the total trade in the network, referred to as total
system throughput.
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T p T
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Therefore, PMI can be rewritten as,
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In network trade studies, null modes or random networks have
been used as a benchmark to compare significance of structural
properties of the observed/actual trade. If a random network
can generate higher order properties similar to those in
observed trade, then an observed structure of the trade
network is a result of random formation and estimating its
properties does not give us any useful information.33 PMI
measure essentially compares an observed trade network with a
pseudo-random network (which is referred to as a null model).
We use the term pseudo-random because trade cannot be
random, therefore comparing an observed network to a
completely random network would not yield any meaningful
insight. To make the null model comparable to the observed
network, some of the bare minimum properties of the observed
network need to be preserved to an otherwise randomly
formed network. Here, the null model used to generate PMI
values constrains the network to keep the total inflow
(demand) and outflow (supply) from each state constant.
This is an important constraint from sustainability perspective
as it prevents states from supplying more than their current
reported capacity. This constraint results in a singular solution.

The flow matrix M, representing the null model of trade, can
be given by the following equation

M F F Tout in ..= (6)
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Here, Fout (51 × 1) and Fin (1 × 51) represent vectors of out-
flows from and in-flows to each state, respectively, normalized
by the total flow in the system. Therefore, M is calculated by
rewiring network flows among each trade connection. A
unique property of the null model is that it redistributes flow in
a way that the trade becomes more equitable (not equal) while
considering current sending and receiving capacity of each
state. Therefore, PMI values indicate how far each trade
interaction is from being more equitable. An example of how
the null model divides flow equitably is provided in Section S4.
The PMI measure can potentially take positive, negative, or

zero values. If states i and j are completely independent (basis

Figure 1. Cereal and feed grains transfer among the U.S. states. For visualization purpose, links with at least 1% of maximum link weight are
shown.19 Each circular segment represents participating states. The white gap indicates incoming transfers, while the same colored links originating
from the segment represent outgoing transfers. The segments are arranged in a descending order based on their total outgoing (both within state
and out-of-state) transfers. The figure is prepared using the Circos visualization tool.55
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for null model), the value of PMI becomes 0. When i and j
have a high probability of trading but their actual trade is low,
PMI values become negative (eq 8). Similarly, a positive PMI
indicates that states are more dependent than expected.

p p plog( ) log( )ij i j. .< (8)

Previously, Kharrazi and Fath discussed the value of utilizing
PMI measures to evaluate preferential trade policies within the
context of international oil trade.53 Based on PMI values, the
aforementioned formulae can help evaluate policies for
(un)desired trade relationships. It is to be noted that the
goal is to not move toward a null model, as trade can never be
random, but to understand more deeply the relations between
dyads and to reverse the PMI value signs depending on policy
objectives, when desired. If a move from positive PMI to a
negative PMI value is desired (reduced trade) for a particular
trade relationship, then trade volumes can be recalculated to
identify partners that can meet the additional demand.
However, rearranging even one pair would alter the entire
pattern of network flows indicating importance of considering
interactions within the entire system.

■ RESULTS
Network Indicators. We consider food transfers between

50 states plus the District of Columbia, creating a 51-node size

(n) network. There are 1145 links (L) within these states
dedicated to cereal grains and animal feed trade. The density
(L/n2) of the network is 0.44 and reciprocity (proportion of
links in both directions to total number of links) of 0.64,
indicating a well-connected structure with high level of flow
between states. The total flow in the network amounts to 613
million U.S. tons, with 166 billion m3 of virtual water, 633
billion MJ of embodied energy, and 42 billion kg CO2

equivalents of GHG emissions embodied within the flows.
Cereal grains represent 75% of total food transfers by mass and
subsequently represent a larger portion of embodied irrigation
impacts (Table S3). Figure 1 provides a visualization of
irrigated transfers within the U.S. The segments are arranged in
a descending order based on their total out-going activity. For
a majority of the states, the highest volume of transfers is their
within-state flows. Nebraska’s irrigated agriculture primarily
includes corn for grain, corn silage, and alfalfa hay. The large
self-loop may indicate shipments going toward feeding the
large cattle and hog industry.54 The largest (out-of-state)
outgoing transfers are from Kansas, Nebraska, Minnesota,
Indiana, and Iowa. The largest inflows are to Texas, California,
Nebraska, Illinois, and Iowa. The largest out-of-state transfer is
from Kansas to Texas of 18 million U.S. tons and primarily
consists of corn, corn silage, alfalfa hay, and wheat in
shipments.

Figure 2. Cereal and feed grains trade between U.S. states for null model (zero dependency). The flow structure is redistributed considering
network flow constraints such that total throughput (both incoming and outgoing transfers) in each state remains constant. For consistency, links
with at least 1% of maximum link weight are shown. Each circular segment represents participating states. The white gap indicates incoming
transfers, while same colored links emanating from the segment represent outgoing transfers.
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Next, we visualize flow values according to null model in the
system (Figure 2). These values are rearranged in a more
uniform fashion considering the mass of the product of total
flow going and coming out of states. It should be noted that
the flows are not redistributed to become equal in volume but
based on equity in distribution. The degrees (number of
connections) distribution and weighted degree distributions
for the observed flow and null model are provided in Section
S4 and indicate maximum connectivity of the null model while
preserving total throughput from each state. Additionally, the
density of the null model network is 0.9 with a reciprocity of
0.79, indicating an overly connected structure with more flows
being reciprocated. When we compare the structure of
observed flow with the null model, the observed flow presents
a preference in their transfers. As there are no political
boundaries compared to international trade,14 the preference
represents the presence of “additional information” in how ties
are formed.
Dependencies in the Network. Generally, direct depend-

encies of trade relationships are identified listing top
importers/exporters for each trading partners. However, direct
relationships do not incorporate the role of considered
relationship in the context of other relationships out of the
two states. This translates to how overall connections in the
network (the system) affect one relationship being studied.
Additionally, a large volume of inflows may not translate to a
higher dependency for the pair, but low inflows may be more
valuable to the network.32,53 This is explained in more detail
next.
PMI values are calculated for each interaction between the

dyads and therefore result in a 51 × 51 matrix for each
network. As an example, we focus on Texas, the largest
importer, and its trading partners to demonstrate the
usefulness of considering system dependencies. Texas received
incoming transfers amounting to 49 million U.S. tons from 34
states including a large chunk of within-state transfers. Texas’s
largest inflows (apart from within-state flows) are from Kansas,
Oklahoma, Nebraska, Louisiana, and Indiana. Therefore, in a
conventional sense, Texas highly depends on these states for
food flows. We rank PMI values from Texas’s top 10 import
partners in a descending order and compare with ranks of
direct incoming transfer volume (Table 1). Mismatches
between PMI ranks and direct trade volume ranks show that
associating dependencies based on direct trade observations

may not account for important but less visible states. The PMI
value for New Mexico borders is zero, indicating the observed
flow’s proximity to the null model behavior. Considering all
transfers from New Mexico, a substantial portion is already
being transferred to Texas, with a little room for increase
(negative PMI), indicating a higher dependency of the
connection. On the other hand, Nebraska has a lower PMI
rank and negative PMI value, denoting that despite substantial
volume of flows already going in to Texas, Nebraska has the
ability to send more, resulting in a lower bilateral dependence
than possible. Kansas and Oklahoma have the largest PMI
values as Texas’ exporting partners, indicating Texas’s over
reliance on these two states. As observed from Table 1,
majority of connections have negative PMI values compared to
positive values. This is consistent across the network in both
import and export connections for majority of states (Section
S3), indicating that at the network level, a few states control
the throughput of flow. This has important implications for
local network structural resiliency as reliance on a few states
makes a state more prone to effect of shocks. Additionally,
some of the PMI rankings are consistent with mass/volume-
based rankings, denoting that the high flows empirically
observed are not by chance but statistically significant. A
visualization of the null model and observed flows along with
extended PMI table for Texas is provided in Section S5. We
emphasize that by providing comparison of rankings, our
motive is not to recommend PMI method over traditional
approaches but to provide complementary insights along with
other commonly used measures.
Negative PMI values indicate a state’s capacity to trade more

(as the states are less reliant on each other than expected) and
therefore provide a first indication of where the trade could be
rewired without extensive economic and physical system
modeling (such as used in crop displacement studies).56,57

Embodied Impacts and Implications for FEW Nexus.
Next, we analyze trade interactions and dependencies within a
FEW nexus context focusing on virtual water, embodied
energy, and embodied GHG emissions.
A spatial display of the PMI values for virtual water transfers

to Texas shows the pattern of near neighbors being ranked
higher (Figure 3). The dark gray-shaded states represent high
PMI values and therefore represent higher dependence.
Previous work has discussed the prevalence of gravity
law62,63 based relationship of distance enabling trade in
international virtual water trade.64 The size of the pie chart
represents total virtual water transfers out of each state. The
scale of the pie chart accounts for irrigation intensity of crops
(m3/ton) as well as volume of transfers. Statewide irrigation
intensities are provided in the Supporting Information.
Nebraska, Kansas, Louisiana, and Missouri have lower
irrigation water application intensity but overall higher volume
of transfers. This may be attributed to metering of groundwater
due to regulations65 along with high crop yields in the area.
However, high PMI-ranked states New Mexico, Arizona,
Colorado, and Utah have high water application intensities,
indicating virtual water hotspots in Texas’ imports.
The pie charts show distribution of virtual groundwater and

surface water used for production of food transfers. A majority
of Texas’ exporters and Texas rely on groundwater for food
imports. Therefore, groundwater depletion is an important
aspect in considering regional virtual water flow dependencies.
We overlay the PMI map with a layer of groundwater stress in
major groundwater basins, derived from Gleeson et al.58 and

Table 1. Texas’ Top 10 Importing Partners Ranked by Their
PMI Value in a Descending Order Compared with
Observed Incoming Transfers and Respective Ranka

incoming flow PMI PMI rank flow (U.S. tons) flow rank

Texas 3.31 1 3.23 × 107 1
Kansas 1.61 2 1.77 × 107 2
Oklahoma 1.10 3 2.76 × 106 3
Louisiana 0.23 4 9.38 × 105 5
New Mexico −0.05 5 1.19 × 105 11
Indiana −1.59 6 6.60 × 105 6
Missouri −2.17 7 4.06 × 105 7
Tennessee −2.51 8 5.99 × 104 16
Nebraska −2.76 9 1.37 × 106 4
Arizona −2.81 10 6.01 × 104 15

aPositive PMI indicates higher than expected dependency and
negative PMI indicates lower than expected dependency.
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Aqueduct database.59 Groundwater stress represents ground-
water footprint over total aquifer area and is computed by
setting up a water balance between groundwater withdrawal,
recharge, and environmental flows.58 From South Dakota to
Texas, eight states heavily depend on the Ogallala Aquifer as an
important common groundwater source for irrigation. The
Ogallala Aquifer’s current use exceeds natural recharge with
significant decline in Kansas and Texas.66 Scanlon et al.67

estimate that if the current depletion rate continues, then 35%
of the southern plains would not be able to support irrigation
in the next 30 years. Therefore, despite lower water application
intensity for some states, virtual water imports to Texas from
within-state flows and neighbors Kansas, Oklahoma, and New
Mexico may be affected by groundwater depletion in the long
run, especially as pressure on the shared Ogallala Aquifer
increases from population demand and changing climate.68

From a demand side, the possibility of groundwater shortage
can be managed by restructuring existing trade to explore
alternate states that have a higher potential to trade by looking
at negative PMI values. In such cases, states with policies that
support sustainable irrigation can be given a preference to
build a water scarcity-resilient food supply chain. For example,
lighter gray-shaded states such as Alabama, South Carolina,
Florida, Kentucky, and Ohio have lower PMI value, low water
application intensity, and a balanced use of irrigation water
sources, making them potential candidates for increasing trade.
However, the marginal environmental impact of increasing
trade, specifically on water quality in gulf states, would have to
be examined. From a supply side, majority of Ogallala states
have implemented state-level groundwater management plans,
along with some moving beyond conservation and planning for
depletion targets. Jarvis and Wolf69 note that the next set of
Ogallala strategies will require managing adaptation challenges
for all the stakeholders involved. In such cases, the mutual
dependence due to regional trade can act as an incentive for

negotiations toward sustainable management of common
source.
Figure 4 indicates PMI values for embodied GHG emission

transfers to Texas. Each pie chart represents the distribution of

pumping fuels used in every state with all states employing
electricity and diesel-based pumps with a handful using natural
gas (Texas, Oklahoma, Kansas, Nebraska), gasoline- (Penn-
sylvania, Ohio, Rhode Island, New York) and LPG (Nebraska,
Missouri)-based pumps. The size of the pie chart indicates
GHG emission intensity in kg CO2 equivalent per m

3 of water
abstracted. Barring electricity, natural gas-based pumps have
the lowest embodied GHG emission intensity among all four
fuels considered. Life cycle emissions attributable to electricity-
based pumping differ considerably across states due to
differences in regional grid mixes. Apart from electricity, all
the states use diesel-based pumps in some capacity, with
eastern states using diesel pumps on significant acreage. In
addition to fuel mix, pumping energy requirements depend on
other factors such as type of irrigation system (gravity- vs
pressure-based), system pressure, depth to water for lift,
velocity, and pipe losses.70 Contrarily to water intensity for
crops, California, Colorado, Arizona, Arkansas, and Utah have
lower GHG emission intensity per m3 of water withdrawn.
These states primarily use gravity-based irrigation or rely on
lower to medium pressure systems. Many of the Ogallala states,
despite using substantial natural gas in their pumping mix, have
higher GHG emissions per m3 of water withdrawn. This could
be attributed to the high coal-based electricity mix in their grid
(e.g., Kansas, Nebraska, and Oklahoma have more than 60%
coal-based generation), water depth for groundwater pumping,
and use of water-efficient but energy-intensive pressurized
sprinkler systems. High use of diesel- and/or gasoline-based
pumps combined with pressurized irrigation systems could be
contributing to high GHG emission intensity of states such as
Pennsylvania, Ohio, Alabama, and Kentucky.43 These states
represent a clear example of water scarcity versus GHG

Figure 3. PMI values for virtual water transfers to Texas (also
included in inset for clearer visualization). The pie chart indicates
portion of virtual surface and groundwater in food trade. The scale of
pie chart represents total virtual water transfer out of each state
(within-state flows included). The states colored in white represent
absence of virtual water transfer to Texas. The primary groundwater
aquifers of USA are overlaid in the graph with associated groundwater
stress obtained from Gleeson et al. and Aqueduct water risk atlas.58,59

The underlying basemap is from the US Census Data,60 and the figure
is compiled in the ArcGIS software.61

Figure 4. PMI values for embodied GHG emissions in imports to
Texas. The pie chart indicates distribution of acreage using specific
pumping fuel for on-farm irrigation pumps. The size of the pie chart
indicates GHG emission intensity in kg CO2 equivalent per m3 of
water abstracted. The states colored in white represent absence of
GHG transfer to Texas. The underlying basemap is from the US
Census Data,60 and the figure is compiled in the ArcGIS software.61
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emission tradeoff and denote an area of farm conservation
policy focus for improving pumping energy and emission
profile of irrigation by upgrading fuel pumps. As part of
Ogallala conservation efforts, several programs have been
underway since 2008 to reduce irrigation withdrawals and as a
result have also reduced energy requirements of farms,
suggesting that groundwater conservation and irrigation
emission reductions may not be mutually exclusive goals.71

■ DISCUSSION
This work provides a system-level perspective in analyzing
domestic food−energy−water interactions (within regional
transfers and between embodied systems) through interdisci-
plinary methods spanning information theory, graph theory,
water footprint, embodied energy, and emissions quantifica-
tion. We demonstrate the usefulness of considering inter-
actions at a network level to provide a comprehensive
indication of trade dependencies. Using Texas as an example,
we show that major importing partners of Texas by volume
may not rank high in expected trading as expressed here in the
index of PMI values and vice versa. A bilateral trade
relationship consists of an interaction between a dyad, with
both partners playing an equally important role. Ranking
Texas’ exporters by volume only showcases Texas’ dependency
of the transfer but not of its partners. As PMI accounts for the
overall transfer activity and the potential to increase (or
decrease) activity between a dyad, it provides a thorough
accounting of their mutual dependency. This clearly exhibits
the importance of Texas-New Mexico trade connection,
despite being of a lower volume, and reiterates the importance
of also considering weak ties.32

When we compare the visual difference between flow in a
null model and actual trade, the heterogeneous distribution in
trade concertation becomes apparent with a few links/states
dominating the network (Section S3). Another visible trend is
the importance of geographical distance in forming trade
relationships. Our results indicate that distance drives the grain
and animal feed trade preference for Texas, specifically as a
significant portion may be dedicated to providing cost-effective
animal feed for Texas’ sizable cattle industry or for food and
beverage manufacturing. By combining PMI results and a
groundwater stress indicator, we highlight the regional reliance
of Texas’ and neighboring states on Ogallala Aquifer for
irrigation while engaging in substantial transfer among
themselves and discuss alternate potential states with less
stressed irrigation systems. In fact, dependence through
regional trade can serve as a motivation to manage common
water resources and help avoid water allocation disputes such
as the recent one between New Mexico and Texas72 and
between users of Colorado River basin.73 Further, a
considerable geographic variation exists in recharge rates
across the Ogallala Aquifer due to its subsurface hydrology.67

Therefore, our estimates can be improved in the future by
characterizing the portion of domestic food consumption
attributed to nonrenewable groundwater withdrawals from
U.S. aquifers.74

The analysis presented in this work has its limitations. An
important limitation of this work is the FAF dataset’s inability
to trace the final point of consumption (e.g., household
consumption). This would require integration and reconcilia-
tion of a larger scale of datasets to accurately track the supply
chain, such as the recent study of corn supply chain by Smith
et al.75 Additionally, future domestic trade analysis should

involve employing origin tracing algorithms76 used in interna-
tional trade studies to remove re-exports from the data. From a
system-level analysis, we emphasize that no one method is
universally superior over other methods including techniques
such as life cycle assessment, material flow analysis, network
analysis, and so forth. Additionally, we note that while PMI
provides information on structural dependency based on trade
data, it cannot differentiate between a (un)desirable option
based on embodied impacts such as type of water resource,
water scarcity, and fossil fuel used as this information is not
inherently built into snapshot of trade. Therefore, it needs to
be supplemented with footprint approaches and life cycle
assessment methods to provide a complete picture.
Furthermore, we do not account for energy and emissions

associated with off-farm water supply (prevalent in the western
U.S.)77 due to lack of national data, making our estimates
conservative and likely to increase. Therefore, if future policies
internalize the cost of GHG emissions in trade, states may look
for cost-effective and cleaner energy options with natural gas
currently being one of the easily accessible choices. As our
results demonstrate, this may be at odds with other equally
important goals to achieve a sustainable and resilient food
supply. Specific policies have long been in place under the U.S.
Farm Bill to subsidize switching to water-efficient irrigation
systems, but a rebound effect of over-pumping may lead to
water depletion78 and salinization.79 At the same time, the
discussion on FEW nexus should incorporate electric utilities
and authorities that can devise demand-response programs for
farmers to offer electricity at lower prices off-peak and
potentially manage the emissions profile of generators.80−82

Finally, PMI values demonstrate the potential to trade less
(positive PMI) or more (negative PMI) given the existing
network constraints compared to the situation of no
preference. Therefore, it may serve as a valuable policy aid in
building sustainable and resilient food systems by indicating
the overall effect of potential trade (dis)preferences for
diversifying trade partners.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.est.8b07288.

Additional information regarding data sources, code for
PMI, and the modeling approach (PDF)
Additional information regarding cereal grains, feed, and
intensity factors (XLSX)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: bfath@towson.edu (B.D.F.).
*E-mail: khannav@pitt.edu (V.K.).
ORCID
Nemi Vora: 0000-0002-7359-6728
Vikas Khanna: 0000-0002-7211-5195
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research is supported by the National Science Foundation
(award number CBET 1803527). N.V. was supported by the
2017 Young Scientists Summer Program (YSSP) at the

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b07288
Environ. Sci. Technol. 2019, 53, 10941−10950

10948

http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b07288/suppl_file/es8b07288_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.est.8b07288
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b07288/suppl_file/es8b07288_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b07288/suppl_file/es8b07288_si_002.xlsx
mailto:bfath@towson.edu
mailto:khannav@pitt.edu
http://orcid.org/0000-0002-7359-6728
http://orcid.org/0000-0002-7211-5195
http://dx.doi.org/10.1021/acs.est.8b07288


International Institute for Applied Systems Analysis with the
financial assistance provided by Ferrero Trading Lux S.A.
Opinions, findings, or recommendations expressed in this
material do not necessarily reflect the views of these
organizations.

■ REFERENCES
(1) Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions
between sustainable development goals. Nature 2016, 534, 320−322.
(2) Liu, J.; Hull, V.; Godfray, H. C. J.; Tilman, D.; Gleick, P.; Hoff,
H.; Pahl-Wostl, C.; Xu, Z.; Chung, M. G.; Sun, J.; Li, S. Nexus
approaches to global sustainable development. Nat. Sustainability
2018, 1, 466.
(3) D’Odorico, P.; Davis, K. F.; Rosa, L.; Carr, J. A.; Chiarelli, D.;
Dell’Angelo, J.; Gephart, J.; MacDonald, G. K.; Seekell, D. A.; Suweis,
S.; Rulli, M. C. The global food-energy-water nexus. Rev. Geophys.
2018, 56, 456−531.
(4) Scanlon, B. R.; Ruddell, B. L.; Reed, P. M.; Hook, R. I.; Zheng,
C.; Tidwell, V. C.; Siebert, S. The food-energy-water nexus:
Transforming science for society. Water Resour. Res. 2017, 53,
3550−3556.
(5) Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L.
Understanding and managing the food-energy-water nexus−oppor-
tunities for water resources research. Adv. in Water Resour. 2018, 111,
259−273.
(6) Walker, R. V.; Beck, M. B.; Hall, J. W.; Dawson, R. J.; Heidrich,
O. The energy-water-food nexus: Strategic analysis of technologies for
transforming the urban metabolism. J. Environ. Manage. 2014, 141,
104−115.
(7) Yang, Y. C. E.; Wi, S.; Ray, P. A.; Brown, C. M.; Khalil, A. F. The
future nexus of the Brahmaputra River Basin: climate, water, energy
and food trajectories. Global Environ. Change 2016, 37, 16−30.
(8) Boyer, D.; Ramaswami, A. What Is the Contribution of City-
Scale Actions to the Overall Food System’s Environmental Impacts?:
Assessing Water, Greenhouse Gas, and Land Impacts of Future Urban
Food Scenarios. Environ. Sci. Technol. 2017, 51, 12035−12045.
(9) White, D. J.; Hubacek, K.; Feng, K.; Sun, L.; Meng, B. The
Water-Energy-Food Nexus in East Asia: A tele-connected value chain
analysis using inter-regional input-output analysis. Appl. Energy 2018,
210, 550−567.
(10) Vora, N.; Shah, A.; Bilec, M. M.; Khanna, V. Food-Energy-
Water Nexus: Quantifying Embodied Energy and GHG emissions
from Irrigation through Virtual Water Transfers in Food Trade. ACS
Sustainable Chem. Eng. 2017, 2119.
(11) Schaible, G.; Aillery, M. Water conservation in irrigated
agriculture: Trends and challenges in the face of emerging demands.
USDA-ERS Econ. Inf. Bull. 2012, 1−67.
(12) Maupin, M. A.; Kenny, J. F.; Hutson, S. S.; Lovelace, J. K.;
Barber, N. L.; Linsey, K. S. Estimated use of water in the United States in
2010; US Geological Survey: 2014, 2330−5703.
(13) Sands, R.; Westcott, P. C.; Price, M.; Beckman, J.; Leibtag, E.;
Lucier, G.; McBride, W.; McGranahan, D.; Morehart, M.; Roeger, E.
Impacts of higher energy prices on agriculture and rural economies.
United States Department of Agriculture: 2011.
(14) Lin, X.; Dang, Q.; Konar, M. A network analysis of food flows
within the United States of America. Environ. Sci. Technol. 2014, 48,
5439−5447.
(15) Hirschman, A. O. National power and the structure of foreign
trade; Univ of California Press: 1980; Vol. 105.
(16) Gasiorowski, M.; Polachek, S. W. Conflict and interdepend-
ence: East-West trade and linkages in the era of detente. J. Conflict
Resolut. 1982, 26, 709−729.
(17) Dixon, W. J. Trade concentration, economic growth, and the
provision of basic human needs. Soc. Sci. Q. 1984, 65, 761.
(18) Qu, S.; Liang, S.; Konar, M.; Zhu, Z.; Chiu, A. S. F.; Jia, X.; Xu,
M. Virtual Water Scarcity Risk to the Global Trade System. Environ.
Sci. Technol. 2018, 52, 673−683.

(19) Dalin, C.; Wada, Y.; Kastner, T.; Puma, M. J. Groundwater
depletion embedded in international food trade. Nature 2017, 543,
700−704.
(20) Marston, L.; Konar, M.; Cai, X.; Troy, T. J. Virtual groundwater
transfers from overexploited aquifers in the United States. Proc. Natl.
Acad. Sci. 2015, 112, 8561−8566.
(21) Allan, J. Fortunately there are substitutes for water otherwise our
hydro-political futures would be impossible; Overseas Development
Administration: London, 1993; Vol. 13, p 26.
(22) Fader, M.; Gerten, D.; Krause, M.; Lucht, W.; Cramer, W.
Spatial decoupling of agricultural production and consumption:
quantifying dependences of countries on food imports due to
domestic land and water constraints. Environ Res. Lett. 2013, 8,
No. 014046.
(23) Suweis, S.; Rinaldo, A.; Maritan, A.; D’Odorico, P. Water-
controlled wealth of nations. Proc. Natl. Acad. Sci. 2013, 110, 4230−
4233.
(24) D’Odorico, P.; Carr, J.; Laio, F.; Ridolfi, L. Spatial organization
and drivers of the virtual water trade: A community-structure analysis.
Environ. Res. Lett. 2012, 7, No. 034007.
(25) Dang, Q.; Lin, X.; Konar, M. Agricultural virtual water flows
within the United States. Water Resour. Res. 2015, 51, 973−986.
(26) Fang, D.; Chen, B. Ecological network analysis for a virtual
water network. Environ. Sci. Technol. 2015, 49, 6722−6730.
(27) Kharrazi, A.; Rovenskaya, E.; Fath, B. D. Network structure
impacts global commodity trade growth and resilience. PLoS One
2017, 12, No. e0171184.
(28) Dupas, M.-C.; Halloy, J.; Chatzimpiros, P. Time dynamics and
invariant subnetwork structures in the world cereals trade network.
PLoS One 2019, 14, No. e0216318.
(29) Gephart, J. A.; Pace, M. L. Structure and evolution of the global
seafood trade network. Environmental Research Letters 2015, 10,
125014.
(30) Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.;
Rodriguez-Iturbe, I., Water for food: The global virtual water trade
network. Water Resour. Res. 2011, 47, ().
(31) Salmoral, G.; Yan, X. Food-energy-water nexus: A life cycle
analysis on virtual water and embodied energy in food consumption
in the Tamar catchment, UK. Resources, Conservation and Recycling
2018, 133, 320−330.
(32) Granovetter, M. S. The strength of weak ties. American journal
of sociology 1973, 78, 1360−1380.
(33) Fagiolo, G.; Squartini, T.; Garlaschelli, D. Null models of
economic networks: the case of the world trade web. Journal of
Economic Interaction and Coordination 2013, 8, 75−107.
(34) Church, K. W.; Hanks, P. Word association norms, mutual
information, and lexicography. Computational linguistics 1990, 16, 22−
29.
(35) Hwang, H.-L.; Hargrove, S.; Chin, S.-M.; Wilson, D. W.;
Davidson, D. Freight Analysis Framework Verson 4-Building the FAF4
Regional Database: Data Sources and Estimation Methodologies; Oak
Ridge National Laboratory (ORNL), Oak Ridge, TN (United States):
2016.
(36) FAO, Food balance sheets. In 2012.
(37) O’Donoghue, E.; Hansen, J., USDA Agricultural Projections to
2026. 2017.
(38) Sargento, A. L.; Ramos, P. N.; Hewings, G. J. Inter-regional
trade flow estimation through non-survey models: An empirical
assessment. Economic Systems Research 2012, 24, 173−193.
(39) Marston, L.; Konar, M. Drought impacts to water footprints
and virtual water transfers of the Central Valley of California. Water
Resour. Res. 2017, 53, 5756−5773.
(40) Taptich, M. N.; Horvath, A. Freight on a Low-Carbon Diet:
Accessibility, Freightsheds, and Commodities. Environ. Sci. Technol.
2015, 49, 11321−11328.
(41) Heller, M. C.; Keoleian, G. A. Exploring a water/energy trade-
off in regional sourcing of livestock feed crops. Environ. Sci. Technol.
2011, 45, 10619−10626.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b07288
Environ. Sci. Technol. 2019, 53, 10941−10950

10949

http://dx.doi.org/10.1021/acs.est.8b07288


(42) Weber, C. L.; Matthews, H. S. Food-miles and the relative
climate impacts of food choices in the United States. Environ. Sci.
Technol. 2008, 42, 3508−3513.
(43) USDA, Farm and Ranch Irrigation Survey. In 2013.
(44) USDA;, Census of Agriculture. In 2012.
(45) Energy Information Administration, U. S. Monthly Energy
Review 2014.
(46) Jungbluth, N.; Frischknecht, R., Cumulative energy demand.
LCIA Implementation. CD ROM. Final report ecoinvent 2000, ().
(47) Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.;
Boschung, J.; Nauels, A.; Xia, Y.; Bex, B.; Midgley, B., IPCC, 2013:
climate change 2013: the physical science basis. Contribution of working
group I to the fifth assessment report of the intergovernmental panel on
climate change. 2013.
(48) Ulanowicz, R. E.; Goerner, S. J.; Lietaer, B.; Gomez, R.
Quantifying sustainability: resilience, efficiency and the return of
information theory. Ecological complexity 2009, 6, 27−36.
(49) Bullinaria, J. A.; Levy, J. P. Extracting semantic representations
from word co-occurrence statistics: A computational study. Behav.
Res. Methods 2007, 39, 510−526.
(50) Recchia, G.; Jones, M. N. More data trumps smarter
algorithms: Comparing pointwise mutual information with latent
semantic analysis. Behav. Res. Methods 2009, 41, 647−656.
(51) Halliday, M. A., Lexis as a linguistic level. In memory of JR Firth
1966, 148, 162.
(52) Goerner, S. J.; Lietaer, B.; Ulanowicz, R. E. Quantifying
economic sustainability: Implications for free-enterprise theory, policy
and practice. Ecological Economics 2009, 69, 76−81.
(53) Kharrazi, A.; Fath, B. D. Measuring global oil trade
dependencies: An application of the point-wise mutual information
method. Energy Policy 2016, 88, 271−277.
(54) NASS Nebraska state agriculture overview. https://www.nass.
usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=
NEBRASKA
(55) Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.;
Horsman, D.; Jones, S. J.; Marra, M. A. Circos: an information
aesthetic for comparative genomics. Genome Res. 2009, 19, 1639−
1645.
(56) Davis, K. F.; Seveso, A.; Rulli, M. C.; D’Odorico, P. Water
savings of crop redistribution in the United States. Water 2017, 9, 83.
(57) Davis, K. F.; Rulli, M. C.; Seveso, A.; D’Odorico, P. Increased
food production and reduced water use through optimized crop
distribution. Nat. Geosci. 2017, 10, 919−924.
(58) Gleeson, T.; Wada, Y.; Bierkens, M. F.; van Beek, L. P. Water
balance of global aquifers revealed by groundwater footprint. Nature
2012, 488, 197−200.
(59) Gassert, F.; Landis, M.; Luck, M.; Reig, P.; Shiao, T., Aqueduct
global maps 2.0. Water Resources Institute (WRI): Washington, DC
2013, 202011−2012.
(60) TIGER/Line Shapefile, 2016, nation, U.S., Current County and
Equivalent National Shapefile. In US Census Bureau, Ed. 2016.
(61) ESRI, R., ArcGIS desktop: release 10. Environmental Systems
Research Institute, CA 2011.
(62) Bergstrand, J. H. The gravity equation in international trade:
some microeconomic foundations and empirical evidence. The review
of economics and statistics 1985, 474−481.
(63) Anderson, J. E. A theoretical foundation for the gravity
equation. The American Economic Review 1979, 69, 106−116.
(64) Tamea, S.; Carr, J.; Laio, F.; Ridolfi, L. Drivers of the virtual
water trade. Water Resour. Res. 2014, 50, 17−28.
(65) OECD, Drying Wells, Rising Stakes:Towards Sustainable
Agricultural Groundwater Use. Paris, 2015.
(66) McGuire, V., Water-level changes in the High Plains aquifer,
predevelopment to 2007, 2005−06, and 2006−07. Publications of the
US Geological Survey 2009, 17.
(67) Scanlon, B. R.; Faunt, C. C.; Longuevergne, L.; Reedy, R. C.;
Alley, W. M.; McGuire, V. L.; McMahon, P. B. Groundwater
depletion and sustainability of irrigation in the US High Plains and

Central Valley. Proceedings of the national academy of sciences 2012,
109, 9320−9325.
(68) Little, J. B., The Ogallala aquifer: saving a vital US water source.
Scientific American, March 2009.
(69) Jarvis, T.; Wolf, A. Managing water negotiations and conflicts in
concept and in practice. Transboundary Water Management: Principles
and Practice 2010, 125−141.
(70) Kahn, E. Characterization of Uncertainty and Variability of
Freshwater Consumption Impacts in Life Cycle Assessment. Ph.D.
Dissertation, University of Washington, 2013.
(71) Gollehon, N.; Winston, B., Groundwater irrigation and water
withdrawals: the Ogallala aquifer initiative. USDA Economic Series
2013, 15.
(72) Tory, S., A Southwest water dispute reaches the Supreme
Court. High Country News Jan. 23, 2018.
(73) Rothberg, D., States accuse Arizona water agency of gaming
Lake Mead, undermining Colorado River drought plans. The Nevada
Independent April 17, 2018, 2018.
(74) Wada, Y.; Beek, L.; Bierkens, M. F., Nonsustainable
groundwater sustaining irrigation: A global assessment. Water Resour.
Res. 2012, 48, ().
(75) Smith, T. M.; Goodkind, A. L.; Kim, T.; Pelton, R. E.; Suh, K.;
Schmitt, J. Subnational mobility and consumption-based environ-
mental accounting of US corn in animal protein and ethanol supply
chains. Proceedings of the National Academy of Sciences 2017, 114,
E7891−E7899.
(76) Kastner, T.; Kastner, M.; Nonhebel, S. Tracing distant
environmental impacts of agricultural products from a consumer
perspective. Ecological Economics 2011, 70, 1032−1040.
(77) Tidwell, V. C.; Moreland, B.; Zemlick, K. Geographic footprint
of electricity use for water services in the Western US. Environ. Sci.
Technol. 2014, 48, 8897−8904.
(78) Nixon, R., Farm Subsidies Leading to More Water Use. The New
York Times June 6, 2013.
(79) Schoups, G.; Hopmans, J. W.; Young, C. A.; Vrugt, J. A.;
Wallender, W. W.; Tanji, K. K.; Panday, S. Sustainability of irrigated
agriculture in the San Joaquin Valley, California. Proceedings of the
National Academy of Sciences 2005, 102, 15352−15356.
(80) Siler-Evans, K.; Azevedo, I. s. L.; Morgan, M. G. Marginal
emissions factors for the US electricity system. Environ. Sci. Technol.
2012, 46, 4742−4748.
(81) Chambers, A.; Kline, D.; Vimmerstedt, L.; Diem, A.; Dismukes,
D.; Mesyanzhinov, D., Comparison of methods for estimating the NOx.
2005.
(82) Marks, G.; Wilcox, E.; Olsen, D.; Goli, S. Opportunities for
demand response in California agricultural irrigation: A scoping study;
Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States): 2013.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b07288
Environ. Sci. Technol. 2019, 53, 10941−10950

10950

https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
http://dx.doi.org/10.1021/acs.est.8b07288

