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ABSTRACT: Organic aerosol (OA) is a complex mixture of
compounds with diverse elemental and structural features, and its
composition affects its health and environmental impacts. A detailed
speciation of the functional group distribution in OA is important for
constraining atmospheric reaction pathways and products, evaluating
chemical mechanisms and models, and understanding OA impacts.
We used high-resolution tandem mass spectrometry to perform a
nontargeted analysis of OA functional groups from three diverse
ambient sites across times of day and seasons. We observed a range
of oxygen-, nitrogen-, and/or sulfur-containing functional groups,
including oxygenates such as hydroxyls (29−69%) and carboxylic
acids (19−59%), that dominated the functional group distribution
and that may participate in hydrogen bonding and thus impact the
chemical and physical properties of OA (percentages indicate average
ion abundance contributions across campaigns). We also observed esters (7−39%) and ethers (13−42%) that suggest the
importance of oligomerization. On average, organonitrates represented only 12% of identified nitrogen-containing groups and
organosulfates represented 21% of identified sulfur-containing groups, while we observed many other nitrogen- and/or sulfur-
containing structures that were important contributors to OA composition (e.g., amines, imines, nitrophenols, and sulfides). Most
compounds (81%) were multifunctional and likely multigenerational oxidation products, which typically contained two to five
functional groups in total.

■ INTRODUCTION

Atmospheric particulate matter is known to have significant
effects on human health and on global climate forcing.1−3

Organic aerosol (OA) represents 20−90% of atmospheric
particulate matter1 and consists of a complex mixture of tens of
thousands of compounds.4 The elemental and structural
composition of these organic compounds drives their health
and environmental impacts. For example, functional groups
like organic peroxides are suspected to form reactive oxygen
species in the body that may cause cellular oxidative stress.5

Functional groups that increase a compound’s hygroscopicity
(e.g., hydroxyl and carboxylic acid) may increase a particle’s
propensity to act as a cloud condensation nucleus.5

Characterizing the functional group distribution of OA can
help in constraining reaction pathways and products in the
atmosphere,6,7 evaluating models, and ultimately improving
our understanding of the impacts of OA. Several methods are
used to measure functional groups in atmospheric samples,
including Fourier transform infrared spectroscopy
(FTIR),6,8−10 nuclear magnetic resonance (NMR),11−13

spectrophotometric methods,14 and tandem mass spectrometry
(MS/MS).7,15,16

FTIR and NMR are widely used. FTIR has low time
resolution and cannot provide compound-specific information
for components of a complex mixture.3,16 However, it is
capable of analyzing ∼80% of OA mass and accurately
quantifying several of the most atmospherically relevant
functional groups (e.g., hydroxyl and carbonyl).3 NMR’s
strengths are similar to FTIR’s, but there are challenges
associated with high detection limits and identifying functional
groups in complex mixtures.5,7,15

Several studies use MS/MS, often with derivatization to
improve compound detection. This limits these studies to
functional groups that can be derivatized in a specific and
reliable manner (e.g., hydroxyl, carbonyl, and carboxylic acid),
without causing unwanted side reactions.5 Many past studies
that used MS/MS have sought to discern oxidation pathways
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and products linked to a targeted set of precursors or
functional groups.17−23

Here, we perform a nontargeted analysis of OA functional
groups across three ambient sites using liquid chromatography
with electrospray ionization and high-resolution quadrupole
time-of-flight tandem mass spectrometry (LC-ESI-Q-TOF)
without prior derivatization. The objectives of this work are
(1) to evaluate the distribution of oxygen-, nitrogen-, and
sulfur-containing functional groups in OA collected at three
diverse field sites (urban inland, urban coastal, and forested),
(2) to compare the functional group distribution across times
of day, seasons, and locations, and (3) to compare our results
to the current understanding of primary and secondary sources
of these functional groups. The broader goal of this study’s
molecular-level data and OA composition analysis is to inform
laboratory, ambient, and modeling research that aims to study
the evolution of complex OA mixtures.

■ MATERIALS AND METHODS
OA samples were collected at three ambient sites. Summer
24 h PM2.5 samples were collected in a northern Michigan
forest (henceforth “forest”). Daytime and nighttime summer
and winter PM10 samples were collected near downtown
Atlanta, GA, and on the Long Island Sound coast of
Connecticut (henceforth “LIS”) following previously described
procedures.24 Additional details are provided as Supporting
Information (Supporting Information S1), including a
discussion of solvent selection for filter extraction and analysis
(Supporting Information S2).
All samples were analyzed by LC-ESI-Q-TOF, in both MS

mode (TOF only) and MS/MS mode (tandem MS mode).
MS mode instrument conditions, data processing, and quality
control have been previously described.24 Ions detected in MS
mode that passed all stringent blank subtraction and peak and
formula QC/QA criteria24 were exclusively targeted for MS/
MS using their m/z and retention time, in both positive and
negative ionization mode. Both positive and negative mode
data are shown here; when a compound was ionized in both
modes, its abundance in each mode was averaged and it was
included in the functional group tally only once. For detailed
speciation of these complex mixtures, we used an equivalent
ionization efficiency across compounds (Supporting Informa-
tion S3). The filter extraction and sample ionization methods
used here were tailored for functionalized compounds; thus,
analyses were focused on functionalized primary organic
aerosol (POA) and secondary organic aerosol (SOA).24

MS/MS spectra were imported to SIRIUS with CSI:Finger-
ID for molecular structure prediction. We selected this
software because of its strong performance at small-molecule
identification in past studies25−27 and in our evaluation with
reference standards and known structures (discussed in detail
in Supporting Information S4).
In SIRIUS, we limited ionization adducts to [M + H]+, [M +

Na]+, and [M − H]− , elemental composition to
C3−60H4−122O0−20N0−3S0−1, and mass tolerance to 7 ppm
(Supporting Information S4).24 Finally, we compiled the top-
scoring candidate structure for each compound and used the
APRL Substructure Search Program (developed by Ruggeri
and Takahama) to enumerate atmospherically relevant func-
tional groups (Figure S1) for which SMARTS patterns existed
and performed accurately and reliably when tested with known
structures.28 In our analyses, the top-scoring structure was
included in the functional group tally. However, we observed

that the software generally produced a consistent functional
group distribution across top-scoring hits, typically with only
functional group position varying between the top candidates
(i.e., the top candidates tended to be positional isomers, which
are very challenging to distinguish with automated structural
identification techniques25). See Figure S2 for a summary of
methods and Table S14 for a summary of sampling campaigns.
The goal of this work was not to predict exact structures

(which is not possible for large complex mixtures in a
nontargeted analysis without additional information). Instead,
we relied on quality-controlled accurate ion masses from high-
resolution MS analysis for MS/MS data acquisition and
focused on functional group identification (Supporting
Information S4).
This multicampaign study complements past FTIR and

NMR studies; while in some respects, these results are less
quantitative than those of past FTIR and NMR studies due to
challenges with predicting exact ionization efficiency for
individual multifunctional compounds, they leverage the
chemical detail from MS/MS analysis to provide molecular-
level functional group composition data for a broad set of
oxygen-, nitrogen-, and sulfur-containing features across
compounds in complex OA mixtures. These methods are
synergistic, and a combination of them used across ambient
and laboratory platforms provides a powerful tool for
improving our understanding of OA structural composition.

■ RESULTS AND DISCUSSION
We observed a diverse range of oxygen-, nitrogen-, and/or
sulfur-containing functionalities (Figure 1) and carbon back-
bone structures (abstract graphic). Many of these functional
groups have been discussed in smaller subsets in past studies
(referenced below). Here, we analyzed the relative prevalence
of 30 key functional groups together, using molecular-level
MS/MS data to evaluate changes in functional group
distribution across times of day, seasons, and sites (Figure
2). These OA functional groups were formed by gas-phase
chemistry with subsequent aerosol uptake, by aqueous-phase
chemistry (given the prevalence of aerosol liquid water in the
Eastern United States),29 and/or potentially by other
condensed-phase chemistry. Unless otherwise specified, results
discussed here are weighted by ion abundance.

Oxygenated Hydrogen-Bonding Groups Dominate
the Functional Group Distribution. Figure 1 includes many
oxygen- and nitrogen-containing functional groups that are
intermolecular hydrogen bond donors and/or acceptors (e.g.,
hydroxyls, carbonyls, carboxylic acids, esters, amines, imines,
and amides). Here, we observed the dominance of hydroxyls
and carboxylic acids across sites, which may participate in
hydrogen bonding and thus impact aerosol viscosity (and
phase state)32 and thermodynamic mixing behavior.33

Hydroxyl Groups. Hydroxyl groups were prominent across
all campaigns, consistent with important known oxidation
pathways (e.g., CC OH• addition, isomerization, autox-
idation, and RO2

• + RO2
• reactions).3 In addition, hydrolysis

reactions at sites with high aerosol liquid water concentrations
may increase hydroxyl group prevalence (e.g., via hydrolysis of
carbonyls9−41 or organonitrates34 to yield the corresponding
alcohol). Variance in hydroxyl group contribution occurred
between sites. At the LIS site, hydroxyl groups ranged from
53% to 69% relative prevalence (Figure 1B), while they
remained below 40% at the Atlanta and forested sites (Figure
1A,C) with the exception of Atlanta winter daytime results.
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Figure 1. Relative abundance of organic aerosol functional groups across times of day, seasons, and sites, where the percentage of observed
compounds containing one or more of each functional group is shown weighted by ion abundance. Campaign averages are shown for (A) the
Atlanta summer and winter campaigns (PM10), (B) the LIS summer and winter campaigns (PM10), and (C) the forest campaign (PM2.5). Insets
provide a magnified view of less prevalent functional groups. These are the results of a nontargeted MS/MS analysis, in which we did not explicitly
target any particular known or suspected oxidation products. Tables S1−S4 show associated relative prevalence data. For comparison, results
tabulated by functional group occurrence (i.e., unweighted by ion abundance) are shown in Figure S3. On average, differences in the relative
prevalence of groups between occurrence and abundance-weighted approaches were small (2 ± 3%), and most abundance-weighted results were
slightly lower than the corresponding results by occurrence (i.e., 63%, 31%, and 6% of abundance-weighted results were lower than, higher than, or
equal to those by occurrence, respectively). Results for peroxides, hydroperoxides, and highly reactive functional groups are lower limits due to
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The LIS site was meters from the ocean; the increased
prevalence of hydroxyl groups may suggest the influence of
primary carbohydrates from dissolved organic carbon in
seawater (from bubble bursting at the surface, which could
result in hydroxyl and ether groups)6 or chemical processing
that favors hydroxylation during overwater transport to the
site. Polyols were important across sites; they contributed on
average 27 ± 14% and as much as 50−51% at the LIS site in
the summer.
Carbonyls and Carboxylic Acids. While ketones and

aldehydes are formed by chemical pathways similar to those
of alcohols,3 they combined to total only 9−24% here, perhaps
due to an increased importance of isomerization,3,35 aqueous-
phase hydrolysis (see Hydroxyl Groups),36−38 and/or the
relative importance of OH• and NO3

• oxidation (which may
produce carbonyls)3,39 versus ozonolysis (which tends to
produce carboxylic acids).3,40 Carboxylic acids were prominent
at the Atlanta site in the summer, where they contributed more
during the day (59%) than at night (39%). Two prominent
formation pathways include gas-phase ozonolysis and aqueous-
phase OH•-initiated oxidation under high-NOx conditions.38

Ozone may also be an important oxidant at the LIS site, where
ozone concentrations are high in the summer due to precursor
transport from New York City and land−sea interactions.41

Lower carboxylic acid prevalence at the LIS site (19−28%)
compared to that in Atlanta (Figure 2E and Figure S7E) may
be related to oligomerization at the LIS site (see Evidence for
Oligomerization Processes).
Prevalence of Nitrogen- and Sulfur-Containing Func-

tional Groups beyond Organonitrates and Organo-
sulfates. While organonitrates and organosulfates are
prominent in OA, we observed 88% of nitrogen and 79% of
sulfur to exist in other functional groups (Figure S18). This
highlights the diversity in sources and chemistry of nitrogen-
and/or sulfur-containing compounds and underlines the need
to consider the breadth of heteroatom-containing compounds
and their formation pathways in future studies.
Organonitrates. Organonitrates are ubiquitous in the

atmosphere.39 These are formed by NO3
• oxidation at night

or by reaction with OH• and then NO during the day (i.e.,
RO2

• + NO).39,42−44 Past measurements of organonitrates in
the southeast United States reported 3−12% organonitrate
prevalence in PM1 OA during the summer and ≤25% in
winter.39,45,46 Consistent with past results,45−47 we observed a
nighttime PM10 contribution of 10−11% in Atlanta, versus 1−
6% during the day.
At the LIS site across seasons, the relative prevalence of

organonitrates was 3−6% and generally slightly greater during
the day. While this diel trend is opposite to that commonly
observed in the southeast United States, NOx concentrations at
the LIS site in the summer and winter were low (∼1 ± 2 and
4 ± 6 ppb, respectively, versus ∼15 and ∼50 ppb, respectively,
near Atlanta45), which could increase the importance of

daytime RO2
• + NO pathways versus nighttime NO3

•

pathways at the LIS site.
Organonitrates at the forested site represented 7% of PM2.5

abundance, similar to past estimates of 9% of PM1 OA at a
Colorado forested site (BEACHON-RoMBAS).39 While NOx
concentrations in the forest were low (median daytime [NO]
of ≈23 ppt48), BVOCs like isoprene and monoterpenes are
known to be major contributors to particulate organonitrates
via RO2

• + NO or NO3
• pathways.39,42,43,49

Our reported contributions of organonitrates may be
underestimated due to hydrolysis on filters during sampling.
Primary/secondary organonitrates are relatively stable against
hydrolysis, in contrast with tertiary organonitrates that
hydrolyze in minutes to hours depending on pH (filter
samples were collected over 8 or 23 h).34,39,50−56 In addition,
the fraction of organonitrates that can undergo hydrolysis
varies and is larger for OH•-derived than for NO3

•-derived
organonitrates.55 As mentioned in Hydroxyl Groups, organo-
nitrate hydrolysis may slightly increase the hydroxyl group
contribution.

Amines. Amines were important across all campaigns,
similar to previously reported contributions of ∼5−20% at a
range of ambient sites.6,8,12,57−60 Mechanisms have been
proposed for amine formation via reaction with atmospheric
ammonia61 and for the reaction of monoterpene-derived
oxidation products with small gas-phase amines to yield a
variety of nitrogen- and oxygen-containing products (where
the amine replaces a carbonyl or acid on the existing oxidation
product and is reported to occur with other carbonyl/acid
groups on multifunctional compounds).62 Here, we observed
23 ± 8% of amines paired with carboxylic acids and 5 ± 3%
paired with carbonyls (Figures S8−S10 and Tables S5−S13).
Amine contributions were notable at each site (11−28%),
while carbonyl contributions remained relatively low (9−24%).
Together, this could suggest amine replacement of carbonyls to
yield nitrogen-containing (and potentially oxygen-containing)
structures in the ambient atmosphere.61,62

We observed an increased amine contribution at night in
Atlanta and in the summer LIS data compared to during the
day (Figures 1A,B and 2A,B); this may be driven by a buildup
of primary emissions in the nocturnal boundary layer and/or
by chemical reactions that depleted daytime amine concen-
trations (e.g., via photolysis, reaction with OH• in the presence
of NOx,

63 reaction with O3,
64 reaction with organic acids to

form amides,65,66 reactions with carbonyls to form imines and
enamines,62,67−69 and multistep ozonolysis pathways that may
yield organonitrites and organonitrates69,70).

Other Nitrogen-Containing Groups. Across all sites, we
observed contributions of imines (1−13%) and amides (0.1−
6%), which may form when amines/ammonia react with
carbonyls or acids, respectively (see Amines). Nitro/nitro-
phenol groups were observed at multiple sites and can be
formed chemically by aqueous-phase nighttime nitration of
catechols by HNO2

71 and by gas-phase reactions of aromatics

Figure 1. continued

possible degradation or transformation on the filter surface during sampling, during filter storage or extraction, or during MS analysis.30 (D) Eighty-
one percent of compounds observed across all campaigns were multifunctional and contained two to five functional groups. This figure shows the
average distribution of functional group occurrence by carbon number; results for each individual campaign are shown in Figures S4−S6. Past work
modeling aged urban and biogenic OA shows a similar range of carbon numbers and degree of functionalization, though in our ambient data we
observe a fairly even degree of functionalization across carbon numbers, while modeled data show a larger contribution from more functionalized
compounds with fewer carbon atoms.31
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Figure 2. Select comparisons of times of day, seasons, and sites, showing the percent relative prevalence of frequently occurring functional groups
(with >1% relative prevalence, weighted by abundance). These data are average relative prevalence values across each campaign, weighted by ion
abundance. Points above the 1:1 line indicate a greater prevalence during the sampling period described on the y-axis, while points below the 1:1
line indicate a greater prevalence during the sampling period described on the x-axis. Prominent diel variations existed for some functional groups
but were subtle for others, while greater differences existed seasonally and geographically. Additional relative prevalence visual comparisons are
shown in Figure S7.
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with OH• and subsequent NO2 addition (whose products peak
at night and partition to the particle phase at low temper-
atures).72,73 While we observed minimal nitro/nitrophenol
group contributions in the forest where NOx concentrations
were low, we observed notable contributions in Atlanta and
especially LIS winter nighttime samples, perhaps due to a
combination of NOx emissions with aqueous- and/or gas-
phase chemistry (along with low temperatures and thus
increased partitioning of gas-phase products to the particle
phase). Nitrophenols can then undergo heterogeneous
oxidation by OH• and photolysis during the day, decreasing
their daytime prevalence.72−75 Nitro/nitrophenol groups may
also be directly emitted in diesel exhaust, from wood
combustion, and from consumer product solvents;7,76

however, their prevalence here in urban air/outflow warrants
further study of their ambient formation under dark, wet
conditions given that nitrophenols have well-known health and
environmental impacts.73

Organosulfates and Other Sulfur-Containing Groups. We
observed an organosulfate prevalence of 1−8% of PM
abundance across sites. In the southeast United States,
organosulfates have been reported at 15.5% of PM2.5 organic
carbon in Atlanta (in 2015) and 7.3% at one rural forested
location (in 2013).77 Our results are similar to National Park
IMPROVE estimates of an upper bound contribution of 5−
10% organosulfates to total organic mass, with a range of
values across sites and seasons.78 Contributions at the LIS site,
where SO2 concentrations were low (<1 ppb), increased from
summer (2−3%) to winter (7−8%). This may be driven by a
slight increase in SO2 concentration and thus the concen-
tration of the organosulfate precursor H2SO4 in winter.79 On
average, organosulfates represented 21% of all sulfur-
containing groups; the remaining 79% included sulfones,
sulfonates,77,80−82 sulfonic acids,82,83 sulfonamides, sulfides,
and sulfinic acids.83

Evidence for Oligomerization Processes. While esters
and ethers have diverse direct sources, their presence may
suggest that oligomerization processes are important at these
sites, particularly at the LIS site (7−39% esters and 27−42%
ethers).20,84−88 Aged OA sampled downwind of urban areas
(e.g., New York City) may be enriched with esters and thus
correspondingly depleted of carboxylic acids (and possibly
hydroxyls, if the combining compounds do not contain
additional hydroxyls, which is unlikely on the basis of polyol
prominence).6 Also, past work has linked increased prevalence
of ethers along with hydroxyls to oligomerization reactions in
wet aerosol (both prominent at the LIS site (Figure 1)).87

These esters and ethers tended to occur in multifunctional
compounds (Figures S8−S10) with low or extremely low
volatility (Figure S12) and a molecular weight consistent with
the mass range of terpene-derived SOA dimers (315 and 336
amu, respectively (Figure S11)),89 supporting the case that
these functional groups occurred due to oligomerization
(versus direct emissions).
Multifunctional Compounds Highlight a Significant

Degree of Chemical Processing. Across all campaigns, an
average of 81% of compounds were multifunctional (Figure 1D
and Figure S13); the fraction of compounds at all sites with
one (19 ± 7%) or two (26 ± 7%) functional groups suggests
that only a subset of functionalized OA could be the result of
one or two generations of oxidation. This highlights the degree
to which this OA is aged and was particularly notable for the
LIS summertime samples (89% multifunctional (Figure S13)).

Compounds containing oxygen, nitrogen, and sulfur
functionalities (CHONS) are of note, as their presence has
been previously reported,24,90−95 though little is known about
this compound class. While we observed a few functional
groups that contained both nitrogen and sulfur (e.g.,
sulfonamides (0.2−6%), some azoles (0.1−3%)), CHONS
compounds tended to be multifunctional with a combination
of oxygen-, nitrogen-, and/or sulfur-containing features
(Figures S8−S10). An analysis of survival yield to evaluate
parent ion stability96−98 showed that in general, multifunc-
tional compounds tended to fragment more readily than
monofunctional compounds (Figures S14−S16).
In summary, we characterized the diversity of multifunc-

tional compounds at three ambient sites; we observed the
dominance of hydroxyl and carboxylic acid groups, notable
contributions from esters and ethers that suggest the
importance of oligomerization, functional groups that suggest
the prominence of aqueous processing (e.g., nitrophenol,
prominence of hydroxyl groups relative to carbonyls), and a
variety of nitrogen- and sulfur-containing groups beyond
organonitrates and organosulfates. These molecular-level
measurements enable a detailed investigation of the chemical
structures in ambient complex OA mixtures, including an
analysis of co-occurring functional groups (e.g., Figures S8−
S10). These results and data will help inform future studies
across ambient, laboratory, and modeling platforms, will help
constrain chemical oxidation pathways and resulting OA
properties (e.g., phase state99,100) in the atmosphere, and will
provide additional bases for evaluating chemical models that
aim to simulate OA composition across multiple generations of
oxidation.
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SIRIUS 4: a rapid tool for turning tandem mass spectra into
metabolite structure information. Nat. Methods 2019, 16, 299−302.
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