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ABSTRACT

Most previous studies concerning process flexibility designs have focused on expected sales and
demand uncertainty. In this paper, we examine the worst-case performance of flexibility designs
in the case of demand and supply uncertainties, where the latter can be in the form of either
plant or arc disruptions. We define the Plant Cover Index under Disruptions (PCID) as the min-
imum required plants’ capacity to supply a fixed number of products after the disruptions. By
exploiting PCID, we establish that under symmetric uncertainty sets the worst-case performance
can be expressed in terms of PCID, supply and demand uncertainties. Additionally, PCID enables
us to make meaningful comparisons of different designs. In particular, we demonstrate that under
disruptions the 2-long chain design is superior to a broad class of designs. Moreover, we identify
a condition wherein both Q-short and Q-long chain designs have the same worst-case perform-
ance. We also discuss the notion of fragility that quantifies the impact of disruptions in the worst
case and compare fragilities of Q-short and Q-long chain designs under different types of disrup-
tions. Finally, by employing PCID, we develop an algorithm to generate designs that perform well
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under supply and demand uncertainties in both the worst case and in expectation.

1. Introduction

The problems associated with competing in a contemporary
market cause many companies to face heightened levels of
uncertainties. This issue is an area of growing concern and
the subject of numerous discussions in the supply chain lit-
erature (Buzacott and Mandelbaum, 2008; Chou et al.,
2008). Flexibility is necessary to respond to such uncertain-
ties (Simchi-Levi, 2010). Flexibility enables an expeditious
response to changing demands, without raising inventory
costs or increasing storage capacity. However, firms can also
be exposed to a variety of low-probability high-impact risks
that can disrupt operations. Therefore, the challenge is to
maximize the benefits of flexibility despite supply and
demand uncertainties.

Process flexibility, or the ability of each plant to produce
multiple products, is one of the key strategies employed in
modern industrial practice to respond to such uncertainties,
see Jordan and Graves (1995) and Simchi-Levi (2010). In
simpler terms, a design is more flexible if it responds to
changes in supply and demand in an efficacious and cost-
effective manner (Upton, 1994).

Many authors have related accounts of both the successes
of flexibility and the failures of inflexibility. For example,
the paper by Biller et al. (2006) reports that a failure by
Chrysler to keep up with demand, despite having underutil-
ized capacity at some plants, resulted in an estimated loss of
$240 000 000 in pretax profit. Mak and Shen (2009) relay
media accounts stating that the Ford Motor Company made

a $485 000 000 investment in 2002 to boost flexibility at
their engine and transmission plants worldwide; Chou et al.
(2010) report that both GM and Nissan undertook similar
initiatives. Process flexibility is an active research area and it
has garnered notable attention in industries such as automo-
bile, textile, and electronics (Chou et al., 2010). We refer the
reader to Buzacott and Mandelbaum (2008) and Chou et al.
(2008) for overviews of process flexibility designs.

In process flexibility, designs are modeled as bipartite
graphs wherein the vertex partitions correspond to plants
and products. An arc links a plant to a product if the latter
can be produced by the aforementioned plant. Supply-
related uncertainty can manifest itself in the form of either
arc or plant disruptions, or both. A plant-to-product arc dis-
ruption occurs when a plant can no longer produce a spe-
cific product; for example, due to the failure of suppliers
and/or machines. Similarly, a plant disruption - for instance,
a worker’s strike or a natural disaster - forces a plant to
shut down and causes massive damage to its production.
Most related literature have taken cognizance of demand
uncertainty in flexibility designs without paying enough
attention to supply uncertainties. We refer the reader to, for
instance, Jordan and Graves (1995), Chou et al. (2011),
Simchi-Levi and Wei (2012), Désir et al. (2016), and our
own brief literature review in Section 1.2.

The primary endeavor of this paper is to address this
limitation and provide an analytical study to understand the
worst-case performance of flexibility designs susceptible to
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supply and demand uncertainties simultaneously. We specif-
ically focus on the worst-case analysis, as it provides insights
on the effectiveness of flexibility designs and inspires a new
method of generating flexibility designs that are effective
with respect to both the worst-case and the expected-case
performances. Studying the worst-case performance is par-
ticularly helpful whenever companies need to protect them-
selves in the face of extreme events. Moreover, our method
requires very little information about customer demand and
supply uncertainties, which makes it effective from the prac-
tical perspective, as manufacturers often cannot accurately
estimate such types of uncertainties. Our main focus in this
paper is on Q-long and Q-short chain designs that are espe-
cially structured connected and disconnect bipartite graphs,
respectively. In these designs, the degree of each vertex is
exactly Q, where Q € {1,2,...}; see Section 2.1 for the for-
mal definitions of these flexibility designs.

1.1. Results and contributions

The main contributions of this paper can be summarized as
follows. In Section 3, we define the notion of the Plant Cover
Index under Disruptions (PCID) as the first index defined for
flexibility designs under disruptions. PCID allows us to char-
acterize the worst-case performance of flexibility designs
under both demand and supply uncertainties.

In Section 4, we exploit PCID to show that the 2-long
chain is optimal for a wide-range of flexibility designs under
the assumption of symmetric uncertainties for plant and arc
disruptions as well as demand. Furthermore, we make
meaningful comparisons between the performance of a
Q-long chain against Q-short chains for any Q>2. We dem-
onstrate that the worst-case performances of Q-short chain
and Q-long chain designs coincide whenever the number of
arc disruptions is sufficiently large, regardless of plant
disruptions.

In Section 5, we extend the notion of fragility - previ-
ously defined for the expected performance - in order to
quantify the effect of disruptions on the worst-case perform-
ance of a flexibility design. In particular, we show that
Q-long chain design is less fragile (sensitive) than Q-short
chains in the case of a plant disruption for any Q>2. In
contrast, Q-short chain designs are less fragile than Q-long
chains if the number of arc disruptions is sufficiently large,
regardless of plant disruptions.

In Section 6, we employ PCID to develop an algorithm
for constructing flexibility designs that outperform designs
generated by other algorithms in the literature, with respect
to the worst-case performance while maintaining a similar
expected performance in both balanced and unbalanced as
well as homogenous and non-homogenous systems. Finally,
we note that most of our proofs are provided in the supple-
mentary material.

1.2. Literature review

Many firms have integrated flexibility into their operation
strategies; see, e.g., Fine and Freund (1990), Li and Tirupati

(1994, 1997), Mieghem (1998), and Simchi-Levi (2010).
Flexibility enables firms to increase the diversification of
their product assortment in order to outperform competi-
tors. Furthermore, it empowers them to shift between prod-
ucts at manufacturing facilities as a quick response to
heightened variation in demand for a broader array of prod-
ucts. However, this flexibility comes at a cost, as a plant is
often less costly to design if it is for the production of a sin-
gle product than multiple ones (Feng et al., 2017). Thus, the
firms must decide upon a wide array of possible flexibilities
that they may employ.

Jordan and Graves (1995) observed that the 2-long chain
design on its own can offer numerous flexibility-related ben-
efits. Motivated by this work, the concept of the 2-long
chain and other sparse designs have found applications in
multistage supply chains (Graves and Tomlin, 2003), serial
production lines (Hopp et al., 2004), and queueing networks
(Iravani et al., 2005), among others.

These applications prompted a number of subsequent
works that analytically explored the effectiveness of the
2-long chain design from the expected performance point of
view. In particular, Chou et al. (2010) were the first to pro-
vide a theoretical justification that the performance of a
2-long chain is comparable to the full flexibility design.
They also showed that under some general conditions, the
performance of a sparse design can be within (1-¢)-optimal-
ity of the full flexibility design. Simchi-Levi and Wei (2012)
established the optimality of the 2-long chain among all
2-flexibility designs in the expected performance. However,
by relaxing the 2-flexibility restriction Désir et al. (2016)
showed that the 2-long chain is not optimal over all designs
with the same cardinality (2n arcs). Specifically, they pro-
vided a class of disconnected instances with 2n arcs that
perform better than the 2-long chain. Wang and Zhang
(2015) obtained a distribution-free lower-bound for the ratio
of the expected performance of a Q-long chain over that
with full flexibility. Similar in spirit results are shown by
Bidkhori et al. (2016) for unbalanced designs.

In general, designing optimal flexibility is a challenging
task, due to the combinatorial nature of the underlying
problem. For this reason, various heuristics and guidelines
have been proposed to construct effective sparse flexibility
designs, we refer to, e.g., Chou et al. (2010, 2011).

Design indices can be used as an efficient way to com-
pare the performance of different designs without complex
simulations and the need for the detailed information on
demand uncertainties. The reader can refer to Deng and
Shen (2013) who provide a list of indices from the related
literature. In particular, the Plant Cover Index (PCI) was
proposed by Simchi-Levi and Wei (2015). They illustrated
the relationship between PCI and JG index (Jordan and
Graves, 1995) as well as graph expanders from Chou et al.
(2011). The paper by Simchi-Levi and Wei (2015) can be
viewed as the most related work to ours, in the sense that it
also evaluates the performance of flexibility designs facing
demand uncertainty by examining the worst-case scenario.
However, neither this work nor the aforementioned papers
take into account supply uncertainty.
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(a) 2-flexibility

Figure 1. Example of balanced designs with m =n = 6.

(b) LCy (c) full flexibility

Lim et al. (2011) studied flexibility designs under supply
uncertainty. They introduced the concept of fragility to
quantify the change of expected performance of the 2-long
and 2-short chain designs resulting from a disruption. Using
an approximation scheme, they supported their simulation
results and numerical study. In particular, they observed
that for a single arc disruption, the expected fragility
decreases as the size of chains decreases. On the other hand,
in the case of a single plant disruption, the expected fragility
decreases as the size of the chains increases.

Our work is different from Lim et al. (2011) in several
aspects. First, we investigate the fragility with respect to the
worst-case performance instead of the expected perform-
ance. Second, we consider general Q-long and Q-short
chains with any degree Q>2, whereas Lim et al. (2011)
focus on 2-long and 2-short chains. Third, we take into con-
sideration both single and multiple disruptions. Moreover,
to develop our results we employ PCID that does not need
any information about the demand. Finally, PCID is also
exploited to develop an algorithm for constructing sparse
designs that perform well under disruptions.

2, Definitions
2.1. Flexibility designs, long and short chains

Let sets A= {ay,...,a,} and B = {by,...,b,} define plants
and products, respectively, where m is the number of plants
and n is the number of products. The process flexibility
design D is the set of arcs that form a bipartite graph over
the sets A and B, i.e, D C A x B. We use i, j and r to rep-
resent plant, product and arc indices, respectively. The set of
neighbors for any u € AUB is denoted by N(u,D), ie.,
N(w,D)={v | (u,v) or (v,u) € D}. Let degp(u) repre-
sent the degree of vertex u€ AUB in design D,
ie., degp(u) = |N(u,D)|.

Plant capacities are denoted by vector c?) € R?. Arc
capacities are assumed to be the same for all arcs and its value
is defined as c® € R,. For the sake of simplicity, we use c(%)
as opposed to c(® P whenever design D is specified. We say
process flexibility design D is homogenous if all plant capaci-
ties are the same and non-homogenous when they are not.

Process flexibility design D is balanced if m = n and it is
unbalanced, otherwise. It is also assumed that there are no iso-
lated vertices in D, that is, [N (4, D)|>1 for all u € AUB. A
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balanced design in which all plant and product vertices have
the same degree of Q, Q < m = n, is referred to as a Q-flexibil-
ity design, such design corresponds to a Q-regular bipartite
graph; see Figure 1(a) for an example of a 2-flexibility design.

Then we define Q-long and Q-short chain designs as par-
ticular forms of Q-flexibility designs in a balanced bipartite
graph as follows:

e A Q-long chain design - that is also referred to as k-chain
(Chou et al,, 2011; Chen et al., 2015) and D-skill chaining
(Hopp et al., 2004; Iravani et al., 2005) - has an arc set
represented by LCq in which for all a; € A, N(a;, LCq) =
{bj | j=ii+1,...,i+Q—1, take j — n whenever j >
n}. Note that a Q-long chain design is always connected
for Q=2. The most popular example of Q-long chains is
the 2-long chain design, which is defined as a cycle that
connects plants and products in a balanced graph (Jordan
and Graves, 1995). Other well-known examples of Q-long
chains include the dedicated (Q=1) and the full-flexibility
(Q = n) designs (Feng and Shen, 2018). See Figures 1(b),
1(c), and 1(d) for examples of dedicated, full flexibility,
and 2-long chain designs, respectively.

e A Q-short chain design is a disconnected graph that
comprises of ¢, ¢>2, connected components with sizes
Zw» wE {1, ...,c}, such that each component is a Q-
long chain design and Y. _, z, = n. An arc set of a Q-
short chain is denoted by SCq. It should be noted that
Q< min{z, ...,z }, and we assume that there are no
components of size one. For given n and Q we can
define a family of Q-short chain designs represented by
{8Cq} including all SC, with different numbers of com-
ponents or components’ sizes; we use SCq to denote any
member of {SCq}. Figures 1(e) and 1(f) show two mem-
bers of {SC,}.

In the remainder of this paper, in any comparison of
SCq and LCo we assume that they are of the same size.

Vectors d € R”,g € {0,1}™ and he {01}/ denote
product demands, plant disruptions and arc disruptions,
respectively. The set > ([n]) includes all permutations for
the set {1,...,n} and o € >_([n]). Similarly, > (D) is the set
of all permutations for the index set of design D, i.e,
{(.))| (a»by) € D}, and p € S(D).

The operators min/(x) and max/(x) return the jth small-
est and the jth largest elements of vector x = [x; xz ... Xy,
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respectively. For any ¢ € R define t = max{0, t}. The sym-
bol e denotes the vector of all ones of appropriate dimen-
sion. Finally, 1 refers to an indicator function.

2.2. Demand and disruption uncertainty sets

One of the major modeling decisions that we have deferred
until this point is the selection of appropriate uncertainty
sets of demand and disruption scenarios. There are a variety
of viable choices for selecting an uncertainty set, see, e.g.,
Bertsimas and Sim (2004), Bertsimas and Brown (2009), and
Bertsimas et al. (2018).

As emphasized by Iravani et al. (2005), exact information
in related applications is usually unavailable. Thus, this
paper makes the assumption that the uncertainty sets are
symmetric, which implies that the worst-case performance is
not altered if products are relabeled. With respect to disrup-
tions, this assumption implies that all arcs and all plants
face the same disruption risks.

We note that symmetric demand uncertainty sets are fre-
quently used in the flexibility design literature; see a recent
work by Simchi-Levi and Wei (2015). Symmetric uncertainty
sets in the worst-case performance correspond to the com-
mon assumption of symmetrical designs in the expected per-
formance. Symmetrical designs are designs  with
exchangeable or identical demand distributions and identical
plant capacities; see, e.g., Chou et al. (2010), Chen et al.
(2015), Désir et al. (2016), Feng et al. (2017), and Feng and
Shen (2018).

It is worth mentioning that our results are valid for the
entire class of symmetric demand uncertainty sets and not
just one. In addition, the analysis for symmetric uncertainty
sets provides us insights for problems with asymmetric ones
(Deng and Shen, 2013). In particular, with the results given
in Section 3 we identify the key feature of the flexibility
designs that perform well under any type of uncertainties.
This leads to the development of an algorithm in Section 6
to generate flexibility designs robust against arbitrary types
of supply and demand uncertainties.

Formally, given x € R" and permutation ¢ € ) _([n]), let
X, be the rearrangement of the elements of x according to
permutation o, i.e., Xo = [X(1) Xg(2) - Xo(w)]. Set U is sym-
metric if for any u € U, then u, € U for any permutation of
the index set of ¢{. In the remainder of this paper, we use
the following demand, arc disruption, and plant disruption
uncertainty sets.

Demand uncertainty set: Set I{; denotes the symmetric
uncertainty set associated with demands, where d € U, indi-
cates a realization of this set. Examples of symmetric
demand uncertainty sets include:

e budgeted uncertainty: Uy;={d|d =a+bz Vje
{1, ...,n},|z|,< T, |z| < 1} for some a,b, T € Ry,
where I' is known as the budget of uncertainty;

e triangle uncertainty: Uy={d | X7, dj=1d;>0,Yj €
{1, ...,n}} for some t € Ry;

e box uncertainty: Uy ={d | /< d<u,Vje{l,...,n}}
for some 4, u € Ry;

o ellipsoidal uncertainty: Uy ={d | X7, (dj— 2)’< t,
Vjie {1, ...,n}} for some z,t € Ry;

or the intersection of any symmetric uncertainty sets.

Arc disruption uncertainty set: We use U{; to denote the
symmetric uncertainty set associated with arc disruptions
such that at most o € Z, arcs can be disrupted. Specifically,
set U2 is given by

Uy =the o™ 3 hy>IDl - ),
(i,j)eD

where h € U/ indicates a realization of this set; in particular,
hij = 0 if the arc connecting plant i to product j is dis-
rupted, and h,»j = 1 otherwise. This uncertainty set is similar
to the budgeted uncertainty sets commonly used in the
robust optimization literature, see, e.g., Bertsimas and Sim
(2004); here o determines the budget of uncertainty and the
level of arc disruptions.

Plant disruption uncertainty set: We denote by U/, the
symmetric uncertainty set associated with plant disruptions
such that at most y € Z, plants can be disrupted. Formally,
set U}, is given by

U= {ge{01)" | Y gem—3)
il
where g € U}, indicates a realization of this set; in particular,
g = 0 if plant i is disrupted, and g; = 1 otherwise. Similar
to the uncertainty set associated with arc disruptions, y
determines the budget of uncertainty and the level of plant
disruptions.

For the sake of simplicity, we use U, and U, wherever
there is no ambiguity with respect to disruption parameters
o and 7y, respectively. Note that if «=0 (y=0), then there
are no arc (plant) disruptions. Throughout the paper, we
consider supply uncertainties in the form of symmetric arc
and plant disruption uncertainty sets defined in this section.

Remark 1. Recall that we seek for an optimal solution in
the worst case. Clearly, this occurs when the lergest number
of plants and arcs are disrupted. Thus, in order to evaluate
any design in the worst case, we can assume that exactly vy
plants and o arcs are disrupted, i.e, > jep hj = |D| —«
and ) ,.; g = m — 7, respectively. O

Remark 2. In the worst case, for sufficiently small numbers
of arc and plant disruptions the arc disruptions occur for
those arcs that are incident to plants which are not dis-
rupted. Specifically, in the worst-case scenario the budget of
arc disruptions, a, is used to disrupt arcs that are still sup-
plied by plants. For example, if for y=1 plant a; with
degp(a;) = 2 is disrupted and a=3, then in total five arcs
are inactive in the design either due to failure in supply or
in the production line. |

3. Robust measure and PCID

In this section, we formulate the robust measure to evaluate
the worst-case performance of general flexibility designs
under supply and demand uncertainties. To this end, first in



Section 3.1 we define PCID. Then in Section 3.2, we estab-
lish a relationship between PCID and the robust measure
for flexibility designs.

Given vectors d € Uy, g € U, and h € U,, let P(d,g,h, D)
denote the performance of design D. The performance is
measured by the maximum possible demand that can be sup-
plied through D under plant and arc disruptions. Specifically,
if f;; denotes the amount of demand for product j satisfied by
plant i, i.e., the product flow from i to j, then P(d, g, h, D) can
be obtained by solving the following maximum flow problem:

P(d,g,h,D) = max Z fips (1a)
(ai bj)€D

st. Y f< Vg VaeA, (1b)
bjEN(ﬂ,‘, D)

> fi<d Vb € B, (lc)
uiGN(bj,D)

0K fz]< C<a)h,‘j V(a,‘, b]) €D, (1d)

where constraint (1b) provides an upper bound on the
demand that can be satisfied by plant i under disruption g;.
Constraint (1c) enforces that the total production of product
j does not exceed its demand. Finally, constraint (1d)
ensures that the flow of product j from plant i does not
exceed the arc capacity under disruption h;;.

From the max-flow min-cut theorem, by taking the dual
of problem (1) we obtain:

ZC gipi+ Zdj%

P(d,g,h,D) =min

Z C<a>hijtij ,

pat (arb)€D
(2a)
s.t. p,-i—q]—&-t,J}l V(a,-,bj) €D, (2b)
pe{0.1}”, qe{0.1}", (2¢)

t;€{0,1} Y(aibj) €D, (2d)

where dual variables p;, g;, and t; correspond to constraints
(1b), (1c) and (1d), respectively. Furthermore, by using the
total unimodularity property of the constraint matrix (Wolsey
and Nemhauser, 1999, Corollary 2.8 and Proposition 2.1) it
can be shown that the linear programming relaxation of prob-
lem (2) has a binary optimal solution.

Finally, for design D given uncertainty sets U4, U, and
U,, denote by R(Uy,U,,U,, D) the optimal objective func-
tion value of the following problem:

R(UygsUp, Uy, D) =

min

P(d,g,h, D).
deldy, gel,y, held, ( g )

Simply speaking, R(U4,Uy,U,, D) provides the worst-case per-
formance of design D under supply and demand uncertainties.

3.1. PCID

A subset of plant and product vertices forms a vertex cover
if every arc in the design has at least one of its endpoints in
this subset. For any integers ke {0,1,...,n} and

IISE TRANSACTIONS (&) 5

€ {0,1,..,|D|}, and any vector g €U, we define the
PCID at k, ¢ and g as the minimum plant capacity that is
required to create a vertex cover on D, given that the vertex
cover contains exactly k products, exactly ¢ arcs are ignored
(i.e., not required to be covered), and plants are disrupted
according to g.

Denote by 6©‘(g, D) PCID at k, £ and g. Based on its defin-
ition, PCID can be computed as the objective function value
of the following linear 0-1 program for any given k, ¢ and g:

PCID) : (g, D) = iDi» 3
(PCID) : 6"'(g, D) = min ;c &P (3a)
s.t. Z q=k (3b)
j=1
S ot=1 (3¢)
(a,’,bj)E'D
pi + q] —+ t,JZI V(ﬂi, b]) € D, (3d)
pe {01}, qe {01} (3e)
ti € {0,1} V(a;,bj) € D. (3f)

Constraint (3b) restricts the number of products in the
vertex cover to exactly k products. Constraint (3c) ensures
that the number of arcs that are ignored (not covered) is
exactly /. Constraint (3d) satisfies the requirement that each
arc either has at least one endpoint in the vertex cover or it
is not covered. Note that in every feasible solution of prob-
lem (3) if p; = 1 (g; = 1), then plant a; (product b)) is in
the vertex cover set; additionally, if t; = 1, then arc (a;, b))
is not required to be covered. The latter set of variables, t;;,
and the parameter ¢ allows us to capture arc disruptions, see
further discussions after Proposition 1.

Next, we provide some basic properties of PCID.

Remark 3. For any design D and all ke {0,..,n},

¢ €{0,...,|D|}, and g € U, we have:
(i) 6*°(g, D) Zc g (iv) 8" (g, D)< (g, D)
(ii) 6"Pl(g,D) =0 (v) (g, D)< 6" (g, D)

(vi) 3‘(g, D)

= min g ¢gi

SCBI|S| =k
a; N (B\S, D\E
b g BN ES D

(iii) 6™ (g, D) =0

In particular, Equality (vi) illustrates that 6°‘(g, D) can be
expressed as the minimum disrupted capacity of plants inci-
dent to N (B\ S,D\ E) for any S C B and E C D such that
IS| =k,|E| = ¢ and g € U,, ie., subset SUN(B\S,D\E)
creates a vertex cover on design D\ E such that N(B\
S, D\ E) has the minimum disrupted capacity. m|

If £ = 0 and g = e, then PCID reduces to the PCI proposed
by Simchi-Levi and Wei (2015) that corresponds to 6*°(e, D).
PCI is employed to characterize the worst-case performance
under only demand uncertainties, whereas by defining PCID
we attempt to take into account possible plant and arc
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disruptions in addition to demand uncertainties. Specifically,
in the next subsection, we show that PCID provides a con-
venient tool for evaluating R(Ug, Uy, U, D) and comparing
the worst-case performance of different designs.

3.2. Robust measure

Our aim in this subsection is to provide an explicit repre-
sentation of R(U 4, Uy, U, D) under symmetric supply uncer-
tainty sets defined in Section 2.2 and any symmetric
demand uncertainty set by employing PCID given by prob-
lem (3). Thereafter, we exploit this representation to com-
pare the worst-case performances of different designs. To
this end, Lemma 1 gives us an upper-bound for
R(Ua,Up,Uq, D) when vectors d, g and h are fixed.

Lemma 1. Given design D and uncertainty sets Uy, U, and

Uy, for any declyg cl, and any

ked{o,..,n}, £€{o,...,|Dl}:

R(UaUp,Ua, D)< < o0 (g, D) + Z min’ (d bt —a)t.
4)

Proof. Let vectors p’ € {0.1}",q" € {0.1}" and £ € {0,1}
for (a;, b>]) € D be an optimal solution of problem (3) Thus,

Zz 16 glpz_ék(/(g’ )’ ZJ 1q _kandZa b)ED l] i =1L

Let ¢ be a permutation in Z([ ]) such that q =1 if and
only if dg; € {min®(d) | 1< z< k}. Slmllarly, et p be a
permutation in ) (D) such that h,;; =0 for all (i,j) €
{(aibj) € D | tj; =1} where [{(a;b ) E D | t; = 1}[< min
{¢, a}, which 1mphes h,ij) € U,. Hence, we get

Zc glp,+Zdao +

(ai> bj)eD

D)+ mef )0 -

Note that p’,q’ and t’ is a feasible solution for problem (2). Thus,

_ 6k€ OC)Jr.

P(dy, g.h,, D)< (g, D) + Yo7 min/(d) + @ - (£ — ).
Recall that U4, U, and U, are symmetric sets. Therefore,
R(UaUp,Ua, D)< P(dg, g5 hy, D)
< (g, D +mef Vo —a)".
O

Next, we provide an explicit formula for R(Uy, U, U,, D).
Specifically, we show that there always exist some integers k
and ¢ as well as vectors d* € Uy,g* € U, and h* € U, such
that Lemma 1 holds at equality.

Proposition 1. Let (d",g* h") € argmin,y, ocys pers, P(d>
g, h, D), then there exist some integers 0< k< n and 0< 1< |D|
such that

R(U4,Up, Uy, D)
k
=M@ D)+ Y min'(d) + - (L—a)t.  (5)
=1

Proof. The max-flow problem (1) is always feasible. Since
the min-cut problem (2) is the dual of (1) by the strong
duality property of linear programs their optimal solutions
coincide and we have:

P(d*,g",h*, D) = min {Xm: &pi+ Xn:dj*qj + Z c(“>hfjt,-j},
Pot (i =1 (anby)€D
st pihgitt>1 V(ai, b)) € D,
p<{01}”,qe {01},
ti € {0,1} V(ai, b)) € D.

Let p*,q*, and t* denote an optimal solution to the opti-
mization problem above, and let also k:= Z]" 1q; and

=3, b)eD L Then we have that ) ", l glpl>5ké
€5D), YL, qidr> sz1 min/(d*), and Y, ;)ep @kt
>cl@ . (¢ — a)". Thus, we get

R(U4Up,Uq, D) = P(d", g%, 0", D) (6)

_ZC &Pztzd*%t Z it

(“x)

>0%(g*, D) —|—mef (d) + @
j=1

(=)'

Therefore, by Lemma 1 and equation (6), Proposition 1
holds. O

Lemma 1 and Proposition 1 are extensions of the results
derived in Simchi-Levi and Wei (2015), where the latter
assumes that there are no disruptions and arcs are uncapa-
citated. More specifically, due to possible disruptions, our
results are different in the following two aspects. First, in
(4) and (5) we use PCID instead of PCI. Second, in (4) and
(5) we have an additional third term, i.e., ¢@ - (¢ —a)",
that is associated with arc disruptions. In fact, this term
connects parameter ¢ of PCID to arc disruptions parameter
o. It implies that by increasing ¢ up to o, PCID may
decrease in the right-hand side of (4) and (5) while @
(¢ — )" remains constant at zero and any further increase
of ¢ may decrease PCID at the expense of increasing the
right-hand side of (4) and (5) with a rate proportional to
c@. Therefore, as the number of arc disruptions (o)
increases the worst-case performance of a given design
deteriorates. Next, we exploit Lemma 1 and Proposition 1
to provide an explicit representation of the worst-case
performance.

Proposition 2. The worst-case performance of flexibility
design D under uncertainty sets U, U, and U, is given by
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Figure 2. Comparing £Cq and LC, using ratios I1;(Q),

R(ud;up)uu) D) (7)

—oc)+}.

k
= D)+ > di+c
=1

min
0< k< n, 0K 4L D)
decly gecl,

Proof. From Lemma 1 and Proposition 1 we get

R(U4Up UL D) = i (g, D
Ua p>Ua ) Ognllclgn, {?612111; ( )
0< (< |D|
k .
+minY mir/(d) + @ - (Eoc)+}.
deld,y j:1

The symmetric property of U, implies that:
k k
min’/(d) = d;. (8)

min
deldy =1 deldy =1

Thus,
R(ud) up) ua) D)

min
" 0< k< n, 0< €< |D|

dely gel,

{5“g, +Zd + @

-2}

It is worth mentioning that equation (7) is valid for both
balanced and unbalanced designs with either homogenous
or non-homogenous plant capacities wherein arc capacities
can be limited or uncapacitated.

Next, our aim is to establish conditions for comparing
the worst-case performance of different flexibility designs.
For this purpose, we first consider the following definitions.

Definition 1. Design D, is more symmetrically robust than
design D, if and only if

R(ud) upa ua; D1)2R(ud) upy Z/{a) DZ))

for any symmetric uncertainty sets U4, Uy, and U, defined
in Section 2.2.

Definition 2. Two different designs D; and D, are config-
ured in equal conditions if they have the same number of
plants, products and arcs, their plant capacities belong to
the same vector c¢(?), and arc capacities are equal to ¢?).

Up to this point, we have considered a general form of
the designs wherein arc capacities could be limited.

I1,(Q, ¢), and I13(Q, y) as defined in Example 1, forn=10and Q € {1,2, ...,

n}.

Hereafter, throughout this paper, we narrow our attention
to designs satisfying the following assumption.

Assumptlon 1. Arc capacities are sufficiently large; specific-
ally, cla for all a; € A.

An uncapacitated arc is the extreme case of Assumption 1; it
appears in the majority of related studies on process flexibility
designs; see, e.g., Tomlin and Wang (2005), Chou et al.
(2011), Chen et al. (2015), Désir et al. (2016), and Feng and
Shen (2018). Note that under Assumption 1 in equation (7)
we have £* = o, where £* is an optimal value of variable /.
Based on the above definitions and assumption, in the
following result, we show that the performance of different
designs configured in equal conditions can be compared by
only examining the minimums of their PCIDs over g € U,,.

Theorem 1. For any designs D, and D, configured in equal
conditions, design D, is more symmetrically robust than D,,

ie., R(UaUp,UaD1)>R(UsUpUs,D,) for any symmetric
uncertamty sets  Ug, U and U, if and only if
mingey, ok (g, Dl)>m1ngel,{ o (g, D,) for any 0< k< n

and 0< 4< |Dy| = | Dyl

Proof. From equation (7), we have

RUartUp U D1) = 0< k< n,rr{)igtzs Dy, {?ellllrplé (&D)
delU,
k
+ di+ (- oc)+}Vt e {1,2}.
j=1

©)
If mlngeu(3 (g,D1)>m1ngeu o' (g,D,) for any U,, 0< k

<n and 0< ¢< |Dy|, then by equation (9), we get
R(ud) upautli D1)>R(ud) Z/[E) Au{la DZ)A'
Conversely, if there exist k, ¢, and U, such that
mlngeu ) ’k(g, D)) < mingeupék’é(g,’l)z),
then we construct an example to show that

(ud,up,ua,Dl) < R(L{d,up,lxla,Dz) for some uncertamty
sets Uy and U,. To this end, define C= 37" 1 X ) and let d
be the vector such that d =0 for 1< j< k, and d = C for
k < j< n. Then let L{d be the set of all permutations of vec-
tor d, ie., Uy = S(d). Additionally, let {, be the arc dis-
ruption uncertainty set wherein o= /. Then based on
Assumption 1 and Remark 3 parts (iv) and (v), we have that
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Table 1. Expected (the second column as in Jordan and Graves, 1995) vs

. the worst-case performances.

Worst-case performance

without disruptions

with 2 arc disruptions, with 2 plant disruptions,

Design Exp. Perf. R(U4, U, U3, D) R(Uq,US, U2, D) R(Uq, U, US, D)
LC, 853 200 160 160
SC, (five components) 896 200 180 160
LC, 950 200 180 180
LCo 954 200 200 200
R(U d> U, U »UsD) =m ing.iy. ok é( D). Thus, we get R(y  has almost the same expected performance as the full flexibility
u s U, ) R(ULU s u. » D2). 0 design (Jordan and Graves, 1995). In the following example, we

Theorem 1 implies that in order to compare the perform-
ance of two different designs configured in equal conditions
under uncertainties we only need to obtain the information
about of their PCIDs over g€ Uy, e,
mingeupék’l(g, D) at any 0< k< n and 0< 4< |D).

minimums

Example 1. We consider designs L£Cp with n=10 and
Qe{1,2,..,n}. Let £€{0,1,...,n-Q} and y € {0,1,...,n}.
Then define:

(S S g minga, o (6,£C0)] /(n-Q+ 1)

IL(Q) = {Zk:o PRy ::Omingeu;é : (g’ﬁcn)}/(nz +1)

>

which is the ratio of the average value of mingey, o (g, £Co)
over k, ¢ and y to the corresponding average value of the full flexi-
bility design £C,. This ratio is plotted in Figure 2(a). As Q
increases IT; (Q) increases to one, which is intuitive. On the other
hand, for smaller values of Q, IT;(Q) is somewhat far from one,
which indicates that under disruptions £Cg, Q < n, may have the
worst-case performance that is inferior to that of the full-flexibility
design. We further elaborate on this issue in Example 2 below.

Similarly, we define:
o 2o mingey 3 (g, LCo)
Zk OZ” ommgeu bl (g,LIC )

M,(Q.f) =
and

(i Xy S mingey; 0 (g, £C0)| /(n- Q-+ 1)
[ZZ:O Z;?:()mingeu;ék*«g, £c,)] f +1)

HS(Q) V)

>

which are the ratios of the average values of
mingey, 0*'(g, £Cq) over k and 7 as well as k and ¢, respect-
ively, to the corresponding average values of the full flexibil-
ity design L£C,. These ratios are plotted in Figures 2(b) and
2(c). The values of these ratios decrease as either £ or y
increases, which indicates that the performance of the corre-
sponding Q-long chains may be affected in the worst case as
the number of possible disruptions increase. Naturally, we
also observe that for larger values of Q the decrease in the
performance is less pronounced. O

One should note that most of the related literature is mostly
focused on the performance of 2-long chain design, £C,.
Primarily, it has been observed that fewer, and longer chains
are preferred for increasing the expected performance and £C,

show that the aforementioned observations in the literature
cannot be extended to the worst-case performance under dis-
ruptions, recall also the discussion in Example 1. In particular,
we note that £C, does not have the same worst-case perform-
ance as the full flexibility design. Moreover, £C, and SC, have
the same worst-case performance whenever there is at least one
arc disruption. These findings encourage us to explore the
worst-case performance of chains with degrees higher than two
and short-chain designs under supply uncertainty in the
next section.

Example 2. We consider design D with 10 plants and 10
products, where ¢ =100-e and ¢@ = 100. The second
column of Table 1 displays the simulation results for the
expected performance of several designs computed by
Jordan and Graves (1995). In particular, in their study the
demand for each product is assumed to be from a truncated
- with support [20,180] - normal distribution with mean
and variance 100 and 402 respectively, ie., N(100,40?).
Jordan and Graves (1995) concluded that: (i) the expected
performance of LC, is close to the performance of the full
flexibility design, i.e., £Ci9, and thus, additional flexibility of
the latter design does not provide significant improvements;
(ii) longer chains with few connected components provide
better expected performance than shorter ones. In other
words, the expected performance of £, is at least as good
as the expected performance of any SC, in {SC,}. These
observations provide primary justification for many of the
related studies not to consider either designs with more
than 2n arcs or short-chain designs, see, e.g., Deng and
Shen (2013).

To evaluate the worst-case performances and to be consist-
ent with Jordan and Graves (1995), we let
Ug ={d | 20< 4;< 180, Vj € {1,2,..,n}}. Based on our
computations, the worst-case performances of all considered
designs coincide if there are no disruptions (see the third col-
umn of Table 1). In particular, SC, has the same worst-case
performance as £C, and the full flexibility design. However,
for even a few disruptions the results differ. In particular, the
worst-case performances of £C, and £y can be significantly
different (see the last two columns of Table 1), whereas £C,
and SC, may have the same worst-case performance under
arc disruptions (see the fourth column of Table 1).

To further illustrate these observations, we compare the
performances of £Cq for Q € {1,2,4,6,8,10} and SC, under
disruptions in Figure 3. First, we observe that the worst-case
performance improves for Q-long chains as Q increases.
Furthermore, Figure 3 demonstrates that the worst-case
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(a) Performance of robustly optimal solutions
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Figure 3. Worst-case performances of chains for different types of disruptions.

performances of the designs coincide when there are no dis-
ruptions and are non-increasing as the disruptions become
more pronounced, i.e., values of o and 7y increase. Finally, we
point out that the worst-case performances of SC, and LC,
coincide under arc disruptions (and no plant disruptions) for
any value of o, see Figure 3(a). On the other hand, in the
opposite scenario of plant disruptions without arc disruptions,
the worst-case performance of SC, is upper bounded by the
performance of £C,, see Figure 3(b). O

4. Worst-case performance of chaining

Herein, we apply the results of the previous section to ana-
lyze the worst-case performance of flexibility designs under
demand and disruptions uncertainties. In particular, we
study the performance of £Cq and any SCq in {SCq}. In
Section 4.1, we show that £C, is superior to a wide-range of
designs, configured in equal conditions, for any type of dis-
ruptions. In Section 4.2, we demonstrate that the worst-case
performance of £ is the same as that of any SCq in the
presence of a sufficiently large number of arc disruptions.
Finally, in Section 4.3 we consider the expected sales of
chains (assuming some known demand distribution) under
the worst-case supply disruptions.

Hereafter, throughout this paper unless it is specified
otherwise, we make the following assumption, which is a
common assumption in the related literature; see, e.g., Deng
and Shen (2013), Chen et al. (2015), Wang and Zhang
(2015), and Désir et al. (2016).

Assumption 2. Designs are homogenous, i.e., all plants have
equal capacity and without loss of generality ¢?) = e.

Before we proceed with the discussion we need the fol-
lowing two technical results.

Lemma 2. For any design D,0< k< n and 0< (< |D|, we
have:

min 6*‘(g, D) = (6“(e. D) — 7).
geUy

Indeed, mingey, o%%(g, D) is a quadratic problem; neverthe-
less, Lemma 2 indicates that it can still be solved as linear-
binary program (3). It also should be noted that by using
Lemma 2 we can rewrite equation (7) as
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(b) Performance of robustly optimal solutions

under plant disruptions (v) without arc disruptions

R(ud)ulbua) D) (10)

= min
0< k< n, 0L |D)
deld,,

k
{(5’<>f(e,p) =) Y di+ (E—oc)+}.
=1
Therefore, the necessary and sufficient condition of Theorem 1
reduces to "‘(e,D;)>0""(e,D,) for any 0< k< n and
0< 4< |D).
Next, we evaluate mingeupék’é(g, LCq), which can be
done via the following technical lemma.

Lemma 3. For LCq and any 0< k<< n and 0< 4< n- Q, we

have:
; +
;rég;ék’l(g,ﬁcg)>(n—k— bJ —y> . (11)
In particular, for any 0< k< n—1 and £ = 0:
min 0°°(g, £LCo) = (min{nn —k+Q -1} —p)".  (12)

geU,

Furthermore, for any 0< k< n and (Q-— 1)2< I<n-Q
inequality (11) holds as equality:

v [4]-)

4.1. Superiority of 2-long chain

min 6 (g, £LCq) =

geU,

(13)

We show that under plant and arc disruptions the 2-long
chain design is superior to a broad class of designs in the
same configuration. In particular, we establish the following
two results. We first demonstrate the superiority of LC,
over all designs where each product vertex has degree two.
Then we show that £C, outperforms all connected designs
with 2n arcs.

Theorem 2. Let D be a design such that each product is sup-
plied by exactly two plants, i.e., |N'(u,D)| =2 for any u € B.
Then the 2-long chain design, LC,, is more symmetrically
robust than D. That is, R(U 4, Up, Ua, LC2) >R(U 4, Uy, U, D).
Although Theorem 2 shows the superiority of LC,, it
restricts the optimality of £C, over designs in which each



10 (&) E. MEHMANCHI ET AL.

product is produced by exactly two plants. In the next the-
orem, we relax this restriction for connected designs.

Theorem 3. Let D be a connected design such that |D| = 2n,

then the 2-long chain design, LC,, is more symmetrically robust
than D. That is, R(WU 4, Up, Ua, LC2) >R(Ug, Uy, Uy, D).

The main idea of the proofs of Theorems 2 and 3 is
based on Lemma 3 that provides the exact value of
mingeupék’e(g, LC,) at any k and 4. In order to establish the
superiority of £C, over any other class of designs it is suffi-
cient, by Theorem 1, to show that minggupék’[(g, LC))
>minge%5k’é(g, D) at any 0< k< n, 0< /< 2n for any D
in that class. Theorems 2 and 3 are generalizations of the
results in Simchi-Levi and Wei (2015), where the latter
results do not take into account supply disruptions. Another
key difference of our derivations is the following technical
lemma that is employed in the proofs of Theorems 2 and 3,
and establishes a special property of the class of flexibility
designs in which each product is supplied by two plants.

Lemma 4. Let D be a connected design over sets A and B
such that for any u € B,|N(u,D)|=2. Then for any
1< z< n, and any 1< €< 2n there exist some T C B,|T| =z
and E C D, |E| = { such that |N'(T,D\ E)|< (z— |£])".

By Theorem 2, we conclude that £C, is more symmetric-
ally robust than any SC; in {SC,}. On the other hand,
when there is no disruption some studies have shown that
the performance of LC, is at least as good as any SC, in the
worst-case scenario (Chou et al., 2011) and in the expected
performance (Simchi-Levi and Wei, 2012). Nonetheless, in
the next subsection, we identify conditions under which any
SCq has the same worst-case performance as L£Cq under
supply and demand uncertainties for any Q>2.

4.2. Higher chains

In this subsection, we evaluate the worst-case performance
of Q-short chains, SCq € {SCq}, versus Q-long chain, £LCq,
for any Q>2. We show that, in the absence of arc disrup-
tions, the performance of LC is superior to the perform-
ance of any SCq. However, the worst-case performance of
any SCq is the same as L£Co when the number of arc dis-
ruptions is sufficiently large. First, we evaluate
mingeupék’f(g, SCq), which can be done via the following
technical result.

Lemma 5. For any SCq in {SCq} and 0< k< n if £ =0,
then

(n—k—7y)"< mind¥°(g, SCo)< mind*°(g, LCo).  (14)
geU, geU,
Additionally, if (Q —1)*< (< n-Q, then
: / +
in*‘(g,8Cq) = min 6™ (g, LCq) = ( —k— {_J - ) .
min o™ (g, 5Co) = min o™ (g, LCo) = | al =7
(15)
Note that there are examples that equations (13) and (15) do

not hold for £ < (Q — 1). Thus, the lower-bound (Q — 1)* on
the value of £ in the aforementioned equations is tight.

As a direct consequence of Lemma 5 and Theorem 1, we
obtain the main result of this subsection. In particular, we
demonstrate that SC; and L£C have the same performance
for sufficiently large number of arc disruptions.

Proposition 3. For any SCq in {SCq} and any plant disrup-
tion parameter y if oo = 0, then

R(Ugs Uy Ugy SCQ)< R(Uas Uy, Uy, £Cp). (16)

Additionally, for any plant disruption parameter 7y if
0=(Q —1)°, then

R(UasUp,Ua, SCq) = R(UasUp, U, LCq). (17)
It is worth mentioning that the worst-case performances in
the right- and left-hand sides of equation (17) correspond,
in general, to different realizations of the uncertainty sets.

Inequality (16) indicates that in the absence of arc dis-
ruptions (i.e., «=0), for any number of plant disruptions
the worst-case performance of £ is at least as good as the
worst-case performance of any SCq. This observation is con-
sistent with the earlier results from the related literature that
- without arc and plant disruptions - the performance of
LCq is better than that of any SCq in both the worst case
(Chou et al., 2011) and in expectation (Jordan and Graves,
1995; Chou et al., 2011; Simchi-Levi and Wei, 2012) with
respect to the demand uncertainty. Hence, inequality (16)
extends the existing observations in the literature to the
worst-case performance of long and short chains under
plant disruptions.

However, equation (17) implies that for sufficiently large
number of arc disruptions any SCq in {SCq} has the same
worst-case performance as LCq. equation (17) has several
noteworthy implications as we briefly outline below:

e For Q=2, if there exists at least one arc disruption, i.e.,
a>1, then from the worst-case performance perspective
any short chain SC, € {SC,} has the same performance
as long chain £C, for any number of plant disruptions.
Therefore, any short chain SC, is also an optimal design
(from the worst-case performance perspective) over the
design classes considered in Theorems 2 and 3.

e In many practical settings, the cost of flexibility increases
with products dissimilarities. Thus, constructing longer
chains is often more expensive than multiple shorter
ones, e.g., producing two dissimilar products in one plant
versus two similar ones (Lim et al, 2011). To address
this issue, by grouping similar products in short chains
we can reduce the cost of flexibility and thus, simultan-
eously guarantee the optimality of the (worst-case) per-
formance of the resulting short-chain design versus the
long-chain design under sufficiently large number of arc
disruptions.

e Finally, note that class {SCq} provides a broad-range of
alternative designs (e.g., for n =10 set {SC,} includes 11
different designs) to the decision-maker, that all have the
same worst-case performance as LCq provided that
a>(Q —1)>. This opportunity is important, in particu-
lar, in the settings where either other criteria or some
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Figure 4. Performance of the designs from Example 3 with respect to E(&, U, Ua,
ively. In each subfigure, the vertical axis represents E(&,Up, Ua,
have component sizes {2 2,2,2,2}
respectively. Designs SC4 and SC(

limitations need to be taken into account for selecting
a design.

Concluding the above discussion, we note that the results of
Proposition 3 are also exploited in Section 5.

4.3. Expected performance for the worst-case supply
disruptions

In this subsection, we take an alternative approach and com-
bine the expected and the worst-case performance measures.
Specifically, next we assume that the demand uncertainty is
characterized by some known distribution ¢, i.e., d ~ ¢, and
thus, we can compute the expected performance of design D
under the worst-case plant and arc disruption scenarios
from U, and U,, respectively. Formally, define:

E(ﬁaup)ua) D) = ]Edwi min

g€y, held,

P(dgh,D)],  (18)

which we refer to as the expected performance of design D
under the worst-case supply disruptions. In a sense, our
main goal is to isolate the effect of low-probability high-
impact disruption scenarios from the demand variability.
Recall that the key observation from Theorem 1 is that in
order to compare two designs in equal conditions it is suffi-
cient to consider their minimum PCID values. In particular,

D) and the horizontal axis is reserved for the number of arc disruptions, o. Designs SC;
{3 3,4},{5,5},{6,4}, and {7, 3}, respectively. Designs SC
have component sizes {5, 5} and {6, 4}, respectively.

D). Subfigures in each column and row are for specific values of Q and § respect)
to SC

" to SC have component sizes {3,3,4},{5,5},{6,4}, and {7, 3}

the derivation of Theorem 1 relies on Proposition 2, where
the second term in the right-hand side of equation (7) cap-
tures the demand variability. When the demand distribution
is known, the corresponding derivations seem to become
somewhat more involved and thus, the results of
R(U4,U,,Us, D) cannot be generalized for E(&,Up, Uy, D) in
a straightforward manner. We leave this research direction
as a promising topic for future research.

Nevertheless, it is still interesting to compare the
expected performances of SCq € {SCq} and LCq for the
worst-case supply disruptions, and verify whether the results
similar to (16) and (17) in Proposition 3 hold for the corre-
sponding expected performances E(&,U,, U, SCq)  and
E(& Up,Ua, LCq). We explore this issue numerically in the
example below.

Example 3. We consider designs based on the configuration
explored in Jordan and Graves (1995) as introduced in
Example 2. For each Q € {2,3,4} we consider LCq and
multiple SCq € {SCq}. Moreover, we let o € {0,1,...,10}
and y € {0,1,2}. The demands are assumed to be independ-
ent and identically distributed random variables from nor-
mal distribution N(100,40?) with support [20,180]. The
normal distribution is often used in the related literature,
see, e.g., the five benchmark test instances in Section 6 and
the discussion in Jordan and Graves (1995). For each design
and combinations of « and y we simulate E(&,U,,U,, D) for
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5000 product demands drawn from the aforementioned nor-
mal distribution.

Figure 4 depicts the results for E(&,U,,U, D) and we
make the following observations. For each Q, regardless of the
number of plant disruptions 7, if o < (Q — 1), then £LCq is
the superior design and in a few cases for specific values of o
the short chains are competitive with £C, see for comparison
(16). However, for a>(Q — 1)2 most of the considered short
chains - with one exception of SCEI) - approximately match
the performance of LCq, see for comparison (17). These
experimental observations are independent of the number of
plant disruptions and can be viewed as consistent with the
analytical results established in Proposition 3 for the worst-
case performance R(Ug, Uy, Uy, D). O

5. Fragility

In this section, we analyze the sensitivity of chains to dis-
ruptions. Fragility is the concept originally proposed by Lim
et al. (2011) to quantify the impact of disruptions on the
expected-case performance of flexibility designs, in particu-
lar, in the context of analyzing the sensitivity of 2-long and
2-short chains. In the following, we extend the concept of
fragility for the worst-case performance. We show that
Q-short chain designs are less fragile (sensitive) than Q-long
chain if the number of arc disruptions are sufficiently large
regardless of the other disruption parameters for any Q>2.
In contrast, the fragility of a Q-long chain design is less
than or equal to the fragility of Q-short chains in the case of
a plant disruption.

Formally, let R(U4, D) represent the worst-case perform-
ance of design D without disruptions and only subject to
demand uncertainty. Then from Lemma 1, Proposition 1
and Assumption 1 we have:

R(U#D) = RUHUSLUS, D)

k
= i ok0(e, D di b
m{ D)+ }

=

(19)

The fragility of design D, denoted by Fr(D), with respect
to uncertainty sets Uy, U, and U, is the difference in the
worst-case performance with and without disruptions, i.e.,

Fr(D) =R(Uy4, D) — R(ud,up,ua,D)

k
— P 5](,0 , D d:
0< k1\<nr1:ldeud { (e.D) + ]2:1: 1

_ . k¢ ot
o e i {(5 (eD)—7)
del,
k
+ Zdj +dD (0 —a)t } (20)
=1

When the disruptions occur, the fragility of design D
indicates the amount of reduction in R(Uy, D).

Disruptions can be low-probability contingencies and it is
often difficult to accurately assess the uncertainties in supply
disruptions. Hence, the supplier may consider R(Uy, D) as

the worst-case performance of design D by simply ignoring
the impact of disruptions. However, we envision that in
some settings (for example, in the context of the the min-
imum supply agreements, see Sucky (2007) it may be neces-
sary to quantify the maximum decrease in the supplied
demands in case supply disruptions actually occur. This
maximum decrease can be quantified by fragility, Fr(D).

In this section, we make, to some extent, an interesting
observation that if a system is subject to sufficiently large
number of arc disruptions, then the worst-case performance
of any SCq in {SCq} is less sensitive than LCq, ie.,
Fr(S8Cq)< Fr(LCq). This result is independent of plant dis-
ruptions, as well as the number of short-chain design com-
ponents. On the contrary, for a single plant disruption we
show that Fr(LCq)< Fr(SCq).

We start with the following result to demonstrate that
under arc disruptions the fragility of any SC is less than or
equal to that of LC,,.

Proposition 4. Let designs be subject to sufficiently large
number of arc disruptions, ie, o=(Q—1)°, then
Fr(SCq)< Fr(LCq) for any SCq in {SCq} and any plant
disruption parameter y.

Proof. First, consider the case without disruptions, i.e.,
a=9=0. Then by inequality (16) we have
R(Ud,US,US,SCQ)é R(Ud,ug,ug,ECQ), or equivalently:

R(Us, SC)< R(Us, L£C).

When designs are subject to o>(Q —
based on equation (17) we get

RUGUL U2 SCo) =

1)* arc disruptions,

RU UL U, LCo),

for any y. Therefore, based on the definition of fragility we
conclude that Proposition 4 holds. 0

Although Proposition 4 shows that in the case of suffi-
ciently large number of arc disruptions Fr(SCq)< Fr(£LCq)
for any SCq € {SCq}, it does not determine how we can
compare two different members of {SCq} with respect to
fragility. In the following, we address this 1ssue

Consider two short chains SC\)) and SC in {SCq}, with
component sizes zi ). ,zg() and zgz),. ,ZE(Z , respectively. We
say that the components of SCQ are decomposition of the
components of SCQ if for every k € {0,...,n} such that k =
> i, z( for some I, C {1,...,c(2)}, there exists some I} C
{1,..,cqy} for Wthh Z,GI z( s k Next, we show that if this
is the case, then SCQ is less fraglle than SC

Proposition 5. Consider two short chams ScY and SC
{SCq} such that the co fonents of SCQ are the decompos-
ition components of SC For any plant dzsruptzon param-
eter y if a>(Q — 1)°, then Fr(SC )< Fr(SC )

Based on equation (17) the worst-case performances of
scy) and SC

coincide,

under supply and demand uncertainties
R(UsUp Us, SCY)) = RULUp U SC)).
Then in order to demonstrate that Fr(SC(Ql))é Fr(ch) ) the
main effort is to show that R(L{d,SCS)) < R(Uy, SCg)). We
ascertain the latter by comparing the PCIDs of two designs

ie.,



without disruptions, see the proof of Proposition 5 in the
supplementary material.

The following example illustrates that if the condition of
Proposition 5 does not hold, then the fragility of designs
depends on the uncertainty sets considered.

Example 4. Let SCgl) and Sng) include five and three equal
size components as {3,3,3,3,3} and {5, 5, 5}, respectively.
By using equation (15), we can observe that
min 55 (e, 8¢y = min 55 (e, 8¢)

for all 0< k< n and 4< ¢< 45. Thus, Theorem 1 leads to
R(UgsUps Uy, SC) = RUL U, U, SCY)  for  4< o< 455
however, for (=0, we have &, SCgl)) =12 >
5%e,SCPY =10 and (e, SC) =9 < 5%(e,SC)
= 10. Therefore, none of the designs’ fragility dominates the
other because by Theorem 1, we can find demand uncer-
tainty  sets  such  that R(Z/{d,S(Zgl)) < R(Ud,SCgZ))
or R(Uy;, SCM) > R(U, SCP). 0

Let again the components of SCS) be the decomposition
components  of ch). For o>(Q—1)°, based on
Propositions 4 and 5 we have:

Fr(SCY))< Fr(SCY))< Fr(LCy).
Moreover, by equation (17):
R(UaUp,Uar SCY)) = R(U4Up, Uar SC5))
= R(U4,Up, U,y LCq).
Hence, we conclude that:

R(UHSCH)< RUGHSCY)V< RUGKLCG).  (21)

Relation (21) implies that, without disruptions, longer
chains (i.e., chains with fewer number of components) have
better performances than shorter ones. Moreover, the per-
formance of chains is bounded above by R(U; LCq). On
the other hand, recall the discussion in Section 4.2 that the
construction of shorter chains is less costly. Therefore, there
is a trade-off between the worst-case performance of a chain
without disruptions and the cost of flexibility.

In contrast with Proposition 4, we show in the following
result that if there is only one plant disruption without any
arc disruptions, then the fragility of £Cq is less than that of
any SCq.

Proposition 6. If a design is subject to only one plant disrup-
tion, i.e, o = 0 and y = 1, then Fr(LCq)< Fr(SCq) for any
SCQ in {SCQ}

Proposition 6 is proved by either demonstrating that
Fr(S8Cq) =1 and Fr(LCq)< 1, hence Fr(LCq)< Fr(SCq), or
showing that R(Uy, SCq) = R(U4, LCq), which also leads to
Fr(LCq)< Fr(SCq) since R(U4 Uy UL SCqo) < R(Uar Uy,
U,, LCq) based on inequality (16).

Proposition 6 implies that £Cq is less sensitive than SCq
under a single plant disruption. The intuition behind this
result is that — under a single plant disruption without arc
disruptions - a long chain allows us to better utilize the
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remaining capacity than localizing the effect of the disrup-
tion in short chains.

From Propositions 4, 5, and 6 we conclude that the
impact of a plant disruption differs from that of arc disrup-
tions. Losing a plant leads to a reduction in the plant’s sup-
ply capacity, whereas losing arcs decreases the flexibility of a
design. These results are important as the likelihoods of arc
and plant disruptions and the costs of constructing different
flexibility designs are not the same for each industry.
Therefore, the preferred flexibility may differ depending on
the company needs.

Remark 4. We can similarly define fragility as the impact of
the worst-case disruptions on the expected performance,

E(& D), e,
Fre(D) = E(¢,D) — E(& U, Uy, D).

It is worth mentioning that in our experiments (not
reported here) the inequalities established in Propositions 4,
5, and 6 also hold with respect to Fr:(D) for the designs
and configurations used in Example 3. 0

6. Generating flexibility designs

The majority of the available algorithms for generating
sparse flexibility designs are not intended for settings where
the design is susceptible to disruptions, e.g., we refer to
Deng and Shen (2013) and Chen et al. (2015). In this sec-
tion, we propose an algorithm that exploits the notion of
PCID to take into account possible supply disruptions to
generate both balanced and unbalanced, as well as homo-
genous and non-homogenous, designs. We then evaluate the
worst-case and the expected performances of these designs,
and compare them against designs generated by other algo-
rithms from the literature in settings with and without
disruptions.

The idea of our approach is as follows. Consider an ini-
tial design D, e.g., the dedicated design (Figure 1(b)), and
arc and plant disruption parameters o and y. We aim to add
& arcs to this initial design. Our method is based on
Theorem 1, which implies that a larger value for
D 0< k< ne1 mingeupék’“(g,D) may translate into a better
performance. Therefore, an increase in the value of PCID,
and subsequently, mingeupék’“(g, D), may lead to a better
worst-case performance. Hence, our algorithm adds arc
(i,j) € D to D at each iteration in order to increase PCID.

To elaborate further, from Assumption 1 we know that
0" = o for R(UaUp,U,s, D) in equation (10). Recall Remark
3 part (vi), then for given k and «, let $* and E* denote an
optimal solution for the following problem:

in 6%%(g, D) = i Pg. (22
;25; (&D) sC {a%?: k, “ & (22)
ECD|E =5 GEN(B\SD\E)

geU,

Sets $* and N (B\ $*,D\ E*) create a minimum vertex
cover for D\E. For a given k, we can increase
mingey, 0%*(g, D) by adding arc (i,j) € D in such a manner
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that none of its endpoints are part of the vertex cover, and
plant i is not disrupted, ie., i€ A\ N(B\ S, D\ E*),g #0
and j € B\ §*. Thus, we compute mingeupék’“(g, D) in the
algorithm for all 1< k<< n— 1. For each value of k, we
obtain a minimum vertex cover. We then select the arc with
endpoints belonging to a fewer number of minimum vertex
covers over all 0 k<< n — 1. This arc has possibly the great-
est effect in increasing » oy, Mingey, o**(g,D). By iter-
ating this process for £ times, we can create a highly flexible
design under disruptions.

The formal pseudo-code is given in Algorithm 1. Since
arc disruptions only impact o arcs of the output design, we
consider the arc disruptions only for the last « added arcs.
Thus, we set the number of arc disruptions as o =
max{0,7 — (£ —a)"} at the rth iteration of the algorithm.
Then in STEP 1, we obtain an optimal solution of
mingey, (5k’“l(g,D) for all k € {1,..,n—1}. In STEP 2, we
define the function ‘P(pf‘, q]’F, g}‘), which yields one if none of
the endpoints of arc (i, j) belong to the vertex cover and
plant i is not disrupted. Otherwise, it returns zero. Then for
each arc, we compute its weight W(i, j) as the sum of
¥(pf, g g) for different values of k. In STEP 3, set M
includes all candidate arcs with the maximum weight. For
each arc in M, we compute Q(i, /) as the sum of (weighted)
degrees of its endpoints. Finally, we pick the arc in M with
the minimum value of Q(i, j).

Algorithm 1 PCID-based heuristic algorithm that adds &
new arcs to initial design D
For 1< r< €&
Set o = (r—(£E—a)")™.
STEP 1. For 1< k< n—1
Find ming, 0% (g,D) as well as its optimal
solution (p*, X, t, gk).
End
STEP 2. Let ‘P(pf?, q]’-‘,gf‘) =1if pf? = q]’? =0 and g}‘ =1.
Otherwise, ¥ (p* q]’.‘,gf‘) =0.

i
For 1< i< m, 1< j< n;(i,j) € D
W(inj) = 3250 (ol 4. 8F)-
End
STEP 3. M = {(i,j) | W(i,j) = max{W(i, ) [1< i< m,
1<j<n (ij) ¢ D}}.
For (i,j) e M
If all products demands’ means (,uj) are known:
(p)

Q(is ) = Xopen(an D) C% + 2 eN b, D) CTJ
Else Q(i, ) = degp(i) + degp(j).
End
Find arc (i*,7*) in a manner that Q(i*,j*) = min{Q(i, )
| V(i,j) € M} (in case of a tie, we randomly select an arc,
albeit uniformly, with the minimum Q(3, j)).

D =DU (ap, by).
End

Both Algorithm 1 and the PCI algorithm introduced in
Simchi-Levi and Wei (2015) take into account the vertex
cover concept to generate a design. However, the key differ-
ences of Algorithm 1 are as follows:

e We take into account disruptions by using
mingeuPSk’“(g, D) instead of PCI in STEP 1 and define
function ‘I’(p;‘, q]’f,gf) in STEP 2.

e If multiple arcs have the maximum weight (ie., set M
includes multiple arcs), then in STEP 3 we employ Q(i, )
comprising of the information about the plants and prod-
ucts. If all products demands’ means (y;) are known, then
by computing the vertices’ expansion ratios (Chou et al,
2011) and selecting the arc that has the minimum value of
Q(i,j) we can better allocate unutilized plant capacities to
unsatisfied products demands. If the means are unknown,
then we can simply use the arc that has the minimum sum
of its vertices degrees instead to more equalize vertices
degrees; note that highly connected designs such as
Desargues graph (Kutnar and Marusi¢, 2009, Figure 5) or
Levi graph (Chou et al., 2011, Figure 1) have the latter
property. In contrast, in the PCI algorithm, when multiple
arcs have the maximum weight, one arc is selected ran-
domly in a uniform manner.

These features help us to generate designs that are less vul-
nerable to disruptions than those constructed by earlier
methods from the literature.

With respect to the computational complexity of Algorithm 1,
we first note that mingeupék’“(g, D) can be formulated as a
Mixed-Integer Linear Program (MILP) with O(m + n + |D|)
binary and continuous variables as well as O(m + |D|) con-
straints; see problem (A2) in the supplementary material for an
MILP formulation. In STEP 1, we need to solve O(En) problems
of the form mingeup(sk’“(g, D) and thus, Algorithm 1 requires
solution of O(En) MILPs of size O(m + n + |D|). Clearly, the lat-
ter complexity dominates the complexity of STEPs 2 and 3 of
Algorithm 1. Thanks to recent advances in commercial optimiza-
tion solvers such as CPLEX (2017), our experiments (see Table 2
below) show that for reasonably sized designs MILPs for
mingey, 0%*(g, D) can be solved reasonably quickly.

Benchmarks. In order to evaluate the designs generated by
Algorithm 1, we select PCI (Simchi-Levi and Wei, 2015) and
Expander (Chou et al, 2011) algorithms as the benchmarks
among available algorithms. As reported by Simchi-Levi and
Wei (2015) designs generated by the PCI algorithm outperform
those generated by existing algorithms in the literature, includ-
ing the algorithms proposed by Hopp et al. (2004), and Chou
et al. (2011). However, under asymmetric demand, designs cre-
ated by the Expander algorithm outperform those generated by
the PCI algorithm.

Measures. To evaluate the performances of the con-
structed designs, we consider four measures:

e For given « and 7y, measure A, , is the summation of
min,;: 8%(g, D) over, all 0< k< n,
. . 5 O
e, Aoy = o< ke n Mifgeyf 5°%(g, D).

e For a given y, measure A, is the summation of A, , over
all 0< a< [D), ie, Ay = > o 4 pj Aoy
Based on Theorem 1, for y plant disruptions, higher val-
ues of A, ., and A, are indicators of better worst-case
performances for a particular « and general

o € {0, ...,|D|}, respectively.
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Table 2. Results for the designs generated by Expander, PCl, and PCID algorithms under different disruption settings.
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T1 2 73 T4 75
Measure Expander ~ PCl  PCID  Expander ~ PCI  PCID  Expander =~ PCI  PCID  Expander ~ PCl  PCID  Expander ~ PCl  PCID
V=0
a=0 A, 9.1 4.5 0.0 3.6 0.0 0.0 39 2.2 0.0 10.1 2.7 0.0 19.5 0.9 0.0
E(¢&Up,Ua, D) 5.1 0.9 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Avg. Perf. 5.1 0.9 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time (sec.) 0.0 224 26.1 0.0 373 517 0.0 433 411 0.0 294 296 0.0 542 589
=3 A, 0.0 44 0.0 2.1 4.1 0.0 7.5 1.1 0.0 74 44 0.0 27.5 2.6 0.0
E(&, Uy, U, D) 0.2 3.1 0.0 0.0 3.0 0.1 1.7 5.8 0.0 0.0 29 1.5 0.0 5.9 23
Avg. Perf. 34 1.1 0.0 0.1 0.4 0.0 0.0 0.7 0.2 0.0 0.6 0.3 0.0 35 4.2
Time (sec.) 0.0 26.7 204 0.0 228 278 0.0 406 329 0.0 339 272 0.0 441 406
=5 A, 0.0 0.0 0.0 13 7.6 0.0 8.2 2.8 0.0 7.5 3.1 0.0 29.0 0.9 0.0
E(&,Up, U, D) 03 1.4 0.0 0.1 43 0.0 0.6 5.6 0.0 0.0 79 26 0.0 104 47
Avg. Perf. 1.8 0.7 0.0 0.0 0.8 0.3 0.0 1.4 0.2 0.4 0.8 0.0 0.0 2.5 5.2
Time (sec.) 0.0 171 108 0.0 285 243 0.0 404 298 0.0 193 149 0.0 528 36.0
a=7 A, 0.0 0.0 0.0 1.5 121 0.0 13.0 4.7 0.0 7.6 7.6 0.0 31.6 4.8 0.0
E(¢Up,Ua, D) 0.2 0.6 0.0 0.0 4.2 0.3 13 26 0.0 0.0 110 26 0.0 176 65
Avg. Perf. 0.0 0.1 0.5 0.7 0.9 0.0 0.0 0.3 0.0 0.0 1.9 1.7 0.0 37 44
Time (sec.) 0.0 15.7 9.2 0.0 289 180 0.0 317 256 0.0 218 1238 0.0 51.0 300
&‘. 3.2 9.8 0.0 0.2 2.1 0.0 8.7 0.0 0.2 8.8 6.2 0.0 29.5 1.4 0.0
V=1
a=0 A, 123 7.0 0.0 2.1 0.0 1.1 7.6 44 0.0 13.7 1.9 0.0 22.1 1.1 0.0
E(¢&Up,Ua, D) 7.3 2.6 0.0 0.1 0.0 0.1 0.7 0.7 0.0 1.0 0.0 0.0 2.2 0.4 0.0
Avg. Perf. 5.6 1.2 0.0 0.0 0.9 1.0 0.0 1.0 0.8 0.0 1.6 1.6 0.0 0.5 0.3
Time (sec.) 0.0 129 136 0.0 293 186 0.0 266 19.2 0.0 18.4 9.6 0.0 441 285
=3 A, 0.0 0.0 0.0 1.6 1.6 0.0 9.9 7.1 0.0 6.6 5.1 0.0 26.8 2.3 0.0
E(¢&Up,Ua, D) 0.4 0.4 0.0 0.0 1.1 0.8 3.1 0.0 1.0 0.0 53 33 0.1 1.1 0.0
Avg. Perf. 35 0.0 0.5 2.0 0.0 0.3 1.4 0.0 0.5 0.0 0.6 0.6 0.0 35 24
Time (sec.) 0.0 178 104 0.0 221 216 0.0 274 204 0.0 168 118 0.0 472 296
a=5 A, 0.0 0.0 0.0 0.0 43 2.2 5.2 38 0.0 15 8.0 0.0 30.2 4.0 0.0
E(¢&Up,Ua, D) 0.0 1.0 0.3 0.0 4.4 0.6 0.9 0.2 0.0 0.0 3.2 4.2 0.0 18.6 1.8
Avg. Perf. 23 0.0 0.5 1.5 0.4 0.0 0.5 0.0 1.2 0.0 25 3.1 0.0 53 4.1
Time (sec.) 0.0 15.1 8.9 0.0 20.1 181 0.0 28.1 1838 0.0 149 122 0.0 424 272
a=7 A, 0.0 0.0 0.0 2.8 16.7 0.0 12.8 79 0.0 11.9 79 0.0 311 33 0.0
E(&,Up,Ua, D) 03 30 00 0.2 44 0.0 2.1 3200 0.0 93 06 0.0 120 67
Avg. Perf. 0.8 2300 0.4 00 00 0.0 01 06 1.0 01 0.0 0.0 44 43
Time (sec.) 0.0 117 82 0.0 195 169 0.0 244 184 0.0 149 122 0.0 303 25.1
&,, 24 13.0 0.0 4.4 0.0 1.8 12.3 6.1 0.0 8.4 2.2 0.0 33.2 2.7 0.0
V=2
o=0 A, 16.7 83 0.0 14.3 6.3 0.0 10.6 8.0 0.0 135 0.0 1.1 229 3.8 0.0
E(&Up,Ua, D) 8.7 1.5 0.0 0.7 0.6 0.0 0.1 0.1 0.0 0.0 0.0 0.7 0.0 2.0 0.7
Avg. Perf. 4.8 1.1 0.0 4.7 0.2 0.0 6.6 0.0 0.4 0.0 0.4 0.6 0.0 25 14
Time (sec.) 0.0 13 6.6 0.0 168 13.0 0.0 206 137 0.0 13.1 9.1 0.0 289 234
o=3 A,y 0.0 179 0.0 20.5 7.7 0.0 14.3 4.8 0.0 10.9 1.0 0.0 31.1 5.4 0.0
E(¢&Up,Ua, D) 0.4 6.1 0.0 5.7 23 0.0 53 5.1 0.0 0.0 1.8 0.5 0.0 1.5 6.7
Avg. Perf. 39 1.5 0.0 0.4 0.0 0.3 0.0 2.7 25 0.0 2.8 3.1 0.0 2.2 3.1
Time (sec.) 0.0 9.7 6.9 0.0 154 143 0.0 206 162 0.0 128 105 0.0 298 237
=5 A, 0.0 238 0.0 19.2 7.7 0.0 17.8 13 0.0 183 6.7 0.0 34.6 3.6 0.0
E(¢&Up,Ua, D) 0.2 16.5 0.0 10.1 55 0.0 0.7 0.5 0.0 0.3 55 0.0 0.0 183 7.0
Avg. Perf. 1.2 26 0.0 0.0 3.2 4.2 0.0 1.0 2.1 0.0 3.7 3.6 0.0 5.0 73
Time (sec.) 0.0 8.1 6.8 0.0 141 140 0.0 191 146 0.0 125 9.5 0.0 289 243
a=7 A, 0.0 0.0 0.0 16.7 1.1 0.0 141 13 0.0 25.6 15.1 0.0 411 0.0 85
E(¢&Up,Ua, D) 0.0 1.1 1.7 12.6 59 0.0 57 15 0.0 1.6 4.0 0.0 0.0 253 6.5
Avg. Perf. 2.7 0.0 0.9 0.0 1.1 1.0 0.0 2.7 4.4 0.0 2.7 26 0.0 5.6 36
Time (sec.) 0.0 9.8 7.2 0.0 132 1341 0.0 185 134 0.0 1.3 9.8 0.0 227 218
A, 6.2 13.8 0.0 23.0 144 0.0 155 15.5 0.0 15.9 34 0.0 326 1.1 0.0
Average
A, 4.9 5.4 0.0 4.7 47 0.0 8.8 43 0.0 10.5 39 0.0 26.8 22 0.0
E(¢&Up,Ua, D) 24 2.7 0.0 13 24 0.0 15 2.1 0.0 0.0 38 1.2 0.0 9.4 29
Avg. Perf. 28 0.8 0.0 0.3 0.1 0.0 0.0 0.1 0.3 0.0 13 1.2 0.0 3.2 33
Time (sec.) 0.0 149 113 0.0 223 210 0.0 284 220 0.0 182 141 0.0 39.7 308
A, 3.7 1.8 0.0 4.8 3.0 0.0 10.9 44 0.0 9.8 45 0.0 313 1.8 0.0

y

For each test instance, disruption setting, and measure (M € {A,,,, &,, E(&,Up,Ua, D), Avg. Perf}), we present the results as the percentage in difference

M

(

% x 100%) between the value of the measure reported for the output design of an algorithm (M,,) and the best measure value among the outputs of

the three considered algorithms (M*). The running times (Time) of the algorithms are reported in seconds. The best result for each test instance, disruption set-
ting, and measure is in bold.
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o The expected performance for the worst-case disruptions,
ie, E(&Upy U, D), when the demand distribution is
known, as defined in equation (18).

e The average performance, that is the average of
P(d,g,h,D) over all demands, plant and arc disruption
scenarios, denoted as “Avg. Perf.” in Table 2.

Test instances. We generate 5000 demand scenarios. We
consider  disruption  parameters o € {0,3,5,7} and
y €4{0,1,2}. In order to compute the average performance
(Avg. Perf.), for each combination of o and 7y, we generate
40 arc disruptions and 15 plant disruptions scenarios (binary
vectors), generated uniformly and randomly.

We use the following five test instances as initial designs
for the algorithms. Each of these initial designs is then
improved by each of the algorithms (Expander, PCI and
PCID) by adding £ = 15 arcs:

o The test instances T1, T2 and T3 are considered in Simchi-
Levi and Wei (2015). For T1, the initial design is a dedicated
design, £C,, where m = n = 10. For T2 and T3, the initial
design is an unbalanced design where m = 7,n = 14 and
D= {(L1),(1,2),(1,3), 2.4),(2,5), (2.6),(3.7),(3,8),
(4,9), (4,10), (5,11),(5,12), (6,13), (7,14)}. For all these
three test instances products’ demands are generated from
independent normal distributions, where the demand for the
jth product has mean i, and standard deviation 0.5. In T1 and
T2, y; =1, for j € B, but in T3, ; is chosen uniformly and
randomly from [0.5,1.5], for all j € B. For all test instances
cgp) = ZjeN(i,D) T fori € A.

e As the fourth test instance, T4, we consider the design
studied by Chou et al. (2008) with m = 7 and n = 9, where
the  initial design is D ={(1,9),(2,8),(2,9),
(3,2),(3,6),(4,3),(4,8),(5,1),(5,5),(6,7), (6,9),(7,4)}.
Products’ demands are normally distributed with means
W =76, W, =57 u3 =74, ny=>51, u; =4.5, ps =
2.1, p, =36, pg =73, and py = 8.9. The standard
deviation of each product demand is 40 % of its mean.
Fixed glant capac1t1es are ¢ ) =13, cgp) =47, cgp) =
8.6, ¢V =134, P =117, ¥ =83, and ¥ =6.3.

e For the fifth test instance, T5, we consider the design pro-
posed by Jordan and Graves (1995) in the context of the
auto industry that is also studied by Chou et al. (2011) and
Feng et al. (2017). Instance T5 has an initial design with m
= 8 n = 16, and D={(1,1),(1,2), (2,3),
(3,4), (3,5), (4,5), (4,6), (5,7),(5,8),(5,9),(6,9),(6,10),
(7,11),(7,12),(7,13),(8,14), (8,15),(8,16)}. The demand
for each product is assumed to be from a truncated normal
distribution N(uj,(0.4uj)2) with support [0.2py,1.8,] and
means p; =320, p, =150, pu; =270, p, =110, ps=
220, g =110, 11, =120, {1y =80, {1y =140, |1,y =160, p,, =
60, p,=35,1,3=40, n,4=35, 1;5=30, and p,, =180.
The plant capacities are ¢;”” = 380, cgp ) =230, ¥ =250, cff)
=230, =240, ) =230, ¥ =230, and ¢}’ =240.

Results and discussions. All computational experiments
were performed on a PC, where we allocated eight threads
(CPU 29GHz) and 32GB of RAM for each individual

experiment. MILPs in PCI and PCID algorithms were solved
using CPLEX 12.7.1 (2017) and all the algorithms were coded
in C++ programming environment. Table 2 reports the per-
formance of the designs generated by the considered algo-
rithms. From these results we make the following observations.

First, the designs generated by the PCID algorithm have
the largest values for A, , and A, in most of our experiments.
As a consequence, on average (see the bottom part of Table
2) the PCID-based designs outperform the other algorithms’
designs for all of the considered test instances with respect
to A, , and A,. Therefore, we expect that the designs gener-
ated by PCID have a better worst-case performance,
R(U4Up,Ua, D), under disruptions than designs con-
structed by the other algorithms (recall Theorem 1).

Furthermore, the PCID algorithm’s designs, on average, have
the best performances with respect to E(&,U,,U,, D) and Avg.
Perf. for T1 and T2; they are also superior designs with respect to
E(&,Up,Uq, D) in T3. However, on average, the Expander algo-
rithm’s designs show slightly better performances than those gen-
erated by the PCID algorithm with respect E(&,U,,U,, D) and
Avg. Perf. for T4 and T5. Nevertheless, the designs generated by
the Expander algorithm are relatively poor in our experiments
with respect to A, , and &/, in particular, for T3, T4 and T5.

The designs generated by the PCI algorithm are competi-
tive against the other designs in only a few experiments.
Thus, on average, their performance is always dominated by
at least one of the other two algorithms’ designs with respect
to the considered measures.

To summarize the discussion above, we conclude that the
designs generated by the PCID algorithm are reasonably well
protected against the worst-case demand and supply disruption
scenarios. Furthermore, the performance of the PCID-based
designs is competitive with the designs generated by the PCI and
Expander algorithms with respect to all of the other performance
measures in both disruption and no-disruption settings.

Finally, with respect to the running times the PCID algorithm
is typically slower than Expander algorithm, but relatively close
to the running time of PCI algorithm. This is reasonable to
expect given that both the PCI and PCID algorithms involve sol-
utions of MILPs. Nevertheless, in all of our experiments the over-
all running times are within one minute or less.

7. Conclusion

This paper studies the worst-case performance of process flexi-
bility designs. In addition to the demand uncertainty, we assume
that designs are susceptible to plant and arc disruptions. We
define PCID, denoted by 0*‘(g, D), as the minimum required
capacity of plants to create a vertex cover on D, given that the
vertex cover contains exactly k products, exactly ¢ arcs are
ignored, and plants are disrupted according to vector g. We
show that the worst-case performance of any design can be for-
mulated as a function of PCID and symmetric uncertainty sets.
PCID also allows us to compare the performance of different
designs with no additional information on the demand. In par-
ticular, we demonstrate optimality of the well-known 2-long
chain design over a broad class of designs in the worst-case per-
formance under disruptions. This result is an extension of ear-
lier studies in the literature that show the superiority of 2-long



chain design with respect to the expected and the worst-case
performances when no disruptions are present.

Furthermore, we show that, for Q>2, any Q-short chain
has the same performance as Q-long chain if the design is
subject to a sufficiently large number of arc disruptions.
This result holds regardless of the presence of plant disrup-
tions and has noteworthy implications, e.g., if there exists at
least one arc disruption, then 2-short chains (which are not
often taken into account because of its poor expected per-
formance) are optimal - in the worst case — over all designs
for which 2-long chain is optimal.

In the second part of this paper, we consider the notion
of fragility that quantifies impacts of disruptions on the
worst-case performance. We show that, for Q>2, Q-long
chain is less fragile (sensitive) than any Q-short chain design
under a single plant disruption. In contrast, we demonstrate
that Q-short chain designs are less fragile than Q-long chain
if the number of arc disruptions are sufficiently large regard-
less of the other disruption parameters.

By using the concept of PCID we also develop an algorithm
for generating designs that are less vulnerable to supply and
demand uncertainties than the designs generated by earlier
methods from the literature. Our computational experiments
demonstrate that the designs constructed by the PCID-based
algorithm performs well under supply and demand uncertain-
ties in both the worst and the expected cases.
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