nature . . .
machine intelligence

ARTICLES

https://doi.org/10.1038/5s42256-020-0177-2

‘ '.) Check for updates

Finding key players in complex networks through
deep reinforcement learning

34X

Changjun Fan'?, Li Zeng', Yizhou Sun®2™ and Yang-Yu Liu

Finding an optimal set of nodes, called key players, whose activation (or removal) would maximally enhance (or degrade) a
certain network functionality, is a fundamental class of problems in network science. Potential applications include network
immunization, epidemic control, drug design and viral marketing. Due to their general NP-hard nature, these problems typi-
cally cannot be solved by exact algorithms with polynomial time complexity. Many approximate and heuristic strategies have
been proposed to deal with specific application scenarios. Yet, we still lack a unified framework to efficiently solve this class of
problems. Here, we introduce a deep reinforcement learning framework FINDER, which can be trained purely on small synthetic
networks generated by toy models and then applied to a wide spectrum of application scenarios. Extensive experiments under
various problem settings demonstrate that FINDER significantly outperforms existing methods in terms of solution quality.
Moreover, it is several orders of magnitude faster than existing methods for large networks. The presented framework opens
up a new direction of using deep learning techniques to understand the organizing principle of complex networks, which enables

us to design more robust networks against both attacks and failures.

data structure to describe numerous types of interactive sys-

tems'?, such as the Internet, social media, transportation net-
works, power grids, food webs and biomolecular networks. Such
systems are greatly affected by a small fraction of important nodes,
whose activation/removal would significantly improve/degrade cer-
tain network functionality. Such important nodes have been named
differently depending on their roles in different application scenar-
ios, for example, influential nodes**, vital nodes’, key player nodes®
or critical nodes’. Hereafter we will simply call them key players.

Finding an optimal set of key players in complex networks
has been a long-standing problem in network science, with many
real-world applications. Representative examples include (1)
destroying communications in a criminal or terrorist network by
arresting critical suspects®, (2) destroying certain critical proteins
and neutralizing the corresponding harmful protein complexes for
rational drug design’, (3) planning resource allocation during an
evacuation or reestablishing critical traffic routers in transportation
networks' after a disaster and (4) handling various diffusion phe-
nomena on networks, including both the optimal spreading prob-
lem (that is, maximizing the diffusion for influence spreading or
viral marketing'') and the optimal immunization problem (that is,
minimizing diffusion via epidemic control'?, rumour control'' and
network immunization'?).

Depending on the specific application scenario, we need to define
the corresponding measure to quantify the network functionality
appropriately. Without loss of generality, hereafter we consider net-
work connectivity as a key proxy for network functionality. After all,
almost all network applications are typically designed to be run in
a connected environment’. Commonly used network connectivity
measures include the number of connected components, pairwise
connectivity, the size of the giant connected component (GCC), the
length of the shortest paths between two certain nodes and so on.
In particular, the size of the GCC is a heavily studied connectivity

| he network, or graph in discrete mathematics, is a common

measure®', because it is relevant to both the optimal attack problem
and optimal spreading problem (Supplementary Fig. 14). In fact, the
optimal attack problem with the objective of minimizing the GCC
size is exactly dual to the optimal spreading problem with linear
threshold spreading dynamics®. (Note that, in general, the optimal
attack and spreading problems are not dual to each other.)

Finding an optimal set of key players in general graphs that
optimizes nontrivial and hereditary connectivity measures is typi-
cally NP-hard” (NP, non-deterministic polynomial time). This pro-
hibits exact and scalable solutions of such problems for large-scale
networks. Traditional heuristic or approximate algorithms®®!*-¢
either require substantial problem-specific search or suffer from
deteriorated performances. It is often hard to provide a satisfy-
ing balance between effectiveness and efficiency. Moreover, most
existing methods are ad hoc for specific application scenarios.
Those designed for one particular application often fail on many
other applications.

Inspired by the recent advances in deep learning techniques for
solving combinatorial optimization problems”-*, here we intro-
duce FINDER (FInding key players in Networks through DEep
Reinforcement learning), a generic and scalable deep reinforce-
ment learning framework to find key players in complex networks
(see Fig. 1 for a demonstration of its superior performance over
existing methods). In particular, FINDER incorporates induc-
tive graph representation learning® to represent graph states and
actions, and employs a deep Q (action quality score) network that
combines reinforcement learning and deep neural networks™
to automatically learn the strategy that optimizes the objective.
Extensive experiments on various problem settings demonstrate
that FINDER significantly outperforms handcrafted heuristics or
approximate methods in terms of both solution quality and time
complexity. Given that FINDER is trained purely on synthetic
graphs generated by toy network models, the learned superior
ability in solving complicated real-world problems suggests a new

'College of Systems Engineering, National University of Defense Technology, Changsha, China. 2Department of Computer Science, University of California,
Los Angeles, CA, USA. 3Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
4Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, USA. ®e-mail: yzsun@cs.ucla.edu; yyl@channing.harvard.edu

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

mailto:yzsun@cs.ucla.edu
mailto:yyl@channing.harvard.edu
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0003-2728-4907
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-020-0177-2&domain=pdf
http://www.nature.com/natmachintell

ARTICLES

NATURE MACHINE INTELLIGENCE

Original network

HD: remove 16 nodes, residual GCC size = 14

k

il

d FINDER: remove 14 nodes, residual GCC size =9

Ay

Fig. 1| Finding key players in a network. a, The 9/11 terrorist network?, which contains 62 nodes and 159 edges. Nodes represent terrorists involved in the
9/11 attack and edges represent their social communications. Node size is proportional to its degree. b, Removing 16 nodes (cyan) with the highest degree
(HD) causes considerable damage, rendering a remaining GCC (purple) of 14 nodes. ¢, Removing 16 nodes (cyan) with the highest collective influence
(CI) results in fragmentation and the remaining GCC (purple) contains 18 nodes. d, FINDER removes only 14 nodes (cyan), but leads to a more fragmented
network and the remaining GCC (purple) contains only nine nodes. Note that, in the application of maximizing spreading (under linear threshold spreading
dynamics with each node's threshold being d,— 1, where d; is its degree), those key players are not removed but are activated, and the remaining GCC
represents inactivated nodes. By minimizing this inactivated GCC in spreading we are effectively maximizing the spreading of information®.

promising perspective to understand the organizing principles of
complex networked systems.

Problem formalization. Formally, given a network G = (V,¢&),
with a node set V and an edge set &, and a predefined connectiv-
ity measure o, our learning objective is to design a node removal
strategy, that is, a sequence of nodes (v, v,, ..., v) to be removed,
which minimizes the following accumulated normalized connectiv-
ity (ANC)*:

7VN) — i N O'(g\{Vl,Vb) Vk}) (1)

R(vy, vy, ... N 2—k=1 o(G)

Here, N is the total number of nodes in G, v; € V denotes the ith
node to be removed, 6(G\{v1, v2,- -+ , vk }) is the connectivity of the
residual graph after removing nodes in the set £ = {vy, v, ..., v}
sequentially from G, and (G) is the initial connectivity of G before
any node removal. The value of R can be viewed as an estimation of
the area under the ANC curve, which is plotted with the horizontal
axis being k/N and the vertical axis being o(G\{v1, v2, ..., vk })/0(G).
In Fig. 2, we show examples associated with two different connec-
tivity measures, where we apply FINDER to a small real network
and plot the ANC curves with three network snapshots highlighted
during the node removal procedures.

In certain application scenarios, different nodes are associated
with different ‘weights] that is, removal costs. We can define a
weighted ANC as follows:

_ N o(G\{viva, o))
k=1 o(G)

RCOSt(Vh V2, ooy VN) C(Vk) (2)

Here, ¢(v,) denotes the normalized removal cost associated with
node v, and Zi\rzl c(vk) = 1. Note that equation (1) is a special
case of equation (2), where ¢(v,) = 1/N. The range of both R and R
lies between 0 and 1 (Supplementary Section IV.B).

In principle, our framework can deal with any well-defined
connectivity measure o : {G} — R*, which maps a graph into a
non-negative real number. To demonstrate the power of our frame-
work, here we consider two most commonl})/ used measures: (1)
pairwise connectivity 6p.ir(9) = > ¢.cg §‘<§‘27 , where C; is the ith
connected component in the current graph G, and §; is the size of
C,, which corresponds to the critical node (CN) problem?; (2) the
size of the GCC, og.(G) = max{6;; C; € G}, corresponding to the
network dismantling (ND) problem', which is also equivalent to
the optimal immunization/spreading problem with linear threshold
spreading dynamics®.

cost

Model

Framework. Fundamentally different from traditional methods,
FINDER takes a purely data-driven approach without using any
domain-specific heuristic. As illustrated in Fig. 3 (top), FINDER
is trained offline on small synthetic random graphs generated
from classic network models. For each graph, FINDER considers
the finding of key players as a Markov decision process: interact-
ing with the environment through a sequence of states, actions and
rewards. Here, the environment is the network being analysed, the
state is defined as the residual network, the action is to remove or
activate the identified key player, and the reward is the decrease
of the ANC (equation (1) or equation (2)) after taking the action.
During this process, FINDER collects the trial-and-error samples to
update its parameters (Supplementary equation (27)) and becomes

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

http://www.nature.com/natmachintell

NATURE MACHINE INTELLIGENCE ARTICLES

a b 4 key players , 67.5% c 10 key players, 13.1% d 17 key players, 4.7%

ANC curve — CN residual CN connectivity residual CN connectivity residual CN connectivity
2 1.0 ° o
= —go
8 0.8 b . .\0——' *
E ° c o .\r .
g 0.6 ° °
(Z) 0.4
5 c o :.
3 024 .
2 d [] °®
I 0) T T T T T T

0O 01 02 03 04 05 06
Fraction of key players

e f 4 key players, 87.1% g 10 key players, 29.0% h 17 key players, 9.7%

ANC curve — ND residual ND connectivity residual ND connectivity residual ND connectivity
Z 10 f . . .
§ 0.8 4 N . : C ‘.X" O
c C
S 0.6 LN ‘s’
o
Z 0.4 g .Q‘
E

0.2 4
% s j
« 0) T T T T T T
0 01 02 03 04 05 06

Fraction of key players

Fig. 2 | The process of finding key players in a network using FINDER. FINDER seeks to design a node removal sequence to minimize the ANC (equation
(1) or equation (2)) or, equivalently, minimize the area under the ANC curve, which is generated by sequentially removing the key players identified by
FINDER, with the horizontal axis being the fraction of key players and the vertical axis being the network connectivity of the residual graph after removing
these key players. a,e, We consider two connectivity measures for the 9/11 terrorist network (Fig. 1): pairwise connectivity for the critical node (CN)
problem (a) and GCC size for the network dismantling (ND) problem (e). b-d f-h, Residual graphs after removing 4 (b,f), 10 (¢,g) or 17 (d,h) key players
(cyan) determined by FINDER at the different time points marked in the ANC curves in a (b-d) and e (f-h), respectively.

increasingly intelligent to solve the task (Fig. 3, top). When this
offline training phase is over, the well-trained FINDER is able to
learn a long-term policy that can select an action to accumulate
the maximum rewards from the current state. When applied to a
real-world network, FINDER will simply repeat a greedy procedure
(Supplementary Section II.D.1) to return the optimal sequence of
key players (Fig. 3, bottom).

To ensure success, we still face several challenges. First, how can
we represent the states and actions in our setting? Second, how can
we leverage these representations to form a score function that tells
us the right action for a state? We refer to these two questions as an
encoding problem and a decoding problem, respectively.

Encoding. For encoding, traditional methods often use handcrafted
features to represent nodes and graphs®, such as global or local
degree distribution, motif counts and so on. However, these features
are usually ad hoc and may lead to unsatisfactory performance. Here,
we leverage graph representation learning (a.k.a. graph embedding)
based on graph neural networks'*?>’' to characterize the network
structural information into a low-dimensional embedding space.
In particular, we employ an inductive graph representation learn-
ing technique similar to GraphSAGE® to iteratively aggregate node
embedding vectors, which are initialized as node features (for exam-
ple, node degree or node removal cost), from the neighbourhood,
followed by a nonlinear transformation operator with learnable
parameters. After several rounds of recursion, each node obtains an
embedding vector that captures both the node’s structural location
on the graph and the long-range interactions between node features.
To capture more complex graph information, we introduce a virtual
node that considers all real nodes as neighbours to represent the
entire graph*” and repeat the same embedding propagation process
to obtain its representation (see Supplementary Section IL.D.1 and
Supplementary algorithm 2 for details on encoding).

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

Decoding. For the decoding, we designed a deep parameteriza-
tion for the score function, that is, the Q function. The Q function
leverages the embeddings of states and actions from the encoder
to calculate a score that evaluates the quality of potential actions.
Specifically, we apply the outer product operation on embeddings of
state and action to model finer state-action dependencies. A mul-
tilayer perceptron with rectified linear unit activation is then uti-
lized to map the outer product to a scalar value (see Supplementary
Section I1.D.1 for decoding details).

Offline training. FINDER was trained over 200,000 randomly
generated small synthetic graphs of 30-50 nodes. To perform
end-to-end learning of the parameters in the encoder and decoder,
we combine the n-step Q-learning loss' and the graph reconstruc-
tion loss* (Supplementary equation (7)) and use Adam gradient
descent updates on mini-batch samples, drawn uniformly at ran-
dom from the pool of stored experiences. The n-step Q-learning
loss minimizes the gap between the predicted Q values and target Q
values, and the graph reconstruction loss preserves the original net-
work structure in the embedding space. Supplementary algorithm 2
describes the complete training procedure.

Online application. We evaluated FINDER on both synthetic
graphs and various real-world networks. During the applica-
tion phase, we remove a finite fraction of nodes at each adaptive
step, instead of the one-by-one removal as in the training phase.
We find the performance to be practically unaffected by the
removal of up to a 1% fraction (Supplementary Figs. 2 and 3 and
Supplementary Tables 6 and 7). This batch nodes selection strat-
egy enables FINDER to scale with ~ O(|€] + |V| + |V|log|V|) time
complexity (Supplementary Section II.D.3, Supplementary Fig. 4
and Supplementary Table 5), which is very efficient for handling
large-scale real-world problems.

http://www.nature.com/natmachintell

ARTICLES NATURE MACHINE INTELLIGENCE

Synthetic graphs

e~ 7
Yo 0w
gllv %) |
% Start State Action Reward State Action Reward ;j
S @ ls| | A lR‘ lsz |A2 lRZ "
2 ‘
= I
S !] -
(St2: Ao Riotom Stain) o (5. AL Ry St (. S, A Rijon, St (St At Ricseun, Scun) 3
o osp it S B I— IE— T— i
(S Av Ritens Stan) X pr ™ & 4
G A R‘ 5.) J=<. Update{®, 0} j" R Update{®g, ©p} Update{®g, 6} ’\
1410 Ate1 Mt 14n0 Otat4n, | -~ .
500 @ i
Experience replay buffer ’&' .
A real network f
stat e, Action
S, ; \
c i
o Action: @ S <«—State—
© A, G ;
L Start L .
= tar
aQ
: |
T e ix
S
2 | e '
5 NES o
| | fe(@) |
=t el '
P S
i
Step 1

Fig. 3 | Overview of the FINDER framework. The framework consists of two phases: phase 1 (top; offline training, during which the agent FINDER is trained
to perform well on synthetic graphs) and phase 2 (bottom; a real-world application, during which the well-trained agent is applied to a real-world network
to find the key players). In the offline training, we first generate a batch of synthetic graphs. We then randomly sample one (or mini-batch) of them, and

let the FINDER agent ‘play the game’ on the graph, that is, complete a whole key-player finding process (denoted as an episode), as illustrated in Fig. 2.
Specifically, the agent interacts with the graph through a sequence of states, actions and rewards. Here, the state is defined as the residual network, the
action is to remove (or activate) the identified key player (node), and the reward is the decrease of ANC after taking the action. To determine the right
action for a state, we first encode the current graph and obtain each node's embedding vector (shown as a colour bar), which captures its structure
information and long-range interactions between node features (for example, removal cost). We then decode these embedding vectors to scalar Q

values (shown as green bars, with heights proportional to the Q values) for all the nodes to predict the long-term gains if taking this action. Based on

the calculated Q values, we adopt an e-greedy action strategy; that is, we select the highest-Q node with probability (1—¢) and take a random action
otherwise. To balance between exploration and exploitation, ¢ is linearly annealed from 1.0 to 0.05 over 10,000 episodes. When a game (or an episode) is
over (for example, the residual graph becomes completely disconnected), we collect the n-step transitions, that is, 4-tuples in the form (S, A, R, i1, Siem?:
where Rjjin) = Zj:;': Rk, from the above sequence, and store them into the experience replay buffer—a queue that maintains the most recent M 4-tuples.
In our calculations, we choose M=50,000. Meanwhile, the agent is updated (that is, parameters &, and @, for its encoder and decoder are updated) by
performing mini-batch gradient descents over the loss (Supplementary equation (7)). As the episodes and updates repeat, the agent becomes increasingly
intelligent and powerful in finding key players on complex networks. In the real-world application, once the offline training phase finishes, we can apply the
well-trained agent to a real-world network. Here we use the raccoon contact network®® as an example, and we test on its largest connected component,
which contains 14 nodes and 20 edges. Similar to the offline training phase, in the application phase the agent first encodes the current network into
low-dimensional embedding vectors, and then leverages these embedding vectors to decode Q values for each node. Unlike the e-greedy action strategy
during training, here we exploit the ‘batch nodes selection’ strategy, which picks a finite fraction (for example, 1%) of highest-Q nodes at each adaptive
step, and avoids the one-by-one iterative select-and-recompute of the embedding vectors and Q values. This strategy does not affect the final result,

but it renders several orders of magnitude reduction in the time complexity (Supplementary Figs. 2 and 3 and Supplementary Tables 6 and 7).

Repeating this process until the network reaches the user-defined terminal state (for example, maximum budget nodes or minimum connectivity
threshold), the sequentially removed nodes constitute the optimal set of key players. See Supplementary Section 11.D.1 for more details about the
framework. Credit: Shutterstock.

on these application scenarios, and all FINDER variants that are
designed for different problems under different scenarios can con-
verge very well on the validation data (Supplementary Fig. 11).
Thanks to its flexible architecture, we anticipate that this frame-

Flexibility. We created four FINDER agents to handle two connec-
tivity measures, 6,,,(-) and o,.(-) (corresponding to CN and ND
problems, respectively), under two scenarios: node-unweighted
and node-weighted. All the agents share the same architecture

(Supplementary Section II.D.1 and Fig. 3), and training proce-
dure (Supplementary algorithm 3), except for the reward function,
which is determined by the respective ANC. Extensive experi-
ments demonstrate that our framework is universally effective

work can be applied to even more complex scenarios as well
(see Supplementary Section IV.E, Supplementary Fig. 13 and
Supplementary Table 18 for FINDER’s adaptation to the minimal
percolation threshold problem).

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

http://www.nature.com/natmachintell

NATURE MACHINE INTELLIGENCE

ARTICLES

a CN - node-unweighted CN - node-degree-weighted 4 CN - node-random-weighted
0.50 HDA 0.50 -| HDA 0.50 -| HDA
Cl Cl Cl
0.45 -| === RadioCut 0.45 - === RadioCut 0.45 - === RadioCut
mm FINDER 13‘ == FINDER , | Tg mmm FINDER
0.40 H 0.40 } H 0.40 M |
3z 3 | E |
2 {=% a
z 0.35 £ 035+ £ 035+ |
£ [¢] Q |
S P4 b4
= 0.30 + < 0.30 4 < 0.30
Q 3 2 | | | |
Z 025+ £ 025+ £ o025 ||
o) @
0.20 4 2 0204 2 0204
0.15 0.15 0.15 4 . l l I I l
0.10 - 0.10 - 0.10 -
30-50 50-100 100-200 200-300 300-400 400-500 30-50 50-100 100-200 200-300 300-400 400-500 30-50 50-100 100-200 200-300 300-400 400-500
Test graph size Test graph size Test graph size
d ND - node-unweighted e ND - node-degree-weighted f ND - node-random-weighted
HDA HDA HDA
0.60 cl 0.60 cl 0.60 cl
i MinSum i MinSum i MinSum
055 == GND . 0.55 == GND . 0.55 == GND
0.50 -| ™= FINDER 8 0.50 | === FINDER , , 8 0.50 | == FINDER
—~ i [' ' ' 15} f I . . . 5}
S 045 | o 045 T ' Q 045 bk | ;| |
[< < i | | | I i | |
O 0.40 o 040+ o 0.40
z 2 2
< z Z
0.35 -g 0.35 4 % 0.35 4
= =
0.30 | | AN 0.30 0.30
| |
0.25 - hr WV . , 0.25 4 0.25 4
0.20 - 0.20 - 0.20 -

30-50 50-100 100-200 200-300 300-400 400-500
Test graph size

30-50 50-100 100-200 200-300 300-400 400-500

Test graph size

30-50 50-100 100-200 200-300 300-400 400-500
Test graph size

Fig. 4 | Performance of FINDER on synthetic graphs. In all cases, FINDER is trained on BA graphs of 30-50 nodes. We then evaluate the well-trained
FINDER on synthetic BA graphs of different scales: 30-50, 50-100, 100-200, 200-300, 300-400 and 400-500 nodes. For each scale, we randomly
generated 100 instances, and reported the average results over them. To obtain node-weighted graphs, we assign each node a normalized weight, which
is proportional to its degree (degree-weighted) or a random non-negative number (random-weighted). a-¢, Comparison of the results of HDA, Cl,
RatioCut and FINDER on node-unweighted (a), degree-weighted (b) and random-weighted (c) graphs, respectively, for the CN problem. The results are
the averaged ANC determined by the pairwise connectivity over 100 instances. We also compared with other heuristic methods, including HBA, HCA

and HPRA (see Supplementary Tables 7-9 for details). d-f, The results of competing methods and FINDER for the ND problem, on node-unweighted

(d), degree-weighted (e) and random-weighted () graphs, respectively. The results are the averaged ANC determined by GCC size, over 100 random
instances. Comparisons with other baselines, including HBA, HCA, HPRA, BPD and CoreHD, are reported in Supplementary Tables 13-15. It is obvious that
FINDER consistently outperforms other methods in different node-weight scenarios for both CN and ND problems. Error bars are the standard deviations

over 100 random instances.

Results

Results on synthetic graphs. Figure 4 shows FINDER’s perfor-
mance on synthetic graphs that are significantly larger than those on
which it was trained. We first explore the effects of different training
graph types. Three classic network models, the Erdds-Rényi (ER)
model*, the Watts—Strogatz (WS)** model and the Barabasi-Albert
(BA) model®, were used to generate both training and test graphs.
As shown in Supplementary Table 20, FINDER performs the best
when test and training graphs are generated from the same model.
Note that most of the real networks analysed in this work exhibit
power-law or fat-tailed degree distributions (Supplementary Fig. 1).
Such a high degree heterogeneity is also a key feature of random
graphs generated by the BA model. Hence, the agents trained on BA
graphs perform consistently better than those trained on ER or WS
graphs when tested on various real-world networks (Supplementary
Table 21). To empower better generalizations, the agents that were
later utilized for different application scenarios were all trained on
BA graphs. As shown in Fig. 4, comparing with the state-of-the-art
baselines (see Supplementary Section I for details), FINDER trained
on small BA graphs consistently achieved better results for both CN
and ND problems under different node-weight scenarios in syn-
thetic graphs of much larger sizes.

Results on real-world networks. We then evaluated FINDER on var-
ious real-world networks from diverse domains (see Supplementary
Section IIT and Supplementary Table 3 for descriptions). As shown

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

in Fig. 5, FINDER consistently outperforms other methods on
most networks in different application scenarios. Especially for
node-weighted scenarios, which are more practical and challenging,
FINDER excels to a large extent. For the ND node-degree-weighted
scenario (Fig. 5k), if we are asked to dismantle Gnutella31 such
that the remaining GCC is half of the original size, the current best
method (HDA) requires about 40.3% total cost, while our model
only needs 14.1%, a reduction of nearly 26.2% cost. If given the same
dismantling cost 0.2, the best available method (GND) fragments
the network to 80.8% GCC size, while FINDER can achieve up to
35.3%, which is 45.5% better. In addition to the effectiveness advan-
tage, FINDER is also remarkably efficient (Supplementary Tables
10-17), especially on large networks. For example, on the Flickr net-
work, with millions of nodes and tens of millions of edges, FINDER
is over 20 times faster than the best performing baseline (GND) for
the ND node-degree-weighted scenario (7,734s versus 174,363)
and ~890 times faster than the best performing baseline (RatioCut)
for the CN node-unweighted scenario (915s versus 815,411ss). Note
that most existing baseline methods do not have GPU implemen-
tations, while FINDER can easily be GPU-accelerated. To obtain
a fair comparison with baseline methods, we did not deploy GPU
acceleration for FINDER in the application phase. (We only utilized
GPU to speed up the offline training phase.) Hence, the scalability
or efficiency of FINDER presented here is rather conservative.

To further understand the effectiveness of FINDER under
node-weighted scenarios, we calculated the cost distributions of the

http://www.nature.com/natmachintell

ARTICLES

NATURE MACHINE INTELLIGENCE

a b c CN - node-random-weighted
Crime , -20 Crime , - 60 Crime | - 60
HI-11-14 HI-ll-14 HI-ll-14
; - 16 . ’ - 50
Digg Digg 45 Digg
Enron Enron Enron 40
12
Gnutella31 Gnutella31 Gnutella31
30 30
Epinions | 8 Epinions - Epinions |
Facebook - 20.75 20.86 19.43 19.37 Facebook - 58.67 Facebook - 52.82 20
15
YouTube | 1.18 22 YouTube —SPLR:7] YouTube —ERRPLReE]
| 122 | 4 | 2682 | 2802 | 2677 | 2634] 1
Flickr | 2 Flickr - 61.90 5 Flickr - 60.50 62.24
I I I I I I I I I I I
HDA Cl RatioCut FINDER HDA Cl RatioCut ~ FINDER HDA Cl RatioCut FINDER
Avg score 6.36 6.62 6.68 6.04 Avg score 36.96 38.18 26.52 8.33 Avg score 34.61 35.76 14.62 8.73
d CN — crime — node-unweighted e CN - crime — node-degree-weighted f CN — crime — node-random-weighted
1.00 1.00 1.00
~+ HDA S -+ HDA 5 ~+ HDA
5 080 - a 5 0.80 - \ c 5 os e al
S : ~+- RatioCut Q ’ N ~e- RatioCut 2 i NG N ~+ RatioCut
s s —+- FINDER s £ ‘\‘\\\ —+- FINDER s £ NG Ny —o- FINDER
g g 060 g g 060 e g g 060 -
5T ST * c =
5T - 5 T\ N 5w
83 N 83 NS 83
83 041 \ 85 040 ~ 8% 0401
E- e g" el £"
£ 020 \ | £ 0204 LY £ 020
o a N a
» \ ay
~ \ AN
04 T T T T 04 T 0 T
0 0.05 0.10 0.15 0.20 0 0.2 0.4 0 0.2 0.4
Fraction of removed nodes Fraction of removed nodes cost Fraction of removed nodes cost
g ND - node-unweighted h ND - node-degree-weighted i ND - node-random-weighted
Crime Crime —&[0) Crime -2}
HI-II-14 %5 HI-1-14 ey - 60 HI-I1-14 - - 60
Digg 20 Digg Digg -
Enron Enron 45 Enron -k} 45
Gnutella31 15 Gnutella31 Gnutella31 [z
Epinions Epinions - 53.83 54.22 52.04 51.30 54.57 30 Epinions - 51.75 52.13 50.05 49.24 52.47 30
Facebook - 27.20 26.95 27.25 28.35 27.47 27.42 26.84 10 Facebook - 67.87 67.91 60.89 59.33 68.16 Facebook - 61.21 61.21 54.98 52.81 61.49
YouTube (TR 36.32 | 36.77 | 37.50 | 38.23 | 37.01 ACIULLRS 35.68 | 36.11 | 36.83 | 37.53 | 36.35 | NA
uTu STy 2632 136.7737.50] 38.23 37.01] s ULy 3568]36.11]36.8337.5336.35] NA | B

5 99 | 244 | 2.32
5
o AN

Flickr - 69.73 70.84 63.36 58.23 71.14

Flickr - 68.15 69.24 61.93 56.96 69.53

HDA CI MinSum BPD CoreHD GND FINDER HDA CI MinSum BPD CoreHD GND FINDER HDA Cl MinSum BPD CoreHD GND FINDER
Avgscore 922 928 981 1062 942 994 892 Avgscore 46.08 46.72 44.44 4405 4671 2618 17.22 Avgscore 43.17 4377 4162 4051 4373 23.94 1899
J 100 ND — Gnutella31 - node-unweighted k 100 ND — Gnutella31 — node-degree-weighted | 100 ND - Gnutella31 — node-random-weighted
’ -+ HDA ’ -+ HDA ’ -~ HDA
< Cl < Cl < ~ Cl
§ 080 MinSum & 080 MinSum § 080 \-\ MinSum
= —e BPD = —=— BPD o A —= BPD
S CoreHD S CoreHD S CoreHD
B 0601 —+- GND 3 060 -+~ GND 3 0601 e GND
L —+- FINDER i -+ FINDER 4 \ —+- FINDER
© 0.40 4 3 S 0.404 © 0.40 A
Q i3 N Q [\
N \ N \L N NN
@ @ @ \
8 0204 3 0204 8 020+
[0} 5} 5}
04 T T T T 05 T T - T 05 T E— T
0 0.05 0.10 0.15 0.20 0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8

Fraction of removed nodes

Fraction of removed nodes cost

Fraction of removed nodes cost

Fig. 5 | Performance of FINDER on real-world networks. We evaluated FINDER on nine real-world networks of five different types—criminal network,
biological network, communication network, infrastructure network and social network—representing different applications of key-player finding

in these domains. These networks cover a wide range of scales, with node set size ranging from hundreds to millions. The original networks are all
node-unweighted. To obtain node-weighted networks, we assigned each node a normalized weight, which is proportional to its degree (degree-weighted)
or a random non-negative number (random-weighted). We evaluated FINDER for both CN and ND problems on these networks. a-¢, ANC results specified
by pairwise connectivity for HDA, Cl, RatioCut and FINDER in solving CN problems on node-unweighted (a), degree-weighted (b) and random-weighted
(c) networks, respectively. d-f, ANC curves of these methods on the crime network with different node weights (node-unweighted (d), degree-weighted
(e) and random-weighted (f)). For ANC curves for the remaining networks see Supplementary Figs. 5-7. g-i, Comparison of the ANC results determined
by GCC size, for competing methods with FINDER on the ND problem (node-unweighted (g), degree-weighted (h) and random-weighted (i)). j-I,

ANC curves of these methods on the Gnutella31 network with node-unweighted (j), degree-weighted (k) and random-weighted (I), respectively. See
Supplementary Figs. 8-10 for ANC curves of other real networks on the ND problem. Note that the FINDER utilized here is the same as in Fig. 4 (that is,
trained with synthetic BA graphs of 30-50 nodes). All ANC numerical values shown in heatmaps are multiplied by 100 for visualization purposes. We

can clearly see that FINDER always produces the best results on these real networks for both CN and ND problems with different node-weight scenarios.
Especially for the node-weighted scenario, FINDER shows significant superiority over conventional methods. Running time comparisons on these networks
are shown in Supplementary Tables 13 and 17, where we demonstrated the remarkable efficiency advantage of FINDER, especially for large networks.

key players identified by different strategies on the crime network
with randomly assigned node weights (removal costs). As shown in
Fig. 6, FINDER tends to avoid choosing those ‘expensive’ key play-
ers, which naturally leads to a more cost-effective strategy.

Conclusion

In summary, FINDER achieves superior performances in terms
of both effectiveness and efficiency in finding key players in com-
plex networks. It represents a paradigm shift in solving challenging

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

http://www.nature.com/natmachintell

NATURE MACHINE INTELLIGENCE

a CN — crime — node-random-weighted b HDA

1.0 0.05 4

. —~— HDA
—e— RatioCut X) .'

> 09+ 0.04 4 030500
s —&— FINDER
o
g 08 c
€ 084
:
5 2
5 0.7 &
S
k=]
@
ko
T 0.6

0.5 4 T T r T T

0 0.05 0.10 0.15 0.20 0.25 0.30 20 40 60 80 100
Fraction of key players’ costs Cost of the key players
e) ' f MinS
ND - crime — node-random-weighted insum
1.0 1~ 0.05 4
N, MinSum
DN —8— GND

z 097 S~ - FINDER 0.04 4
2 \
£ 084 AN S 0.03
o | =2
o T
=} \ 2
z \ g
3 07 \ £ 0024
S \
3 \
3
T 06 2\ 0.01

0.5 0

T T T T T -
0 0.05 0.10 0.15 020 0.25 0.30
Fraction of key players’ costs

Cost of the key players

ARTICLES

c RatioCut d

FINDER .

< c
£ S
T T
o o
Q Q
o 3
o [
20 40 60 80 100 20 40 60 80 100
Cost of the key players Cost of the key players
g GND h FINDER
c c
8 2
b= b=
o o
Q Q
o 3
o [

100 20 40 60 80
Cost of the key players

100

20 40 60 80
Cost of the key players

Fig. 6 | Cost distributions of key players identified by FINDER. To further explain the superiority of FINDER over other methods in the node-weighted
scenario, we illustrated the cost distributions of the key players. a, CN problem on the crime network with random node weights. The ANC is measured

by the residual pairwise connectivity with respect to the fraction of removal costs for three methods: HDA, RatioCut and FINDER. b-d, Distributions of the
key-player removal costs and the network with highlighted key players identified by HDA (b, purple nodes), RatioCut (¢, blue nodes) and FINDER (d, red
nodes), respectively. The target residual pairwise connectivity is set to be 0.5. €, ND problem on the crime network with random node weights. The ANC
is measured by the residual GCC size with respect to the fraction of removed costs for three methods: MinSum, GND and FINDER. f-h, Distributions of
key-player removal costs and the network with highlighted key players identified by MinSum (f, green nodes), GND (g, blue nodes) and FINDER (h, red
nodes), respectively. The target relative residual GCC size is set to be 0.5, that is, 50% of the original network size. For both CN and ND problems, larger
nodes denote larger node weights. Conventional methods have higher total costs because they tend to target nodes with higher weights (removal costs),
as shown in the histograms. By contrast, FINDER produces a much more cost-effective strategy by avoiding those ‘expensive’ nodes. The curves in b-d and

f-h are the kernel density estimates for the key players' cost distributions.

optimization problems on complex networks. Requiring no
domain-specific knowledge but just the degree heterogeneity of
real networks, FINDER achieves this goal by offline self-training
on small synthetic graphs only once for a particular application
scenario, and then generalizes surprisingly well across diverse
domains of real-world networks with much larger sizes. Thanks to
the highly flexible framework of FINDER, for different application
scenarios one just needs to replace the rewards with the respective
connectivity measures. One can further improve FINDER's per-
formance by tailoring the training data towards the target network
with the configuration model (CM)*’ (Supplementary Tables 19 and
22), or by employing the reinsertion technique®® (Supplementary
Fig. 12 and Supplementary Table 9) (see Supplementary Section
IV.D for more details about different ways to refine FINDER).
Finally, FINDER opens up a new direction of using deep learning
techniques to understand the organizing principle of complex net-
worked systems, which enables us to design networks that are more
robust against both attacks and failures. The presented results also
highlight the importance of classic network models, such as the BA
model. Although extremely simple, it captures the key feature, that
is, degree heterogeneity, of many real-world networks, which turns
out to be extremely useful in solving very challenging optimization
problems on complex networks.

Data availability

All the data analysed in this paper, including synthetic graphs and
real-world networks, can be accessed through our Code Ocean
compute capsule (https://doi.org/10.24433/C0O.3005605.v1).

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

Code availability

All source codes and models (including those that can repro-
duce all figures and tables analysed in this work) are publicly
available through our Code Ocean compute capsule (https://doi.
0rg/10.24433/C0.3005605.v1) or on GitHub (https://github.com/
FFrankyy/FINDER).

Received: 6 October 2019; Accepted: 14 April 2020;
Published online: 25 May 2020

References

1. Albert, R. & Barabasi, A.-L. Statistical mechanics of complex networks. Rev.
Mod. Phys. 74, 47 (2002).

2. Newman, M. E. The structure and function of complex networks. SIAM Rev.
45, 167-256 (2003).

3. Morone, F. & Makse, H. A. Influence maximization in complex networks
through optimal percolation. Nature 524, 65-68 (2015).

4. Kempe, D., Kleinberg, J. & Tardos, E. Influential nodes in a diffusion model
for social networks. In International Colloquium on Automata, Languages and
Programming 1127-1138 (Springer, 2005).

5. Corley, H. & David, Y. S. Most vital links and nodes in weighted networks.
Oper. Res. Lett. 1, 157-160 (1982).

6. Borgatti, S. P. Identifying sets of key players in a social network. Comput.
Math. Org. Theory 12, 21-34 (2006).

7. Lalou, M., Tahraoui, M. A. & Kheddouci, H. The critical node detection
problem in networks: a survey. Comput. Sci. Rev. 28, 92-117 (2018).

8. Arulselvan, A.,, Commander, C. W,, Elefteriadou, L. & Pardalos, P. M.
Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36,

2193-2200 (2009).

9. Kuntz, I. D. Structure-based strategies for drug design and discovery. Science

257, 1078-1082 (1992).

https://doi.org/10.24433/CO.3005605.v1
https://doi.org/10.24433/CO.3005605.v1
https://doi.org/10.24433/CO.3005605.v1
https://github.com/FFrankyy/FINDER)
https://github.com/FFrankyy/FINDER)
http://www.nature.com/natmachintell

ARTICLES

NATURE MACHINE INTELLIGENCE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2

—

22.

23.

24.

25.

26.

27.

28.

29.

Vitoriano, B., Ortufio, M. T., Tirado, G. & Montero, J. A multi-criteria
optimization model for humanitarian aid distribution. J. Global Optim. 51,
189-208 (2011).

Kempe, D., Kleinberg, J. & Tardos, E. Maximizing the spread of influence
through a social network. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining

137-146 (ACM, 2003).

Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free
networks. Phys. Rev. Lett. 86, 3200 (2001).

Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Breakdown of the internet
under intentional attack. Phys. Rev. Lett. 86, 3682 (2001).

Braunstein, A., Dall’Asta, L., Semerjian, G. & Zdeborova, L. Network
dismantling. Proc. Natl Acad. Sci. USA 113, 12368-12373 (2016).

Shen, Y., Nguyen, N. P, Xuan, Y. & Thai, M. T. On the discovery of critical
links and nodes for assessing network vulnerability. IEEE/ACM Trans. Netw.
21, 963-973 (2013).

Mugisha, S. & Zhou, H.-J. Identifying optimal targets of network attack by
belief propagation. Phys. Rev. E 94, 012305 (2016).

Zdeborovd, L., Zhang, P. & Zhou, H.-]. Fast and simple decycling and
dismantling of networks. Sci. Rep. 6, 37954 (2016).

Ren, X.-L., Gleinig, N., Helbing, D. & Antulov-Fantulin, N.

Generalized network dismantling. Proc. Natl Acad. Sci. USA 116,
6554-6559 (2019).

Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information
Processing Systems 6348-6358 (NIPS, 2017).

Nazari, M., Oroojlooy, A., Snyder, L. & Takac, M. Reinforcement learning for
solving the vehicle routing problem. In Advances in Neural Information
Processing Systems 9839-9849 (NIPS, 2018).

. Bello, I, Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. Neural combinatorial

optimization with reinforcement learning. Preprint at https://arxiv.org/
abs/1611.09940 (2016).

Bengio, Y., Lodi, A. & Prouvost, A. Machine learning for combinatorial
optimization: a methodological tour d’horizon. Preprint at https://arxiv.org/
abs/1811.06128 (2018).

James, J., Yu, W. & Gu, J. Online vehicle routing with neural combinatorial
optimization and deep reinforcement learning. In IEEE Transactions on
Intelligent Transportation Systems 1-12 (IEEE, 2019).

Li, Z., Chen, Q. & Koltun, V. Combinatorial optimization with graph
convolutional networks and guided tree search. In Advances in Neural
Information Processing Systems 539-548 (NIPS, 2018).

Hamilton, W,, Ying, Z. & Leskovec, J. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems
1024-1034 (NIPS, 2017).

Brown, N. & Sandholm, T. Superhuman AI for heads-up no-limit poker:
Libratus beats top professionals. Science 359, 418-424 (2018).

Silver, D. et al. Mastering the game of go without human knowledge. Nature
550, 354-359 (2017).

Morav¢ik, M. et al. Deepstack: expert-level artificial intelligence in heads-up
no-limit poker. Science 356, 508-513 (2017).

Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S. & Herrmann, H. J.
Mitigation of malicious attacks on networks. Proc. Natl Acad. Sci. USA 108,
3838-3841 (2011).

30. Henderson, K. et al. Rolx: structural role extraction & mining in large graphs.
In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 1231-1239 (ACM, 2012).

. Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks. In Proceedings of the International Conference on
Learning Representations (ICLR, 2017).

32. Lij, L., Zhang, Y.-C,, Yeung, C. H. & Zhou, T. Leaders in social networks, the

delicious case. PLoS ONE 6, €21202 (2011).

33. Wang, D., Cui, P. & Zhu, W. Structural deep network embedding. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 1225-1234 (ACM, 2016).

. Erdos, P. & Rényi, A. On random graphs. Publ. Math. Debrecen 6,

290-297 (1959).
35. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440-442 (1998).

36. Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks.
Science 286, 509-512 (1999).

37. Barabasi, A.-L. Network Science (Cambridge Univ. Press, 2016).

38. Clusella, P, Grassberger, P, Pérez-Reche, F. J. & Politi, A. Immunization and
targeted destruction of networks using explosive percolation. Phys. Rev. Lett.
117, 208301 (2016).

39. Rossi, R. A. & Ahmed, N. K. The network data repository with interactive
graph analytics and visualization. In Proceedings of 29th AAAI Conference on
Artificial Intelligence 4292-4293 (ACM, 2015).

3

—

3

=

Acknowledgements

We are grateful to M. Chen and Z. Liu for the feedback and assistance they provided
during the development and preparation of this research. This work is partially
supported by NSF I1I-1705169, NSF CAREER Award 1741634, NSF 1937599, an Okawa
Foundation Grant and an Amazon Research Award. C.F. is supported by the CSC
Scholarship offered by the China Scholarship Council. Y.-Y.L. is supported by grants from
the John Templeton Foundation (award no. 51977) and National Institutes of Health
(RO1AI141529, ROIHD093761, UH30D023268, U19A1095219 and U01HL089856).

Author contributions

Y.S. and Y.-Y.L. designed and managed the project. Y.S. and C.E. developed the FINDER
algorithm. C.E and L.Z. performed all the calculations. All authors analysed the results.
C.E, Y.-Y.L. and Y.S. wrote the manuscript. All authors edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
$42256-020-0177-2.

Correspondence and requests for materials should be addressed to Y.S. or Y.-Y.L.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1811.06128
https://arxiv.org/abs/1811.06128
https://doi.org/10.1038/s42256-020-0177-2
https://doi.org/10.1038/s42256-020-0177-2
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Finding key players in complex networks through deep reinforcement learning

	Problem formalization.
	Model

	Framework.
	Encoding.
	Decoding.
	Offline training.
	Online application.
	Flexibility.

	Results

	Results on synthetic graphs.
	Results on real-world networks.

	Conclusion

	Acknowledgements

	Fig. 1 Finding key players in a network.
	Fig. 2 The process of finding key players in a network using FINDER.
	Fig. 3 Overview of the FINDER framework.
	Fig. 4 Performance of FINDER on synthetic graphs.
	Fig. 5 Performance of FINDER on real-world networks.
	Fig. 6 Cost distributions of key players identified by FINDER.

