
JoCG 10(1), 500–531, 2019 500

Journal of Computational Geometry jocg.org

INTERESTING PATHS IN THE MAPPER COMPLEX

Ananth Kalyanaraman∗ Methun Kamruzzaman∗ Bala Krishnamoorthy†

Abstract.

Given a high dimensional point cloud of data with functions defined on the points,
the mapper algorithm produces a compact summary in the form of a simplicial complex
connecting the points. We study the problem of quantifying the interestingness of subpop-
ulations in a given mapper complex.

First, we create a weighted directed graph G = (V,E) using the 1-skeleton of the
mapper complex. We use the average values at the vertices of a target function (dependent
variable) to direct the edges from low to high values, and assign the difference (high−low)
as the weight of the edge. Covariation of the remaining h functions (independent variables)
is captured by a h-bit binary signature assigned to the edge. An interesting path in G is a
directed path whose edges all have the same signature. The interestingness score of such a
path as a sum of its edge weights multiplied by a nonlinear function of their corresponding
ranks, i.e., the depths of the edges along the path. Such a nonlinear function could model
application use-cases where the growth in the dependent variable values is expected to be
concentrated in specific intervals of a path.

Second, we study three optimization problems on this graph G to quantify interesting
subpopulations. In the problem Max-IP, the goal is to find the most interesting path in G,
i.e., an interesting path with the maximum interestingness score. For the case where G is a
directed acyclic graph (DAG), we show that Max-IP can be solved in polynomial time.

In the more general problem IP, the goal is to find a collection of interesting paths
that are edge-disjoint, and the sum of interestingness scores of all paths is maximized. We
also study a variant of IP termed k-IP, where the goal is to identify a collection of edge-
disjoint interesting paths each with k edges, and the total interestingness score of all paths
is maximized. While k-IP can be solved in polynomial time for k ≤ 2, we show k-IP is
NP-complete for k ≥ 3 even when G is a DAG. We develop heuristics for IP and k-IP on
DAGs, which use the algorithm for Max-IP on DAGs as a subroutine.

We have released open source implementations of our algorithms to find interesting
paths. We also present a detailed experimental evaluation of this software framework on a
real-world maize plant phenomics data set. We use interesting paths identified on several
mapper graphs to explain how the genotype and environmental factors influence the growth
rate, both in isolation as well as in combinations.

∗School of Electrical Engineering and Computer Science, Washington State University, Pullman, USA
†Department of Mathematics and Statistics, Washington State University, Vancouver, USA
{ananth,md.kamruzzaman,kbala}@wsu.edu

http://jocg.org/

JoCG 10(1), 500–531, 2019 501

Journal of Computational Geometry jocg.org

1 Introduction

Data sets from many applications come in the form of point clouds often in high dimensions
along with multiple functions defined on these points. Topological data analysis (TDA) has
emerged in the past two decades as a new field whose goal is to summarize such complex data
sets, and facilitate the understanding of their underlying topological and geometric structure.
In this paper, we focus on the mapper algorithm [26], a TDA method that has gained
significant traction across various application domains [1, 9, 12, 14, 15, 22, 23, 24, 25, 28].

Starting from a point cloud X (typically sampled from a metric space), the mapper
algorithm studies the topology of the sublevel sets of a filter function f : X → Z ⊂ R.
Starting with a cover Z of Z, the mapper algorithm obtains a cover of the domain X by
pulling back Z through f . This pullback cover is then refined into a connected cover by
splitting each of its elements into various clusters using a clustering algorithm. A compact
representation of the data set, termed the mapper complex, is obtained by taking the nerve
of this connected cover—this is a simplicial complex with one vertex per cluster, one edge
per pair of intersecting clusters, and one p-simplex per non-empty (p + 1)-fold intersection
in general. The method can naturally consider multiple filter functions fi : X → Zi, with
covers Zi jointly pulled back to obtain the cover of X. For instance, with two filter functions
f1 and f2, elements of such a joint cover of X are defined by pairwise intersections of the
elements of the pullback covers of Z1 and Z2. Equivalently, one could consider them together
as a single vector-valued filter function f : X → Z ⊂ Rh for h ≥ 2.

The mapper algorithm has been used in a growing number of applications from
diverse domains recently, ranging from medicine [9, 14, 22, 23, 24, 25, 28] to agricultural
biotechnology [12] to basketball player profiles [1] to voting patterns [15]. It is also the
main engine in the data analytics software platform of the firm Ayasdi. The key to all
these success stories is the ability of the mapper algorithm to identify subsets of X, i.e.,
subpopulations, that behave distinctly from the rest of the points. In fact, this feature of
the mapper algorithm distinguishes it from many traditional data analysis techniques based
on, e.g., machine learning, where the goal is usually to identify patterns valid for the entire
data set.

Several researchers have recently studied mathematical and foundational aspects of
the mapper algorithm (see Section 1.3). These results have enabled robust ways to build
one representative mapper complex for any given data set. One could follow the work of
Carrière et al. [3], or identify parameters corresponding to a stable range in the persistence
diagram of the multiscale mapper complex [5]. While a collection of mapper complexes built
at multiple scales, e.g., the multiscale mapper complex [5], could provide a more detailed
representation of the data, efficient summarization of the entire representation as well as
the extraction of insights relevant to the application still remain challenging. Hence working
with a single mapper complex could be considered the desirable setting from the point of
view of most applications.

http://jocg.org/

JoCG 10(1), 500–531, 2019 502

Journal of Computational Geometry jocg.org

1.1 Interesting Paths in the Mapper Complex: Motivation

While the mapper complex is high dimensional in general, applications have typically used
its 1-skeleton (referred to as the mapper graph) for interpretations. Features such as paths,
flares, and loops, in the selected mapper graph often convey meaningful insights on the data
set. But many applications demand more precise quantification of the features, as well as to
track the corresponding subpopulations as they evolve along such features. For instance, in
plant phenomics [12], we are interested in identifying specific varieties (i.e., genotypes) of a
crop that show resilient growth rates as one or more environmental factors vary during the
growing season. Each such “subpopulation” (e.g., a subset of varieties grown in a certain
location or environment) with the associated factors would suggest a testable hypothesis for
the practitioner.

Many applications also have characteristics where a performance variable (e.g., a
behavioral trait) is measured/observed over a period of time or over a wide range of an
environmental variable (or variables). For instance, in the plant scenario described above, the
growth rate of a plant is expected to vary with time (since the day of planting). As another
example, consider a hospital dataset where a key health indicator variable for patients, such
as blood sugar, is expected to evolve with the type of treatment they receive in the hospital
over a period of time. Such health indicators and their response patterns are also expected
to vary from patient (groups) to patient (groups). Under these settings, how does one
effectively track the evolution of behavior exhibited in different parts of the population as a
function of potential environmental variables? The mapper algorithm provides a framework
within which one could build an effective approach. More specifically, we could use time
or an environmental variable as a filter function, and the behavioral trait of interest as the
distance function (in our implementation of the mapper algorithm—see the start of Section
2). In the resulting mapper graph, a cluster would represent a subset of individuals who
share similar behavioral traits under similar environments (or time periods). Further, a path
would represent a trail of clusters that persist over an interval of filter function values. In
addition, if one were to orient the edges along the path in the direction of increasing cluster
means of the performance values, then a directed path would represent the trajectory of a
subpopulation from a low end to a high end of the filter variable spectrum. Consequently,
identifying such paths in the mapper complex can be insightful.

To further quantify such a path in the mapper complex, it is possible to define its
“interestingness score”. Such a score can be used to rank order the paths so that the user can
examine them in the decreasing order of their interestingness. We first associate every edge
with a weight that is the absolute difference in the cluster means of the performance values of
the two clusters it connects. In Section 2.1, we provide a definition of the interestingness score
of a path in the mapper graph as a sum of its edge weights multiplied by a nonlinear function
of their corresponding ranks, i.e., the depths of the edges along the path. Such a nonlinear
function could help model application use-cases where increases in the performance variable
values are expected to be concentrated in specific intervals of a path. For example, consider
plant growth accelerating later in the growth season or peaking as a cumulative temperature
index such as the Growing Degree Days (GDD) reaches a certain value [18]. Similarly,
consider a terminally ill patient’s health condition deteriorating rapidly as mortality nears
or after certain procedural complication arises. We further elaborate on our interestingness
score in Section 2.1.

http://jocg.org/

JoCG 10(1), 500–531, 2019 503

Journal of Computational Geometry jocg.org

1.2 Our Contributions

We propose a framework for quantifying the interestingness of subpopulations in a given
mapper complex. For the input point cloudX, we assume the mapper complex is constructed
with h filter functions fi : X → Zi that represent independent variables, and a target
function (i.e., a variable of interest or a dependent variable) g : X → Z that is distinct
from the fi’s. We describe our implementation of the mapper algorithm in Section 2. The
mapper complex could be a high-dimensional simplicial complex depending on the choice of
covers Zi for Zi. But we concentrate on its 1-skeleton, as described below.

Formulation: We create a weighted directed graph G = (V,E) using the 1-skeleton of the
mapper complex, which we call the mapper graph. We use the average values of g at the
vertices (i.e., clusters) to direct the edges from low to high values. We set the difference
between the average values at the vertices (high−low) as the weight of the edge. Covariation
of the h functions fi is captured by a h-bit binary signature assigned to the edge. We define
an interesting path in G as a directed path whose edges all have the same signature (all
references to a “path” in this paper imply a simple path, i.e., no vertices are repeated).
Further, we define the interestingness score of such a path as a sum of its edge weights
multiplied by a nonlinear function of their corresponding ranks, i.e., the depths of the edges
along the path. The goal is to value more the contribution from an edge deep in the path
than that from a similar edge which appears at the start.

Theoretical Results: We study three optimization problems on this graph G to quantify
interesting subpopulations. In the problem Max-IP, the goal is to find the most interesting
path in G, i.e., an interesting path with the maximum interestingness score. We concentrate
on the case where G is a directed acyclic graph (DAG), which is a typical setting in many
applications. We show that Max-IP can be solved in polynomial time—in O(mδdin) time
and O(mn) space where m and n are the number of edges and vertices respectively, and δ
and din are the diameter of G and the maximum indegree of any vertex in G respectively.
Note that δ < n and din < n (as G is a DAG).

In the more general problem IP, the goal is to find a collection of interesting paths
such that these paths form an exact cover of E and the overall sum of interestingness scores
of all paths is maximum. The collection of paths identified by IP could include some short
ones in terms of number of edges. Hence we study also a variant of IP termed k-IP, where
the goal is to identify a collection of interesting paths each with k edges for a given number
k, an edge in E is part of at most one such path, and the total interestingness score of all
paths is maximum. While k-IP can be solved in polynomial time for k ≤ 2, we show k-IP is
NP-complete for k ≥ 3. Finally, we develop heuristics for IP and k-IP on DAGs, which use
the algorithm for Max-IP on DAGs as a subroutine, and run in O(mndin) and O(mkdin)
time for IP and k-IP, respectively.

In addition, we consider the more general setting where G is a directed graph. This
setting could arise in practice when the average values of the target function g are too close
for pairs of nodes in the mapper construction. Hence edges going both ways between them
are included in G, making G no longer acyclic. We show that Max-IP is NP-complete in
this general setting.

http://jocg.org/

JoCG 10(1), 500–531, 2019 504

Journal of Computational Geometry jocg.org

Software and Experimental Evaluation: In this paper, we focus more on the theoretical
aspects of interesting paths. However, we are also actively developing and maintaining an
open source software repository that integrates all our ongoing implementations, and their
experimental evaluations and applications. Section 7 reports on this ongoing effort. In Sec-
tion 8, we present details of our use of plant phenomics [10] as a novel application domain for
test, validation, and discovery using interesting paths identified by our software. Phenomics
is a nascent branch of modern biology whose core goals includes the understanding of how
crop genotypes (G) interact with environments (E) to produce varying performance traits
(phenotypes (P)) (denoted G × E→ P) [16]). We use interesting paths identified on several
mapper graphs built on a maize phenomics data set to explain how the genotype as well as
environmental factors influence the growth rate, both in isolation as well as in combination.
In particular, we study the effects of several filter functions representing environment (E)
including time after planting, temperature, humidity, and solar radiation, as well as crop
genotypes (G) on growth rate, which is the phenotype (P) of interest.

1.3 Related work

In most previous applications of the mapper algorithm [1, 9, 14, 15, 22, 23, 24, 25, 28],
interesting subpopulations are characterized by features (paths, flares, loops) identified in a
visual manner. As far as we are aware, our work proposes the first approach to rigorously
quantify the interesting features, and to rank them in terms of their interestingness. Munch
and Wang [20] showed convergence of the mapper complex to a categorified Reeb space as-
sociated with the data. Dey et al. [5] considered a multiscale mapper framework, and proved
stability results for features within this framework using techniques from persistence. The
works of Carrière et al. [3, 4] present a rigorous theoretical framework for the 1-dimensional
mapper algorithm, where the features are identified as points in an extended persistence
diagram. While addressing stability of features in the mapper complex under various rig-
orous settings, these lines of work do not address the relative importance of the features in
the context of the application generating the data. Our work can be considered as a post
processing of the mapper complex identified by the methods of Carrière et al. While our
framework can naturally consider multiple filter functions for a given mapper complex, we
do not address the stability of the interesting paths identified.

The interesting paths problems we study are related to the class of nonlinear shortest
path and minimum cost flow problems previously investigated. Non-additive shortest paths
have been studied [29], and the more general minimum concave cost network flow problem
has been shown to be NP-complete [8, 31]. At the same time, versions of shortest path or
minimum cost flow problems where the contribution of an edge depends nonlinearly on its
position or depth in the path appear to have not received much attention. Hence the specific
problems we study should be of independent interest as a new class of nonlinear longest path
(equivalently, shortest path) problems.

http://jocg.org/

JoCG 10(1), 500–531, 2019 505

Journal of Computational Geometry jocg.org

2 Methods

We refer the reader to the original paper by Singh et al. [26] for background on the mapper
algorithm, and other recent work [3, 4, 5] for related constructions. We describe the details
of our implementation of the mapper algorithm, highlighting certain key differences from
the default option.

Our Implementation of the mapper algorithm: We start with an input point cloud X in
high-dimensional space. In the default setting, each dimension represents a filter function, or
equivalently, all of them could be considered together as a high-dimensional filter function. In
our implementation, we consider individual filter functions fi : X → Zi ⊂ R for i = 1, . . . , h.
We build covers Zi of Zi by choosing the lengths and overlap of the intervals (resolution
and gain). We then pullback the joint cover of all Zi through fi to obtain a cover of
X. The default implementation considers a cover of product space Zi × Z2 × · · · × Zh,
and hence is somewhat more general than our implementation. For instance, it may not be
obvious how to decompose a cover of the product into the product of covers of the individual
Zis. We distinguish another function g : X → R from the filter functions. In the setting
of a typical application, g could represent a target variable of interest to the application
expert. Typically, this variable would represent a performance variable whose relationship
to the independent variables (identified by fi) is of interest. Given such a variable of choice
for g, we use g to refine the pullback cover of X, i.e., to divide each cover element into
connected components, which constitutes the clustering step within the mapper framework.
This step is achieved by computing a clustering based on g alone. Note that in the default
implementation of mapper, this clustering step is performed in all dimensions of X. Our
use of g for clustering and a set of independent variables (fi) for filtering, is motivated by
applications where such a demarcation could help facilitate easier interpretability of the
mapper results. This is demonstrated in detail via a concrete application case-study in
Section 8.

In what follows, we denote the resulting mapper complex as M , and the directed
graph constructed from its 1-skeleton as G (see Section 2.1.1).

2.1 Interesting Paths and Interestingness Scores

Each vertex in M represents a cluster of points from X that have similar values of function
g, the dependent variable. An edge in M connects two such clusters containing a non-
empty intersection of points. By definition, each edge in M connects clusters belonging
to distinct elements of the pullback cover of X, and hence the corresponding values of the
filter functions fi also change when moving along the edge. Therefore, by following a trail
of vertices (i.e., clusters) whose average g values are monotonically varying, we can capture
subpopulations that gradually or abruptly alter their behavior as measured by g under
continuously changing filter intervals. For instance, a plant scientist interested in crop
resilience may seek to identify a subset of crop individuals/varieties that exhibit sustained
or accelerated growth rates (g) despite potentially adverse fluctuations in temperature (f1)
and humidity (f2). We formulate the problem of identifying such subpopulations as that of
finding interesting edge-disjoint paths in a directed graph.

http://jocg.org/

JoCG 10(1), 500–531, 2019 506

Journal of Computational Geometry jocg.org

2.1.1 Graph Formulation

We construct a weighted directed graph G = (V,E) representation of the 1-skeleton of M
along with some additional information. We refer to this graph as the mapper graph. Let
n = |V | and m = |E| denote the numbers of vertices and edges in G, respectively. We set V
as the set of vertices (0-simplices) of M , and E as the set of edges (1-simplices) of M . We
assign directions and weights to the edges as follows. Each vertex u ∈ V denotes a subset
of points from X that constitute a partial cluster. We denote this subset as X(u). We let
g(u) and fi(u) denote the average values of the dependent variable g (used for clustering)
and the filter function fi, respectively, for all points in u:

g(u) =
Σx∈X(u) g(x)

|X(u)|
and fi(u) =

Σx∈X(u) fi(x)

|X(u)|
, i = 1, . . . , h.

We let ω(u) represent the weight of a vertex u. In this paper, we set ω(u) to be equal to g(u).
For an edge e = (u, v) in E, we assign as its weight as ω(e) = |ω(u)− ω(v)| = |g(u)− g(v)|.
Notice ω(e) ≥ 0 for all edges e in G.

Each edge is directed from the vertex with lower weight to the vertex with higher
weight, as illustrated in Figure 1. If the vertex weights are equal, one of the two directions is
chosen arbitrarily. With the edges directed in this fashion, the resulting graph is guaranteed
to be a directed acyclic graph (DAG). Consequently, the optimization problems we address
in this paper (see Section 2.1.2) will be presented for DAG inputs.

A more general approach would involve including both forward and backward edges
in G between vertices whose weights are equal, or close to equal. The graph G need not be
acyclic in this setting, and we consider certain implications of the optimization problems on
directed graphs in Section 6.

u v
ω(u) < ω(v)

Figure 1: Direct edge from u to v if ω(v) > ω(u), and from v to u if ω(v) < ω(u). If the
weights are equal, then one of the two directions is chosen arbitrarily.

We assign a h-bit binary signature Sig(e) = b1b2 . . . bh to the oriented edge e = (u, v)
(i.e., e : u → v) to capture the covariation of g and the filter functions fi. We set bi = 1 if
fi(u) ≤ fi(v), and bi = 0 otherwise.

Definition 2.1. An interesting k-path for a given k with 1 ≤ k ≤ n− 1 is a directed path
P = [ei1 , . . . , eik] of k edges in G, such that Sig(er) is identical for all r = i1, . . . , ik. An
interesting path is a path of arbitrary length in the interval [1, n− 1].

Definition 2.2. Given an interesting k-path P = [ei1 , . . . , eik] in G as specified in Definition
2.1, we define its interestingness score as follows.

I(P) =
k∑

r=1

ω(eir)× log(1 + r). (1)

http://jocg.org/

JoCG 10(1), 500–531, 2019 507

Journal of Computational Geometry jocg.org

In particular, the contribution of an edge e ∈ P to I(P) is set to ω(e)× log(1 + rank(e, P)),
where rank(e, P) is the rank or order of edge e as it appears in P .

Intuitively, we use the rank of an edge as an inflation factor for its weight—the
later an edge appears in the path, the more its weight will count toward the interestingness
of the path. This logic incentivizes the growth of long paths when we try to maximize the
interestingness score. The log function, on the other hand, helps temper this growth in terms
of number of edges. Inflation of weights for edges that appear later in the path is motivated
by the potential interpretation of interesting paths in the context of real world applications.
For instance, while analyzing plant phenomics data sets [12, 16], we expect plants to show
accelerated growth spurts later in the growth season. Plants showing such spurts later in
the season are potentially more interesting to the practitioner than ones showing a steady
growth rate throughout the season. Also, note that every path has an interestingness score,
but our goal is to find path(s) with high (est) interestingness score(s).

Remark 2.3. The above framework can be modified easily to characterize robust interesting
paths, where the signature matching condition is relaxed—for instance, bi = 1 if 0.9fi(v) ≤
fi(u) ≤ fi(v).

Remark 2.4. While we assume g and fi are functions from X to R, our framework could
handle more general functions as well. If some fi is a vector-valued function, for instance,
we could first compute pairwise distances of the points in X using fi, and then assign to
each point in X its average distance to all other points as a “surrogate” function.

Remark 2.5. The framework applies without change to cases where g is used along with
other functions to cluster. In fact, g could be used also as a filter function as long as it is
used for clustering.

2.1.2 Optimization Problems

We now present multiple optimization problems with the broader goal of identifying inter-
esting path(s) that maximize interestingness score(s).

Max-IP: Find an interesting path P in G such that I(P) is maximized.

k-IP: For a given k between 1 and n − 1, find a collection P of interesting k-
paths such that each e ∈ E is part of at most one P ∈ P , and the total
interestingness score I(P) =

∑
P∈P I(P) is maximized.

IP: Find a collection P of interesting paths in G such that the total interest-
ingness score I(P) =

∑
P∈P I(P) is maximized (P will exactly cover E,

i.e., each e ∈ E is part of exactly one P ∈ P).

Both IP and k-IP produce edge-disjoint collections of interesting paths. In IP, every
edge in G is part of an interesting path in P. But this setting might include several short
(in number of edges) interesting paths. In k-IP, each interesting path found has exactly k
edges, and some edges in E might not be part of any interesting k-path in P. Hence the
paths identified by k-IP are likely to be more meaningful in practice.

http://jocg.org/

JoCG 10(1), 500–531, 2019 508

Journal of Computational Geometry jocg.org

Remark 2.6. The log(1+rank) factor in the interestingness score in Equation (1) makes each
of the above optimization problems nonlinear. At the same time, the type of nonlinearity
introduced here is distinct from the ones studied in the literature, e.g., in non-additive
shortest paths [29], or in minimum concave cost flow [8, 31]. Hence these problems form
a new class of nonlinear longest (equivalently, shortest) path problems, which would be of
interest independent of their application in the context of the mapper algorithm and TDA.
Remark 2.7. Our directed graph formulation (in Section 2.1.1) with signatures determined
by h filter functions could also be considered equivalently as the computation of the cobound-
ary of the filter functions seen as a 0-cochain with coefficients in Rh [21]. Further, under
appropriate assumptions on the filter functions being smooth, candidates for interesting
paths could be seen as flows in a gradient field [30, §14]. Under these assumptions, one
could argue that the graph constructed will necessarily be a DAG, and results from Morse
theory [17, 19] would also apply. But we are not assuming the functions involved are nec-
essarily smooth. Further, the log(1 + rank) factor used in defining our interestingness score
(in Equation 1) is not captured by default approaches for maximal flows in gradient fields
or by Morse theory.

3 The Max-IP Problem

The goal of Max-IP is to identify an interesting path with the maximum interestingness
score. We show Max-IP on a directed acyclic graph (DAG) can be solved in polynomial
time.

3.1 Max-IP on Directed Acyclic Graphs

Lemma 3.1. Max-IP on a directed acyclic graph G = (V,E) is in P.

Proof. We present a polynomial time algorithm for Max-IP on a DAG (as proof of Lemma 3.1).
The input is a DAG G = (V,E) with n vertices and m edges, with edge weights ω(e) ≥ 0
and signatures Sig(e) for all e ∈ E. The output is an interesting path P ∗ which has the
maximum interestingness score in G. We use dynamic programming, with the forward phase
computing I(P ∗) and the backtracking procedure reconstructing a corresponding P ∗.

Let T (i, j) denote the score of a maximum interesting path of length j edges ending
at edge ei for i ∈ [1,m]. Since an interesting path could be of length at most (n−1), we have
j ∈ [1, n− 1]. Therefore the values in the recurrence can be maintained in a 2-dimensional
table of size m× (n− 1), as illustrated in Figure 2. The algorithm has three steps:

• Initialization: T (i, 1) = ω(ei)× log(2) ,where 1 ≤ i ≤ m.

• Recurrence: For an edge e = (u, v) ∈ E, we define a predecessor edge of e as any
edge e′ ∈ E of the form e′ = (w, u) and Sig(e′) = Sig(e). Let Pred(e) denote the set
of all predecessor edges of e. Note that Pred(e) can be possibly empty. We define the
recurrence for T (i, j) as follows.

T (i, j) = max
ei′∈Pred(ei)

{
T (i′, j − 1) + ω(ei)× log(1 + j)

}
. (2)

http://jocg.org/

JoCG 10(1), 500–531, 2019 509

Journal of Computational Geometry jocg.org

Path length

Ed
ge

s

*

T
1 2 . . . n− 1

em

ei

e2

e1

jj − 1

T (i, j)

. . .

..
.

..
.

T (imax, jmax)

Figure 2: Table T (i, j) for the Max-IP algorithm.

Let e∗i give the maximum in the above recurrence. We record this edge as the prede-
cessor of ei in the most interesting path, i.e., pred(ei) = e∗i .

• Output: We report the score that is maximum in the entire table. A corresponding
optimal path P ∗ can be obtained by backtracking from that cell to the first column.

Proof of Correctness: Any interesting path in G can be at most n − 1 edges long. As a
particular edge could appear anywhere along such a path, its rank can range between 1 and
n−1. Hence the m× (n−1) recurrence table T sufficiently captures all possibilities for each
edge in E. The following key observation completes the proof. Let P ∗(i, j) denote an optimal
scoring path, if one exists, of length j ∈ [1, n − 1] ending at edge ei ∈ E. If P ∗(i, j) exists
and if j > 1, then there should also exist P ∗(i′, j− 1) where i′ ∈ Pred(ei). Furthermore, the
edge ei could not have appeared in P ∗(i′, j − 1) because G is acyclic. Therefore, due to the
edge-disjoint nature of P ∗(i′, j− 1) and the remainder of P ∗(i, j) (which is ei), the principle
of optimality is preserved—i.e., the maximum operator in Equation (2) is guaranteed to
ensure optimality of T (i, j).

Complexity Analysis: The above dynamic programming algorithm can be implemented to
run in O(mn) space and a worst-case time complexity of O(mndin), where din denotes the
maximum indegree of any vertex in V .

3.1.1 Algorithmic Improvements

The above dynamic programming algorithm for Max-IP for DAGs can be implemented to
run in space and time smaller in practice than the worst case limits. First, we note that
computing the full table T is likely to be wasteful, as it is likely to be sparse in practice.
The sparsity of T follows from the observation that an interesting path of length j ending at

http://jocg.org/

JoCG 10(1), 500–531, 2019 510

Journal of Computational Geometry jocg.org

edge ei can exist only if there exists at least one other interesting path of length j−1 ending
at one of ei’s predecessor edges. We can exploit this property by designing an iterative
implementation as follows.

Instead of storing the entire table T , we store only the rows (edges), and introduce
columns on a “need basis” by maintaining a dynamic list L(ei) of column indices for each
edge ei.

S1) Initially, we assign L(ei) = {1}, as each edge is guaranteed to be in an interesting path
of length at least 1 (the path consisting of the edge by itself).

S2) In general, the algorithm performs multiple iterations; within each iteration, we visit
and update the dynamic lists for all edges in E as follows. For every edge ei′ ∈ Pred(ei),
L(ei) = L(ei)∪{`+1 | ` ∈ L(ei′)}. The algorithm iterates until there is no further change
in the lists for any of the edges.

The number of iterations in the above implementation can be bounded by the length of the
longest path in the DAG (i.e., the diameter δ), which is less than n. Also, we implement the
list update from predecessors to successors such that each edge is visited only a constant
number of times (despite the varying products of in- and out-degrees at different vertices).
To this end, we implement the update in S2 as a two-step process: first, performing a union
of all lists from the predecessor edges of the form (∗, v) so that the merged lists can be
used to update the lists of all the successor edges of the form (v, ∗). Thus the work in each
iteration is bounded by O(m).

Taken together, even in the worst-case scenario of (δ + 1) iterations, the overall
time to construct these dynamic lists is O(mδ). Furthermore, during the list construction
process, if one were to carefully store the predecessor locations using pointers, then the
computation of the T (i, j) recurrence in each cell can be executed in time proportional to
the number of non-empty predecessor values in the table. Overall, this revised algorithm
can be implemented to run in time O(mδdin), and in space proportional to the number of
non-zero values in the matrix.

Further, the above implementation is also inherently parallel since the list value at
an edge in the current iteration depends only on the list values of its predecessors from the
previous iteration.

4 The k-IP Problem

The goal of k-IP for k ≤ n − 1 is to find a set P of edge-disjoint interesting k-paths such
that the sum of their interestingness scores is maximized. We show that k-IP on directed
acyclic graphs can be solved in polynomial time for k ≤ 2 (see Lemma 4.1). On the other
hand, we show that k-IP is NP-Complete for k ≥ 3 (see Theorem 4.2).

The smallest value of k for which k-IP is nontrivial is 2. We can solve 2-IP as a weighted
matching problem.

Lemma 4.1. k-IP on directed acyclic graph G = (V,E) is in P for k ≤ 2.

http://jocg.org/

JoCG 10(1), 500–531, 2019 511

Journal of Computational Geometry jocg.org

Proof. The case of k = 1 turns out to be trivial. An optimal solution for 1-IP is obtained by
taking P as a collection of m interesting 1-paths each comprised of a single edge. These 1-
paths are edge-disjoint by definition, and the need to compare signatures within a path does
not arise. Since all edge weights ω ≥ 0, the total interestingness score I(P) is guaranteed
to be maximum. This optimal solution is unique when ω(e) > 0 for all edges e ∈ E.

We model the 2-IP problem (k = 2) as an equivalent weighted matching problem on
an undirected graph G′ = (V ′, E′), which we construct as follows. We include a vertex i ∈ V ′
for each edge ei ∈ E in the input graph. Hence |V ′| = m. Whenever edges {ei, ej} ∈ E
form an interesting 2-path Pij in G, we add the undirected edge (i, j) ∈ E′ with its weight
ωij = I(Pij) computed using Equation (1). Notice that ωij ≥ 0 for all edges (i, j) ∈ E′,
and |E′| ≤ m(m− 1)/2. A matching M ′ ⊆ E′ in G′ corresponds to a set P of edge-disjoint
interesting 2-paths in G—a vertex i ∈ V ′ will be matched with at most one other vertex
j ∈ V ′, and such a match of vertices in V ′ corresponds to the interesting path Pij ∈ P . It
follows that a maximum matching in G′ corresponds to an optimal solution to 2-IP on the
input graph G.

The maximum weighted matching problem on an undirected graph with n vertices
and m edges can be solved in strongly polynomial time—e.g., Gabow’s implementation [7]
of Edmonds’ algorithm [6] runs in O(nm + n2 log n) time. As such, we can solve 2-IP by
solving the weighted matching problem on the associated graph G′ in O(m3) time. Hence
k-IP is in P for k ≤ 2.

We now consider k-IP for k ≥ 3 on directed acyclic graphs. To characterize its
complexity, we study the decision version of k-IP termed k-IPD, in which we are given a
directed acyclic graph G = (V,E) with edge weights ω(e) ≥ 0 and signatures Sig(e) for
e ∈ E and a target score s0 ≥ 0. The goal is to determine if there exists a collection P of
edge-disjoint interesting k-paths in G whose total interestingness score I(P) ≥ s0.

Theorem 4.2. k-IPD on a directed acyclic graph G = (V,E) is NP-complete for k ≥ 3.

Proof. Given a collection P of interesting k-paths in a directed acyclic graph G = (V,E),
we can verify they are edge-disjoint, each path has k edges, and signatures are identical for
all edges in each path, all in polynomial time. We can compute the interestingness score of
each k-path P ∈ P using Equation (1) also in polynomial time, and add the I(P) values to
compare with s0 to check for equality. Hence k-IPD is in NP.

We now reduce the exact 3-cover problem (X3C) to 3-IPD. We then show a similar
reduction for k ≥ 4 as well, proving k-IPD is NP-complete for k ≥ 3. The latter case for
general k subsumes the case for k = 3. We still present the details for k = 3 separately,
as this case reveals the structure of the general reduction in an arguably simpler setting.
X3C is a version of one of the 21 NP-complete problems originally introduced by Karp [13],
and is defined as follows. Given a set X with |X| = 3q elements and a collection C of
3-element subsets of X with |C | = p, determine if there exists a subset C ′ ⊆ C such that
each element of X belongs to exactly one member of C ′. Notice that such an exact cover
C ′ must necessarily have exactly q members. Also, we assume p ≥ q ≥ 3 (else the instance
will be trivial).

http://jocg.org/

JoCG 10(1), 500–531, 2019 512

Journal of Computational Geometry jocg.org

Given an instance of X3C, we create a directed acyclic graph G = (V,E) for an
instance of 3-IPD as follows. Each element x ∈ X corresponds to a unique directed edge
in G. Corresponding to each 3-element set {x, y, z} ∈ C , we add to G a directed acyclic
graph object as shown in Figure 3. Hence we add the 13 vertices to V and the 12 edges
to E. Note that graph objects corresponding to different sets in C are glued together (i.e.,
connected) by the edges corresponding to their shared elements. The edges corresponding
to all x ∈ X are assigned the large weight ω = p making them “heavy” edges, while the
rest of the edges are all assigned unit weights. Further, we assume Sig(e) is identical for all
edges e ∈ E. The three “V”-shaped 3-paths in the top of Figure 3 are referred to as the x-,
y-, and z-paths. Notice that by this construction, G can have at most |V | ≤ 13p vertices
and |E| ≤ 12p edges.

x
ω
=

p

y
ω
=

p

z

ω
=

p

Figure 3: Graph object corresponding to set {x, y, z} ∈ C in X3C. Thin edges all have
ω = 1.

Let Win = 3(p log 2 + log 3 + log 4) + (log 2 + log 3 + log 4) = 4 log 24 + 3(p− 1) log 2,
and Wout = 3 log 24. From a graph object as shown above, we observe that 4 edge-disjoint
interesting 3-paths can be chosen by 3-IPD each with interestingness score Win if and only
if the x-, y-, and z-paths are chosen along with one other interesting 3-path as shown
in Figure 4a. Further, each edge corresponding to an element in X may belong to only
one 3-path. Thus, at most q such graph objects may contribute the score of Win to the
total interestingness score. The remaining p− q graph objects may contribute a score of at
most Wout corresponding to the selection of the 3 edge-disjoint interesting 3-paths shown in
Figure 4b, which avoid the edges corresponding to any x ∈ X. If q such graph objects do
contribute Win each to the total interestingness score, it is clear that the corresponding q
triplet elements in C form an exact 3-cover of X. Further, 3-IPD on G will identify exactly
4q + 3(p− q) = 3p+ q edge-disjoint interesting 3-paths with a total interestingness score of
exactly qWin + (p− q)Wout = pWout + 3(p− 1)q log 2 + q log 24.

x

y

ω
=

p

ω
=

p z
ω
=

p

(a) 3-paths for an element in C ′.

x

y

ω
=

p

ω
=

p z
ω
=

p

(b) 3-paths for an element not in C ′.

Figure 4: Choices of interesting 3-paths in graph objects for elements in C ′ and C \ C ′.

Conversely, if X3C has an exact 3-cover C ′, we choose the 4 edge-disjoint interesting
3-paths (recall we assume identical signatures for all edges in G) with interestingness score
Win as described above in the graph object in G corresponding to each of the q 3-element
sets in C ′. For the (p− q) 3-element sets in C \C ′, we choose the 3 interesting 3-paths with

http://jocg.org/

JoCG 10(1), 500–531, 2019 513

Journal of Computational Geometry jocg.org

interestingness score Wout each in the corresponding graph objects in G. This collection
of p edge-disjoint interesting 3-paths in G will have a total interestingness score of exactly
pWout + 3(p− 1)q log 2 + q log 24.

Thus X has an exact 3-cover if and only if 3-IPD on G has a target total interest-
ingness score of s0 = pWout + 3(p− 1)q log 2 + q log 24, proving 3-IPD is NP-complete.

We now extend this result to k-IPD for k ≥ 4. To this end, we reduce the exact
k-cover problem (XkC) to k-IPD for general k ≥ 4. The XkC problem is a generalization
of X3C, and is defined as follows. Given a set X with |X| = kq elements and a collection C
of k-element subsets of X with |C | = p, determine if there exists a subset C ′ ⊆ C such that
each element of X belongs to exactly one member of C ′. Notice that such an exact cover
C ′ must necessarily have exactly q members. Also, we assume p ≥ q ≥ k (else the instance
will be trivial).

Given an instance of XkC, we create a directed acyclic graph G for an instance of
k-IPD as follows. Each element x ∈ X corresponds to a unique directed edge in G. For
each k-element set {x1, x2, . . . , xk} ∈ C , we add to G a corresponding directed acyclic graph
object as shown in Figure 5. The edges corresponding to all x ∈ X are assigned the large
weight ω = p (giving “heavy” edges), while the rest of the edges are all assigned unit weights.
Further, we assume Sig(e) is identical for all edges e ∈ E. The k “V”-shaped k-paths in the
top of Figure 5 are referred to as the x1-, x2-,. . . xk-paths. Notice that by this construction,
G can have at most |V | ≤ (k(k + 1) + 1)p vertices and |E| ≤ (k(k + 1))p edges.

x
2

x
k

ω
=
px

1

ω
=
p

ω
=
p

k
−
1

k
−
1

k
−
1

k

Figure 5: Graph object corresponding to set {x1, x2, . . . , xk} ∈ C in XkC. Thin edges all
have ω = 1.

LetWin = k(p log 2+log 3+log 4+ · · ·+log(k+1))+(log 2+log 3+ · · ·+log(k+1)) =
(k+1) log((k+1)!)+k(p−1) log 2, andWout = k log((k+1)!). From a graph object as shown
above, we observe that k+ 1 edge-disjoint interesting k-paths can be chosen by k-IPD each
with interestingness score Win if and only if the x1-, x2-, . . . xk-paths are chosen along with
one other k-path as shown in Figure 6a. Further, each edge corresponding to an element in
X may belong to only one k-path. Thus, at most q such graph objects may contribute the
score of Win each to the total interestingness score. The remaining p− q graph objects may
contribute a score of at most Wout each corresponding to the selection of the k edge-disjoint
interesting k-paths shown in Figure 6b, which avoid the edges corresponding to any x ∈ X. If
q such graph objects do contributeWin each to the total interestingness score, it is clear that
the corresponding q k-tuple elements in C form an exact k-cover of X. Further, k-IPD on G

http://jocg.org/

JoCG 10(1), 500–531, 2019 514

Journal of Computational Geometry jocg.org

will identify exactly (k+1)q+k(p−q) = kp+q edge-disjoint interesting k-paths with a total
interestingness score of exactly qWin +(p−q)Wout = pWout +k(p−1)q log 2+q log((k+1)!).

x
2

x
k

ω
=
px

1

ω
=
p

ω
=
p

k
−
1

k
−
1

k
−
1

k

(a) k-paths for an element in C ′.

x
2

x
k

ω
=
px

1

ω
=
p

ω
=
p

k
−
1

k
−
1

k
−
1

k

(b) k-paths for an element not in C ′.

Figure 6: Choices of interesting k-paths in graph objects for elements in C ′ and C \ C ′.

Conversely, if XkC has an exact k-cover C ′, we choose the k + 1 edge-disjoint inter-
esting k-paths (again, we assume identical signatures for all edges in G) with interestingness
score Win as described above in the graph object in G corresponding to each of the q k-
element sets in C ′. For the (p − q) k-element sets in C \ C ′, we choose the k edge-disjoint
interesting k-paths with interestingness score Wout each in the corresponding graph objects
in G. This collection of p edge-disjoint interesting k-paths in G will have a total interest-
ingness score of exactly pWout + k(p− 1)q log 2 + q log((k + 1)!).

Thus X has an exact k-cover if and only if k-IPD on G has a target total interest-
ingness score of s0 = pWout +k(p−1)q log 2+ q log((k+1)!), proving k-IPD is NP-complete
for k ≥ 4.

5 The Interesting Paths (IP) Problem

The goal of IP is to find a set P of edge-disjoint interesting paths of possibly varying lengths
(1 to n−1) such that the sum of their interestingness scores is maximized. The determination
of the precise complexity class for IP is an open problem. However, based on the hardness
results for k-IP (Section 4), we conjecture that the IP is also intractable. Here we present an
efficient heuristic for IP on DAGs by employing the exact algorithm for Max-IP on DAGs
(in Section 3.1) as a subroutine. We also estimate lower and upper bounds on the maximum
total interestingness score of IP (see Section 5.2).

5.1 An Efficient Heuristic for IP on DAGs

We present a polynomial time heuristic to find a set of edge-disjoint interesting paths P
in a DAG with high total interestingness score. We do not provide any guarantee on the
optimality or (approximation) quality of the collection of interesting paths P.

Our method, termed Algorithm 1, uses a greedy strategy by iteratively calling the
exact algorithm for Max-IP (Section 3.1). The idea is to iteratively detect a maximum
interesting path, add it to the working set of solutions, remove all the edges in that path,
and recompute Max-IP on the remaining graph, until there are no more edges left.

http://jocg.org/

JoCG 10(1), 500–531, 2019 515

Journal of Computational Geometry jocg.org

Algorithm 1: Greedy Heuristic for IP on DAGs
Input: DAG G = (V,E) with ω(e), Sig(e) ∀e ∈ E
Output: A set of edge-disjoint interesting paths P in G
P = ∅
repeat

P ← Compute Max-IP on G = (V,E) and return a most interesting path
P ← P ∪ {P}
Remove edges in P from E

until E = ∅ ;
return P

Complexity Analysis: The runtime to compute Max-IP on G = (V,E) in the first step is
O(mδdin), as described in Section 3.1.1. Recall that δ is the diameter of the DAG and din
is the maximum indegree of any vertex in V . Therefore, if we denote p to be the number
of iterations (equivalently, the number of interesting paths found), then the overall runtime
complexity is O(pmδdin). However, we expect the performance of the algorithm in practice
to be much faster. Note that at least one edge is, and at most m edges are, eliminated in
each iteration, thereby implying 1 ≤ p ≤ m here.

Consider the worst case of elimination where one edge is eliminated in each iteration,
i.e., p = m. The graph must be very sparse in this case, i.e., m = Θ(n), causing our
algorithm for Max-IP to perform only O(m) work per iteration. Therefore the overall
runtime is O(m2), or equivalently, O(n2).

On the other hand, consider the case where the number of edges reduces by a constant
factor c at every iteration. This setting implies p = O(logc(m)), while the work performed
from one iteration to the next will also continually reduce by a factor of c. Hence the
overall runtime can still be bounded by O(mδdin), the cost of Max-IP. Further, from an
application standpoint, such a greedy iterative approach can be terminated whenever an
adequate number of “top” interesting paths are identified.

While the greedy heuristic promises to be efficient in practice, we show by example
that it may not find the optimal solution for all instances.

Lemma 5.1. Algorithm 1 is not exact for IP.

Proof. Algorithm 1 follows a greedy strategy by iteratively calling Max-IP. In Figure 7,
we present an instance that shows this algorithm is not exact for IP. We assume identical
signatures for all edges here.

Figure 7A) shows a weighted DAG containing two paths P1 and P2, followed by
an edge e8. Path P1 consists of the edges [e1, e2, e3, e4] and path P2 consists of the edges
[e5, e5, e7].

Algorithm 1 will output paths {P2 ∪ {e8}, P1}, because P2 ∪ {e8} is the most inter-
esting path with an interestingness score of 24.5. Together with the score of 21.98 for P1,
the total interestingness score for the collection identified by the algorithm is 46.48.

However, the solution for this IP instance is {P2, P1 ∪ {e8}}, with a total interest-
ingness score of 23.34 + 23.27 = 46.61.

http://jocg.org/

JoCG 10(1), 500–531, 2019 516

Journal of Computational Geometry jocg.org

Figure 7: Counterexample to show that Algorithm 1 is not exact for IP. Part (A) shows
the input DAG. Part (B) shows the tabulated computation during the first iteration of
Algorithm 1.

5.1.1 An Efficient Heuristic for k-IP on DAGs

The above heuristic for IP can be easily modified to devise a heuristic for k-IP on DAGs.
Algorithm 2 summarizes the main steps. The main idea is to modify the exact algorithm
for Max-IP on a DAG such that it initializes a recurrence table of size m × k (instead
of m × (n − 1)), and then use that table to iteratively compute Max-IP paths. The only
constraint here is that each such Max-IP path should originate from the k-th column during
backtracking, so that paths output are guaranteed to be of length k. The runtime is bounded
by O(mrdin), where r = min{k, δ}.

Algorithm 2: Greedy Heuristic for k-IP on DAGs
Input: DAG G = (V,E) with ω(e), Sig(e) ∀e ∈ E
Output: A set of edge-disjoint interesting k-paths P in G
Initialize an m× k table T ′

P = ∅
repeat

P ′ ← Compute Max-IP on G = (V,E) using T ′, and return
a most interesting path ending in column k

P ← P ∪ {P ′}
Remove edges in P ′ from E

until E = ∅ ;
return P

Remark 5.2. Ideas used in Algorithms 1 and 2 could be combined to develop a heuristic
for AtLeast-k-IP, a modified version of k-IP that seeks to find a collection of interesting
paths in G where each path has at least k edges. We have implemented this heuristic in our
software suite (see Section 7 for details).

http://jocg.org/

JoCG 10(1), 500–531, 2019 517

Journal of Computational Geometry jocg.org

5.2 Bounds for IP

Let P∗ represent an optimal set of paths for an instance of IP. We derive upper and lower
bounds on its total interestingness score I(P∗).

Let Pmax(i) denote a maximum interesting path (of arbitrary length) ending at a
given edge ei ∈ E.

Lemma 5.3. I(P∗) ≤
∑

ei∈E I(Pmax(i)).

Proof. Consider an arbitrary path P ∈ P∗. We first note that individual paths that are
members of an optimal solution (P∗) for the IP problem can end at any arbitrary non-
source vertex in G = (V,E) (see Figure 8 for an illustration).

P2

P5

P3

P
4P

1

Figure 8: Five interesting paths labeled P1, . . . , P5. The paths P2 and P3 end at non-source
vertices.

Without loss of generality, let us assume that the input graph contains only vertices
with degree at least one (as vertices with degree zero cannot contribute to any interesting
path). We consider two sub-cases:

Case A: No two maximum scoring paths ending at two different edges ei and ej
intersect, i.e., Pmax(i) ∩ Pmax(j) = ∅, ∀i, j ∈ [1,m] and i 6= j.
This case can occur only if the number of edges (m) is equal to the number of source vertices.
This setting implies that P∗ is comprised of m paths, where each path P ∈ P∗ is a unique
edge ei ∈ E. Therefore, I(P∗) =

∑
ei∈E I(Pmax(i)) in this case.

Case B: There exists at least two maximum interesting paths ending at two different
edges ei and ej that intersect, i.e., Pmax(i) ∩ Pmax(j) 6= ∅.
This case implies that at least one of these two paths is not a member of P∗ (by definition of
the IP problem); let this non-member path be Pmax(j) without loss of generality. Since all
edges are covered by P∗ by definition of IP, there still has to exist an alternative path ending
in ej that is either directly contained in P∗ or contained as a subpath of a longer path in P∗;
let us refer to this alternative path as P ′(j). Since Pmax(j) is an optimal interesting path
ending at edge ej , I(P ′(j)) ≤ I(Pmax(j)). In other words, the contribution of P ′(j) to I(P∗)
cannot exceed the contribution of Pmax(j) to I(P∗). Therefore, I(P∗) ≤

∑
ei∈E I(Pmax(i))

in this case as well.

We now present a lower bound for I(P∗).

Lemma 5.4. I(P∗) ≥
∑

ei∈E(ω(ei)× log 2).

http://jocg.org/

JoCG 10(1), 500–531, 2019 518

Journal of Computational Geometry jocg.org

Proof. Since P∗ covers all edges in E, a trivial (albeit not necessarily optimal) solution P ′
for IP can be constructed by including every edge as a distinct interesting path in the graph,
i.e., P ′ = {ei|1 ≤ i ≤ m}. Therefore, I(P∗) ≥ I(P ′) =

∑
ei∈E(ω(ei) × log 2) follows from

Equation (1).

6 Interesting Paths in Directed Graphs

We consider a more general setting for the graph formulation (in Section 2.1.1) where the
graph G need not be acyclic. This setting is motivated by the case where the weights of
two nodes in G are equal, or close to equal, and hence we are not sure which way to direct
the edge connecting them. Hence we add both directed edges with the same weight, as
illustrated in Figure 9.

If the edge is bidirected, then the signature is used as a “wildcard”—the signature is
not predetermined, and is chosen to match any candidate signature as determined by the
interesting path detection algorithm. Note that in the above definition, a directed path is
one where all edges in the path have the same direction. Hence we have the flexibility to
use a bidirected edge as part of a directed path either in the forward or reverse direction,
but not both.

We consider Max-IP on directed graphs. Unlike the case of DAGs, we show that
Max-IP on directed graphs turns out to be NP-complete.

u v|ω(u)− ω(v)| ≤ τ

Figure 9: Two opposite directed edges between nodes u and v if |ω(u)−ω(v)| ≤ τ . Contrast
this set up with the default one illustrated in Figure 1.

6.1 Max-IP on Directed Graphs

In the decision version of Max-IP termed Max-IPD, we are given a directed graph G =
(V,E) with edge weights ω(e) ≥ 0 and signatures Sig(e) for e ∈ E and a target score s0 ≥ 0.
The goal is to determine if there exists an interesting path P in G whose interestingness
score I(P) ≥ s0.

Lemma 6.1. Max-IPD on directed graph G = (V,E) is NP-complete.

Proof. Given a path P in G, we can verify that it is a directed simple path with all the
edges of the same signature, compute its interestingness score I(P) using Equation (1), and
compare it with s0—all in polynomial time. Hence Max-IPD is in NP.

We reduce the problem of checking if a directed graph has a directed Hamiltonian
cycle (DirHC) to Max-IPD. DirHC is one of the 21 NP-complete problems originally
introduced by Karp [13]. Given an instance G = (V,E) of DirHC with |V | = n, we
construct an instance of Max-IPD on a directed graph G′ = (V ′, E′) as follows. We replace

http://jocg.org/

JoCG 10(1), 500–531, 2019 519

Journal of Computational Geometry jocg.org

an arbitrary vertex v ∈ V by two vertices v′ and v′′, i.e., V ′ = (V \ {v}) ∪ {v′, v′′} and
|V ′| = n+ 1. Each (v, w) ∈ E is replaced by (v′, w) in E′ and each (u, v) ∈ E is replaced by
(u, v′′) in E′. All other edges in E are included in E′ without changes. All edges in E′ are
assigned unit weights and identical signatures, and we set s0 = log((n+ 1)!).

We claim that G has a directed Hamiltonian cycle C if and only if there exists an
interesting path P ′ in G′ with interestingness score I(P ′) = s0. Let G have a directed
Hamiltonian cycle C. Then C must have n edges by definition, and C visits (i.e., enters and
leaves) each vertex in V exactly once. Hence there must exist edges (v, w) and (u, v) in C.
We construct the interesting path P ′ in G′ using (v′, w), (u, v′′), and the remaining (n− 2)
edges in C. Thus P ′ is a directed path in G′ with n edges. Further, since all edges in E′

have unit weights and identical signatures, it is clear from Equation (1) that P ′ is indeed
an interesting path in G′ with I(P ′) = s0.

Conversely, let P ′ be an interesting path in G′ with I(P ′) = s0 (notice that I(P ′) >
s0 is not possible, as nodes are not allowed to be repeated in P ′). Since P is an interesting
path, it visits (i.e., enters and/or leaves) any vertex in V ′ at most once. Since all edges in
E′ have unit weights and identical signatures, and by the definition of interestingness score
in Equation (1), it is clear that P ′ must have n edges. Hence P ′ must start with an edge
(v′, w) and end with an edge (u, v′′). Then the directed cycle C in G defined by the edges
(v, w), (u, v), and the remaining (n − 2) edges in P ′ is Hamiltonian. Hence Max-IPD on
directed graphs is NP-complete.

The result in Lemma 4.1 can be generalized to the case of directed graphs, i.e., k-IP
on directed graphs can be solved in polynomial time for k ≤ 2. To this end, we note a modifi-
cation in the construction of the undirected graph G′ for the weighted matching problem (de-
scribed in the Proof of Lemma 4.1). If both interesting paths Pij = [ei, ej] and Pji = [ej , ei]
are possibly formed by a pair of edges {ei, ej} ∈ E, we set ωij = max{I(Pij), I(Pji)}.

On the other hand, since k-IP is NP-complete on DAGs for k ≥ 3 (Theorem 4.2), it
is also NP-complete on directed graphs for k ≥ 3.

7 Software Implementation

We have implemented the algorithms for long interesting path detection as part of the
Hyppo-X repository, which also includes our implementation of the mapper algorithm. The
Hyppo-X repository is open source, and is available at https://xperthut.github.io/HYPPO-
X/. The core computational modules are implemented in C++ and the visualization mod-
ules are implemented using the Javascript visualization library D3 [27].

The Hyppo-X repository includes implementations for the following algorithms presented in
this paper:

1. the optimized exact algorithm for Max-IP on DAGs described in Section 3.1.1;
2. the greedy iterative heuristic for IP on DAGs described in Algorithm 1; and
3. greedy iterative heuristics for k-IP and AtLeast-k-IP on DAGs as described in Sec-

tion 5.1.1.

http://jocg.org/
https://xperthut.github.io/HYPPO-X/
https://xperthut.github.io/HYPPO-X/

JoCG 10(1), 500–531, 2019 520

Journal of Computational Geometry jocg.org

8 Experimental Evaluation

8.1 Experimental Setup

We tested our implementations on a real-world phenomics data set obtained from an ongoing
plant phenomics research project. Phenomics is an emerging branch of modern biology that
involves the analysis of multiple types of data (genomic, phenotypic, and environmental)
acquired using high-throughput technologies. A core goal of plant phenomics research is
to understand how different crop genotypes (G) interact with their environments (E) to
produce varying performance traits (phenotypes (P)); this goal is often summarized as G ×
E → P [16].

As a concrete study in application, we present experimental results of applying our
Hyppo-X framework on a real-world maize data set (accessible from the Hyppo-X reposi-
tory). This data set consists of phenotypic and environmental measurements for two maize
genotypes (abbreviated here for simplicity as A and B), grown in two geographic locations
(Nebraska (NE) and Kansas (KS)). These two locations capture two different growth condi-
tions, i.e., environments. The data consists of daily measurements of growth rate alongside
multiple environmental variables, over the course of the entire growing season (100 days).
In our analysis, each “point” refers to a unique [genotype, location, time] combination. Con-
sequently, the above data set consists of 400 points. Here, “time” was measured as Days
After Planting (DAP), which corresponds to the number of days since planting of an individ-
ual. We tested our framework using three variables from among the environmental variables
available: i) Growing Degree Days or GDD, which is a temperature-based cumulative index;
ii) humidity, and iii) solar radiation.

We started our study with an intent to address a set of broad questions (hypotheses)
that included the following:

i) (genotypic effect) To what degree does the genotype alone correlate with growth rate?
ii) (environmental effect) To what degree does the location (i.e., growth environment) alone

correlate with growth rate?
iii) (G × E → P) How do specific genotypes respond to specific environmental variables in

their performance?

In an attempt to answer these questions, we ran our Hyppo-X framework on the real-world
maize data using different filter functions. In all our studies, we used growth rate as our
performance function (i.e., dependent variable) as that is a key phenotype of interest to plant
scientists. To ensure that the inferences are derived solely based on data and to prevent any
pre-conceived biases, we performed all our runs in a fully unsupervised manner—i.e., the
source information of the data (i.e., genotype and location) were not considered as input.
Instead, we incorporated that information posthumously during our analysis step and used it
make interpretations and inferences. Note that subpopulations of individuals that “behave”
similarly under similar environmental conditions, are expected to form partial clusters, while
a trail of such clusters is expected to be captured by a long interesting path.

http://jocg.org/

JoCG 10(1), 500–531, 2019 521

Journal of Computational Geometry jocg.org

8.2 Experimental Results

Figure 10 shows the outputs generated by running our greedy heuristic for AtLeast-k-IP on
the above data set containing both A and B genotypic points. Figure 10a shows the output
obtained using DAP as the filter function (i.e., independent variable), whereas Figure 10b
shows the output obtained using GDD as the filter function.

Figures 11 and 12 show the output obtained using two filter functions—DAP and
humidity—while considering points from genotype B (this was done to study the variance
within a single genotype across the two different locations).

Figure 13 shows the output obtained using two filter functions—DAP and solar
radiation—considering points from both genotypes A and B; in order to illustrate the com-
bined effects of two variables on the entire population.

We now elaborate on each of the experimental studies.

8.2.1 Single Filter

Figure 10 shows the mapper complexes generated using single filter functions DAP (in Fig-
ure 10a) and GDD (in Figure 10b). An interesting path in this case captures a sequence of
partial clusters where the average growth rates of the clusters along the path is nondecreas-
ing. The filter function values (i.e., average DAP or average GDD values) could be either
monotonically increasing or decreasing (but not both). The latter condition is guaranteed
through the signature matching step in our framework.

Based on the interesting paths detected, we make the following key observations:

Observation 8.1. The top ranked interesting paths in both cases are identified as P1 (and
shown in red in Figures 10a and 10b). In both cases, this path corresponds to the Kansas-B
genotypic subpopulation, suggesting that this variety has a significantly different behavior (as
per growth rate) compared to the same genotype grown at the other location (Nebraska-B;
captured by path P3). A similar distinction can be observed between Kansas-A (captured by
path P2) vs. Nebraska-A (captured by path P4).

Observation 8.2. The other key observation that can be made by referring to Figure 10 is
that in both locations, genotype B shows an earlier increase in growth rate (i.e., earlier by
DAP and by GDD) compared to genotype A.

These results show that while genotype is a likely contributor to performance (Ob-
servation 8.2), the environment (as captured by the different locations) is also a likely con-
tributing factor (Observation 8.1).

http://jocg.org/

JoCG 10(1), 500–531, 2019 522

Journal of Computational Geometry jocg.org

F
ig
ur
e
10
:

A
sc
re
en
sh
ot

of
ou

r
Hy

pp
o-

X
to
ol

fo
r
id
en
ti
fy
in
g
in
te
re
st
in
g
pa

th
s
in

M
ap

pe
r.

T
he

re
su
lt
s
ar
e
on

an
ex
pe

ri
m
en
ta
l

pl
an

t
ph

en
om

ic
s
da

ta
se
t,

in
w
hi
ch

tw
o
va
ri
et
ie
s
of

m
ai
ze

(A
an

d
B
)
w
er
e
gr
ow

n
in

tw
o
di
ffe

re
nt

lo
ca
ti
on

s
(K

S
an

d
N
E
).

P
ar
t
a)

sh
ow

s
th
e
m
ap

pe
r
co
m
pl
ex

co
ns
tr
uc
te
d
us
in
g
D
A
P

(D
ay
s
A
ft
er

P
la
nt
in
g)

as
th
e
fil
te
r
fu
nc
ti
on

,
an

d
P
ar
t
b)

sh
ow

s
th
e
co
m
pl
ex

co
ns
tr
uc
te
d
us
in
g
G
D
D

(G
ro
w
in
g
D
eg
re
e
D
ay
s)

as
th
e
fil
te
r
fu
nc
ti
on

.
B
ot
h
co
m
pl
ex
es

w
er
e
co
ns
tr
uc
te
d
us
in
g
gr
ow

th
ra
te

as
ou

r
de
pe

nd
en
t
va
ri
ab

le
(i
.e
.,
ta
rg
et

fu
nc
ti
on

fo
r
pe

rf
or
m
an

ce
).

T
he

in
te
re
st
in
g
pa

th
s
ar
e
m
ar
ke
d
in

di
ffe

re
nt

co
lo
rs

w
he
re

ea
ch

pa
th

ca
pt
ur
es

a
su
bp

op
ul
at
io
n
of

in
te
re
st

(a
s
de
sc
ri
be

d
in

ou
r
ob

se
rv
at
io
ns
).

http://jocg.org/

JoCG 10(1), 500–531, 2019 523

Journal of Computational Geometry jocg.org

8.2.2 Two Filters

Effect of DAP and Humidity: We study the effect of applying two filter functions to the
plant data set. Specifically, we use DAP and humidity as our two filter functions and apply to
the subset of points corresponding to genotype B. The choice of genotype B was motivated
by its divergent growth behavior, as noted in Observation 8.2. We first show the resulting
mapper complex in Figure 11. Here, each edge has two signature bits, one each for DAP and
humidity, and all edges along a path have the same signature; thereby encoding the capacity
to capture four different combinations of possible environmental impact on performance.

Based on the interesting paths detected (shown in Figure 11), we make the following
observations:

Observation 8.3. Paths P1 and P2 collectively represent the region of the complex where
the Kansas-B subpopulation (as shown in Figure 11a) experiences an accelerated growth rate
(as shown in Figure 11b). The paths P3 and P4 show the similar regions for the Nebraska-B
subpopulation.

The reason why paths P1 and P2 could not be combined to produce a longer path
is because of signature matching. Specifically, the DAP increases monotonically along both
paths P1 and P2 but humidity fluctuates, resulting in the fragmentation of the paths. In
order to capture this variant behavior between the two filters, we generated an alternative
mapper complex using only DAP as the signature bit (while using both DAP and humidity
as filter functions).

The modified set of paths identified by this relaxed signature matching scheme is
shown in Figure 12. As can be seen, the interesting paths span a longer trail of clusters,
showing almost an end-to-end behavior of the KS and NE subpopulations. Notably, the
separation between the paths P1 and P2 is mainly a result of the difference in the humidity
values between the KS and NE subpopulations. This suggests an active role that humidity
plays in conjunction with the genotype, on impacting growth rate.

Observation 8.4. Also shown in Figure 12 is path P3 that appears in the second nontrivial
connected component. This region in the mapper complex corresponds to DAP values greater
than 70, suggesting a lower degree of separation between the two subpopulations (KS and
NE) in this later growth stage (i.e., once the crop has matured).

Effect of DAP and Solar Radiation: Next we used DAP and solar radiation as our two
filter functions, and we applied it to the entire population (containing both genotypes from
both locations). Figure 13 shows the resulting mapper complex. Note that we relax the
signature matching procedure to match only the DAP bit (similar to Figure 12).

http://jocg.org/

JoCG 10(1), 500–531, 2019 524

Journal of Computational Geometry jocg.org

Growth rate
(Phenotype)

a)

b)

P2
P1

P3

P4

P5

P2
P1

P3

P4

P5

Nebraska

Kansas

Figure 11: Two representations of the mapper complex constructed using DAP and humidity
as filter functions and growth rate as the dependent variable on the subset of genotype B
points. Nodes are colored based on location (a) and average growth rate (b) of points in the
node. The complex contains three connected components (separated by dashed lines). We
show the top interesting path(s) in each connected component.

http://jocg.org/

JoCG 10(1), 500–531, 2019 525

Journal of Computational Geometry jocg.org

Growth rate
(Phenotype)

a)

b)

P1

P2

P3

Nebraska

Kansas

P1

P2

P3

Figure 12: This mapper complex is the same as the one shown in Figure 11. Here we do
not match signature for humidity because of its high variability. We obtain long interesting
paths (P1 and P2).

http://jocg.org/

JoCG 10(1), 500–531, 2019 526

Journal of Computational Geometry jocg.org

Based on the interesting paths identified, we make the following key observations:

• The paths P1, P2 and P5 contain subpopulations from Kansas, whereas paths P3 and
P4 contain subpopulations from Nebraska.

• The high performing regions (see Figure 13b) within these paths correspond to geno-
type B.

• However, each path contains points from both genotypes along most of its length,
suggesting a weak ability for solar radiation to separate the two genotypes by their
performance.

• Solar radiation also does not produce a clear separation between the two locations (as
humidity achieved)—e.g., the Kansas region P5 is adjoining a Nebraska region (P4).

P1
P2

P3

P5

P4

P1
P2

P3

P5

P4
Growth rate
(Phenotype)

a)

b)

Figure 13: Two representations of mapper complex constructed using DAP and solar radi-
ation as two filter functions and growth rate as the dependent variable on both A and B
genotypic points. Nodes are colored based on location (a) and average growth rate (b) of
all points in the node. We show top interesting paths obtained after relaxing the signature
matching for solar radiation.

Visualizations of the outputs generated in the above analysis are available on the
Hyppo-X repository. More details about this plant phenomics use case can be found in our
related application-oriented paper [12].

http://jocg.org/

JoCG 10(1), 500–531, 2019 527

Journal of Computational Geometry jocg.org

9 Discussion

We have proposed a general framework for quantifying the significance of features in the
mapper complex in terms of their interestingness scores. The associated optimization prob-
lems Max-IP, k-IP, and IP constitute a new class of nonlinear longest path problems on
directed graphs. We have not characterized the complexity of problem IP. Judging from the
fact that k-IP is NP-complete even on DAGs, we suspect IP is NP-complete as well.

Our framework for quantifying interesting paths could be modified to quantify branches
in flares as well as holes. When the graph G is a DAG, two interesting k-paths that start
and end at the same pair of vertices could be characterized as a 2k-hole, i.e., a cycle with
2k edges. One could alternatively use persistent homology tools to characterize holes—by
identifying “long” generators around them. We have recently generalized the interestingness
score of a path (in Equation (1)) to that of a flare, and studied flares as features capturing
subpopulations showing divergent behavior [11]. The theoretical foundations of such flares
still remain to be explored.

While we distinguished the dependent variable g used for clustering from the inde-
pendent variables used as filter functions fi for i = 1, . . . , h, this distinction is not too critical
for our framework. As indicated in Remark 2.5, one could use g simultaneously as a filter
function along with the fi’s, and the overall analysis should still carry through. More gener-
ally, details of how to implement clustering within the mapper framework has not received
much research attention. In initial work on phenomics [12], we obtained better results when
using g alone to cluster within the mapper algorithm (rather than clustering using several, or
even all, of the variables). It would be interesting to characterize the stability of the mapper
complex to varying settings of clustering employed in its construction. For instance, could
we identify a “small” subset of variables for use in clustering within the mapper framework
that is optimal in a suitable sense? Another related question is how to select a small subset
of filter functions from all available ones, such that the resulting mapper complex captures
most, or all, of the topological information represented by the data set.

While we distinguished g from fi, our goal in this work is not to predict g using fi
as input. Interesting paths in the mapper graph identify subpopulations that show distinct
variations in g as values of fi vary. Such insights help one develop hypotheses that the
practitioner could test using further experiments [12].

The more direct question of stability of interesting paths identified by our framework
is an important one, and we hope to address it in our future work. In a separate recent
paper, Krishnamoorthy and coauthors have explored a notion of stability of paths in the
mapper graph [2]. But the mapper graph in this work is undirected, and the edge weights
capture a Jaccard distance between the clusters defining the two vertices. Stability of a
most interesting path identified by Max-IP could pose some challenges, especially on how
to incorporate its optimality. The nonlinear dependence of the interestingness score on the
rank of each edge in the path (the log(1 + rank) factor in Equation (1)) could also be tricky
to handle. Since the main motivation for this work is to identify interesting subpopulations,
we might consider defining a distance function between paths that captures this information,
and derive a stability result in terms of how this distance is bounded as a polynomial factor

http://jocg.org/

JoCG 10(1), 500–531, 2019 528

Journal of Computational Geometry jocg.org

of a small change in the input (rather than bounding the change in interestingness scores).
Could we generalize such a distance distance function to the k-IP or IP cases?

A different potential approach for stability could be to incorporate our interestingness
scores into the mathematical machinery recently developed to obtain results on stability
and statistical convergence of the 1-D mapper complex [3, 4]. Alternatively, could we define
interesting paths within a multiscale mapper framework [5], and derive stability results in
that setting?

While we have proposed an efficient heuristic for IP on DAGs, we are not able to
certify the quality of solution obtained by this method. On the other hand, could we devise
approximation algorithms for IP or k-IP? One might have to work under some simplifying
assumptions on the distribution of weights ω(e) or on the structure of the graph G. The
simplest case to consider appears to that of IP on a DAG with unit weights on all edges.
Another natural extension of our work on interesting paths would be to define and efficiently
identify interesting surfaces (or generalized manifolds) in higher dimensional mapper com-
plexes.

Acknowledgments: This research is supported by the NSF grants DBI-1661348 and DMS-
1819229. Krishnamoorthy thanks Frédéric Meunier for discussion on the complexity of
Max-IP while visiting MSRI.

References

[1] Muthu Alagappan. From 5 to 13: Redefining the positions
in basketball. In MIT Sloan Sports Analytics Conference, 2012.
http://www.sloansportsconference.com/content/the-13-nba-positions-using-topology-
to-identify-the-different-types-of-players/.

[2] Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, and Nathaniel Saul. Jac-
card filtration and stable paths in the Mapper. CoRR, abs/1906.08256, 2019. URL:
http://arxiv.org/abs/1906.08256.

[3] Mathieu Carrière, Bertrand Michel, and Steve Oudot. Statistical analysis and param-
eter selection for mapper. Journal of Machine Learning Research, 19(12):1–39, 2018.
arXiv:1706.00204. URL: http://jmlr.org/papers/v19/17-291.html.

[4] Mathieu Carrière and Steve Oudot. Structure and stability of the one-dimensional
mapper. Foundations of Computational Mathematics, Oct 2017. arXiv:1511.05823.
doi:10.1007/s10208-017-9370-z.

[5] Tamal K. Dey, Facundo Mémoli, and Yusu Wang. Multiscale mapper: Topological sum-
marization via codomain covers. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’16, pages 997–1013, Philadelphia,
PA, USA, 2016. Society for Industrial and Applied Mathematics. arXiv:1504.03763.

[6] Jack R. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of
Research of the National Bureau of Standards Section B, 69:125–130, 1965.

http://jocg.org/
http://www.sloansportsconference.com/content/the-13-nba-positions-using-topology-to-identify-the-different-types-of-players/
http://www.sloansportsconference.com/content/the-13-nba-positions-using-topology-to-identify-the-different-types-of-players/
http://arxiv.org/abs/1906.08256
https://arxiv.org/abs/1706.00204
http://jmlr.org/papers/v19/17-291.html
https://arxiv.org/abs/1511.05823
http://dx.doi.org/10.1007/s10208-017-9370-z
http://arxiv.org/abs/1504.03763

JoCG 10(1), 500–531, 2019 529

Journal of Computational Geometry jocg.org

[7] Harold N. Gabow. Data structures for weighted matching and nearest common an-
cestors with linking. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’90, pages 434–443, Philadelphia, PA, USA, 1990. Society
for Industrial and Applied Mathematics. arXiv:1611.07055.

[8] Geoffrey M. Guisewite and Panos M. Pardalos. Algorithms for the single-source unca-
pacitated minimum concave-cost network flow problem. Journal of Global Optimization,
1(3):245–265, 1991. doi:10.1007/BF00119934.

[9] Timothy S.C. Hinks, Xiaoying Zhou, Karl J. Staples, Borislav D. Dimitrov, Alexander
Manta, Tanya Petrossian, Pek Y. Lum, Caroline G. Smith, Jon A. Ward, Peter H.
Howarth, Andrew F. Walls, Stephan D. Gadola, and Ratko Djukanović. Innate and
adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms.
Journal of Allergy and Clinical Immunology, 136(2):323–333, 2015. doi:10.1016/j.
jaci.2015.01.014.

[10] David Houle, Diddahally R Govindaraju, and Stig Omholt. Phenomics: the next chal-
lenge. Nature reviews genetics, 11(12):855, 2010.

[11] Methun Kamruzzaman, Ananth Kalyanaraman, and Bala Krishnamoorthy. Detecting
divergent subpopulations in phenomics data using interesting flares. In Proceedings
of the 2018 ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics, BCB ’18, pages 155–164, New York, NY, USA, 2018. ACM.
doi:10.1145/3233547.3233593.

[12] Methun Kamruzzaman, Ananth Kalyanaraman, Bala Krishnamoorthy, Stefan Hey, and
Patrick S. Schnable. Hyppo-X: toward a scalable exploratory framework for complex
high-dimensional phenomics data. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2019. arXiv:1707.04362. doi:10.1109/TCBB.2019.2947500.

[13] Richard M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[14] Li Li, Wei-Yi Cheng, Benjamin S. Glicksberg, Omri Gottesman, Ronald Tamler, Rong
Chen, Erwin P. Bottinger, and Joel T. Dudley. Identification of type 2 diabetes
subgroups through topological analysis of patient similarity. Science Translational
Medicine, 7(311):311ra174–311ra174, 2015. doi:10.1126/scitranslmed.aaa9364.

[15] Pek Y. Lum, Gurjeet Singh, Alan Lehman, Tigran Ishkanov, Mikael. Vejdemo-
Johansson, Muthi Alagappan, John G. Carlsson, and Gunnar Carlsson. Extracting
insights from the shape of complex data using topology. Scientific Reports, 3(1236),
2013. doi:10.1038/srep01236.

[16] Cathie Martin. The plant science decadal vision. The Plant Cell, 25(12):4773–4774,
2013.

[17] Yukio Matsumoto. An Introduction to Morse Theory. Europe and Central Asia Poverty
Reduction and Economic Manag. American Mathematical Society, 2002.

http://jocg.org/
https://arxiv.org/abs/1611.07055
http://dx.doi.org/10.1007/BF00119934
http://dx.doi.org/10.1016/j.jaci.2015.01.014
http://dx.doi.org/10.1016/j.jaci.2015.01.014
http://dx.doi.org/10.1145/3233547.3233593
https://arxiv.org/abs/1707.04362
http://dx.doi.org/10.1109/TCBB.2019.2947500
http://dx.doi.org/10.1126/scitranslmed.aaa9364
http://dx.doi.org/10.1038/srep01236

JoCG 10(1), 500–531, 2019 530

Journal of Computational Geometry jocg.org

[18] Gregory S McMaster and WW Wilhelm. Growing degree-days: one equation, two
interpretations. Agricultural and forest meteorology, 87(4):291–300, 1997.

[19] John W. Milnor. Morse Theory. Annals of mathematics studies. Princeton University
Press, 1963.

[20] Elizabeth Munch and Bei Wang. Convergence between categorical representations
of Reeb space and mapper. International Symposium on Computational Geometry
(SOCG), 2016.

[21] James R. Munkres. Elements of Algebraic Topology. Addison–Wesley Publishing Com-
pany, Menlo Park, 1984.

[22] Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and excellent
survival. Proceedings of the National Academy of Sciences, 108(17):7265–7270, 2011.
doi:10.1073/pnas.1102826108.

[23] Jessica L. Nielson, Jesse Paquette, Aiwen W. Liu, Cristian F. Guandique, C. Amy To-
var, Tomoo Inoue, Karen-Amanda Irvine, John C. Gensel, Jennifer Kloke, Tanya C. Pet-
rossian, Pek Y. Lum, Gunnar E. Carlsson, Geoffrey T. Manley, Wise Young, Michael S.
Beattie, Jacqueline C. Bresnahan, and Adam R. Ferguson. Topological data analy-
sis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature
Communications, 6:8581+, October 2015. doi:10.1038/ncomms9581.

[24] Matteo Rucco, Emanuela Merelli, Damir Herman, Devi Ramanan, Tanya Petrossian,
Lorenzo Falsetti, Cinzia Nitti, and Aldo Salvi. Using topological data analysis for
diagnosis pulmonary embolism. Journal of Theoretical and Applied Computer Science,
9:41–55, 2015. http://www.jtacs.org/archive/2015/1/5.

[25] Ghanashyam Sarikonda, Jeremy Pettus, Sonal Phatak, Sowbarnika Sachithanantham,
Jacqueline F. Miller, Johnna D. Wesley, Eithon Cadag, Ji Chae, Lakshmi Ganesan,
Ronna Mallios, Steve Edelman, Bjoern Peters, and Matthias von Herrath. CD8 T-cell
reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both
type 1 and type 2 diabetes. Journal of Autoimmunity, 50(Supplement C):77–82, 2014.
doi:10.1016/j.jaut.2013.12.003.

[26] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. Topological Methods for the
Analysis of High Dimensional Data Sets and 3D Object Recognition. In M. Botsch,
R. Pajarola, B. Chen, and M. Zwicker, editors, Proceedings of the Symposium on Point
Based Graphics, pages 91–100, Prague, Czech Republic, 2007. Eurographics Associa-
tion. doi:10.2312/SPBG/SPBG07/091-100.

[27] Swizec Teller. Data Visualization with d3.js. Packt Publishing Ltd, 2013.

[28] Brenda Y. Torres, Jose Henrique M. Oliveira, Ann Thomas Tate, Poonam Rath, Kather-
ine Cumnock, and David S. Schneider. Tracking resilience to infections by mapping
disease space. PLoS Biol, 14(4):1–19, 04 2016. doi:10.1371/journal.pbio.1002436.

http://jocg.org/
http://dx.doi.org/10.1073/pnas.1102826108
http://dx.doi.org/10.1038/ncomms9581
http://www.jtacs.org/archive/2015/1/5
http://dx.doi.org/10.1016/j.jaut.2013.12.003
http://dx.doi.org/10.2312/SPBG/SPBG07/091-100
http://dx.doi.org/10.1371/journal.pbio.1002436

JoCG 10(1), 500–531, 2019 531

Journal of Computational Geometry jocg.org

[29] George Tsaggouris and Christos Zaroliagis. Non-additive Shortest Paths, pages
822–834. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. doi:10.1007/
978-3-540-30140-0_72.

[30] Loring W. Tu. An Introduction to Manifolds. Universitext. Springer New York, 2nd
edition, 2011.

[31] Hoang Tuy, Saied Ghannadan, Athanasios Migdalas, and Peter Värbrand. The min-
imum concave cost network flow problem with fixed numbers of sources and non-
linear arc costs. Journal of Global Optimization, 6(2):135–151, Mar 1995. doi:
10.1007/BF01096764.

http://jocg.org/
http://dx.doi.org/10.1007/978-3-540-30140-0_72
http://dx.doi.org/10.1007/978-3-540-30140-0_72
http://dx.doi.org/10.1007/BF01096764
http://dx.doi.org/10.1007/BF01096764

	Introduction
	Interesting Paths in the Mapper Complex: Motivation
	Our Contributions
	Related work

	Methods
	Interesting Paths and Interestingness Scores
	Graph Formulation
	Optimization Problems

	The Max-IP Problem
	Max-IP on Directed Acyclic Graphs
	Algorithmic Improvements

	The k-IP Problem
	The Interesting Paths (IP) Problem
	An Efficient Heuristic for IP on DAGs
	An Efficient Heuristic for k-IP on DAGs

	Bounds for IP

	Interesting Paths in Directed Graphs
	Max-IP on Directed Graphs

	Software Implementation
	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Single Filter
	Two Filters

	Discussion

