
Computer-Aided Design 127 (2020) 102880

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Continuous toolpath planning in a graphical framework for sparse
infill additivemanufacturing
Prashant Gupta a, Bala Krishnamoorthy a,∗, Gregory Dreifus b

a Department of Mathematics and Statistics, Washington State University, United States of America
b Department of Mechanical Engineering, Massachusetts Institute of Technology, United States of America

a r t i c l e i n f o

Article history:
Received 23 March 2020
Received in revised form 22 April 2020
Accepted 29 April 2020

Keywords:
3D printing
Sparse infill
Graphical model
Eulerian tour
Continuous toolpath
Slicing

a b s t r a c t

We develop a framework that creates a new polygonal mesh representation of the sparse infill domain
of a layer-by-layer 3D printing job. We guarantee the existence of a single, continuous tool path
covering each connected piece of the domain in every layer in this graphical model. We also present
a tool path algorithm that traverses each such continuous tool path with no crossovers.

The key construction at the heart of our framework is a novel Euler transformation which converts
a 2-dimensional cell complex K into a new 2-complex K̂ such that every vertex in the 1-skeleton Ĝ
of K̂ has even degree. Hence Ĝ is Eulerian, and an Eulerian tour can be followed to print all edges in
a continuous fashion without stops.

We start with a mesh K of the union of polygons obtained by projecting all layers to the plane. First
we compute its Euler transformation K̂ . In the slicing step, we clip K̂ at each layer using its polygon to
obtain a complex that may not necessarily be Euler. We then patch this complex by adding edges such
that any odd-degree nodes created by slicing are transformed to have even degrees again. We print
extra support edges in place of any segments left out to ensure there are no edges without support
in the next layer above. These support edges maintain the Euler nature of the complex. Finally, we
describe a tree-based search algorithm that builds the continuous tool path by traversing ‘‘concentric’’
cycles in the Euler complex. Our algorithm produces a tool path that avoids material collisions and
crossovers, and can be printed in a continuous fashion irrespective of complex geometry or topology
of the domain (e.g., holes).

We implement our test our framework on several 3D objects. Apart from standard geometric
shapes including a nonconvex star, we demonstrate the framework on the Stanford bunny. Several
intermediate layers in the bunny have multiple components as well as complicated geometries.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Additive manufacturing refers to any process that adds material
to create a 3D object. 3D printing is a popular form of additive
manufacturing that deposits material (plastic, metal, biomaterial,
polymer, etc.) in layer by layer fashion. We focus on extrusion
based 3D printing, in which material is pushed out of an extruder
that follows some tool path while depositing material in beads
that meld together upon contact. In this paper, we will refer to
this process simply as 3D printing.

In sparse infill 3D printing, we first print the outer ‘‘shell’’
or boundary of the 3D object in each layer. We then cover the
interior space by printing an infill lattice [1], which is typically a
standard mesh. In an arbitrary infill lattice, one is not guaranteed

∗ Corresponding author.
E-mail addresses: prashant.gupta@wsu.edu (P. Gupta), kbala@wsu.edu

(B. Krishnamoorthy), gdreifus@mit.edu (G. Dreifus).

to find a continuous tool path, i.e., an entire layer being printed by
non-stop extrusion of material. Non-continuous tool paths typi-
cally have multiple starts and stops, which could reduce quality
of the print, cause print failures (e.g., delamination), and could
increase print time. To ensure existence of a continuous tool path,
we need to choose the mesh modeling the infill lattice carefully.
Subsequently, we need to develop algorithms that ensure a con-
tinuous tool path can be obtained for each layer with arbitrary
geometry. Further, we need to identify a traversal of this tool path
that avoids crossovers.

1.1. Our contributions

We propose a method that transforms a given 2-dimensional
cell complex K into a new 2-complex K̂ in which every vertex is
part of a uniform even number of edges. Hence every vertex in
the graph Ĝ that is the 1-skeleton of K̂ has an even degree, which
makes Ĝ Eulerian, i.e., it is guaranteed to contain an Eulerian

https://doi.org/10.1016/j.cad.2020.102880
0010-4485/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2020.102880
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2020.102880&domain=pdf
mailto:prashant.gupta@wsu.edu
mailto:kbala@wsu.edu
mailto:gdreifus@mit.edu
https://doi.org/10.1016/j.cad.2020.102880

2 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 1. Illustration of our framework (see Section 1.1 for details). SubFig. 1(g) shows the plan produced by our framework for printing the infill lattice of a 610mm
× 610mm × 610mm pyramid with 143 layers. SubFig. 1(h) shows details of the print after 23 layers. See Section 7 for other prints produced by our framework.

tour. We refer to this method as an Euler transformation of a
polygonal (or cell) complex. For 2-complexes in R2 under mild
assumptions (that no two adjacent edges of a polygon in K are
boundary edges), we show that the Euler transformed 2-complex
K̂ has a geometric realization in R2, and that each vertex in its
1-skeleton has degree 4. We bound the numbers of vertices,
edges, and polygons in K̂ as small scalar multiples of the corre-
sponding numbers in K .

We present a computational framework for 3D printing that
identifies continuous tool paths for printing the infill lattice in
each layer. We illustrate the steps in our framework in Fig. 1 (on
a 3D pyramid with a square base). First we find the polygons for
each layer of the input 3D domain (typically presented as an STL
file, e.g., Fig. 1(a))) using a slicing software. Let P be the union
of all of these polygons in 2D (Fig. 1(b)). We fill the space in P
with some infill lattice K , using any meshing algorithm (Fig. 1(c)).
We then apply Euler transformation to obtain a new infill lattice
K̂ that is guaranteed to be Euler (Fig. 1(d)). In the next step, we
clip K̂ using Pi, a polygon in layer i (Fig. 1(e)). Depending on the
shape of Pi, this step could create terminal vertices in the infill
lattice for layer i, making it no longer Euler. In the last step, we
patch the clipped infill lattice by adding new edges such that
the resulting infill lattice is Euler again (Fig. 1(f)). An application
of this framework is illustrated in Figs. 1(g) and 1(h). Finally,
we propose a tool path algorithm (Section 6) that identifies
the actual print tool path from the patched Euler infill lattice
that avoids crossovers and material collisions. We address all
geometric/computational challenges that arise along the way to

ensure the proposed framework is complete. Since each layer can
have multiple polygons in general, our framework can generate
continuous tool path for each polygon in a given layer. As we
might not print every boundary edge after the patching step, we
also print support edges (see Section 5). The overall goal of our
framework is to create an Euler infill lattice in each layer, and
also prevent printing in free space so as to avoid print failures.

1.2. Related work

Euler Graph. The 1-skeleton of K is an undirected planar graph
(G). One approach to make G Eulerian is to delete a minimal
number of vertices and/or edges. But Cai and Yang [2] showed
that the Euler vertex deletion and Euler edge deletion problems
are NP-Complete. More importantly, removing edges and/or ver-
tices could create gaps in the coverage of the domain, potentially
affecting the mechanical properties of the final product. Another
approach to make G Eulerian is to add a minimum number of
edges that pair odd degree vertices in G, which can be cast as a
graph augmentation problem. Boesch [3] presented a polynomial
time algorithm for this problem, but planarity of G, which is
necessary to avoid material collision, is not guaranteed after
the augmentation. Another approach for augmentation is to use
the Chinese postman problem to double the edges along short-
est paths connecting odd degree vertices in G. But printing the
resulting multigraph could be challenging due to non-uniform
thickness of (multiple copies of) edges and non-uniform degrees
of nodes. In fact, the degree of some of the nodes could be

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 3

multiplied by up to no/2, where no is the number of odd degree
vertices in G. Visiting a vertex a large number of times could
reduce quality of the print.

Jin et al. [4] showed that subpaths in this setting could be
generated using a geometric approach and then joined optimally
to reduce the amount of jumps. Zhao et al. [5] proposed a method
that finds global continuous paths using Fermat spirals. But both
of these approaches are designed for completely filling the region
(with or without holes), and not for sparse infilling.

The Catmull–Clark subdivision [6] creates quadrilateral poly-
gons from any input 2-complex. But some vertices in the resulting
mesh may have odd degrees.

Our Euler transformation appears similar to the Doo–Sabin
subdivision [7], which creates new vertices for each polygon after
each iteration. But Doo–Sabin subdivision does not preserve the
underlying space, and creates boundary vertices with odd degree.
It will add O(b) jumps, where b is the number of boundary
vertices after subdivision. Also, new vertices are created in the
Doo–Sabin subdivision based on vertices and the number of edges
in the original polygon. But in our Euler transformation, new
vertices are created through mitered offsets (parallel offset of
neighboring edges) of polygons. The length of edges get scaled
roughly by a factor of 0.25 by Doo–Sabin subdivision when the
number of vertices is large. In contrast, one gets much greater
control on edge lengths in our Euler transformation by choosing
mitered offsets suitably, independent of the number of vertices.
Further, original angles are not preserved in the Doo–Sabin sub-
division. Finally, combinatorial changes in general and topological
changes for concave polygons are not allowed the Doo–Sabin
subdivision. But our Euler transformation allows combinatorial
as well as topological changes, thus avoiding small edges after
transformation (see Section 4.1).

Tool path. While the perimeter and inset can typically be printed
as continuous loops, tool paths for the infill lattice commonly
resemble a back and forth pattern, a spiral, or a fractal-like
path for an arbitrary geometry. The tool path consists of print
paths (material is pushed through the nozzle) and travel paths
(extruder moves from one location to other without pushing ma-
terial). Galceran and Carreras [8] described coverage path plan-
ning as assignment of finding a path that passes through all
the points without obstacles. Xu [9] presented the use of graph-
based algorithms in coverage problems. General requirements
for graph-based coverage problems such as all vertex coverage,
non-overlapping and continuous paths, etc. [10] are applicable in
3D printing as well, including the requirement that each edge
should be printed. One of the major steps in path planning is
the identification of the tool path trajectory [11]. This tool path
generation step involves filling interior regions and joining sub
paths [12]. While attempts have been made to join sub paths into
a continuous path, they are all limited by increasing complexity
of geometry. Fewer sub paths in the tool path trajectory implies
better quality of print.

Wang et al. [13] developed 3-dimensional infill (crossfill) us-
ing space filling curves, whose layer by layer cross-section is a
continuous curve. Crossfill curves are fit into the infill region by
intersecting with boundary of the polygon in a given layer, but
this step can create multiple components. Later these compo-
nents are connected into one continuous curve through an outer
perimeter. New edges added to create these components are not
guaranteed to have a support below it. We can still have material
collision in each individual component if their boundary is too
skewed or component is too thin.

Use of graphical models in additive manufacturing was demon-
strated by Dreifus et al. [14]. They mesh each layer of the print as
a graph, and find an Eulerian cycle over all edges of the graph. If
the infill lattice is not Eulerian, they add ‘‘phantom edges’’ to the

odd-degree vertices of the graph. When the extruder reaches an
odd degree vertex, it stops printing, lifts above the printed mate-
rial, moves to its matched vertex, and resumes printing. However,
these stops and starts leave teardrops of material in their wake,
as the extruder drags excess material behind it. Such teardrops
weaken the print. Also, stopping and starting repeatedly increases
print times. Further, their approach to identify the Eulerian cycle
created crossovers when pairs of sub-paths of the tour cross each
other.

2. Euler Transformation

We recently introduced the Euler transformation of polyhedral
complexes in a general setting, with details provided for 2D and
3D cases [15]. Our framework for continuous tool path planning
depends crucially on the Euler transformation in 2D, and uses
extensively the related notation and definitions. We present the
main results for the 2D case here.

2.1. Definitions on polygonal complexes

Definition 2.1 (Polygonal Complex). A polygonal complex K is a
collection of polygons in R2 such that every face of a polygon in K
is also included in K , and the nonempty intersection of any two
polygons in K is a face of both. Polygons in K are referred to also
as its 2-cells. We refer to K as a 2-complex.

We will work with finite polygonal complexes, i.e., where the
set of cells in K is finite. The cells of interest in this work are
vertices, edges, and polygons. Our definition of Euler transfor-
mation (in Section 2.2) as well as geometric realization results
(in Section 3) do not require polygons in K to be convex. In
general, some cells in the Euler transformed complex K̂ may not
be convex. But if we assume cells in K are convex, then we can
guarantee a large majority of cells in K̂ are so as well.

Definition 2.2 (Pure Complex). A polygonal complex is pure if
every vertex and every edge is a face of some polygon in K .

Thus in a pure 2-complex, there are no ‘‘isolated’’ edges or
vertices, and all top-dimensional cells are polygons.

We assume the input mesh K is a finite, connected, pure
2-complex in R2. Along with K , we assume we are given a col-
lection CH of polygons that capture 2-dimensional ‘‘holes’’, and a
singleton set CO that consists of a polygon capturing the ‘‘outside’’.
Note that vertices and edges in the intersection of a polygon in
K and a polygon in CH or CO are precisely the boundary cells
of K . We make the following assumptions about intersections of
polygons in K , CH , and CO. We denote the underlying spaces of
these objects as |K |, |CH

|, and |CO
|, respectively. To be precise,

|CH
| = ∪ci∈CH |ci|.

Assumption 2.3. The following conditions hold for the in-
put complex K , the collection of holes CH , and the outside pol-
ygon CO.

1. |K | ∪ |CH
| ∪ |CO

| = R2.
2. Polygons in CH are pairwise disjoint, and are also disjoint

from the polygon that is CO.
3. Any polygon in K and a polygon in CH intersect in at most

one facet (edge) of both.
4. No two edges that are adjacent facets of a polygon in K

intersect the polygon that is CO.

Hence polygons in K , CH , CO cover R2, and each polygon in CH

captures a separate hole that is also separate from the outside.
We point out that articulation (or cut) vertices are allowed

in K , i.e., vertices whose removal disconnects the complex (we

4 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 2. A polygon f , edge e, and a vertex v highlighted in an input complex K (left), an intermediate complex showing only the copies of original polygons in K
that are included in K̂ , i.e., of Class 1 (middle), and the final Euler transformation K̂ (right).

assume K is connected to start with). Conditions specified in
Assumption 2.3 ensure such vertices are boundary vertices of K .
For instance, K could consist of two copies of the complex in
Fig. 1(c) that meet at one of the four corner points.

2.2. Definition of Euler transformation

We define the Euler transformation K̂ of the input 2-complex
K by listing the polygons included in K̂ . We denote vertices as
v (or u, vi), edges as e (or ei), and polygons as f (or fi). The
corresponding cells in K̂ are denoted v̂, ê, f̂ , and so on. We first
define cells in K̂ abstractly, and discuss aspects of geometric
realization in Section 3.

We start by duplicating every polygon in K ∪ CH
∪ CO. Since

we do not want to alter the domain in R2 captured by K , we
set ĈH

= CH and ĈO
= CO. But we ‘‘shrink’’ each polygon in K

when duplicating (Section 3). By Assumption 2.3, this duplication
represents each edge e ∈ K by two copies in K̂ .

The polygons in K̂ belong to three classes, and correspond to
the polygons, edges, and vertices in K (see Fig. 2).

1. For each polygon f ∈ K , we include f̂ ∈ K̂ as its copy.
2. Each edge e ∈ K generates the 4-gon f̂e in K̂ specified as

follows. Let e = {u, v} ∈ f , f ′, where f ∈ K and f ′
∈

K∪CH
∪CO. Then f̂e is the polygon whose facets are the four

edges {û, v̂}, {v̂, v̂′
}, {û′, v̂′

}, and {û, û′
}. Here, v̂, v̂′ are the

two copies of v in K̂ . Edges ê = {û, v̂} and ê′
= {û′, v̂′

} are
facets of the Class 1 polygons f̂ added to K̂ or of polygons
f̂ ′ in ĈH or ĈO. Edges {û, û′

} and {v̂, v̂′
} are added new.

3. Each vertex v ∈ K that is part of p polygons in K generates
a p-gon (polygon with p sides) f̂v in K̂ whose vertices and
edges are specified as follows. Let v ∈ fk for k = 1, . . . , p
in K . Then f̂v has vertices v̂k, k = 1, . . . , p, where v̂k is the
copy of v in f̂k (in K̂). For every pair of polygons fi, fj ∈ {fk}

p
1

that intersect in an edge eij ∈ K , the edge êij = {v̂i, v̂j} is
included as a facet of f̂v . Edges êij are ones added new as
facets of Class 2 polygons (see above).

3. Geometric properties of Euler transformed complex

As the Euler transformation adds new polygons corresponding
to input polygons, edges, as well as vertices, we offset the Class
1 polygons in K̂ in order to generate enough space to add extra
polygons. Intuitively, we ‘‘shrink’’ each of the polygons in K .
We use standard techniques for producing offset polygons in
2D, e.g., mitered offset generated using the straight skeleton (SK)
of the input polygon [16]. We define the polygon offset as a
mitered offset of the input polygon that creates no combinatorial

or topological changes—i.e., no edges are shrunk to points, and the
polygon is not split into multiple polygons. Later on, we general-
ize the definition of Euler transformation to allow combinatorial
or topological changes (Sections 4.1 and 4.2). Naturally, we do not
want to alter the print domain |K |. Hence we include the polygons
in CH and CO in K̂ without any changes.

3.1. Geometric realization

Theorem 3.1. Every vertex in the 1-skeleton of K̂ has degree 4.

Proof. Consider a vertex v shared by adjacent edges e1, e2 ∈ f ,
where f ∈ K ∪ CH

∪ CO is a polygon. Following Assumption 2.3,
the edges e1 and e2 are shared by exactly two polygons each from
the input complex, holes, or the outside cell. Let f ′

1, f
′

2 be the other
polygons containing edges e1, e2, respectively (with f being the
first polygon).

Consider the vertex v̂ ∈ K̂ generated as part of f̂ . The polygon
f̂ is a mitered offset of f when f ∈ K , or is identical to f when
it belongs to CH

∪ CO. Hence f̂ is a simple polygon in both cases,
and v̂ is part of two edges ê1, ê2 ∈ f̂ . Further, v̂ will be part of
two more edges {v̂, v̂′

1} and {v̂, v̂′

2} added as facets of the Class 2
polygons generated by e1, e2. Here v̂′

i ∈ ê′

i ∈ f̂ ′

i for i = 1, 2. Hence
v̂ has degree 4 in the 1-skeleton of K̂ . □

Remark 3.2. We show why we require the input complex to
satisfy Conditions 3 and 4 in Assumption 2.3, which require that
no two adjacent edges of a polygon in K can be boundary edges.
Consider the input complex K consisting of a single square, whose
four edges are shared with the outside cell CO. Then every vertex
in the Euler transformation K̃ will have the odd degree of 3 (see
Fig. 3). But if we apply the Euler transformation once more to
K̃ , we do get a valid complex K̂ with each vertex having degree
4. Note that K̃ satisfies Condition 4, and hence becomes a valid
input.

Lemma 3.3. Let V , E, F denote the sets of vertices, edges, and
polygons (faces) in K , and let V̂ , Ê, F̂ denote the corresponding sets
in K̂ . The following relations hold for the cardinalities of these sets:
|V̂ | = 2|E|, |Ê| = 4|E|, and |F̂ | = |V | + |E| + |F |.

Proof. Let δ(v) denote the degree of vertex v ∈ K , and let f̂v
be the polygon generated by v in K̂ . This is a Class 3 polygon.
Following Assumption 2.3 about K , CH , CO, it is clear that when
v belongs to p polygons in K , we must have δ(v) = p and f̂v has
p vertices. Since each cell f̂ corresponding to polygon f ∈ K is a
mitered offset, and since each vertex v̂ is part of one such offset

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 5

Fig. 3. Applying the Euler transformation to the square K whose more than one adjacent edge is shared with the outside (left) produces a complex K̃ in which
every vertex has odd degree (middle). Applying the Euler transformation again to K̃ produces a valid complex K̂ where every vertex has degree 4 (right).

Fig. 4. Two holes touching at a vertex (left), and the result of applying Euler transformation (right). Vertices with odd degree in the result are circled. The four
polygons shaded in blue are of Class 3 generated by vertices in the input complex (see Section 2). These cells could be nonconvex.

polygon, it follows that f̂u ∩ f̂v = ∅ for any two vertices u, v ∈ K .
Hence we get

|V̂ | =

∑
v∈K

δ(v) = 2|E|.

By Theorem 3.1, each vertex v̂ ∈ K̂ has degree δ̂(v̂) = 4 in K̂ .
Combined with the result above on |V̂ |, we get that

|Ê| =
1
2

∑
v̂∈K̂

δ̂(v̂) =
1
2

· 2|E| · 4 = 4|E|.

Further, each polygon, edge, and vertex in K generate corre-
sponding unique polygons in K̂ belonging to three classes. Hence
we get |F̂ | = |F | + |E| + |V |. □

Remark 3.4. While the number of edges in K̂ is quadrupled, the
total length of all edges gets roughly doubled. If we want to limit
the total print length, we could start with a much sparser input
complex K , and choose the mitered offsets of its polygons such
that |K | is covered adequately while limiting the total length of
edges in Ê.

Lemma 3.5. The graph Ĝ, the 1-skeleton of K̂ , is planar.

Proof. By the definition of Euler transformation, each polygon
f̂ ∈ K̂ that is a mitered offset of polygon f ∈ K is a simple
closed polygon. Any two polygons f̂ , f̂ ′

∈ K̂ of Class 1 generated
by polygons f , f ′

∈ K satisfy f̂ ∩ f̂ ′
= ∅.

Class 2 polygons f̂e, f̂e′ ∈ K̂ generated by edges e, e′
∈ K

intersect at a vertex v̂ if and only if e and e′ are adjacent edges
of a polygon f ∈ K meeting at the vertex v. Since each f̂ ∈ K̂
is a mitered offset of some polygon f ∈ K , at least one of the
two copies ê, ê′ of edges in K̂ corresponding to the edge e ∈ K is
shorter in length than e. If e is not a boundary edge then both ê
and ê′ are shorter than e. If e is a boundary edge then one edge
out of ê, ê′ has the same length as e while the other is shorter.
Hence each polygon f̂e of Class 2 is a (convex) trapezium.

Since all edges of the polygon f̂v of Class 3 generated by vertex
v ∈ K are precisely the new edges added to define the Class
2 polygons, each f̂v is a simple closed polygon. Further, by the
properties of Class 2 polygons specified above, f̂v ∩ f̂v′ = ∅ for any
two vertices v, v′

∈ K .
Thus every polygon in K̂ is simple and closed. Any two such

polygons intersect at most in an edge or a vertex, and any two
edges in K̂ intersect at most in a vertex. Hence Ĝ, the 1-skeleton
of K̂ , is a planar graph. □

Remark 3.6. We illustrate why we require holes in the domain
to be disjoint (Condition 2 in Assumption 2.3). Consider the input
complex K with two holes h, h̄ ∈ CH that intersect at a vertex
v. The corresponding vertex v̂ in the transformed complex K̂
will not have a degree of 4. There will also be other vertices in
K̂ that have odd degree, which are circled in Fig. 4. Let these
odd-degree vertices be labeled v̂′, v̂′′. Technically, there are two
identical copies of the edge {v̂, v̂′

} and similarly of {v̂, v̂′′
}. But

such duplicate edges make the graph Ĝ (1-skeleton of K̂) non-
planar. If we include only one copy of each pair of duplicate edges,
we get odd degree vertices in Ĝ.

We pointed out in the Proof of Lemma 3.5 that the polygons of
Class 2 in K̂ generated by edges are convex 4-gons. Each polygon
f̂ ∈ K̂ of Class 1 is geometrically similar to the polygon f ∈ K
generating it. Hence if f is convex, so is f̂ . But polygons of Class 3
generated by vertices are not guaranteed to be convex. In fact,
when v ∈ K is a boundary vertex where K has a notch, or
an ‘‘incut corner’’, f̂v ∈ K̂ could be nonconvex—see Fig. 4 for
illustrations. We finish with the result on K̂ remaining connected.

Proposition 3.7. If K is connected, then so is K̂ .

Proof. We noted in the proof of Lemma 3.5 that the mitered
offset polygons in K̂ are pairwise disjoint. But we show that when
polygons f , f ′

∈ K are connected, so are the corresponding offset
polygons f̂ , f̂ ′

∈ K̂ . By Assumption 2.3 on the input complex,
when polygons f , f ′

∈ K intersect, they do so either in an edge

6 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 5. K̂ consisting of a single polygon f (left) and its Euler transformation K̂ in green (middle). Vertices circled in red have odd degrees. The complex in blue
(right) is the Euler transformation of K̂ , and its 1-skeleton is Euler.

e or in a vertex v. If f ∩ f ′
= e, then by the definition of Euler

transformation (Section 2), the corresponding offset polygons
f̂ , f̂ ′

∈ K̂ are connected by the pair of new edges defining f̂e, the
4-gon of Class 2 generated by edge e. If f ∩ f ′

= v and v is not an
articulation vertex, then the corresponding offset polygons f̂ , f̂ ′

∈

K̂ are similarly connected by the Class 3 polygon f̂v generated by
v, with the corresponding copies v̂, v̂′ of v in f̂ , f̂ ′, respectively,
being vertices of f̂v . If f ∩ f ′

= v that is an articulation vertex,
then v̂ = v is the identical copy of this vertex in K̂ . There will be
two Class 3 polygons f̂v, f̂ ′

v generated by v in the two biconnected
components joined at v, with f̂v ∩ f̂ ′

v = v̂. Further, f̂v is connected
to f̂ and f̂ ′

v to f̂ ′, ensuring that f̂ and f̂ ′ are connected. It follows
that K̂ is connected when the input complex K is connected. □

4. Generalized Euler transformation

We now consider generalizations of the Euler transformation
where we could relax parts of Assumption 2.3. The goal is to
allow combinatorial and topological changes in the polygons
undergoing transformation.

Consider a 2-complex K consisting of a single polygon f . K
does not satisfy the input condition for Euler transformation,
since adjacent edges are shared with the outside (Fig. 5). Nev-
ertheless, we apply the transformation to K . In the resulting K̂ ,
all vertices will have odd degree. But this K̂ satisfies the input
condition. Hence if we apply the Euler transformation again to K̂ ,
i.e., we apply it twice on K , the resulting complex has a 1-skeleton
that is Euler in the default setting. We define this process as the
generalized Euler transformation.

Definition 4.1 (Generalized Euler Transformation in d = 2). Let
K be a 2-dimensional cell complex in R2 with polygons possibly
having adjacent boundary edges. Apply the Euler transformation
on K to obtain K̂ , which will always satisfy Assumption 2.3. Now
apply Euler transformation on K̂ .

We could use the generalized Euler transformation to improve
mechanical properties of the design (by increasing the density
of the mesh) in some regions while still guaranteeing that the
1-skeleton of the 2-complex is Euler. Note that the density of the
mesh could increase significantly by this process.

Lemma 4.2. After m transformations of complex K , the number of
vertices |V̂m

| = 2 · 4m−1
|E| and number of edges |Êm

| = 4m
|E|.

Proof. After the first transformation, we get |Ê1
| = 4|E| (by

Lemma 3.3). Extending the argument, after m transformations we
get |Êm

| = 4m
|E|. Similarly, we get |V̂ 1

| = 2|E|, then |V̂m
| =

2|Êm−1
| = 2 · 4m−1

|E|. □

We present Euler transformation with combinatorial and topo-
logical changes to a polygon resulting from mitered offset.

Fig. 6. Two polygons of a 2-complex K in the plane (top left). Euler transfor-
mation of K into K̂ (top right), where f̂ , f̂ ′ are Class 1 polygons and f̂e (red) is
a Class 2 polygon corresponding to edge e (red) in K . With a higher mitered
offset, f̂e is collapsed to edge ê; red circled vertices have odd degree (bottom).

4.1. Euler Transformation with combinatorial changes

Suppose f̂ , f̂e, f̂v are 3 classes of polygons corresponding to a
polygon (f), edge (e), and a vertex(v) in K . Maximum mitered off-
set in a polygon of the input complex K is limited by the smallest
edge length, as the mitered offset in our original Euler trans-
formation assumes no combinatorial and topological changes in
f̂ . Combinatorial change in K̂ is a change in number of edges of
some Class 1 polygon f̂ in K̂ from corresponding polygon in f in
K . Suppose polygon f has n edges and is now permitted to have
combinatorial changes when generating its mitered offset. Then
we can reduce at most n − 3 edges as we want f̂ to still be
a polygon, and a polygon has at least 3 edges. If f̂e is sharing
edges with two Class 1 polygons and if both of those edges are
reduced, then f̂e will collapse into an edge (see Fig. 6). Since Class
3 polygons (f̂v) do not share edges with any Class 1 polygons,
combinatorial changes in the Euler transformation will not affect
the number of edges in f̂v .

Lemma 4.3. Let v̂ is a vertex in a Class 1 polygon f̂ of K̂ created
after collapsing π adjacent edges in f̂ , where combinatorial changes
are allowed. Let f̂e be a Class 2 polygon that contains one of these
collapsed edges. If no f̂e is collapsed to an edge, then degree of v̂ is
2π + 4 else 2π + 4−m where m is number of polygons similar to
f̂e collapsed to an edge.

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 7

Fig. 7. f is a polygon in K (top left). Euler transformation of K into K̂ (top right),
where f̂ is the Class 1 polygon corresponding to f , and f̂e (blue) is the Class 2
polygon corresponding to edge e. Combinatorial changes are allowed in K̂ in the
bottom left figure, and edge ê of f̂ is collapsed to a point v̂ where f̂e (blue) is a
triangle. As ê ∈ f̂e is collapsed to a point, the degree of v̂ in the 1-skeleton of K̂
is 2(2) + 4 = 8. In the version of K̂ shown in the bottom right figure, an edge
of f̂e shared with some Class 1 polygon other than f̂ is also collapsed to a point.
Here, f̂e is collapsed to an edge ê′ (red) and the degree of v̂ in the 1-skeleton
of K̂ is 2(2) + 4 − 1 = 7.

Proof. Since the polygon f̂ is allowed to have combinatorial
changes in K̂ , it will change degree of vertices in f̂ . π adjacent
edges in f̂ have π + 1 vertices. Each end vertex of the path
created by π adjacent edges adds 3 edges to v̂, and each interior
vertex of the path adds 2 edges to v̂ (Fig. 7). Hence v̂ has degree
2(π − 1) + 3 + 3 = 2π + 4 and 1-skeleton of K̂ is still Euler. If
m > 0 Class 2 polygons sharing one of these adjacent edges are
collapsed into edges, then two edges sharing v̂ of each collapsed
Class 2 polygon is replaced by one edge. Also, m ≤ π since each
distinct edge in any Class 1 polygon is shared by a unique Class
2 polygon in the Euler transformation. This implies v̂ has degree
2π + 4 − 2m + m = 2π + 4 − m and 1-skeleton of K̂ is Euler
depending on m is even or odd (see Fig. 7). □

If combinatorial changes are allowed in Euler transformation,
we should apply Euler transformation to a local complex for any
odd degree vertices created. In the following lemma, we use
the generalized Euler transformation to address the issue of odd
degree vertices that may be created by combinatorial changes
in K̂ .

Lemma 4.4. Suppose f̂e in K̂ is collapsed to an edge ê, since combi-
natorial changes are allowed in K̂ . Suppose k̂ is a sub
2-complex of K̂ consisting of Class 3 polygons sharing any edge ê in
K̂ , and let k̂j be a single component contained in k̂, since k̂ can have
multiple components. Suppose k̂j = ∪k̃i, where k̃i is sub 2-complex
in k̂j, K̂ , and let k̃i, k̃j do not share any edge in K̂ , if i ̸= j. If ǩi is
the generalized Euler transformation of k̃i and k̄j = ∪ǩi is single
component in k̄, then the 1-skeleton of (K̂ ∖ k̂) ∪ k̄ is Euler.

Proof. Since combinatorial changes are allowed in K̂ , let v̂ be a
vertex in k̂j created after π adjacent edges of f̂ are collapsed to
a vertex. k̂j is single component in k̂, and only Class 3 polygons
share an edge with any collapsed Class 2 polygons f̂e is in k̂j.
Hence v̂ can be shared by some Class 3 polygon not in k̂j. If
any Class 3 polygon sharing v̂ is not contained in k̂j, this Class 3
polygon does not share an edge with any Class 2 polygon. Hence
such cells do not belong to any component k̂j in k̂. Since Class 1
polygons are edge-disjoint from any Class 3 polygons, and there
are some Class 3 polygons and one Class 1 polygon (f̂) sharing
vertex v̂ in K̂ but not contained in k̂j, we get that v̂ is shared by
an even number of additional edges not in k̂j. Since Class 1 and
Class 3 polygons are edge-disjoint in K̂ , then any vertex (v̂′) in
some Class 3 polygon in k̂j not similar to v̂ has two more edges,
not in k̂j sharing v̂′. Hence all the vertices in k̂j have even number
of additional edges in K̂ not contained in k̂j as shown in Fig. 8.

Let ǩi be the generalized Euler transformation of each sub
2-complex k̃i ∈ k̂j. Then any vertex in K̂ ∖ k̂ ∪ k̄ has an even
number of edges connected to it, since each k̄j = ∪ǩi contributes
even number of edges to any vertex shared by k̄j and each vertex
in k̂ has two more edges not contained in k̂. Hence the 1-skeleton
of (K̂ ∖ k̂) ∪ k̄ is Euler. □

Let vertex v̂ in the sub 2-complex k̃i of single component k̂j in k̂
have odd degree in k̃j. We apply generalized Euler transformation
to any such sub 2-complex k̃i. Then by Lemma 4.4, the new
2-complex is Euler.

4.2. Euler Transformation with topological changes

When a polygon f in K is split into multiple Class 1 poly-
gons in K̂ after mitered offset, it is said to undergo a topological
change (see Fig. 9). If a polygon in K is concave, then its mitered
offset could create topological changes. Without loss of general-
ity we assume the 2-complex K consists of polygons satisfying
Assumption 2.3, and its polygons can be convex or concave.

Lemma 4.5. Let the complex K̂ be created by Euler transformation
with some polygons undergoing only topological (no combinatorial)
changes. Then the degree of vertices in K̂ is even. Furthermore, if K
is connected, then so is K̂ .

Proof. When there are no topological changes, any vertex v̂ in
polygon f̂ is shared by edge-disjoint Class 1 and 3 polygons in
K̂ . Let us allow topological changes to f̂ . There are two possible
cases. In the first case, f̂ splits into multiple polygons at vertex v̂′

by joining two or more vertices in f̂ due to mitered offset. Then
v̂′ is still shared by edge-disjoint Class 3 polygons as shown in
Fig. 9. In the second case, if we further increase the offset distance
then v̂′ will split into q new vertices (v̂′

1, . . . , v̂
′
q), where q is the

number of Class 3 polygons sharing v̂′. It will also join q Class 3
polygons sharing vertex v̂′ into one polygon (F) as shown in Fig. 9.
Then any v̂′

i is shared by edge-disjoint F and Class 1 polygons.
Hence degree of vertices in K̂ is even. There exists a path from
any vertex of the split polygon (f̂i) to any other vertex of f̂j, and
hence K̂ is connected. □

We have discussed cases when only combinatorial or only
topological changes occur after transformation. But if both combi-
natorial and topological changes occur, then odd degree vertices
may be created due to combinatorial changes. In this case, we
apply local Euler transformation to some subcomplex of K̂ , and
then by Lemma 4.4 the 1-skeleton of K̂ is again Euler.

8 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 8. (a) f , f ′, f ′′ are polygons in 2-complex K . (b) 2-complex K̂ after Euler transformation with combinatorial changes to some polygons in K̂ . Class 2 polygons
f̂e, f̂e′ , f̂e′′ corresponding to e, e′, e′′ in K are collapsed to edges ê, ê′, ê′′ . Sub 2-complex k̃i (in blue) of some k̂j in K̂ consists of Class 3 polygons sharing edges ê, ê′, ê′′

in the 1-skeleton of k̃i , and has vertices v̂, v̂′ with odd degree 7. The number of edges (green) at each vertex of k̃i not in k̃i are even, and v̂ has one Class 3 polygon
(yellow) not contained in k̃i . (c) and (d) show generalized Euler transformation of k̃i . (d) shows ǩi (blue), the generalized Euler transformation of k̃i . Now v̂, v̂′ and
other vertices of ǩi have even degrees in the 1-skeleton of K̂ ∖ k̃i ∪ ǩi .

5. Slicing

The goal of our 3D printing approach is to have maximum
continuous print path and minimum travel path (i.e., non-print
path) in each layer. Further, when printing multiple layers on
top of each other, we want to ensure there is no printing in
free space. Ensuring we avoid printing in free space depends
crucially on the geometric complexity of the object as well as on
the first round of slicing. We first formalize the condition that
the sequence of layers generated by slicing must satisfy in order
to prevent printing in free space (Section 5.1). We assume this
condition is satisfied by the layers of the input to our clipping
procedure, which produces meshes for each polygon in a layer
that are guaranteed to be Euler (Section 5.2).

5.1. ϵ-Continuous layers

Let Pi = {Pij} and Pi+1 = {Pi+1,j} are sets of the polygons in
two consecutive layers created by slicing. The two layers are said
to be ϵ-continuous if for every point x ∈ Pi+1,j there exists a point
y in some Pij ∈ Pi such that d(x, y) ≤ ϵ for all Pi+1,j ∈ Pi+1,
where ϵ = cr with 0 ≤ c ≤ 1 and r being the radius of extruder.
The parameter c determines the maximum overhang allowed for
the material deposited in a layer over the material in the layer
immediately below. We assume there are sufficient numbers of
perimeters in each layer to support the boundary edges in the
layer above. Value of c is chosen based on various design and
material considerations. There are alternative approaches to han-
dle overhangs in specific cases, e.g., using self-supporting rhombic
infill structures [17]. For general applicability of our framework,
we assume the output of the slicing step in the design process
produces layers that are ϵ-continuous in consecutive pairs.

5.2. Clipping

Suppose K̂ is the Euler transformation of K , which meshes the
union of polygons ∪iPi = ∪i,jPij from all layers, where Pij ∈ Pi
is the jth polygon in ith layer. Each polygon Pij has a region Rij
to be filled with infill lattice (note that Rij ⊂ Pij can happen as
some polygons may have edges along the boundary of the print
domain). Suppose R̃ij is the inward Minkowski offset with a ball
of radius r , the extruder radius, of the region Rij. We will use R̃ij
instead of Rij to generate the infill lattice for Pij. The reason behind
this step is explained in Step 6 (to print the Support Perimeter).
Let polygons Rij and R̃ij be represented by the clockwise-ordered
sequence of vertices {v1,, vn} and {ṽ1, . . . , ṽn}, respectively.
We define the clip operation for intersecting (or clipping) a
2-complex with a polygon, which may produce a 2-complex that
may have multiple components, and may not be pure. We also
define the patch operation that converts the 2-complex produced
by a clip operation back into a connected pure 2-complex.

Definition 5.1 (Clip). We define how to construct K̃ , the output of
clipping the 2-complex K̂ with polygon R̃ij. Add to K̃ the polygons,
edges, and vertices of K̂ contained in R̃ij. For edges in K̂ cut by the
boundary of R̃ij, add to K̃ the portions inside R̃ij as new edges, and
their points of intersection on the boundary of R̃ij as new vertices.

Note that the result of a clip operation may not necessarily
be a pure 2-complex, and can have multiple components (see
Fig. 10).

Definition 5.2 (Patch). Let K̃ be the output of a clip operation as
specified in Definition 5.1. Suppose S = {ṽn+1, ṽn+2,, ṽn+m}

is a clockwise ordered sequence of all points of intersection of

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 9

Fig. 9. Top left: Non-convex polygon f (blue) in K . Top right: Polygon f̂ (blue) and Class 3 polygons (gray) in K̂ . Bottom left: f̂ split into two polygons f̂1, f̂2 (blue)
by joining two vertices of f̂ to v̂′ . Since f̂1, f̂2 and Class 3 polygons (gray) at v̂′ are edge-disjoint, v̂′ has degree 8 and q = 2. Bottom right: With higher mitered
offset, f̂1, f̂2 are completely disjoint and v̂′ split up into v̂′

1, v̂
′

2 creating one polygon F (gray), where v̂′

1, v̂
′

2 has degree 4.

R̃ij and the 1-skeleton of K̂ with odd degrees in the 1-skeleton
of K̃ (note that m will be even). Since R̃ij can intersect edges in
K̂ between or at their end point(s), vertices in S can be terminal
or boundary vertices in the 1-skeleton of K̃ . Join alternate pair of
vertices in S by a clockwise path on R̃ij as shown in Fig. 11. There
are two possible choices of joining alternate pairs of vertices
(1-2, 3-4, . . . or 2-3, 4-5, . . .). Pick the option that ensures the
end vertices of components represented by subsequences of S are
connected by these paths to end vertices of adjacent components.
Also add new polygons to K̃ whose edges include the edges in
new paths added as described above, new edges added by the
clip operation on K̂ , and the edges of K̂ contained in R̃ij.

The Patch operation restores the Euler and connected nature of
the input complex, except when the Clip step produces isolated
simple paths. In the latter case, the Patch operation still leaves
each component Euler.

Lemma 5.3. Let K̂ be a connected pure 2-complex and its
1-skeleton is Euler. Then K̃ produced by the patch operation on K̂
is a connected pure 2-complex and its 1-skeleton is Euler, assuming
none of the components in K̃ after the Clip step is a simple path.

Proof. Clipping K̂ with region R̃ij can create multiple components
in the infill lattice if R̃ij intersects any polygon in K̂ more than
two times, or an edge more than once, or all edges connected to
a vertex (see Fig. 10). Each component created in this process has
an even number of odd degree vertices (by handshake lemma).

Let S ′
= {ṽ1, . . . , ṽp} be a clockwise ordered subsequence of

vertices in S of some component (with p < m). As specified in

Definition 5.2, we join alternate pairs of vertices in S ′ by a path
on Rij (also see the Clipping Step 5) such that edge {ṽ1, ṽ2} is
not included. Since p is even, edge {ṽp−1, ṽp} is also not included.
Hence the first and last vertices in S ′ (ṽ1 and ṽp) are left unpaired,
but all intermediate vertices are now connected to K̃ . In this case,
the patch operations (in the Clipping step) will necessarily pair
ṽ1 with a similar unpaired end vertex of the previous component,
and also pair ṽp with the unpaired start vertex of the next compo-
nent. Hence the extra edges added by the patch steps ensure that
we get a single connected component. Also note that each odd
degree vertex gets one additional edge, thus making its degree
even. Hence the 1-skeleton of K̃ is Euler. Finally, the new polygons
added to K̃ (as specified at the end of Definition 5.2) ensure that
the resulting complex is pure. □

5.3. Continuous tool path planning framework: Steps

Our framework for continuous tool path planning consists of
the following steps.

1. Slicing: Slice an STL file of the design. This step creates
a sequence of layers, and each layer can have multiple
polygons. Let Pi = {Pij} be the set of all the polygons
in layer i with or without holes. We assume the layers
generated by slicing are ϵ-continuous.

2. Projecting: Project all polygons {Pij} in each layer Pi on
to the horizontal plane. Take the union of all projected
polygons (from all layers). This union can have an irregular
shape depending on the input. Let P be the convex hull
of the union of projected polygons. Note that taking the
convex hull will avoid irregularities. We are assuming the

10 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 10. Figures (a) and (b) show a 2-cell (black) of K̂ . Figures (c) and (d) show multiple components after Clip operations on K̂ with respective polygons (dotted
blue). Figures (e) and (f) show subsequent Patch operations connecting the multiple components with solid blue lines.

input design has a single component. If not, we can repeat
the procedure for each component.

3. Meshing: Mesh P with a pure 2-complex K . We assume K
satisfies Assumption 2.3.

4. Euler Transformation: Create K̂ by Euler Transformation
on K .

5. Clipping: K̃ is a 2-complex contained in R̃ij. It is gener-
ated by Clip (Definition 5.1) and Patch (Definition 5.2)
operations on K̂ with respect to R̃ij (see Fig. 11).
By Lemma 5.3, we get that K̃ is connected and its
1-skeleton is Euler since K̂ has a single component and
its 1-skeleton is Euler. There are two possible choices

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 11

Fig. 11. (a) Projected polygon P (purple) and initial 2-complex K (black). (b) Euler transformation K̂ (green) and Region R̃ij (red dots) of polygon Pij . (c) K̂ is clipped
using R̃ij and patched to 2-complex K̃ (green; enlarged for better visibility) after Clipping Step 5, where R̃ij has {ṽ1, . . . , ṽ24} sequence of vertices and {ṽ25,, ṽ36}

are points of intersection of R̃ij and 1-skeleton of K̂ .

of pairing alternate vertices for patch operation. We can
choose either option when K̃ is a single component. If K̃
has multiple components, either option leaves all resulting
components Euler.
Printing the infill lattice in each layer amounts to printing
edges in the 1-skeleton of K̃ . We clip the 2-subcomplex K̃
for each layer from K̂ to prevent printing in free space. Each
edge is supported by an edge in the layer below it except
for boundary edges in K̃ . We will add a support perimeter
to support boundary edges in K̃ , as discussed in the next
step.

6. Support Perimeter: Let R̃ij ∈ Pij and R̃i+1,j ∈ Pi+1,j be
such that R̃i+1,j is supported by R̃ij through ϵ-continuity as
shown in Fig. 12. There are two possible ways we can select
alternate pairs of vertices for subcomplex K̃ to join in R̃i+1,j:
{{12, 13}, {14, 15}, {16, 11}} or {{11, 12}, {13, 14}, {15,
16}}. Then the edges {12, 13} in the first case and {11, 12},
{13, 14} in second case are not supported if {2, 3}, {4, 5},
{6, 7}, {8, 9}, and {10, 1} are the vertices pairs selected for
R̃i+1,j. To solve this problem we need a way to print all the
edges at boundary of the polygons.
Since we are not printing all the edges at the boundary
of R̃ij, we could have some overhanging boundary edges
in K̃ . Let P̃ be the nonprinted path on R̃ij between ṽn+l

and ṽn+l+1, which are vertices of S on R̃ij. Add circles of
radius r , the extruder radius, on ṽn+l and ṽn+l+1 and on
path P̃ such that neighboring circles do not intersect. We
assume the circles only intersect neighboring line segments
on the path. Suppose η is the maximum number of circles
of radius r that can be added on path P̃ , assuming there are
2 circles of radius r centered at end points of the path. Add
η possible circles on path P̃ , where the center of the jth
circle is ṽ′

j . The total gap we can have between the circles
is 2r − δ, where 0 < δ < 2r as shown in Fig. 13(a). We can
uniformly distribute the gap of (2r − δ)/(η + 1) between
the circles as shown in Fig. 13(b) assuming η is at least
one. Since R̃ij is the inward Minkowski offset of Rij with
a 2-ball of radius r , for any ṽ′

j there exists a point a such
that line segment {ṽ′

j , a} is perpendicular to R̃ij and Rij, and
d(ṽ′

j , a) = 2r . Let vn+k and vn+k+1 be points of intersection
with Rij of the circle of radius r centered at a. Create a
corner by adding edges {vn+k, a}, {vn+k+1, a} as shown in
Fig. 13(c). Connect end points of the corners by a path on

Fig. 12. R̃ij (blue) in Pi , R̃i+1j (blue) in Pi+1 intersect the complex K̂ (green) at
points {1, . . . , 10} and {11, . . . , 16}, respectively.

Rij if corner line segments do not intersect each other. Else
change end points to the points of intersection so as to
form a simple closed polygon as shown in Fig. 13(d). We
illustrate in Fig. 14 the support perimeter around K̃ shown
in Fig. 11(c).

Remark 5.4. In Step 6, we add corners only if we can add circles
of radius r on path P̃ , given there are circles of radius r at the
end point of the path. It is not guaranteed that line segments of
P̃ will be covered by the support, since the coverage depends on
the curvature of P̃ as shown in Fig. 13(d). An alternative approach
to printing the support is to print the individual non-printed
sections in R̃ij while making non-print travel moves in between.
But this approach will have m/2 starts and stops. If K̂ is a highly
dense 2-complex, then m will be large and we will have a large
number of starts and stops in this case.

12 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 13. (a) Portion of Rij (blue) and R̃ij (red), P̃ (red), with total gap between circles being 2r − δ. (b) Uniformly distribute the gap into (2r − δ)/9 parts between
neighboring circles. (c) {v′

j , a} is perpendicular to R̃ij and Rij , circle centered at a intersects Rij at vn+k, vn+k+1 , and corner (pink) after adding edges {v′

j , vn+k}, {v
′

j , vn+k+1}.
(d) Neighboring corners joined (pink) to form a simple closed polygon.

Fig. 14. Support perimeter for K̃ shown in Fig. 11(c) is shown in blue here.

6. Tool path algorithm

Since G̃, the 1-skeleton of K̃ , is Euler, we can construct a tool
path that consists only of the print path, i.e., all edges with none
of them repeated. In general, such a tour can cross over itself
at a vertex, creating a special case of material collision termed
crossover. We present a tool path algorithm that chooses the

subcycles in an Eulerian tour of G̃ carefully so as to avoid all
crossovers. First we construct a circuit tree that represents G̃,
with the vertices of the tree representing edge-disjoint circuits
in G̃. Second, we add edge traversal restrictions in order to avoid
crossovers in the tool path, which is described by specifying a
traversal order of the circuit tree.

6.1. Circuit tree

Algorithm 1: CircuitTree.

1: Unmark all the edges in K̃
2: CircuitList = FindBoundaryCircuits(K̃ , ∅) ▷ Initial CircuitList

contains one circuit CInit
3: Mark all the edges in K̃ of CInit
4: pred(CInit) = ∅ ▷ Predecessor of C0 is empty
5: while CircuitList ̸= ∅ do
6: C = CircuitList.pop(0)
7: Circuits = FindBoundaryCircuits(K̃ , C) ▷ Returns list of

circuits
8: CircuitList = CircuitList ∪ Circuits
9: while Circuits ̸= ∅ do

10: Cs = Circuits.pop(0)
11: pred(Cs)= C ▷ predecessor of Cs is C
12: Mark all the edges in K̃ of Cs

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 13

Fig. 15. K̃ (left) has C0 (blue), C1 (red), C2 (yellow), C3 (green) circuits. In the circuit tree (right), child circuits C2, C3 of C1 are disjoint.

Algorithm 2: FindBoundaryCircuits(K̃ , C0).
1: Find collection of edges H based on C0 ▷ edges of cells

intersecting C0 not in C0
2: Circuits = {}
3: while H ̸= ∅ do
4: Find circuit C using Modified Hierholzer’s algorithm
5: Remove all edges of C from H
6: Circuits = Circuits ∪ {C}
7: return Circuits

Algorithm 1 constructs the circuit tree. It works by finding
the outermost circuit in K̃ first, and continues to find all inner
circuits in K̃ , finishing with the innermost circuits. The outermost
circuit in the 1-skeleton of K̃ consists of boundary edges in K̃ . An
innermost circuit in the 1-skeleton of K̃ contains no other circuit
in its underlying space in K̃ . The outermost circuit corresponds
to the root node in the circuit tree, while innermost circuits are
leaf nodes. The union of all circuits in the circuit tree is K̃ . Every
node in the Circuit tree represents a circuit. The predecessor of
a circuit C (pred(C)) is another circuit connected to C at one or
more vertices. All interior vertices in K̃ have even degree with
at least degree 4 (some vertices may have even degree at least 6
due to applications of local Euler Transformation). Some vertices
at the boundary of K̃ may have degree 2 as mentioned in step
5 of Section 5.2. But there is at least one boundary vertex of
K̃ with degree at least 4, if there is more than one node in
the circuit tree. This implies every circuit C can have at most d
consecutive descendants in a path in the circuit tree, where 2d is
the maximum degree of a vertex in C . Based on its construction,
any two circuits in the circuit tree are disjoint if they are not on
the same path starting at the root node in the circuit tree. An
example circuit tree is shown in Fig. 15.

Given a circuit C0, the algorithm finds inner circuits as follows.
Suppose f̃ is a 2-cell in K̃ sharing edges {ẽi} in C0 and none of its
edges are marked in K̃ except {ẽi}. Then all other edges of f̃ except
{ẽi} are part of successor circuits in the circuit tree. Let H be the
collection of all the edges in all 2-cells of the form f̃ , except edges
in C0 (see Algorithm 2). Then H represents the next ‘‘onion layer’’
of boundary circuits. If C0 is empty, then H is the collection of all
the boundary edges in K̃ .

Modified Hierholzer’s algorithm: The original Hierholzer’s algo-
rithm [18] was designed for a connected graph, but in our case
H can have multiple components. We want to orient the circuits
in order to identify the tool path avoiding crossovers. We assume
without loss of generality that each circuit is oriented clockwise
as shown in Fig. 16. Hence subtours of this circuit are oriented
clockwise as well. Pick a vertex in H , find all connected subtours

Fig. 16. Traversal of C1 (black) from circuit tree in Fig. 15 in clockwise
orientation with no crossovers is shown in pink.

{Sj} and join them to obtain a circuit. Delete all the edges and
vertices in this circuit from H . Repeat the process until H is
empty.

Correctness: Since the 1-skeleton of K̃ is Euler, H consists only
of circuits, and hence Algorithm 2 is guaranteed to terminate. It
runs in O(|E|) time, where E is set of edges in K̃ .

Complexity: Identification of H , the collection of boundary
edges in K̃ , takes O(|E|) time. For a given H , the modified Hi-
erholzer’s algorithm runs in O(|E|) time. and we can have at
most |E|/3 iterations of the outermost while loop in Algorithm
1. Hence the circuit tree algorithm runs in O(|E|

2) time.

6.2. Traversal

Recall that we assume all circuits are oriented clockwise. To
identify the tool path traversal that avoids crossovers, we traverse
edges along the circuits in the circuit tree such that each parent
and child circuit pair is traversed in opposite orientation. Let ṽ be
a vertex in the circuit C1 that is shared by two or more circuits in
the tree, and has a degree 2d. Then there are q ≤ d circuits sharing
vertex ṽ. Further, there exists a path P = C1 → C2 → . . . → Cq
in the circuit tree sharing vertex ṽ where C1 is the ancestor and
Cq is the descendant of all circuits in P . Orientations for all other
circuits in the tree are uniquely determined, if orientation of root
circuit is fixed. We assume without loss of generality that the
traversal of edges in the root circuit in K̃ is clockwise.

There are two types of possible subpath crossovers while
traversing the circuit tree (our goal is to avoid all crossovers).
The first type of crossover is within a circuit (type-1) and the
second type of crossover occurs while traversing from a parent
to a child circuit (type-2). If any circuit Ci of the circuit tree is
traversed along its orientation (as shown in Fig. 16, for instance),
then it is guaranteed that there is no subpath crossover of (type-
1). To prevent subpath crossovers of type-2, traverse edges of Ci
and pred(Ci) in the circuit tree in opposite orientations along with

14 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

Fig. 17. Left figure shows a q = 4 case, with C1 (blue), C2 (red), C3 (green), and C4 (yellow) being the only circuits in a circuit tree sharing vertex ṽ, where C1 is
an ancestor and C4 is a descendant of all circuits in the path p = {C1, C2, C3, C4} on the circuit tree. Right figure shows traversal (pink) of edges in K̃ of circuits
C1, C2, C3, C4 with no crossover where ẽ1 −→ ẽ7, ẽ8 −→ ẽ6, ẽ5 −→ ẽ3, ẽ4 −→ ẽ2 are edge traversal restrictions. Traversal of edges in C1 is clockwise and C4 is
counterclockwise for K̃ .

Fig. 18. Test prints of a square and a star domain with 10 layers each.

certain edge traversal restrictions. Thus we traverse edges of Cq

clockwise when q is odd, else counterclockwise. The tool path
traversal steps are detailed below.

1. Let (ẽ2j−1, ẽ2j) be a pair of clockwise ordered adjacent edges
on a clockwise circuit path of Cj, sharing vertex ṽ. Let ẽi −→

ẽj imply we traverse ẽj immediately after we traverse ẽi
in K̃ . Add the following edge traversal restrictions in K̃
if q is odd: ẽ1 −→ ẽ2q, ẽ2q−1 −→ ẽ2q−3, ẽ2q−2 −→

ẽ2q−4, . . . , ẽ5 −→ ẽ3, ẽ4 −→ ẽ2, where ẽ1 −→ ẽ2q means
we traverse edge ẽ1 of cycle C1 followed by ẽ2q of cycle
Cq. Similarly, ẽ2(q−i)−1 −→ ẽ2(q−i−1)−1 means we traverse
edge ẽ2(q−i)−1 of Cq−i followed by ẽ2(q−i−1)−1 of Cq−i−1 and
ẽ2(q−i) −→ ẽ2(q−i−1) means we traverse edge ẽ2(q−i) of
Cq−i followed by ẽ2(q−i−1) of Cq−i−1. If q is even, we add
the restrictions ẽ1 −→ ẽ2q−1, ẽ2q −→ ẽ2q−2, ẽ2q−3 −→

ẽ2q−5, . . . , ẽ5 −→ ẽ3, ẽ4 −→ ẽ2. Mark all the edges of the
circuit tree on path P . An example with q = 4 is shown in
Fig. 17.

2. Repeat Step 1 until all edges are marked in the circuit tree.
3. Start by traversing edges of the root circuit in clockwise

direction, and follow traversal restrictions.

Complexity: We examine O(|E|) edges in K̃ to add each edge
restriction. Since the circuit tree can have at most (|E|/3) − 1
edges, the runtime of traversal restriction algorithm is O(|E|

2).

7. Implementation

We first printed a few proof-of-concept shapes to test our
Euler transformation framework. We printed the shapes shown
in Fig. 18 with 10 layers each. We then scaled up the jobs to
bigger sizes. The dimensions of the pyramid shown in Fig. 1(h)
were 609.6mm × 609.6mm × 609.6mm, and each layer had a
height of 4.26mm, resulting in a total of 143 layers.

We illustrate our complete framework on an object with non-
trivial geometry and intermediate layer topology—the Stanford
bunny. The height of the bunny is 83mm. We sliced the bunny
into 415 layers each with height 0.2 mm, and we use an ex-
truder diameter of 0.35 mm. First we found the minimal square
(86mm × 86mm) containing the union of polygons from every
layer. We triangulated this square using Pymesh. We then applied
Euler transformation on this triangle mesh with a mitered offset
of 1mm. Finally, we applied clipping and patching operations
along with support perimeter, and used the tool path traversal
algorithm to generate the infill toolpath for each layer. We also
printed an extra perimeter in each layer to smooth out the sur-
face. The entire computation ran in 1.5 hrs on a laptop. See Fig. 19
for illustrations of salient features of the print object.

8. Discussion

The bottleneck for computational complexity of the Euler
transformation is determined by the mitered offsets it creates
for each cell in K . The number of cells in K̂ are clearly linear

P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880 15

Fig. 19. Complete print of the Stanford bunny (top) using 415 layers, and views
of layer 212 (middle) and layer 324 (bottom). Layer 324 consists of disconnected
polygons. Support perimeter is evident in the intermediate layers.

in the number of cells in K (Lemma 3.3). For d = 2, if K in
Rd has m d-cells, each of which has at most p facets, the time
complexity of Euler transformation is O(mpd) [19,20]. Not all cells
in the Euler transformation K̂ are guaranteed to be convex, even
when all cells in K are (see Fig. 4). We could triangulate the
non-convex cells so that all cells in K̂ are convex. But could
we do so while maintaining even degrees for all vertices? A
related problem is that of finding a triangulation (rather than
a cell complex) of a given domain that minimizes the number
of odd-degree vertices. The total Euclidean length of edges is K̃
is going to be at least double compared to that in the original

complex in K . Hence it is better to start with a sparse input
complex K (i.e., with a smaller total Euclidean length of edges).
We have described a complete framework for continuous tool
path planning in layer-by-layer 3D printing. The clipping step
will be bottlenecked by the computation of intersection of the
Euler transformed complex with each polygon in each layer.
We have generalized the Euler transformation defined to allow
combinatorial changes when computing mitered offsets of cells.
What about allowing topological changes? It appears applying the
generalized Euler transformation should be able to generate an
Euler complex even when topological changes are allowed. But
there might be some new geometric challenges generated in this
process, which would have to be taken care of. We will address
this question in future work. Another promising generalization
of our approach would be to non-planar 3D printing. Many of
our results should generalize to the non-planar realm as long as
underlying support is guaranteed by the design.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research was supported in part by an appointment of
Gupta to the Oak Ridge National Laboratory (ORNL), United States
of America ASTRO Program, sponsored by the U.S. Department
of Energy (DOE) and administered by the Oak Ridge Institute
for Science and Education. Krishnamoorthy acknowledges partial
funding from the National Science Foundation, United States of
America through grants 1661348 and 1819229. Dreifus acknowl-
edges funding from the Manufacturing Demonstration Facility
(MDF) of ORNL, United States of America and DOE, United States
of America.

References

[1] Wu J, Aage N, Westermann R, Sigmund O. Infill optimization for additive
manufacturing—approaching bone-like porous structures. IEEE Trans. Vis.
Comput. Graphics 2018;24(2):1127–40.

[2] Cai L, Yang B. Parameterized complexity of even/odd subgraph problems.
J. Discrete Algorithms 2011;9(3):231–40.

[3] Boesch FT, Suffel C, Tindell R. The spanning subgraphs of Eulerian graphs.
J. Graph Theory 1977;1(1):79–84.

[4] Jin Y, He Y, Fu G, Zhang A, Du J. A non-retraction path planning approach
for extrusion-based additive manufacturing. Robot. Comput.-Integr. Manuf.
2017;48:132–44.

[5] Zhao H, Gu F, Huang Q-X, Garcia J, Chen Y, Tu C, et al. Con-
nected Fermat spirals for layered fabrication. ACM Trans. Graph.
2016;35(4):100:1–100:10.

[6] Catmull E, Clark J. Recursively generated b-spline surfaces on arbitrary
topological meshes. Comput. Aided Des. 1978;10(6):350–5.

[7] Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary
points. Comput. Aided Des. 1978;10(6):356–60.

[8] Galceran E, Carreras M. A survey on coverage path planning for robotics.
Robot. Auton. Syst. 2013;61(12):1258–76.

[9] Xu L. Graph planning for environmental coverage [Ph.D. thesis], Pittsburgh,
PA: Carnegie Mellon University; 2011.

[10] Cao ZL, Huang Y, Hall EL. Region filling operations with random obstacle
avoidance for mobile robots. J. Robot. Syst. 1988;5(2):87–102.

[11] Ding D, Pan Z, Cuiuri D, Li H. A practical path planning methodology
for wire and arc additive manufacturing of thin-walled structures. Robot.
Comput.-Integr. Manuf. 2015;34:8–19.

[12] Jin Y, He Y, Du J. A novel path planning methodology for extrusion-based
additive manufacturing of thin-walled parts. Int. J. Comput. Integr. Manuf.
2017;30(12):1301–15.

[13] Kuipers T, Wu J, Wang CC. CrossFill: Foam structures with graded density
for continuous material extrusion. Comput. Aided Des. 2019;114:37–50,
arXiv:1906.03027.

http://refhub.elsevier.com/S0010-4485(20)30073-7/sb1
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb1
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb1
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb1
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb1
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb2
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb2
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb2
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb3
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb3
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb3
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb4
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb4
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb4
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb4
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb4
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb5
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb5
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb5
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb5
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb5
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb6
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb6
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb6
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb7
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb7
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb7
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb8
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb8
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb8
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb9
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb9
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb9
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb10
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb10
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb10
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb11
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb11
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb11
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb11
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb11
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb12
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb12
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb12
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb12
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb12
https://arxiv.org/abs/1906.03027

16 P. Gupta, B. Krishnamoorthy and G. Dreifus / Computer-Aided Design 127 (2020) 102880

[14] Dreifus G, Goodrick K, Giles S, Patel M, Foster R, Williams C, et al. Path
optimization along lattices in additive manufacturing using the Chinese
postman problem. 3D Print. Addit. Manuf. 2017;4(2):98–104.

[15] Gupta P, Krishnamoorthy B. Euler transformation of polyhedral complexes.
2018, CoRR abs/1812.02412, arXiv:1812.02412.

[16] Aichholzer O, Aurenhammer F, Alberts D, Gärtner B. A novel type of
skeleton for polygons. J. UCS 1995;1(12):752–61.

[17] Wu J, Wang CCL, Zhang X, Westermann R. Self-supporting rhombic infill
structures for additive manufacturing. Comput. Aided Des. 2016;80:32–42.

[18] Hierholzer C, Wiener C. Ueber die Möglichkeit einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann.
1873;6(1):30–2.

[19] Aurenhammer F, Walzl G. Three-dimensional straight skeletons from
bisector graphs, in: Proceedings of 5th international conference analytical
number theory and spatial tessellations, 2013, pp. 15–29.

[20] Aurenhammer F, Walzl G. Straight skeletons and mitered offsets
of nonconvex polytopes. Discrete Comput. Geom. 2016;56(3):
743–801.

http://refhub.elsevier.com/S0010-4485(20)30073-7/sb14
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb14
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb14
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb14
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb14
https://arxiv.org/abs/1812.02412
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb16
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb16
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb16
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb17
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb17
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb17
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb18
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb18
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb18
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb18
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb18
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb20
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb20
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb20
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb20
http://refhub.elsevier.com/S0010-4485(20)30073-7/sb20

	Continuous toolpath planning in a graphical framework for sparse infill additive manufacturing
	Introduction
	Our contributions
	Related work

	Euler Transformation
	Definitions on polygonal complexes
	Definition of Euler transformation

	Geometric properties of Euler transformed complex
	Geometric realization

	Generalized Euler transformation
	Euler Transformation with combinatorial changes
	Euler Transformation with topological changes

	Slicing
	-Continuous layers
	Clipping
	Continuous tool path planning framework: Steps

	Tool path algorithm
	Circuit tree
	Traversal

	Implementation
	Discussion
	Declaration of competing interest
	Acknowledgments
	References

