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ABSTRACT: The structural features that protrude above or below a soft
matter interface are well-known to be related to interfacially mediated
chemical reactivity and transport processes. It is a challenge to develop a
robust algorithm for identifying these organized surface structures, as the
morphology can be highly varied and they may exist on top of an interface
containing significant interfacial roughness. A new algorithm that employs
concepts from geometric measure theory, algebraic topology, and
optimization is developed to identify candidate structures at a soft matter
surface, and then, using a probabilistic approach, to rank their likelihood of
being a complex structural feature. The algorithm is tested for a surfactant
laden water/oil interface, where it is robust to identifying protrusions
responsible for water transport against a set identified by visual inspection.
To our knowledge, this is the first example of applying geometric measure
theory to analyze the properties of a chemical/materials science system.

■ INTRODUCTION
Surfaces of soft matter phases are host to a variety of
scientifically important phenomena that include chemical
reactivity and transport. Often these processes are sensitive
to surface deformation, including surface buckling, capillary
roughness, and the formation of locally organized regions that
facilitate the process of interest. A quintessential example lies
within the realm of transport across a soft matter interface, for
example surfactant laden water/oil surfaces that are employed
within solvent extraction based separations. Depending upon
solution conditions, deformations as large as micelles or as
small as a handful of water molecules have been implicated
within solute transport mechanisms. Micelles are proposed to
form via a vesicle budding process, whereby a region of high
curvature forms at a planar interface, peeling off the surface as
it forms a spherical micelle.1−5 At much smaller length scales,
water protrusions have been identified as a means of
transferring water and other solutes between phases, where
surface active amphiphiles create extremes in surface rough-
ness.6−8 These extremities, once disengaged from the interface,
release molecular components from the surface of one phase
into the bulk of the other. Lastly, structures referred to as water
fingers have been identified to accompany bare ion transport
between high and low dielectric phases. The water finger is
composed of H2O molecules that trail the remaining solvation
shell of the ion, leading back to the aqueous interface, before
the ion is fully transferred to the low dielectric phase.9−16

The importance of surface structures to soft matter
interfacial chemistry has its roots within the atomistic
simulation literature, where molecular-level detail augments

knowledge obtained from experimental observation. This is
particularly relevant given the challenges of experimental
characterization of liquid interfaces. Spectroscopic measure-
ments are generally limited to spatial and temporal averages.
This complicates precise structural interrogation of features
across the heterogeneous interface. Even for simulation studies
that have access to instantaneous configurations, systematic
classification of interfacial features is not simple. Importantly,
most reported simulation studies of hierarchical interfacial
structure, for example, protrusions, water fingers, or budding
micelles, analyze their data using visual inspection or by a
measure of surface curvature that is dependent on surface
feature homogeneity and size relative to their molecular
constituents.1,2,5−11,17 Not only does this limit quantitative and
statistical studies of the behavior of surface structures but it
also can cause interpretations that fall prey to lack of
objectivity or are biased by individual experiences or
expectations of those doing the analysis. A means of
automatically identifying surface structures from simulation
trajectories is lacking, and indeed, there are significant
technical challenges to differentiate background interfacial
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surface fluctuations from collectively organized surface
structures.
Toward this end, we present a new method that employs

concepts from geometric measure theory (GMT), algebraic
topology, and optimization. GMT is an area of pure
mathematics that studies questions of area-minimizing
surfaces, soap bubble conjectures, regularity of solutions to
energy minimization problems, and so on.18 In this context, the
f lat norm (FN) has been used to define a distance between
generalized hypersurfaces called currents lying inside a
Euclidean space. In our application to Chemistry, which is
the first such instance as far as we are aware, we consider the
minimization of a generalized area of a complicated surface (in
x, y, z) representing a soft matter interface, as we “flatten” the
surface toward the horizontal plane with the same x, y
dimensions. Using this framework we identify relevant volumes
lying between the complicated surface and flat surface at
various scales by minimization of the flat norm function.
Furthermore, we automatically identify the volumes that
represent structural features of the surface that are potentially
relevant to the interfacial chemistry. The algorithm that
employs the flat norm, labeled GMTChem.FN,19 is scale-
independent (see eq 5), and its utility is demonstrated for a
test system that has previously been shown to have
hierarchically organized surface protrusionsthe tri-n-butyl
phosphate (TBP)-laden water/hexane interface. The frame-
work is applicable to many different chemical systems and
represents an important new tool to study interfacial structure,
dynamics, and reactivity.

■ THEORETICAL BACKGROUND AND ALGORITHM
WORKFLOW

Background. The GMTChem.FN framework utilizes a
method called the multiscale simplicial f lat norm (MSFN) that
produces smoother versions of a triangular surface lying inside
a tetrahedral volume mesh. The continuous analogue of this
method called the multiscale f lat norm (MFN) was originally
introduced by Morgan and Vixie,20 and was applied to image
denoising.21 MSFN was introduced later by Ibrahim et al.22 as
a general and versatile discretization of the continuous version,
with both computational and theoretical applications.23 More
recently, the flat norm has been used to define an average of
shapes in a fairly general setting.24 The MSFN algorithm takes
in three inputs: a triangular surface mesh T, a tetrahedral
volume mesh K, which contains T as a subcomplex, and a scale
parameter λ ≥ 0. The algorithm solves a minimization problem
(eq 1) to identify a tetrahedral volume S inside K and returns a
“flatter” (smoother) version of T, given by T − ∂Sλ. The
smaller the scale λ, the smoother T − ∂Sλ will be. In this
Article, we denote by T the input to the flat norm algorithm
that we are trying to smooth, which could be a surface, a
triangular mesh, or a curve.
We first present the definition of MFN,20 the continuous

analogue of MSFN. The definition applies to generalized n-
dimensional hypersurfaces, but our focus will be on the case of
T being a surface in 3. Let T be an oriented surface in 3. The
MFN of T with scale λ ≥ 0 is computed as

λ= { − ∂ + · }λ T T S SF ( ) min area( ) vol( )
S (1)

where we minimize over all oriented 3-dimensional volumes S.
A 3-dimensional oriented volume S* that attains the minimum
in the above computation is a f lat norm minimizer for T with

scale λ. We refer to the flat norm minimizers for T with scale λ
simply as minimizers and denote them as Sλ. The smoothed
version of T for a minimizer Sλ is T − ∂Sλ, and is called the f lat
surface of T with scale λ, or simply the f lat surface. In practice
we usually consider a discrete set of values for λ within a range
(0, L), denoted {λi}i=1

N for some positive integer N. Hence, the
compact notation of Si and T − ∂Si is utilized for the
minimizers and the corresponding flat surfaces.
We use the case of T being a curve in 2 to further illustrate

the concepts and definitions (Figure 1). Corresponding to the

computation in eq 1 for surfaces, here we compute Fλ(T) =
minS{length(T − ∂S) + λ·area(S)}, minimizing over all 2-
dimensional oriented domains S of 2. One could intuitively
think of the flat norm computation as minimizing the total cost
of erasing the curve T completely in two steps, with each step
incurring its own respective cost. The first step is to erase a
portion of T with the boundary ∂S of a 2-dimensional region S,
the cost of which is the area of S. The second step is to erase
the curve that is left after the first step, that is, T − ∂S, having a
cost of the length of the curve erased in this step.
With the scale parameter λ = λ1 (e.g., λ1 = 1) the minimizer

S1 is the collection of two brown areas shown in Figure 1. The
portion of T that ∂S1 erases in the first step consists of two
parts of the input curve that coincide with (parts of) ∂S1. This
step contributes a cost of λ times the area (S1). The resulting
flat curve (an analogue of the flat surface) is shown in green,
and represents the smoothed version T − ∂S1 of T in Figure 1.
Note that, while this step removed the sharper “bumps” in T, it
also added the bottom portions of ∂S1 not coinciding with T.
The second step is to erase the entire green curve, which incurs
as cost the length of T − ∂S1. Hence, the total cost of erasing
the input curve T is length(T − ∂S1) + λarea(S1).
We now consider the cost of erasing T when the scale

parameter λ = λ2 ≪ λ1 (e.g., λ = λ1 and λ2 = 0.001). Note that
the first step becomes much cheaper, and hence the minimizer
S2 consists of the two large areas made of the union of the pair
of brown and pink areas in Figure 1. We can afford the much
larger cost area(S2) compared to area(S1) in the first step. The
resulting flat curve T − ∂S2 is shown in red and is much
“flatter” that the intermediate green curve T − ∂S1. The second
step incurs the extra cost of length(T − ∂S2) for erasing the red
curve. As illustrated by this example, we capture “features” of T
at all scales by constructing the flat curves at multiple scale
values λi ϵ (0, L], i = 1, ..., N (L > 1, typically).

Figure 1. Curve T in blue, representing a 1-dimensional analog of a
soft-matter interface, together with minimizers of the flat norm for
two values of λ = λ1 and λ = λ2 ≪ λ1. The flat curve T − ∂S1 (for λ =
λ1) is shown in green, and the flat curve T − ∂S2 (for λ = λ2) is shown
in red. Note that the resulting curve get flatter as λ decreases.
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While the definition of MFN is given in the continuous
setting, we usually employ a discretized version of the input
and ambient space, that is, of T, as well as choices of S, to
perform the computations in practice. A natural discretization
considers T and choices of S as simplicial complexes (meshes).
Ibrahim et al.22 proposed a simplicial version of MFN called
the MSFN. For the setting of our interest where T is a finite
surface in 3 or when T is a finite curve in 2 (more generally,
in codimension 1), the MSFN can be computed efficiently by
solving a linear program.
In this case, the first step is to create the surface of interest T

in 3, for example, a soft matter interface. For a liquid/liquid
interface, the instantaneous surface (the layer of molecules in
direct contact with the opposing immiscible phase) can be
represented by the Willard−Chandler interface,25,26 as is done
in this work (see Results). We discretize this interface into a
triangular surface mesh T, which is a 2-dimensional simplicial
complex. Because the flat norm computation makes use of
volumetric data, the ambient space around T is discretized into
a tetrahedral volume mesh K, which is a 3-dimensional
simplicial complex. When generating K, the discretization is
performed so as to preserve the triangles from T by ensuring
the triangles in T are faces of tetrahedra included in K. More
formally, we ensure T is a subcomplex of K and do so using the
method of constrained Delaunay tetrahedralization27 imple-
mented in the open source software TetGen28 (see Supporting
Information for details).
While the minimizer Sλ constructed by the MSFN algorithm

is expected to identify meaningful structural features on the
complicated surface T, the results can be quite sensitive to the
choice of the scale parameter λ. As λ decreases, the volume of
Sλ increases until eventually, Sλ = K. Initially it may seem
possible to have a unique value for λ at which Sλ contains all of
the relevant features of the interface, and nothing more.
However, we could not identify such values of λ for any of the
interfaces studied here. One would expect that when λ is small
enough, Sλ would contain essentially all relevant features. Yet
we observed that many of the features in Sλ were either too
small or had broad or ill-defined geometries. In part, this is due
to the large range of morphologies of the structural features at
the liquid/liquid interface used to develop the GMTChem.FN

algorithm. Hence we consider a broad range of values for λ,
and further require that a candidate feature has large enough
volume across a large number of the λ values considered (vide
infra).
While theoretically not equivalent, one could understand the

scale parameter λ capturing curvature of the surface T in the
following intuitive sense. Imagine moving a ball of radius 1/λ
with its center lying on T (rather than the entire ball “rolling
on” the surface). Portions of T and ambient space that lie
inside the union of balls, that is, copies of the ball as its center
moves across T, are smoothed out by the flat norm algorithm.
Going back to Figure 1, consider the space covered by a 2-
dimensional disc of unit radius (λ1 = 1) as its center is moved
along T, the blue curve. The two areas shown in brown, which
form the minimizer S1, are completely covered by the union of
balls and hence are erased. When λ is much smaller (e.g., λ2 ≪
1), the ball has a much larger size and hence smooths out most
of the curve T along with the shaded areas in brown and pink.
Motivated by this analogy, we compare volumes of the

connected components of minimizers Sλ to volume of the ball
of radius 1/λ. Rather than directly label each component as a
feature or not, we adopt a probabilistic approach. The
components are studied over a range of λ values, as well as a
range of values for the ratio of volume of component to
volume of the 1/λ-ball. We then classify at which of these
values a particular component is “alive” as a feature, and
compute the fraction of pairs of values as the probability of the
component being a bona fide surface structural feature.

GMTChem .FN A lgo r i t hm Ove rv i ew . The
GMTChem.FN algorithm workflow consists of five steps
(Figure 2). For a frame of simulation data indexed by t
(obtained from molecular dynamics, Monte Carlo, etc.), the
soft-matter surface is first modeled as a triangular mesh. We
use the Willard−Chandler interface T(t) in our studies. For
each t, we embed T(t) into a 3-dimensional complex K(t),
such that T(t) is a portion of the boundary of K(t) and the
triangles in T(t) are preserved. We, then, run the MSFN
algorithm N times on each pair (T(t), K(t)) with the scale
parameter λ taking a range of decreasing values {λi}i=1

N . The
range of λ values and N will depend on the application at hand.

Figure 2. Workflow for structure identification by the GMTChem.FN algorithm.
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For each λi, the MSFN algorithm outputs the minimizer
Si(t) which is then partitioned into its connected components

= { } =C t C( )i
k
i
k
n

1
i , where ni is the number of connected

components of Si(t). We compute two quantities for each
connected component Ck

i : its volume vol(Ck
i ) and its ratio

R(Ck
i ) defined as the ratio of vol(Ck

i ) and volume of a ball of
radius 1/λi. If R(Ck

i ) is above a particular threshold r, we say
that component Ck

i is alive at scale λi and threshold r. Although
not required, it is insightful to have a reference chemical
system that has an interface without any relevant features that
provides a basis for selecting the range of thresholds {rj}j=1

M to
be considered. For example, in the test system that contains
water/hexane/TBP, one may first employ the algorithm on
water/hexane to identify the range of thresholds {rj}j = 1

M .
A component that is alive at a specific λi and threshold rj is

considered a candidate structural feature, and is given a
component label that keeps track of the merging and growing
behavior of the component as lambda decreases. Note that
smaller components merge into larger ones as λ becomes
smaller. Each frame indexed by t is examined over all λi to
obtain the complete list of connected components C(t) =
∪iC

i(t). All the components in C(t) are then labeled so as to
track their growing and merging behavior as λ decreases. The
labeling procedure is illustrated in Figure 3. Each connected
component is assigned at most one component label per
lambda value that enables tracking the evolution its volume
and ratio as a function of λ. We denote the set of all
component labels at a frame of data t as t( ), and the set of all
component labels ranging over all frames of data as .
Given the range of lambda values {λi}i=1

N and ratio thresholds
{rj}j=1

M , for each component label C in we construct an N ×

M matrix AC = [aij] for i = 1, ..., N and j = 1, ..., M. We set aij =
1 if component C is alive at λi and ratio threshold rj, and set aij
= 0 otherwise. Assuming lambda and ratio cutoff values are
chosen uniformly at random, the overall probability that
component label C is alive is given by

=
∑

P C
a

NM
( is alive) ij

(2)

Subsequently, we rank all component labels in by sorting the
corresponding list of probabilities from largest to smallest
values.
The following sections describe relevant portions of the code

in detail. The technical aspects of embedding the Willard−
Chandler Surface into a 3-dimensional simplicial complex are
described in Supporting Information for clarity.

Multiscale Simplicial Flat Norm Algorithm (MSFN). In
the next step of the GMTChem.FN software, the input is the
Willard−Chandler 2-dimensional simplicial complex, T(t) that
is embedded in its respective K(t), along with a decreasing
sequence of positive values, {λi}i=1

N for some particular positive
integer N. This portion of the algorithm is applied to each T(t)
and K(t) independently. To simplify notation, we denote T(t)
and K(t) as T and K. In Figure 2, the picture corresponding to
the Simplicial Complex Embedding portion of the workflow
shows T in blue, embedded in light brown colored region K.
The MSFN algorithm is computed on T with each scale λi and
outputs a sequence of minimizers {Si}i=1

N , together with the
corresponding flat surfaces {T − ∂Si}i=1

N . Note that each Si

consists of an ordered set of tetrahedra of K, and each T − ∂Si
consists of an ordered set of triangles of K.
As an example, Figure 3 illustrates how the MSFN algorithm

would work on T for five decreasing positive values of lambda
λ1 > λ2 > λ3 > λ4 > λ5. For now, focusing on the left-most
column in Figure 3, going from the top frame to the bottom
fourth frame, the regions colored in green/red are the four
minimizers S1, ..., S4 corresponding to each λ1, ..., λ4,
respectively. In particular for λ1, the minimizer S1 is equal to
the union of the 3 disconnected components. For λ2, the
minimizer S2 is equal to the union of the 4 disconnected
components. For λ3, the minimizer S3 is equal to the union of
the 5 disconnected components, and for λ4 the minimizer S4 is
equal to the 3 disconnected components. The frame that
corresponds to λ5 is not shown because S5 = K, which would
have made all of K in that fifth frame, green. As we go further
along the pipeline, the notation in Figure 3, and the
distinctions of the green and red colors will be made apparent.

Component Tracking. This step of the GMTChem.FN
algorithm is carried out independently for each frame t of
simulation data. For simplicity the parameter t is dropped
within the notation. The input to this step is the ordered set of
minimizers {Si}i=1

N generated by N applications of the MSFN
algorithm, as described above. The output of this step is an
ordered set of component labels, {Ck}. Each component label Ck
= (Ck(1)

1 , ..., Ck(N)
N ) is an ordered set of connected components,

where each Ck(i)
i is a connected component of the minimizer Si,

for i = 1, ..., N. What follows is a description of how a
component label describes the merging and growing behavior of
its first nonempty connected component as a function of the
decreasing sequence of lambda values {λi}i=1

N . A more detailed
description is presented in the Supporting Information.

Connected Components. Running the MSFN algorithm
on T for scale λi yields the minimizer Si, which consists of a

Figure 3. Connected components and component labels illustrated in
2D for four λ values and two ratio cutoffs. Connected components are
colored green or red, with the ones colored red being alive.
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subset of tetrahedra from K. The dual graph G of Si is
constructed, where vertices of G correspond to tetrahedra in Si,
and an edge is present between vertices in G if the
corresponding tetrahedra share a triangle. By this mapping of
nodes with tetrahedra, the collection of connected components
of G corresponds exactly to a collection { } =Ck

i
k
n

1
i of the

connected components of Si. Each Ck
i is a ordered set of oriented

tetrahedra, and ni denotes the number of connected
components of Si.
Returning to the example in Figure 3, the three connected

components of the minimizer S1 corresponding to λ = λ1 are
labeled {C1

1,C2
1,C3

1} (from left to right). Similarly, the four
connected components of S2 are {C1

2,C2
2,C3

2,C4
2}. Note that

labels listed in Figure 3 are in fact modified versions of these
labels that capture the growing and merging behavior of the
components (see below for details). For S3, the minimizer
consists of 5 connected components {C1

3, ..., C5
3}. Note that

there are 5 connected components here rather than 4, even
though the two rightmost features share a vertex. Recall we
defined connected components of Sλ by identifying the
corresponding connected components of its dual graph.
Hence, two tetrahedra are connected if and only if they
share a triangle. If they share only an edge or a vertex, they are
considered to be not connected. Similarly, for the 2-
dimensional simplicial complex K in our example, two triangles
are connected if and only if they share an edge. In the case of
S3, the two components share only a vertex, and hence are
considered not connected.
Growing and Merging Behavior. A connected compo-

nent of Si−1 either grows or merges into a connected
component of Si. A connected component Ck

i−1 of Si−1 grows
into component Cj

i of Si if Ck
i−1 ⊆ Cj

i and any additional
tetrahedra in Cj

i not in Ck
i−1 are also not in Si−1. In contrast,

connected components − −C C, ...,k
i

k
i1 1
n1

of Si−1 merge into

component Cj
i of Si if ∪ ⊆=

−C Cl
n

k
i

j
i

1
1

l
. When one goes from

from S1 to S2 in the left column of Figure 3, one can see that
components {C1

1,C2
1,C3

1} merge into C2
2 (labeled C1 in the

Figure 3). Going from S2 to S3, C1
2 and C4

2 (labeled C5 and C6)
grow into C1

3 and C4
3 (labeled C5 and C6), respectively. Also

notice that C2
2 and C3

2 (labeled C1 and C4) merge into C2
3

(labeled C1). From S3 to S4, we see that C3
3 (labeled C8) grows

into C2
4 (labeled C8, identical with C3

3), C1
3 and C2

3 (labeled C5
and C1) merge into C1

4 (labeled C1), and finally, C4
3 and C5

3

(labeled C6 and C7) merge into C3
4 (labeled C6). Note that

since S5 = K, going from S4 to S5 the three components C1
4, C2

4,
C3
4 in S4 (labeled C1, C8, C6) merge into C1

5 = S5 = K.
Labeling Connected Components. Starting with the

largest value of λ = λ1, each connected component in S1 is
given as label a unique number in the range [1, n1], where n1 is
the number of components in S1. Going to λ2, if a component
grows from S1 to S2, it is given the same label as before. If a
new component appears in S2, it is labeled with the next
available number that has not been used yet. And if
components C C, ...,k k

1 1
n1
of S1 merge into component Cj

2, we

label Cj
2 with the smallest of the labels for C C, ...,k k

1 1
n1
.

Continuing this process for all λ values, each component label is
specified as Ck = (Ck(1)

1 ,···,Ck(i)
i ,···,Ck(N)

N ) where the entry Ck(i)
i

denotes the connected component of Si labeled as Ck. In
general if a component label Ck appears for the first time in Si

for i > 1 and disappears when it merges with another
component in Sj for j > i, then Ck = (⌀, ..., ⌀, Ck(i)

i , ..., Ck(j−1)
j−1 , ⌀,

..., ⌀). In particular, there are no connected components of Sh

corresponding to Ck for any h < i or h ≥ j. The complete list of
component labels for T is obtained by repeating this process
for all components across all λ values, and is denoted by .
For the example in Figure 3, the following component labels

are generated for the five λ values by this step of the
GMTChem.FN algorithm:

=

= ⌀ ⌀ ⌀ ⌀

= ⌀ ⌀ ⌀ ⌀

= ⌀ ⌀ ⌀ ⌀

= ⌀ ⌀ ⌀

= ⌀ ⌀

= ⌀ ⌀ ⌀ ⌀

= ⌀ ⌀ ⌀

C C C C C K

C C

C C

C C

C C C

C C C C

C C

C C C

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

1 1
1

2
2

2
3

1
4

2 2
1

3 3
1

4 1
2

5 3
2

1
3

6 4
2

4
3

3
4

7 5
3

8 3
3

2
4

Structure Ranking. The input of this step of the
GMTChem.FN algorithm is the collection of all component
labels over all frames of data along with scale parameter values
{λi}i=1

N and the ratio cutoffs {rj}j=1
M . The output is a ranking of all

component labels in in terms of the number of times each
individual component is alive over all scale parameter values
and ratio cutoffs.

Alive Components. A component label Ck = (Ck(1)
1 , ...,

Ck(i)
i , ..., Ck(N)

N ) is defined to be alive at scale λi and ratio rj if the
volume of Ck(i)

i is greater than the volume of a molecule
associated with the soft-matter surface and if the ratio of the
volume of Ck(i)

i to the volume of a ball of radius 1/λi is strictly
greater than the ratio rj. For the example system of water/
hexane/TBP, the volume of a water molecule is chosen.
Precisely, the component label Ck is alive at scale λi and ratio rj
if both

≥Cvol( ) vol(molecule)k i
i
( ) (3)

and

>R C r( )k i
i

j( ) (4)

where R is defined to be the ratio

λ
= −R C

C
( )

vol( )

vol(ball of radius )k i
i k i

i

i
( )

( )
1

(5)

In the example in Figure 3, two ratio cutoff values r1 > r2 are
used. To determine how often (i.e., number of (λi, rj) pairs) at
which the component labels are alive, the volumes of
corresponding connected components

=

=

=

∂

C C C C C K

C C

C C C

vol( ) (vol( ), vol( ), vol( ), vol( ), vol( ))

vol( ) (vol( ), 0, 0, 0, 0)

vol( ) (0, 0, vol( ), vol( ), 0)

1 1
1

2
2

2
3

1
4

2 2
1

8 3
3

2
4

are divided by volumes of the corresponding λi
−1-balls, and

compared to the rj values to determine which labels satisfy the
inequalities 3 and 4. In Figure 3, the left and right columns
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correspond to ratio cutoffs r1 and r2, respectively. Further, the
components colored in red are ones that are alive at the
respective λi and rj values.
Each component label ∈C has a matrix AC = [aij] where

aij = 1 if C is alive at λi and rj, and 0 otherwise. One can think
of AC as a lookup table that records which λi and rj values the
component label is alive at. Referring back to Figure 3, to
construct the first column of the lookup table AC1

for
component label C1 corresponding to ratio r1, we simply
look at the first column. Since C1 is colored red only for λ = λ1,
a11 = 1 and all other entries in the first column of AC are 0. To
construct the second column of AC1

corresponding to ratio r2,
we look at the second column. In this case, C1 is colored red
for λ = λ1, λ2, λ3, and, therefore, a12 = a22 = a32 = 1 and entries
a42 = a52 = 0. This gives us our completed lookup table for
component label C1

λ

λ

λ

λ

λ

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

A

r r

1 1
0 1
0 1
0 0
0 0

C

1 2

1

2

3

4

5

1

(6)

Therefore, the probability that C1 is alive for a uniformly
random λi and rj is given as

= =P C( is alive) 4/10 0.41

Repeating these steps for the remaining component labels C2,
..., C8 in Figure 3 yields the following probabilities:

=

=

=

=

=

=

=

P C

P C

P C

P C

P C

P C

P C

( is alive) 0

( is alive) 0.1

( is alive) 0.1

( is alive) 0

( is alive) 0.1

( is alive) 0.2

( is alive) 0

2

3

4

5

6

7

8

It is proposed that component labels that are alive more
frequently are better candidates for being identified as
structural features on a soft-matter surface. Under this
proposition, all component labels are ranked from the most
to least likely candidates to be identified as structural features.
In our example in Figure 3, the ranking for labels in is

C C C C C C C C( , , , , , , , )1 7 3 4 6 2 5 8

It is advisable to obtain an appropriate range of ratio cutoff
values, which is obtained in this work by employing a reference
surface that has few collectively organized structures.

■ RESULTS

To test the applicability of our algorithm to identify an
ensemble of surface structures at a soft-matter interface we use
a complex liquid/liquid system that has been the topic of prior
study: water/hexane/TBP, where the amphiphilic molecule
TBP acts as a surfactant. In this system, protrusions of water
and TBP form at the instantaneous liquid/liquid interface, and
have been implicated as being the mechanism for water
transport into the organic phase.29 Details of the molecular
dynamics simulation protocol, the composition and periodic
box size, and construction of the Willard-Chandler interfaces
for each snapshot are provided in the Supporting Information.
To quantify the robustness of the surface structure algorithm,
119 protrusions were identified by visual inspection in 35
snapshots of the molecular dynamics trajectory. The visual
identification is completely subjective, and as this is the first
algorithmic approach to identify surface structures, it is entirely
possible that chemical intuition does not always follow
volumetric trends of features as identified by GMTChem.FN.
Analogous MD simulation data of water/hexane were used

as the reference chemical system to determine the range of λ
values to be employed within the algorithm. Using 80 frames
of simulation data, the upper range of λ was chosen to be 0.5 as
this value led to almost no flattening of the Willard−Chandler
surfaces, while a lower value of λ = 0.01 was chosen because
this led to complete flattening of the WC surfaces across all
trajectory data (Figure S1). Fifty uniformly spaced values of
lambda between these values were utilized. Within the
reference data, the distribution of ratios for any component
with volume of at least Vmin was also examined. Looking at the
maximum ratio of the distribution after removing the top 1, 2,
..., 10% of ratios, the list of ratio cutoffs in Table 1 was
obtained. A protrusion was defined to contain at least one
water molecule. Given the density threshold of 95% and a
Gaussian kernel radius of 2 Å used to construct the Willard−
Chandler interfaces, the volume inside the 0.95 superlevel-set
of a Gaussian kernel of radius 2 Å in 3D was computed in
order to estimate the correct volume lower bound, which is
denoted by Vmin. Only those components whose volume is at
least Vmin are considered.
Using the GMTChem.FN algorithm on the 35 frames of

water/hexane/TBP data, all of the protrusions identified by
visual inspection exist within the total 195 component labels
that were ranked. In Figure 4, we present the ranking of the
component labels vs respective probabilities. Notably, as the
probability value of a component label decreases the likelihood
of having a “false positive” for a protrusion (a feature that by
visual inspection does not appear to be a protrusion) increases.
At the same time, the concept of a “false positive” is somewhat
misleading, as further study is needed across many chemical
systems to understand the reactivity and chemical behavior of
surface structures as a function of their size, morphology, and
chemical composition. If we assume that the visually identified
protrusions are the only surface structures of interest, then the
optimum ranking threshold (T*) that minimizes the total
number of errors and maximizes the identified protrusions is
found to be T* = 90. Considering all component labels below a

Table 1. Maximum Ratios (See Equation 5) after Removing the Top 0−10% of Ratios from the Water−Hexane Chemical
System

ratio 0.0840 0.0945 0.1050 0.1155 0.1365 0.1575 0.1890 0.2520 0.3360 0.4935 1.0500
% 10 9 8 7 6 5 4 3 2 1 0
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T* ranking of 90, there are 13 overcounts (red bars to the left
of the optimum ranking line in Figure 4). Upon further
analysis, these are observed to be features that occur on the
periodic boundary of the simulation cell. Indeed, the algorithm
employed to create the Willard−Chandler surface did not obey
the periodic boundary conditions of the simulation box, and as
such the GMTChem.FN overcounted protrusions on these
boundaries. Amending this issue is a topic of current
algorithmic optimization. If the T* ranking of 90 is chosen
there are 43 undercounted surface structures that are visually
identified as protrusions (green bars to the right of the
optimum ranking line in Figure 4). These protrusions have
morphologies that consist primarily of broad features, and we

hypothesize their lower probability values are due to the fact
that broad features are not removed as quickly as long and thin
features that emerge at higher probabilities (Figure 5). Note
that the entries in the probability matrices are uniformly
weighted, and further improvement on the algorithm may be
obtained by using varying weights. For example, if one would
like to rank large components with high priority, small λ values
may be weighted more than larger λ values (in eq 6). Finally, it
is important to point out that the GMTChem.FN algorithm
also identifies surface structures that were not initially
identified by visual inspection. These surface features were
missed by visual inspection and were difficult to identify
because they resided in low basins, and were surrounded by
high interfacial roughness (e.g., see the last feature in Figure 5
with P = 10.96).

■ CONCLUSION

Robust algorithms that automatically identify complex
structural features at soft-matter surfaces have the potential
to dramatically expand our ability to study interfacial reactivity
and transport mechanisms. This includes understanding how
surfactants can control the morphology of protrusions that
move solutes across a phase boundary, or how interfacial
composition modulates micelle formation. It is a significant
challenge to create such an approach, as surface feature
morphology can be highly varied and because the method
must be able to identify structures that can exist on top of a
surface that has significant natural roughness. To address this
challenge, a new algorithm is developed which employs
concepts from geometric measure theory and algebraic
topology. We utilize the f lat norm, which minimizes a
generalized area of a complicated surface (in x, y, z)
representing a soft matter interface, and “flattens” the surface
toward the horizontal plane with the same x, y dimensions.
Using this framework, we identify relevant volumes lying
between the complicated surface and the flat surface at various
scales by minimization of the flat norm function. Subsequently,
using a probabilistic approach those identified surface features
are ranked by their likelihood of being a complex structural
feature. The algorithm is tested for a surfactant-laden water/oil
interface, where its ability to identify protrusions is validated
against a set of surface features identified by visual inspection.

Figure 4. Probability vs ranking of all component labels identified by
the GMTChem.FN for 35 snapshots of the water/hexane/TBP
interface. All protrusions identified by GMTChem.FN were cross
referenced against 119 protrusions at the interface identified by
subjective visual inspection, and those in agreement are labeled in
green as “verified protrusions”. “False positives” are those surface
structures that do not appear to be protrusions by visual inspection,
but may still be interesting surface structures. The optimum ranking
threshold minimizes the total difference of verified protrusions and
false positives, thus maximizing the identified protrusions, and is
found to be T* = 90.

Figure 5. Examples of protrusion diversity identified by GMTChem.FN at the water/hexane/TBP interface, alongside their associated probability
values (as percentages).
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To our knowledge, this is the first example of applying
geometric measure theory to analyze the properties of a
chemical/materials science system. This approach is scale-
independent and has potential application in many different
chemical systems, and presents an important new tool to study
interfacial structure, dynamics, and reactivity.
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