
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nile20

Interactive Learning Environments

ISSN: 1049-4820 (Print) 1744-5191 (Online) Journal homepage: https://www.tandfonline.com/loi/nile20

From classroom lessons to exploratory learning
progressions: mathematics + computational
thinking

Maya Israel & Todd Lash

To cite this article: Maya Israel & Todd Lash (2020) From classroom lessons to exploratory
learning progressions: mathematics + computational thinking, Interactive Learning Environments,
28:3, 362-382, DOI: 10.1080/10494820.2019.1674879

To link to this article: https://doi.org/10.1080/10494820.2019.1674879

Published online: 21 Oct 2019.

Submit your article to this journal

Article views: 230

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=nile20
https://www.tandfonline.com/loi/nile20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10494820.2019.1674879
https://doi.org/10.1080/10494820.2019.1674879
https://www.tandfonline.com/action/authorSubmission?journalCode=nile20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nile20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10494820.2019.1674879
https://www.tandfonline.com/doi/mlt/10.1080/10494820.2019.1674879
http://crossmark.crossref.org/dialog/?doi=10.1080/10494820.2019.1674879&domain=pdf&date_stamp=2019-10-21
http://crossmark.crossref.org/dialog/?doi=10.1080/10494820.2019.1674879&domain=pdf&date_stamp=2019-10-21
https://www.tandfonline.com/doi/citedby/10.1080/10494820.2019.1674879#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10494820.2019.1674879#tabModule

From classroom lessons to exploratory learning progressions:
mathematics + computational thinking
Maya Israel a and Todd Lashb

aDepartment of Educational Technology, School of Teaching and Learning, University of Florida, Gainesville, FL, USA;
bDepartment of Special Education, University of Illinois, Champaign, IL, USA

ABSTRACT
This paper presents findings from a two-year qualitative study examining
integration of computer science (CS) and computational thinking (CT) into
elementary mathematics instruction. Integrated units were developed by
elementary teachers and CS/CT coaches with support from university
faculty with expertise in CS/CT and elementary mathematics. CS/CT
instruction primarily relied on the Scratch environment, although some
lessons made use of Code.org materials. This research primarily relied on
two theories of integration (i.e. Kiray, 2012. A new model for the
integration of science and mathematics: The balance model. Energy
Education Science and Technology Part B: Social and Educational Studies, 4
(3), 1181–1196) that provided insight into the level of interconnection
between the disciplines and the relative amount of instructional time
spent within each discipline. Findings revealed that cross-grade CS/CT
concepts included sequencing, looping, and conditional logic. Within
each category: (a) concepts were taught with increasing complexity
across the grades, (b) the mathematics was dominant and CS/CT was
important but secondary, and (c) three types of lessons emerged: No
integration, partial integration, and full integration. Lastly, lessons
generally included a transition from less integrated to more integrated
activities with an initial focus on discipline-specific conceptual
understanding prior to integrated activities.

ARTICLE HISTORY
Received 28 November 2017
Accepted 27 August 2019

KEYWORDS
Elementary school computer
science; integrated
curriculum; computer science
lesson planning; computer
science learning
progressions; elementary
mathematics

1. Introduction

Interest in K-12 computer science (CS) education has grown over the last several years as evidenced
by national initiatives such as the 2016 White House call for Computer Science for All and the creation
of the CS for All Consortium (http://csforall.org). This rapid growth has resulted in questions regarding
how to implement CS and computational thinking (CT) across K-12. Should CS/CT be taught as stand-
alone programs or integrated into existing subjects? If integrated, what are effective practices for
teaching CS/CT in those contexts? While those supporting the CS for All movement agree about
the benefit of this nascent initiative, questions still abound about what, how, and at what pace to
teach. While Grover and Pea (2013) pointed out that the cognitive facets of children and compu-
tational neophytes learning programming was studied extensively in the 1980s, there is limited
research on the efficacy of different approaches to CS/CT education.

While other disciplines have clearly established progressions for learning, such as those developed
for mathematics education (e.g. Clements & Sarama, 2004; Confrey, Maloney, & Corley, 2014; Daro,
Mosher, & Corcoran, 2011), such work is only emerging in the CS education literature (e.g. Rich, Strick-
land, Binkowski, Moran, & Franklin, 2017). Additionally, while a framework for K-12 CS education

© 2019 Informa UK Limited, trading as Taylor & Francis Group

CONTACT Maya Israel misrael@coe.ufl.edu

INTERACTIVE LEARNING ENVIRONMENTS
2020, VOL. 28, NO. 3, 362–382
https://doi.org/10.1080/10494820.2019.1674879

http://crossmark.crossref.org/dialog/?doi=10.1080/10494820.2019.1674879&domain=pdf&date_stamp=2020-04-23
http://orcid.org/0000-0003-0302-6559
http://csforall.org
mailto:misrael@coe.ufl.edu
http://www.tandfonline.com

(https://k12cs.org/) and updated CS education standards (Computer Science Teachers Association,
2017) have been developed, there is little guidance for efforts to integrate these concepts into
core areas such as mathematics. Thus, developing research-supported learning progressions for K-
12 CS is a critical step for CS education.

To add complexity to understanding learning progressions in K-12 CS and CT instruction, there is a
movement to teach CS and CT in an integrated manner within other disciplines (Jona et al., 2014; Lee,
Martin, & Apone, 2014; Schanzer, Fisler, Krishnamurthi, & Felleisen, 2015). Reasons for focusing on
integration include: (a) opportunities for introducing computing within real-world, authentic experi-
ences that capitalize on CS/CT, and (b) greater access to CS/CT for underrepresented populations
because integrated instruction occurs in general content areas rather than in opt in elective CS
classes (e.g. Weintrop et al., 2016).

Papert (2006) anticipated “a widening focus from how people learn to what people learn” (p. 582).
He used mathematics in particular as an example and hoped for curriculum that would “give children
the means to find unique ways to create a personal mathematics of their own to love (p. 585).” A
glimpse of this could be seen in the study by Harel and Papert (1990), who conducted a learning
research project that had fourth grade students create instructional software to teach fractions.
They found that students did better in both the mathematics and programming in the experimental
group compared with the two controls. Thus, integrating computing into mathematics allowed Harel
and Papert to study how computing could be used as the tool for constructing mathematics
understanding.

1.1. Defining CS/CT in the context of this study

Although there are many definitions for computational thinking (CT), at its core, it can be defined as
“a way of thinking that involves formulating problems, decomposing them, and structuring and com-
municating solutions so that humans can understand them and machines can process them” (Water-
man et al., 2018, p. 283). The K-12 CS framework provides guidance on CT practices: (a) recognizing
and defining computational problems, (b) developing and using abstractions, (c) creating compu-
tational artifacts, and (d) testing and refining computational artifacts. Brennan and Resnick (2012)
applied CT practices that align with the Scratch programming language including: (a) experimenting
and iterating, (b) testing and debugging, (c) reusing and remixing, and (d) abstracting and modular-
izing (Brennan & Resnick, 2012).

There has been a push to increase K-12 students’ exposure to CT. This push is not new and goes
back to Papert’s (1980) assertion that computers can be used as tools for learning. Since Papert’s
description of CT in Mindstorms, the term CT has become quite loaded and has taken multiple mean-
ings. Although elucidating the meaning(s) of CT is outside the scope of this paper, it is important to
describe how this term was used within this study. For the purpose of this study, the terms CS and CT
were used in tandem (i.e. CS/CT) to broadly describe experiences in which students engage in
problem solving and algorithmic thinking alongside both programming and unplugged activities
to engage with mathematics concepts.

1.2. Conceptual models for CS/CT content integration

In K-12 education, there is a move to integrate the subjects, given that they are often taught in iso-
lation despite the fact that most subjects actualize in a cross-disciplinary manner (Masters, 2016).
Several arguments have been made regarding the rationale for content integration including rel-
evance to addressing real-world problems and highlighting the interconnections between disciplines
(English, 2017). However, it is often noted that combining the disciplines in a manner that preserves
the integrity of each of the disciplines often proves challenging and complex (English, 2017).

Several conceptional frameworks elucidate how content integration can occur. Vasquez (2015)
stated that integrating science, technology, engineering, and mathematics (STEM) can create a

INTERACTIVE LEARNING ENVIRONMENTS 363

https://k12cs.org/

meta-discipline, defined as integration of separate subjects into a new area of study. Kiray (2012)
described a process for understanding integration of mathematics and science through the relative
focus of each discipline within instruction. Using Kiray’s model, if CS/CT is integrated into mathemat-
ics wherein the mathematics had more emphasis than CS/CT, that instruction would be considered
mathematics intensive, CS/CT connected; if the opposite were true, the instruction would be CS/CT
intensive, mathematics connected. In another approach, Vasquez, Sneider, and Comer (2013)
arranged integration along a continuum of activities: (a) no integration between content areas, (b)
multidisciplinary instruction in which instruction is taught separately but references common
themes, (c) interdisciplinary instruction where the disciplines are tightly linked, and finally, (d) trans-
disciplinary instruction in which skills across disciplines are applied to answer central driving ques-
tions. In this way, activities could be evaluated based on the level to which each individual
disciplinary area is used within instruction. Finally, Bryan, Moore, Johnson, and Roehrig (2015)
stated that content integration must be intentional as related to the content areas. They identified
three types of integration: (a) integration wherein learning experiences have multiple interdisciplin-
ary objectives, (b) integration wherein one content area supports another content area, and (c) inte-
gration wherein one content area serves as the context for learning another content area.

1.2.1. Mathematics and CS/CT integration
When it comes to content integration between mathematics and CS/CT, several authors point to the
natural ways in which these disciplines can fit (Pei, Weintrop, & Wilensky, 2018; Sneider, Stephenson,
Schafer, & Flick, 2014). Sneider et al. (2014) created a Venn diagram of mathematics and CT wherein
common areas included problem solving, modeling, analyzing and interpreting data, and statistics
and probability (Sneider et al., 2014). The authors explained that other areas are distinctly mathemat-
ical thinking (e.g. counting, geometry) or computational thinking (e.g. programming, data mining).
Pei et al. (2018) similarly described the overlap between the two disciplines. They explained that
CT and mathematics habits of mind are distinct areas that are mutually supportive and can be instruc-
tionally linked; however, opportunities to teach these areas together rarely happen. Weintrop et al.
(2016) formulated a taxonomy wherein mathematics and CT could be integrated and included
four categories: data practices, modeling and simulation practices, computational problem-solving
practices, and systems thinking practices (Weintrop et al., 2016).

Despite the emerging work in integrating CT and mathematics, it can be challenging to find ways
wherein the two disciplines can be taught both as distinctly authentic and in a manner that is mean-
ingfully integrated. Additionally, as both Kiray (2012) and Vasquez et al. (2015) noted, one often finds
differences between how teachers intend to integrate content and how content integration takes
place in practice. There is a tension between the desire to create fully integrated, interdisciplinary
or multidisciplinary experiences and maintain the focus on learning within each of the disciplines.
Thus, these models can provide a useful lens for studying the integration of CS/CT into K-12
instruction.

1.3. Purpose of this study

Given the lack of research focused on how CS/CT can be integrated into elementary school settings,
essential exploratory research involves describing the types of integrated activities created by
elementary teachers who received professional development and had several years teaching CS/
CT within their instructional settings. This study, therefore, explored the implementation of CS/CT
in the context of elementary mathematics. This study had two major foci. First, this study investigated
which CS/CT areas were emphasized in the lessons developed by the teachers. Second, this study
examined the extent to which CS and CT were integrated within mathematics instruction through
the lenses of both Kiray (2012) and Vasquez et al. (2013). This study was part of a larger research
project funded by the National Science Foundation STEM + C program that seeks to develop learning
trajectories for integrated elementary mathematics and CS/CT. The major aim of this study was to

364 M. ISRAEL AND T. LASH

shed light on initial attempts at integrating CS/CT across the grades in the context of elementary
mathematics. Because of the early nature of this research, it is premature to design CT learning pro-
gressions based on this early work. Three research questions guided this study:

(1) Which CS/CT concepts were most notable in lesson plans developed by elementary teachers
across grades 1–5?

(2) How did instruction of CS/CT change across the grades?
(3) In what ways was CS/CT integrated into mathematics instruction across grades 1–5?

2. Method

This study primarily made use of qualitative document analysis methodology (Bowen, 2009; Mayring,
2000) in which instructional lesson plans were analyzed to investigate the CS/CT content as well as
the level to which CS/CT was integrated into elementary mathematics instruction as well as the CS/CT
content most prevalent in those lessons across the grades. Member check procedures were
implemented alongside this lesson plan analysis to clarify participants’ aims in lesson development
as well as to confirm or correct themes that emerged in the analysis.

2.1. Setting and participants

This study took place in a public Midwestern elementary school with a CS for All initiative. This school
made financial and time investments toward bringing CS/CT into instruction to actualize its CS for All
mission. These investments included purchase of equipment, hiring two CS/CT instructional coaches,
working with a university for teacher professional development (PD) related to CS/CT, and providing
time to develop integrated mathematics and CS/CT units. The school had a diverse student popu-
lation that included 58% of students from low-income households, defined as households receiving
public aid or eligible to receive free or reduced-price lunches. The student demographic makeup
included 48% White/Caucasian, 25.5% African American, 7.8% Hispanic, 5.9% Asian and 12.8%
other or multi-racial students. This school population was representative of other local schools and
provided an opportunity to study CS/CT integration in a typical public elementary school with a
wide range of learner backgrounds, abilities, and interests.

During the summer prior to the first year of the CS/CT initiative, approximately 20 teachers
attended a week-long workshop at a local university in collaboration with the colleges of computer
science and education. During the subsequent two years, teacher PD included embedded instruc-
tional CS/CT coaching and monthly after-school PD sessions. As this study was part of a National
Science Foundation project, school personnel had access to university faculty with expertise in CS/
CT and K-12 education as well as curriculum developers of their mathematics curriculum. The univer-
sity team was available on an as-needed basis and during curriculum writing sessions to advise the
teachers on integration, CS/CT, and possible connections between disciplines.

After obtaining Institutional Review Board approval, 13 teachers and two CS/CT coaches were
recruited to participate in this study. These teachers ranged across 1st–5th grades. To develop the
integrated units, the teachers and CS/CT coaches met for 10 sessions during the 2014–2015
school year to write initial lessons. They wrote integrated lessons in an online format through
Google Docs so they could collaboratively write, edit, and share the lessons among group
members. After an initial implementation in the 2015–2016 school year, the teachers and CS/CT
coaches, with support from university and math curriculum professionals, refined the materials as
they taught them and continued to write new materials through spring of 2017. Thus, the integrated
CS/CT lessons were developed through an iterative development process.

During member-checking procedures, one of instructional coaches indicated that at the begin-
ning of the project, prior to lesson implementation and refinement efforts, limited attention was

INTERACTIVE LEARNING ENVIRONMENTS 365

paid to CS/CT learning progressions across the grades because (a) none of the students had signifi-
cant CS/CT exposure so they were all novices, (b) the teachers had limited understanding of what
types of computing activities were appropriate across the grades, and (c) the teachers were still learn-
ing how to bring CS/CT into their mathematics instruction. Additionally, the CS coaches indicated that
the initial considerations of integration involved bringing any CS/CT experiences into mathematics
instruction. They indicated that as the lesson writers gained experience with integrated lesson devel-
opment, they focused more on activities where students could demonstrate mathematical under-
standing through CS/CT activities. Lastly, as lesson development continued, the two CS/CT
coaches developed and used a matrix of available scope and sequence documents from Code.org
CS Fundamentals, Google CS First, and the CSTA standards. They used this matrix as a guideline
for lesson development, focusing primarily on aligning computing concepts at each grade level to
those that were emphasized in the Code.org CS Fundamentals curriculum that was used once a
week for an hour as a stand-alone computing time. The instructional coaches further shared that
as development continued, the writers felt it was important to align the computing concepts stu-
dents engaged with during stand-alone and integrated CS/CT.

While this matrix included kindergarten, the writers of the integrated lessons chose not to write for
that grade level. However, they indicated that they used the matrix, and what students were learning
in Kindergarten during stand-alone Code.org lessons, to guide the first-grade integrated lesson
writing. The teachers and CS/CT coaches also met regularly to discuss student progress, observations
about students’ computational skills, and challenges that students faced during different activities.
Thus, by the second round of lesson plan writing, the teachers and CS/CT coaches more purposefully
considered scope and sequence as well as opportunities for integration. Figure 1 showcases the
process that teachers and CS/CT coaches undertook during the beginning phases of CS/CT inte-
gration planning. It was important to them to begin mapping preliminary learning progressions
and goals at each grade level even though there was not a great deal of readily-available guidance
for this work.

2.2. Curricular materials and software

The elementary mathematics curriculum used in this study was Everyday Mathematics, 4th edition
(EM4; McGraw Hill). Everyday Mathematics is a “spiral” curriculum, or one in which there is an iterative
revisiting of topics. Each time a topic is revisited, the instruction builds upon the previous visit
(Harden, 1999). Thus, topics in a spiral curriculum are introduced and mastered over a series of
instructional experiences rather than taught to mastery in individual lessons or units. The 4th
edition of the research-based, Everyday Mathematics curriculum was updated to align with the
Common Core State Standards, including the Standards for Mathematical Practice (SMP). These
SMP’s describe the types of expertise of “doing” that students should expect to develop over
time as they engage in increasingly more complex mathematical activities. They describe the math-
ematical “processes and proficiency’s” long essential to the act of engaging in mathematical thinking
and doing (Standards for Mathematical Practice – Common Core State Standards Initiative, 2019). The
lesson writers began by picking two instructional units per grade level within the EM4 curriculum for
integration with CS/CT. One unit would be taught in the third quarter of the academic year and one in
the fourth quarter. The third-grade writing team wrote an additional unit as well.

Lessons were created in the following areas:

. 1st grade: Addition word problems

. 2nd Grade: Geometry (properties of polygons)

. 3rd Grade: Fractions (fractional parts and fractions on the number line), multiplication, and number
sense through number stories

. 4th Grade: Number Sense through number stories, Fractions (comparing)

. 5th Grade: Area and volume, Algebraic Thinking, Operations (multiplication and division)

366 M. ISRAEL AND T. LASH

The primary computing environment used for the integration of CS/CT and math in this study was
Scratch (http://scratch.mit.edu), a block-based programming environment in which students drag
and attach blocks of code to create animations and other interactive media (Maloney, Resnick,
Rusk, Silverman, & Eastmond, 2010). Scratch was designed to allow students to progress to increas-
ingly sophisticated programming within the same software (Grover & Pea, 2013; Resnick et al., 2009).
Block-based programming languages such as Scratch are often said to be advantageous in that their
use can reduce syntax errors in novice programmers (Begel, 1996). Furthermore, recent work by
Weintrop and Holbert (2017) suggested that block-based languages such as Scratch that have
visual command block choices alongside the program, allow users to see possibilities that they
may not know exist. In other words, blocks allow the user to experiment in their programming,
freeing them from both having to remember commands as well as helping to assuage fears
related to syntax errors or issues of structure more commonly associated with text-based programs
(Weintrop & Holbert, 2017).

A secondary computing environment was Code.org CS Fundamentals, which is also a block-based
programming language but differs from Scratch in that it allows constrained choices of blocks with
which to build programs based around sequential puzzle-based activities related to different compu-
tational topics. While not directly related to the integrated CS/CT work, students engaged in this
stand-alone, self-guided work once a week in Code.org to build general programming knowledge.
During integrated computing, however, Code.org CS Fundamentals materials functioned as precursor
or supporting activities. Two types of Code.org activities were implemented in this way. The first were

Figure 1. Planning integrated CS/CT lesson progressions.

INTERACTIVE LEARNING ENVIRONMENTS 367

http://scratch.mit.edu

unplugged activities that introduced or reinforced CS/CT concepts without the computer through
hands-on activities. The second set of activities were coding puzzles that allowed students to
engage with a concept more directly than within the integrated materials. Thus, Scratch was primarily
used for integration and Code.org was primarily used for supporting or introductory activities. Typi-
cally, the teachers had a set amount of time for math instruction. This block of time varied between
45 min to one hour per day. The integrated mathematics and CS/CT instruction had to fit within this
time frame. During member checking conversations, the teachers indicated that in developing the
integrated materials, they were conscious about the time required to complete these integrated
activities. With that said, the teachers also indicated that they were given flexibility in the schedule
in case the lessons took a little longer than usual and some lessons were planned so that they
spanned over the course of as many as three days. The EM4 curriculum, with which the CS/CT activi-
ties were integrated, also includes lessons that spanned more than one day. Furthermore, the struc-
ture of EM4, which also includes some multi-day lessons, enabled some flexibility in scheduling. The
EM4 curriculum is built around four days a week of instruction with the fifth day being saved for
reteaching or math games practice. Thus, the teachers treated this fifth day as flexible. All integration
activities were generated by the teachers and the CS/CT coaches collaboratively. CS/CT areas that
were highlighted included sequencing, looping (including nested loops), conditional logic, decompo-
sition, debugging and to a lesser extent, variables and functions. Each of the integrated lessons
addressed at least one of these computational concepts. Lessons can be found at https://ctrl.
education.illinois.edu/ltec.

2.3. Data sources and analysis

The primary data analyzed were lesson plans developed and used by elementary teachers as they
integrated CS/CT into their mathematics instruction. These lesson plans included model activities
and computational artifacts in Scratch and Code.org CS Fundamentals, student planning documents,
assessments and rubrics as well as a matrix of scope and sequence documents that was used in the
second-round writing to assist in determining which computing concepts were to be focused upon.
In total, 47 lesson plans across grades 1–5 were gathered for analysis.

2.3.1. Document analysis
Lesson plans were analyzed through a collaborative effort between researchers involved in curricu-
lum writing as well as researchers independent from the curriculum writing in order to engage in fre-
quent member checks related to lesson content and intent. Two qualitative methodologies were
used for the document analysis. A deductive approach was taken to categorize lessons and activities
based on computational concepts. A more inductive approach was initially taken to understand the
level of integration. This inductive approach used a constant comparative process (Glaser & Strauss,
1967) until common themes related to integration were established.

The research team started with a small fragment of the data (i.e. first grade lesson plans). These
data were inspected to develop a set of codes with the categories of computational concept and
whether the lessons had any evidence of integration with mathematics. New data was then intro-
duced (e.g. lessons from 2nd grade), and were compared to the first set of data. In this manner,
the research team utilized deductive codes in the area of CS/CT concepts (i.e. sequencing, looping,
conditionals, decomposition, and debugging) and a more inductive approach for degree of inte-
gration between mathematics and CS/CT. Through this data analysis process, the research team oper-
ationalized the three categories for level of integration: (a) No integration: Activities that taught
disciplinary content separately (e.g. an unplugged activity that introduces the concept of conditional
logic), (b) Partial integration: Activities in which content in one content area is used to reinforce
content from another area or activities in which academic language from one content area is
taught in the context of another content area (e.g. a teacher describing “debugging” a math
problem), and (c) Full integration: Content from both content areas are taught and used in equal

368 M. ISRAEL AND T. LASH

https://ctrl.education.illinois.edu/ltec
https://ctrl.education.illinois.edu/ltec

measure (e.g. learning about polygons by creating a code to animate polygons). For each compu-
tational concept, a table was created with grade level, explanation of the computational concepts,
and activities coded from the lesson plan. Figure 2 provides a screen shot of part of this coding
document.

The research team met regularly to operationalize definitions and set up a consistent coding
process. After collaboratively coding one lesson plan together, the research team coded another
set of lesson plans independently.

In the end, the research team coded 47 different lessons. Within these lessons, the team ident-
ified 70 distinct activities that were coded for computing content and for level of integration. For
example, in Figure 2, one activity from Code.org was called “Getting Loopy.” This unplugged
activity introduced efficiency as means of creating a program with fewer steps. It was coded
for “Looping/Repetition” activity in the second grade. This activity was then coded as “No inte-
gration” as it taught the concept of looping/repetition outside of math instruction and did not
refer to math content in the lesson plans. Later lessons leveraged this introductory unplugged
activity in a more integrated manner (e.g. Walk a Polygon activity made use of sequencing and rep-
etition). This analysis was then inputted into a Google spreadsheet tied to a web application called
Awesome Table (https://ctrl.education.illinois.edu/ltec/database-of-research-lesson-materials). This
spreadsheet and web interface included the following cells: (a) level of integration, (b) mathematics
concept, (c) grade level, and (d) computing concept. Figure 3 provides a screen shot of the database
interface.

Once lesson plans were individually analyzed, a secondary analysis examined computational con-
cepts across grade levels. As stated above, for the purposes of this study, CS/CT are broadly described
as experiences in which students engage in problem solving and algorithmic thinking alongside both
programming and unplugged activities to engage with mathematics concepts. Therefore, the
definitions of CT from the K-12 CS Framework were used alongside the Framework computing
concept of Algorithms and Programming and its accompanying subconcepts (https://k12cs.org/).
In this way, although there is disagreement in the field regarding definitions and implementation
of CT in K-12, the research team attempted to use definitions consistent with conventions developed
by the CS education researcher and practitioner communities. Once this analysis was completed,

Figure 2. Screen capture of looping code example.

INTERACTIVE LEARNING ENVIRONMENTS 369

https://ctrl.education.illinois.edu/ltec/database-of-research-lesson-materials
https://k12cs.org/

results were shared with CS university faculty as well as K-5 CS educators that were unrelated to this
study for content and construct validation and to address questions about interpretation.

Once the research team had established codes for both computational concepts (through a deduc-
tive approach) and levels of integration (through an inductive approach), it was important to examine
the consistency in which these codes were used. Instead of calculating percent agreement, whichmay
result in inflated agreement scores due to researchers potentially picking the same codes by chance,
Cohens Kappa coefficient (Cohen, 1960) was computed for interrater reliability across both the com-
puting concepts and the three levels of integration. The Cohen’s Kappa table was created across all
codes in all lesson plans. Each of the 70 activities across the 47 lesson plans were coded for both com-
putational concept and level of integration. Cohen’s Kappawas computed across these codes andwas
94% for computational concepts and 90% for level of integration.

Next, member check procedures took place to increase the credibility of the data analysis and
involved asking participants whether research interpretations were correct in intent of both teaching
the computational concepts and the integration that was intended. The research team also asked for
clarification about intent of lesson design in order to better understand decisions about the pro-
gression of computational concepts and reasoning for the types of integration that was intended
by the teachers. Lastly, qualitative themes related to computational concepts and levels of inte-
gration were then quantified for descriptive statistical analysis by ascertaining the numeric frequency
of each code and subcode (Creswell & Plano Clark, 2011; Onwuegbuzie & Teddlie, 2003). These fre-
quency counts were used to determine the prevalence of each theme (i.e. the number of lessons that
addressed topics such as sequencing and looping and the level of integration with mathematics).

3. Results

Lesson plan analysis revealed that across grades 1-5, there were 47 lessons, split into two units per
grade level, with the exception of third-grade, which included a third instructional unit. The number
of lessons per unit varied greatly and ranged from a low of two lessons in one fifth grade unit, to a
high of nine lessons in one second grade unit.

As mentioned above, across the grades, 70 distinct integration activities were noted across the
lessons. For example, one lesson might have an unplugged activity followed by a plugged activity.
In addition to these 47 lessons, teachers also covered general mathematics content from the EM4

Figure 3. Screen capture of the awesome table database of lessons.

370 M. ISRAEL AND T. LASH

teachers manual. These lessons were not included in the lesson plan analysis as they did not address
integration. In fact, during member check interviews, teachers explained that there was a split
between instruction that they considered integrated and instruction from the EM4 teacher’s
manual. Results were organized by research question below.

3.1. RQ1: Which CS/CT concepts were most notable in instruction across grades 1–5? and
RQ2: How did instruction of CS/CT change across the grades?

The 47 lesson plans and accompanying 70 integration activities included a combination of CS/CT,
mathematics, and integrated lessons. The most prevalent CS/CT concepts addressed were sequen-
cing, looping, and conditional logic. To a lesser extent, decomposition, variables and functions
were present, although there was less evidence of progressions within these areas. Interestingly,
although the teachers discussed debugging a great deal during member check conversations, the
lessons did not have explicit evidence of debugging activities. Rather, at the time of this study,
debugging was introduced and modeled for the students as issues emerged. When asked about
the lack of debugging explicitly evident in the lessons, the teachers indicated that in later lesson
development, debugging would be more explicitly embedded in the lesson plans. Table 1 provides
a general description of the emerging learning progressions within sequencing, looping, and con-
ditional statements.

Five teacher-developed lessons focused solely on mathematics and did not contain any CS/CT
content. These were, therefore, excluded from this portion of the analysis. The writers expressed
that for the remaining 42 lessons, sequencing was seen as a fundamental aspect of creating programs
or algorithms. While not overtly taught in all of these lessons, the authors felt the importance of order
and precision was inherent. Building student understanding of the importance of when, how and
which commands are executed was the sole CS/CT focus of many of the lessons at the earlier

Table 1. Computational concept across grades 1–5.

Grade Description Example Activity

1 Order matters when giving a computer commands. Some
sort of an event is needed to begin or run code. First
graders also play with the idea that one plans for
expected outcomes for their program.

Making Speech Bubbles is an early lesson where students
program conversations between 2 sprites. It emphasizes
social skills ideas of one person speaking at a time and
reinforces that order matters when speaking or writing
just as when programming.

2 Students learn that precision and completeness are
important in sequencing. Students learn to identify
instances of repetition in code and ultimately learn that
looping can be used to create the same shape with less
steps. Simple if/then conditional logic is introduced.

Walking Out Polygons is an unplugged, collaborative
activity that engages students in co-constructing an
algorithm to walk out a polygon.

3 Use of the Use, Modify, Create structure, developed by Lee
et al. (2011), allowed students to use and modify
instances of conditional logic, looping and variables.
Branching can allow users to interact with a program and
make choices, variables have values that are dynamic and
can add functionality, and branching can include if, then
and else conditions.

Dance Remix provides students with an opportunity to first
use and later modify a program wherein conditional logic
is used to gather user input in order to make a sprite
dance.

4 Creating programs requires considering both
appropriateness of commands and order.
Appropriateness can be decided only by considering the
commands which came before and desired outcome of
the program. Complexity is added as students use and
modify programs, as well as create programs using if/
then/else conditional logic.

Ask a Question, Wait and Answer involves pairs taking turns
playing the role of questioner and responder. The idea of
using conversation to explore sequencing (from 1st
grade) continues. Students are guided towards asking
questions, listening to the responder and using the
response to drive further conversation via questioning.

5 Students explore multiple ideas in sequencing in fifth grade
including the idea that different sets of instructions can
produce the same result. The introduction of functions
and variables increases the sophistication of the
sequencing, while simplifying the code.

Willis Tower: Students utilize Unifix cubes, graph paper and
Pseudo-Code to recreate the Willis Tower using functions.
They examine how efficiency can be improved by
implementing loops in their code.

INTERACTIVE LEARNING ENVIRONMENTS 371

grades. As lessons introduced increased sophistication of activities and programming tasks, sequen-
cing was either combined with looping or conditional logic. Approximately 21% of the lessons (n =
10) had a combined focus on both sequencing and looping, while 27% (n = 13) included activities
that included sequencing and conditional logic. Only two lessons, approximately 4%, combined
sequencing, looping and conditional logic.

Data analysis revealed emerging learning progressions in the lessons across sequencing, looping,
and conditional logic. These emerging learning progressions highlighted how, across the grades, the
teachers and CS/CT coaches planned to provide increasingly more complex experiences to students
through increasing the sophistication and functionality of their computational artifacts in two inter-
connected ways.

First, across the grades, the lessons and activities showed an increase in sophistication within each
computing concept. For example, in the first-grade lesson plans, students were initially exposed to
the idea that a programming sequence begins with an event and ends with an expected
outcome. These first-grade lessons also aimed to teach that order matters when planning how to
sequence commands, and that if that order is not followed, then the program may not work.
During the second-grade lessons, students were taught to recognize repetition of code within the
program’s sequencing.

Later in second grade, the lesson plans added sophistication through activities that elucidated
how using loops can simplify code. In another example, students in second grade were introduced
to conditional logic through an unplugged if–then coding game. By the 4th grade, students were
engaged in conditional logic activities in which they created fractional parts story problems using
if/then/else blocks as well as operator and sensing blocks (see Figure 4).

Second, functionality and sophistication increased with the addition of, and intersection with, new
computing concepts, such as when conditional logic is added to a program to allow for user input.
For example, first grade lesson plans included limited focus on looping and no introduction to con-
ditional logic. In second grade lessons, within the context of sequencing, students were also provided
with instruction about how looping can increase efficiency and functionality of programs. Second
grade lessons also introduced conditional logic through unplugged activities, but students were
not expected to apply this knowledge to their own computational artifacts. By third grade, lessons
provided opportunities for students to explore the idea that not all of their code is executed when
they utilize conditional logic, or branching, in more complex programs. In fourth grade, lessons

Figure 4. Progression of conditional logic activity.

372 M. ISRAEL AND T. LASH

included experiences wherein students applied knowledge of sequencing and conditional logic in
creating their own programs.

Figure 5 illustrates the spike in the number instances of activities that address conditional logic
within the third-grade lesson plans. Thus, while conditional logic was first introduced briefly in the
second-grade lesson plans, this computational concept was more heavily emphasized in the third
and fourth grades in conjunction with more sophisticated programming activities.

Moreover, while looping and conditional logic were noted in second through fourth grade lesson
plans to add increased complexity to students’ computational artifacts, instantiation of these ideas
was relatively low in fifth grade lessons. Both procedures (i.e. functions) and variables, however,
were introduced in fifth grade to allow for increased functionality in students’ programs. Thus, as
emphasis shifted from looping and conditional logic to functions and variables, there was a reduction
in lessons emphasizing initial concepts that were emphasized in the earlier grades.

3.2. RQ3: In what ways was CS/CT integrated into mathematics instruction across grades
1–5

To understand how the lessons integrated mathematics and CS/CT, lessons were categorized by the
relative amount of disciplinary content taught using Kiray’s (2012) framework as well as level of inte-
gration using Vasquez’s et al. (2013) framework. Analysis revealed that mathematics was taught to a
greater extent than CS/CT content. In fact, approximately 86 lessons (65%) were taught directly from
the EM4 teachers manual. During member-checking, when asked about the reliance on the teachers
manuals, teachers indicated reasons included: (1) commitment to teaching the curriculum with
fidelity, (2) need to cover the mathematics content to prepare students for district and state assess-
ments, and (3) belief that the mathematics curriculum was an effective way to teach mathematics
concepts.

When looking at the teacher-developed lesson plans, three levels of integration emerged: (a) No
integration (i.e. teacher-developed mathematics or CS/CT lessons taught in isolation), partial inte-
gration (i.e. lessons in which CS/CT was used to reinforce mathematics content or mathematics
was used to reinforce CS/CT content), and (c) full integration (i.e. mathematics and CS/CT content
were taught together or the affordances of the CS/CT or mathematics were used to teach the

Figure 5. Sequencing, looping, and conditional logic at each grade level.

INTERACTIVE LEARNING ENVIRONMENTS 373

other subject). Figure 6 provides a visual representation of these three types of activities. The lesson
plans revealed that there was often a cycle of mathematics lessons followed by CS/CT lessons fol-
lowed by more integrated lessons. In this way, new disciplinary content was given enough emphasis
prior to expecting students to use that knowledge within integrated contexts. Member-check inter-
views with both of CS/CT coaches and teachers revealed that they were cautious of teaching new
content across both mathematics and CS/CT because of issues of increased cognitive load
demands when teaching the CS/CT at the same time as the mathematics curriculum.

3.2.1. No integration
The majority of the lessons did not include any integration between mathematics and CS/CT. In
addition to the 86 lessons from the EM4 teacher’s manual, the teachers and CS/CT coaches wrote
22 lessons (46.8%) that either focused on mathematics (n = 5) or CS/CT (n = 17). The lesson plans
that came directly from the EM4 teacher’s manual were referred to in the Google Doc lesson
plans through language such as, “Math Boxes 8.1, See pg. 695 in the teachers manual” (Second
grade integrated unit). These isolated or supporting lessons that the teachers and CS/CT coaches
wrote typically provided a pre-requisite experience to an integrated mathematics and CS/CT activity.
In the second-grade unit, for example, in addition to the EM4 lessons, in a unit about attributes of
different polygons, the lesson plan included an activity that began with the teacher reading aloud
the book, The Greedy Triangle by Marilyn Burns (1994). This book was followed by an activity in
which students look around the classroom to find and describe shapes similar to those from the book.

On the other hand, CS/CT lessons came from a variety of places including teacher-created mini
lessons highlighting a specific computational concept or Scratch block and unplugged activities or
from Code.org. According to the goal statements within these lesson plans, the supporting CS/CT
lessons typically served the purpose of pre-teaching CS/CT skills in preparation for more integrated
lessons. An example of a CS/CT lesson was a 4th grade unplugged activity that introduced the Scratch
blocks “Ask a question and wait” and “answer” in the Sensing tab. In this activity, the students
engaged in asking each other questions, waiting, and then responding to the question.

3.2.2. Partial integration
Fourteen of the analyzed lessons (29.7%) had some degree of integration between mathematics and
CS/CT. In these lessons, mathematics content was more heavily emphasized and CS/CT reinforced
that mathematics content. The primary focus of these lessons was the mathematics, but CS/CT activi-
ties were built into these lessons. In these lessons, CS/CT offered opportunities for students to
demonstrate understanding of mathematics concepts by creating representations of mathematics.
For example, in one 4th grade lesson, the lesson plan described providing opportunities for students
to animate number stories as part of their mathematics instruction.

Figure 6. Three types of lessons in the integrated mathematics and CS/CT units.

374 M. ISRAEL AND T. LASH

This lesson focused on reinforcing understanding of fractional parts through the CS/CT activity
(see Figure 7). The lesson plan began with a teacher model that showed the students how to
animate a fractional part of a collection of items. The lesson then progressed to an activity
wherein students create their own fractional part stories with animations in Scratch. The teacher
model from the lesson plans was:

(1) There are 12 fish.
(2) Four of the fish are green, three are red, and the rest are blue.
(3) What fractional part of the fish are blue?

Thus, the majority of partial integration activities provided students with opportunities to demon-
strate their mathematical understanding in Scratch. These activities typically provided for opportu-
nities in which students could create the scenarios in which their demonstrated their
understanding, but the mathematical content was well-defined.

3.2.3. Full integration
Eleven lessons (23.4%) were categorized as fully integrated. These lessons primarily taught math-
ematics concepts directly through CS/CT activities rather than teaching mathematics lessons and
then having students demonstrate understanding through CS/CT. For example, a 2nd grade lesson
plan indicated that students would learn about different polygons by animating those polygons in
Scratch. The lesson plan explained that the students would walk the shapes of the polygons and
then code those shapes. Figure 8 showcases the unplugged portion of the “walk a polygon” activity.

In another example, a 5th grade unit included full integration of mathematics and CS/CT as stu-
dents learned to calculate area and volume by calculating the volume of the Willis Tower in
Chicago. The EM4 teacher’s manual included this activity, but the teachers added experiences in
which students worked in pairs to create physical models of the Willis tower in Unifix cubes.

One student developed the model, which was hidden from the second student. They then wrote
pseudo-code for the second student, who followed the code and worked as if they were a robot to
build the tower represented by the code. If the structure was not completed correctly, the students
then decomposed the code and went through a debugging process to fix it and try again. Next, the
students switched roles. In the second phase of the lesson, the students learned about how functions
could be used to simplify their pseudo-code and therefore the number of movements required by the
“robot”. The CS/CT concept of functions was a key component of the activity as students created

Figure 7. Teacher’s display version of the fractional parts story problem.

INTERACTIVE LEARNING ENVIRONMENTS 375

pseudo-code to indicate the volume of the Willis Tower pieces. In these lessons, consequently, there
was proportional attention given to both the mathematics and CS/CT content.

Thus, across all the units, there was a mix of activities that highlighted a range of computational
concepts through a range of integration activities.

4. Discussion

This study showcased how elementary teachers and CS/CT instructional coaches, with professional
development and support from CS and education university faculty, attempted to develop integrated
mathematics and CS/CT instructional units across grades 1–5. Because of the emphasis on bringing
CS/CT into the early grades, research into different implementation models is crucial. Given the
limited research available to inform teachers and curriculum developers in how to integrate CS/CT
into elementary mathematics (Rich et al., 2017), this implementation study provides a critical perspec-
tive. Findings from this study address both emerging progressions of computational concepts across
the grades as well as approaches to integration.

4.1. Emerging CT learning progressions in the integrated lessons

Integrated lesson plans included an emerging progression of learning activities from first to fifth
grades related to the areas of sequencing, looping, and conditional logic in what Duschl, Schweingru-
ber, and Shouse (2007) described as successively more sophisticated ways of thinking about a topic
(p. 219). These progressions are considered emerging as they are not fully developed; rather, they
show a means of teaching CS/CT in increasing sophistication across the grades using the existing
materials, resources, and supports within one instructional context. Rather, these emerging pro-
gressions should be expanded to year-long integrated experiences and then tested in multiple set-
tings across students with different experiences in order to continue to refine the development of the
CS/CT skills across the grades.

An interesting finding from the CS/CT emerging progressions was that the CS/CT concepts were
not linear. Rather, as lessons increased in complexity, they called on other computational concepts.
For example, as lessons included activities with increasing sophistication of sequencing concepts,
those lessons began to integrate looping and conditionals. This finding about the

Figure 8. Unplugged “Walk a Polygon” activity as initial exploration the CS/CT concept that computers follow exact instructions.

376 M. ISRAEL AND T. LASH

interconnectedness of computational concepts supports findings by Rich et al. (2017), who examined
implicit learning progressions in CS educational studies and also found interconnectedness of CS and
CT concepts across these studies. Although these authors stated that most of the literature they
found addressed individual CS or CT learning goals, when examining the literature as a whole,
they found a pattern of interconnectedness between CT concepts related to sequencing, looping,
and conditional statements. Two additional computing concepts were seen in the fifth-grade
lesson plans. These concepts, namely functions and variables, did not lend themselves to describe
progressions as they only occurred in a limited number of lessons and were only at this one grade
level. These lessons did, however, serve to increase the sophistication of the sequencing required
in each lesson. Further, it is notable that even though the 2017 CSTA Standards were not complete
at the time of the lesson development process in which the teachers engaged, the inclusion of teach-
ing variables and functions (without parameters) at the fifth-grade level is consistent with the guide-
lines laid out in the those standards.

Another CS/CT area that did not lend itself to developing progression was debugging. Interest-
ingly, although teachers across the grades discussed debugging and strategies that they used to
help students debug their projects, debugging was not explicitly seen in the lesson plans. We antici-
pated finding specific strategies embedded in the lesson plans and were hoping to explain how the
lessons addressed debugging across the grades. The teachers did indicate, during member check
interviews, that future lesson plans will have an explicit focus on debugging so that the instructional
practices that were utilized by the teachers would be noted in the lesson plans. Future research
should therefore investigate how to teach debugging across the grades.

This study also highlighted the use of foundational, supporting CS/CT activities that were not
designed as integrated activities, but rather were designed to provide prerequisite skills prior to inte-
grated activities. At times, new computational concepts were introduced with concrete unplugged
experiences in the form of physically acting out ideas (e.g. Students walking the shapes of polygons,
see Figure 8) or through simple computing activities through Code.org CS Fundamentals or Scratch.
Member-check interviews revealed that these isolated computing activities seemed to serve dual
purposes of increasing sophistication of programming activities while decreasing cognitive load.
Later lessons built on these formative lessons, giving students a chance to learn new ideas prior to
computer-based activities.

Member-check interviews with CS/CT coaches also revealed that the writers utilized a matrix of
available scope and sequence documents as well as a previous generation of the CSTA standards.
Given that the K-12 CS Framework (2016) and the updated CSTA standards were not developed at
the time of initial lesson creation, future research should investigate how learning progressions in
the K-12 CS Framework can inform the development of future CS/CT curricula, including those
that integrate into other disciplines such as mathematics.

4.2. Integration of CS/CT into elementary mathematics

The teachers and CS/CT coaches who developed the integrated units relied heavily on the EM4 math-
ematics curriculum but also created opportunities for students to both demonstrate their mathemat-
ical understanding through CS/CT activities and learn mathematics through CS/CT experiences. These
lessons, therefore, parallel the commitment of other researchers who acknowledge the affordances of
teaching CS/CT in the context of other disciplines (e.g. Jona et al., 2014; Lee et al., 2014).

In evaluating the integration of CS/CT into elementary mathematics, lesson plan analysis revealed
that integration involved a range of activities from fully integrated to isolated or supporting math-
ematics and CS/CT lessons. In fact, although there were lessons that fully integrated the content
areas, the majority of lessons did not include any integration of the two content areas. As stated
above, the teachers explained that it was important to adhere to the mathematics curriculum to
teach the content with fidelity. This finding supports English (2017) who explained how challenging
it can be to integrate content areas while at the same time preserving the integrity of the disciplines.

INTERACTIVE LEARNING ENVIRONMENTS 377

Additionally, all integrated lessons had to be created by the teachers. Even though they had support
from content experts and CS/CT coaches, there was no existing integrated mathematics and CS/CT
curriculum for them to implement. Rather, they had to plan, create, and iterate themselves. Future
research should investigate whether teachers would use more integrated lessons if those lessons
were available to them as compared to the present study, wherein they had to create all the inte-
grated materials themselves.

The theoretical frameworks offered by Kiray (2012) as well as Vasquez et al. (2013) provided a
useful frame for interpreting the lesson plans. Kiray’s model addressed the amount of content
taught across disciplinary areas. Given that the analyzed integrated lessons primarily focused on
the mathematics, Kiray’s (2012) balance model would classify them as “math centered, CS/CT
assisted”. Kiray explained the reason for the dominance of isolated, disciplinary instruction was
that this type of instruction was the primary mode of instruction. That is, most content is not
taught in an interdisciplinary manner; even when attempting to integrate content areas, it is
difficult to do so because of the nature of disciplinary instruction.

. Disciplinary: Lessons taught in isolation in a disciplinary manner where students learn concepts of
separate disciplines separately from each other. Most lessons fell into this category, either as a
means of conveying the math concepts or providing context in CS/CT to be used in future
instruction.

. Multidisciplinary: Content areas taught separately but in reference to common themes. These
lessons typically referred to other content areas (e.g. math lessons that reference CS/CT or CS/
CT lessons that reference mathematics). For example, there was a math lesson on decomposing
fractions that referred to decomposition in CS, but did not provide additional instruction
beyond pointing out the connection between the disciplines.

. Interdisciplinary: Concepts and skills from two or more disciplines taught in a linked manner.
Lessons that included integration typically fell within this category. These lessons fell along the
continuum described in Kiray (2012) wherein one content area may have been more heavily
emphasized but the two content areas were linked and taught together.

. Transdisciplinary: Knowledge from two or more disciplines used to provide students with auth-
entic problem- and project-based learning opportunities. There was no evidence of this type of
integration in the lessons.

In using Vasquez and colleagues’ model, most lessons fell in the disciplinary category (no inte-
gration). However, 14 lessons included partial integration and 11 lessons fully integrated content.
These integrated 25 lessons had content that would be considered either multidisciplinary or inter-
disciplinary in the STEM integration model. Within these lessons, the teachers organized instruction in
an interdependent and interconnected manner where students would apply understanding from
both mathematics and CS/CT. Vasquez (2015) explained barriers to transdisciplinary instruction as
this type of instruction takes extensive resources, collaboration, and time. Thus, the lack of transdis-
ciplinary activities in the analyzed lessons was consistent with Vasquez’ assertions.

Another implication of the reliance on isolated or supporting CS/CT activities was that at the time of
this study, the elementary students had limited previous exposure to CS/CT. Thus, the supporting CS/CT
lessons may have been a necessary step that allowed students to build computational skills in a
scaffolded manner in preparation for lessons that integrated mathematics and CS/CT. It may be that
in subsequent years, and with additional computing experience, only lesson plans at the earliest
grades will need the high percentage of precursor lessons found in the analyzed lesson plans,
making more room for truly integrated and coherent computing within the curriculum. On the other
hand, it could also be that as CS/CT concepts increase in sophistication, there will continue to be a
need for supporting precursor activities. Moreover, while some students may not need isolated, sup-
porting lessons, due to learner variability, some students may gain extensive benefit from their use. Pre-
cursor or supporting lessons may also prove to be a tool teachers wield in assisting new students or

378 M. ISRAEL AND T. LASH

those lacking comparable computing experience to the remainder of the class. Future research should
examine the evolution of integrated lesson materials as students become more proficient in the CS/CT
at earlier ages. It is an empirical question whether there will be a decreasing need for such activities in
the future as CS for All takes hold in schools or whether as students gain additional expertise, the pre-
cursor supporting activities will involve more complex CS/CT content.

The curricular context in which lessons were integrated is also of note. Both the supporting and inte-
grated lessons were written to work within a spiral mathematics curriculum. A spiral curriculum is one in
which there is an iterative revisiting of topics, wherein each visit builds upon the previous one Harden
(1999). Thus, topics in a spiral curriculum are introduced and mastered over a series of instructional
experiences rather than taught to mastery in individual lessons. Several questions emerge about inte-
grating CS/CT into a content area that is taught through a spiral curriculum method. First, CS/CT learn-
ing progressions are only now being developed, so there is no guidance in how to spiral curricular
materials. Teachers, therefore, do not have a clear way of knowing how long to remain on key CS/
CT concepts, how these key concepts should be revisited, and when to move onto new concepts.
Second, there is little guidance in how to consider integrating CS/CT that is not taught in a spiral
manner into a content area that is taught through a spiral approach. Thus, several implications for
future research in this context exist including (a) a comparison of the barriers and affordances of inte-
grating CS/CT into spiral versus non-spiraled curriculum, and (b) an exploration of ways in which spir-
aling the learning of CS/CT concepts can occur in the context of integrating CS/CT into core curriculum.

Lastly, the lesson writers expressed two major considerations related to curriculum and inte-
gration. In trying to find opportunities for integrated lessons, the writers stated that it was often
hard to find a good match between specific mathematical content and CS/CT ideas. When facing
this challenge, they looked to the Standards for Mathematical Practice (SMP) for further opportunity
as they saw certain synergies between the SMPs and the computational practices which they were
trying to build into these integrated experiences. The emphasis of the Standards for Mathematical
Practice differ from the Standards for Mathematical Content. The ideas behind the former rest on
a long history of delineating the thinking processes which proficient mathematical thinkers
engage as they go about solving mathematical problems (Cuoco, Goldenberg, & Mark, 1996;
Ferrini-Mundy & Martin, 2000; National Research Council, 2005). For these mathematical practices
to become habit, or tools that students will use on their own, it is necessary to provide multiple
opportunities to explore and utilize the SMPs. The SMPs include the following: (a) make sense of pro-
blems and persevere in solving them, (b) reason abstractly and quantitatively, (c) construct viable
arguments and critique the reasoning of others, (d) model with mathematics, (e) use appropriate
tools strategically, (f) attend to precision, (g) look for and make use of structure, and (h) look for
and express regularity in repeated reasoning. Member check discussions with teachers revealed
that they acknowledged that as with the computational practices, students should not be expected
to master the SMPs in short order, but instead engage in their use over the course of many oppor-
tunities, spanning multiple years. Therefore, future research should investigate planning related to
the teaching of the SMPs (and computational practices) at multiple levels (e.g. within units, across
grade levels, across the school year) to ensure the sufficient opportunity to engage and master
these proficiencies (Mateas, 2016).

4.3. Limitations

Findings from this study need to be considered in light of several limitations. First, as with all document
analysis studies, the documents analyzed within this study cannot provide complete context (Bowen,
2009). Although the lesson plans analyzed provided information about the content the teachers and
CS/CT coaches considered important to teach within integrated CS/CT and mathematics lessons and
member-check procedures allowed for verification of interpretation by the participants, the lesson
plans only provide written evidence of lesson development rather than lesson implementation.
Second, the units developed did not represent a full year-long curriculum. Because of this constraint

INTERACTIVE LEARNING ENVIRONMENTS 379

on lesson development, the integrated units could only address mathematics content taught at the
time of lesson implementation. Therefore, the teachers and CS/CT coaches had to find ways to fit
CS/CT into existing mathematics instruction rather than consider integration from the inception of cur-
riculum development. Although this type of instructional barrier would be common across most
elementary teaching scenarios, findings related to integration and CS/CT taught could perhaps be
different if the teachers had more flexibility in terms of the mathematics taught. Finally, as noted in
the methods, the school in which this study took place had made a concerted effort to integrate
CS/CT into the curriculum over several years. Therefore, the resources, supports (e.g. coaches), planning
time available to create an idea scenario for elementary mathematics and CS/CT integration, and dedi-
cated instructional time may not be representative of schools without a CS/CT instructional focus.
Because of this significant level of support, there are implications for transferability to less resourced
schools.

4.4. Conclusion

This study provided a lens into what it would take to design integrated instructional units for elemen-
tary classrooms in the context of mathematics and CS/CT instruction. Results highlighted the multiple
layers of complexity of designing such instruction and result in multiple questions that should be
investigated in future studies. Example questions include: (a) Was the level of integration a
product of teachers need to follow the mathematics curriculum with fidelity? and (b) Did isolated,
supporting lessons build sufficient foundational knowledge in both mathematics and CS/CT to
allow for a more authentic integration? Given the proliferation of CS/CT activities in elementary
schools, it is critical to continue investigating multiple models, instructional delivery approaches,
challenges, and affordances of bringing CS/CT into elementary education classrooms.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by National Science Foundation [STEM+C Award Numbers: 1742466 and 1932920].

Notes on contributors

Maya Israel, Ph.D. is an associate professor of educational technology in the School of Teaching and Learning at the Uni-
versity of Florida. Her research and outreach efforts focus on increasing access and engagement for academically diverse
learners in K-8 computational thinking and computer science education. As the research director of the Creative Tech-
nology Research Lab, Dr. Israel conducts research on several National Science Foundation projects focused on integrating
computing into elementary education as well as accessible computer science education. Lastly, she also consults with
school districts on the development and implementation of computer science instruction that meets the needs of all
learners, including those with disabilities.

Todd Lash is a doctoral student in Special Education at Creative Technology Research Lab at the University of Illinois.
Todd’s research interests include increasing the equity in and access to high-quality computer science education for
all students. He studies the integration of computer science into K-5 curricula and how Universal Design for Learning
(UDL) may be used as a way to engage all learners. Todd serves on the advisory boards of multiple nationally scaled
computer science education projects and has conducted extensive outreach, consultation, and professional develop-
ment with the CS education community.

ORCID

Maya Israel http://orcid.org/0000-0003-0302-6559

380 M. ISRAEL AND T. LASH

http://orcid.org/0000-0003-0302-6559

References

Begel, A. (1996). Logoblocks: A graphical programming language for interacting with the world (pp. 62–64). Boston, MA:
Electrical Engineering and Computer Science Department, MIT.

Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40.
Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational think-

ing. Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, BC (Vol. 1,
p. 25).

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-
Burton, & T. J. Moore (Eds.), STEM road map (pp. 23–37). New York, NY: Routledge.

Burns, M. (1994). The greedy triangle. New York, NY: Scholastic.
Clements, D. H., & Sarama, J. (2004). Mathematical thinking and learning trajectories in mathematics education learning

trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81–89.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.
Computer Science Teachers Association. (2017). CSTA K-12 computer science standards, revised 2017. Retrieved from

https://www.csteachers.org/page/standards
Confrey, J., Maloney, A. P., & Corley, A. K. (2014, October). Learning trajectories: A framework for connecting standards

with curriculum. ZDM Mathematics Education, 46(5), 719–733. doi:10.1007/s11858-014-0598-7
Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Los Angeles, CA: SAGE

Publications.
Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula. The

Journal of Mathematical Behavior, 15(4), 375–402.
Daro, P., Mosher, F. A., & Corcoran, T. B. (2011). Learning trajectories in mathematics: A foundation for standards, curriculum,

assessment, and instruction (CPRE Research Reports). Retrieved from https://repository.upenn.edu/cgi/viewcontent.
cgi?article=1019&context=cpre_researchreports

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in
grades K-8 (Vol. 49, No. 2, pp. 163–166). Washington, DC: National Academies Press.

English, L. D. (2017). Advancing elementary and middle school stem education. International Journal of Science and
Mathematics Education, 15(1), 5–24.

Ferrini-Mundy, J., & Martin, W. G. (2000). Principles and standards for school mathematics. Reston, VA: National Council of
Teachers of Mathematics (NCTM).

Glaser, B. G., & Strauss, A. L. (1967). Grounded theory: The discovery of grounded theory. Sociology, the Journal of the
British Sociological Society, 12, 27–49.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher,
42(1), 38–43.

Harden, R. M. (1999). What is a spiral curriculum? Medical Teacher, 21(2), 141–143.
Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning Environments, 1(1), 1–32.
Jona, K., Wilensky, U., Trouille, L., Horn, M., Orton, K., Weintrop, D., & Beheshti, E. (2014). Embedding computational thinking

in science, technology, engineering, and math (CT-STEM). Future directions in computer science education summit
meeting, Orlando, FL.

Kiray, S. A. (2012). A new model for the integration of science and mathematics: The balance model. Energy Education
Science and Technology Part B: Social and Educational Studies, 4(3), 1181–1196.

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K-8 curriculum.ACM Inroads, 5(4), 64–71.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J.,…Werner, L. (2011). Computational thinking for youth in

practice. ACM Inroads, 2(1), 32–37.
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language and environ-

ment. ACM Transactions on Computing Education, 10(4), 1–15. doi:10.1145/1868358.1868363
Masters, G. (2016). Policy insights: Five challenges in Australian school education. Melbourne: Australian Council for

Educational Research. Retrieved from https://research.acer.edu.au/cgi/viewcontent.cgi?article=1004&context=
policyinsights

Mateas, V. (2016). Debunking myths about the standards for mathematical practice. Mathematics Teaching in the Middle
School, 22(2), 92–99.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research, 1 (2), Art. 20. Retrieved from http://
www.qualitative-research.net/index.php/fqs/article/view/1089/2385#gcit.

National Research Council. (2005). On evaluating curricular effectiveness: Judging the quality of K–12 mathematics evalu-
ations. Washington, DC: National Academy Press.

Onwuegbuzie, A. J., & Teddlie, C. (2003). A framework for analyzingdata inmixedmethods research. InA. Tashakkori &C. Teddlie
(Eds.), Handbook of mixed methods in social & behavioral research (pp. 397–430). Thousand Oaks, CA: Sage Publications.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
Papert, S. (2006). Afterword: After How comes what. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences

(pp. 581–586). Cambridge: Cambridge University Press.

INTERACTIVE LEARNING ENVIRONMENTS 381

https://www.csteachers.org/page/standards
https://doi.org/10.1007/s11858-014-0598-7
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1019%26context=cpre_researchreports
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1019%26context=cpre_researchreports
https://doi.org/10.1145/1868358.1868363
https://research.acer.edu.au/cgi/viewcontent.cgi?article=1004%26context=policyinsights
https://research.acer.edu.au/cgi/viewcontent.cgi?article=1004%26context=policyinsights
http://www.qualitative-research.net/index.php/fqs/article/view/1089/2385#gcit
http://www.qualitative-research.net/index.php/fqs/article/view/1089/2385#gcit

Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind
in lattice land. Mathematical Thinking and Learning, 20(1), 75–89.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., … Kafai, Y. B. (2009). Scratch: pro-
gramming for all. Communications of the ACM, 52(11), 60–67.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017, August 18–20). K-8 learning trajectories derived
from research literature: Sequence, repetition, conditionals. Proceedings of the 2017 ACM conference on International
Computing Education Research, Tacoma, WA (pp. 182–190). New York, NY: ACM.

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015, March 4–7). Transferring skills at solving word problems from
computing to Algebra through bootstrap. Proceedings of the 46th ACM technical symposium on Computer Science
Education, Kansas City, MO (pp. 616–621). New York, NY: ACM.

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Teacher’s toolkit: Exploring the science framework and NGSS:
Computational thinking in the science classroom. Science Scope, 38(3), 10.

Standards for Mathematical Practice. Common Core State Standards Initiative. (2019). Retrieved October 11, 2019, from
Corestandards.org website: http://www.corestandards.org/Math/Practice/

Vasquez, J. A. (2015). STEM—Beyond the Acronym. Educational Leadership, 72(4), 10–15.
Vasquez, J. A., Comer, M., & Sneider, C. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engin-

eering, and mathematics. Portsmouth, NH: Heineman.
Waterman, K., Goldsmith, L., Pasquale, M., Goldenberg, E. P., Malyn-Smith, J., DeMallie, A., & Lee, I. A. (2018). Integrating

computational thinking into elementary mathematics and science curriculum materials and instruction. Pixel (Ed.),
Conference proceedings: The Future of Education 2018. Florence: Libreria Universitaria Edizioni.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.

Weintrop, D., & Holbert, N. (2017, March 8–11). From blocks to text and back: Programming patterns in a dual-modality
environment. Proceedings of the 2017 ACM technical symposium on Computer Science Education, Seattle, WA (pp.
633–638). New York, NY: ACM.

382 M. ISRAEL AND T. LASH

http://www.corestandards.org/Math/Practice/

	Abstract
	1. Introduction
	1.1. Defining CS/CT in the context of this study
	1.2. Conceptual models for CS/CT content integration
	1.2.1. Mathematics and CS/CT integration

	1.3. Purpose of this study

	2. Method
	2.1. Setting and participants
	2.2. Curricular materials and software
	2.3. Data sources and analysis
	2.3.1. Document analysis

	3. Results
	3.1. RQ1: Which CS/CT concepts were most notable in instruction across grades 1–5? and RQ2: How did instruction of CS/CT change across the grades?
	3.2. RQ3: In what ways was CS/CT integrated into mathematics instruction across grades 1–5
	3.2.1. No integration
	3.2.2. Partial integration
	3.2.3. Full integration

	4. Discussion
	4.1. Emerging CT learning progressions in the integrated lessons
	4.2. Integration of CS/CT into elementary mathematics
	4.3. Limitations
	4.4. Conclusion

	Disclosure statement
	Notes on contributors
	ORCID
	References

