
Understanding Students' Computational Thinking through
Cognitive Interviews: A Learning Trajectory-based Analysis

Feiya Luo
University of Florida
College of Education

Gainesville, FL
sophia.f.luo@Gmail.com

Maya Israel
University of Florida
College of Education

Gainesville, FL
misrael@coe.ufl.edu

Ruohan Liu
University of Florida
College of Education

Gainesville, FL
liuruohan1990@ufl.edu

Wei Yan
University of Florida
College of Education

Gainesville, FL
wei1993yan@ufl.edu

Brian Gane
University of Illinois at Chicago

Learning Sciences Research Institute
Chicago, IL

bgane@uic.edu

John Hampton
University of Florida
College of Education

Gainesville, FL
ufxero@ufl.edu

ABSTRACT
For K-8 computer science (CS) education to continue to expand, it
is essential that we understand how students develop and demon-
strate computational thinking (CT). One approach to gaining this
insight is by having students articulate their understanding of CT
through cognitive interviews. This study presents findings of a
cognitive interview study with 13 fourth-grade students (who had
previously engaged in integrated CT and mathematics instruction)
working on CT assessment items. The items assessed four CT con-
cepts: sequence, repetition, conditionals, and decomposition. This
study analyzed students' articulated understanding of the four CT
concepts and the correspondence between that understanding and
hypothesized learning trajectories (LTs). We found that 1) all stu-
dents articulated an understanding of sequence that matched the
intermediate level of the Sequence LT; 2) a majority of students'
responses demonstrated the level of understanding that the rep-
etition and decomposition items were designed to solicit (8 of 9
responses were correct for repetition and 4 of 6 were correct for
decomposition); and 3) less than half of students' responses artic-
ulated an understanding of conditionals that was intended by the
items (4 of 9 responses were correct). The results also suggested
questioning the directional relationships of two statements in the
existing Conditionals LT. For example, unlike the LT, this study
revealed that students could understand “A conditional connects
a condition to an outcome” before “A condition is something that
can be true or false.”

CCS CONCEPTS
• Social andprofessional topics→Computing education;Com-
putational thinking; K-12 education; Student assessment.
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1 INTRODUCTION
At the elementary school level, computer science (CS) is often
presented as integrated computational thinking (CT) within the
context of other academic disciplines, such as mathematics and
science [11, 20, 21]. Reasons for this approach include both: (a)
capitalizing on the affordances of authentic, applied CT within
the disciplines, and (b) increasing equity by providing CS and CT
within subject areas that are taught to all children as compared
to electives or enrichment activities (e.g., [22]). As this method
of teaching CS and CT expands, there is a growing need to better
examine how students demonstrate the understanding of CT within
these integrated experiences.

To add complexity, because elementary CT is still a new instruc-
tional area, there are few existing, tested learning progressions for
what and how students should learn CT. The closest approximations
that can be used for such work are learning trajectories (LTs) devel-
oped from extrapolating implicit learning goals from the literature
(e.g., [18, 19]), the K-12 CS Framework [4], and resulting Computer
Science Teachers Association (CSTA) standards [5]. While these per-
spectives provide potential standards and expectations that frame
K-12 CS/CT instruction, they were developed based on common
understanding rather than tested learning progressions.

This study used the CT definition provided by the K-12 CS Frame-
work, which referred CT to be “the thought processes involved in
expressing solutions as computational steps or algorithms that
can be carried out by a computer” [4]. The LTs further helped the
research team dissect CT into the four concept areas, sequence,
repetition, conditionals, and decomposition. Therefore, this study
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Figure 1: A snippet of the repetition learning trajectory.
Adapted from Rich et. al. [19].

defined CT to be students' thought processes while expressing com-
putational solutions in each of the aforementioned four concept
areas.

Now that these LTs as well as the K-12 CS Framework and CSTA
standards have been developed, a necessary next step is to exam-
ine how students demonstrate understanding of CT within these
frameworks. This work will help teachers, curriculum developers,
and tool designers understand what students should know as they
progress from grade to grade, how the CT concepts intersect as
students gain expertise, and the types of understandings and mis-
conceptions students experience during elementary CS and CT
instruction.

The purpose of this study, therefore, was to use the cognitive
interview technique [6, 7] to qualitatively examine elementary stu-
dents' CT understandings, leveraging the CT learning trajectories
proposed by Rich et. al. [18, 19]. Given the wide range of variability
among learners in elementary schools and the limited theoretical
and empirical evidence of students' conceptual understanding of
CT, this study focused on the range of understandings in one grade
level rather than across grade levels. Inspired by Maloney, Con-
frey, and Nguyen's [12] work on learning trajectories, the research
questions that guided this study were:

(1) How do 4th-grade students express and articulate CT under-
standing, in the areas of sequence, repetition, decomposition,
and conditionals?

(2) How does students' CT understanding correspond to the hy-
pothetical cognitive progression of the learning trajectories?

2 RELATED WORK
2.1 Theoretical Basis
An established construct in mathematics research and practice, LT
(learning trajectory) refers to a hypothetical collection of landmarks
students meet as they progress toward increasing sophistication
during learning [2, 12]. An LT is hypothetical in nature because
such progression is often conceptualized and created by working
with a particular, usually small, groups of students. Since students'
prior knowledge and engagement in learning cannot always be
known in advance, an LT can only provide an a priori trajectory
as to how learning may progress in a different group [2]. To study
students'mathematical learning and skill acquisition, Clements and
Sarama [3] dissected early math education into different topics and
concepts such as quantity, counting, arithmetic, and spatial thinking
and proposed a learning trajectory for each of the concepts.

Recently, the LT approach has been adopted by CS and CT re-
searchers as a general way to gain insight into CT/CS teaching and

learning. This study was guided and informed by the K-8 computa-
tional thinking LTs for four concepts: sequencing, repetition, condi-
tionals, and decomposition [18, 19]. These computational thinking
LTs are also hypothetical in nature as they were designed by ex-
amining literature not intended to be used for the specific aim of
developing LTs [18, 19]. The four LTs are road maps with arrows
that connect multiple consensus goals (CGs) placed in boxes that
are either gray (indicating offline or unplugged goals) or white
(computer-based goals). The CGs are the big ideas extracted and
synthesized by Rich et al. [18, 19] from learning goals described in
previous research studies.

For example (Figure 1), one CG of the repetition LT, “Some tasks
involve repeating actions,” is visually displayed in the LT as a gray
box because it can be taught and demonstrated without the use of
a computer, whereas “Computers use repeat commands” is visually
displayed in a white box because of the specific reference to com-
puter programs. By and large, the LTs provide a possible, but not
linear, learning progression that students may traverse from their
initial understanding of a topic to more sophisticated understanding
[3].

For the sequence, repetition, and conditionals LTs, Rich et al. [19]
categorized the CGs into beginning, intermediate, and advanced
levels, indicating the increasing sophistication of a computing con-
cept. In addition, the black or gray arrow between two CGs indicate
“understanding of the source box is necessary” and “understanding
of the source box is helpful, but not necessary” [19], respectively.
For example, the conditionals CG “A conditional connects to a con-
dition to an outcome” requires the understanding of two source CGs
connected with black arrows, “A condition is something that can
be true or false” and “Actions often result from specific causes.” The
decomposition LT does not specify any leveling of sophistication
and the arrows show literature-supported connections instead of
any prerequisite relationships between the CGs.

2.2 Computational Thinking Assessment
Design. Different from existing CT assessments such as Gonzalez’s
[9], the fourth-grade CT assessment items used in this study were
conceptualized and designed by systematically mapping to the
core ideas in the LTs. The items are intended to assess elementary
students' understanding in five different CT domains: sequenc-
ing, repetition, conditionals, decomposition, and variables[8]. The
assessment items were designed using evidence-centered design
(ECD), an assessment design process that focuses on designing
items that will elicit evidence of students' CT understanding. ECD
helps one structure an assessment argument in which interpretive
claims are specified (claims about what students know and can do)
and the evidence for those claims (in terms of features of student
responses that would provide support for the claims) are specified
in tandem with designing the assessment items and scoring cri-
teria/rubrics [15, 16]. In particular, different design patterns [14]
were developed to structure the design of assessment items in each
CT domain (e.g., sequencing, etc.). The set of assessment items
include multiple response formats: true-or-false, multiple-choice,
open-ended, and fill-in-the-blank questions. Additionally, some
items use screenshots of the Scratch interface or specific Scratch
bl ocks. For example, an item on conditionals asks for students
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Figure 2: Sample conditional item

to describe the result of a program that involves conditional logic
(Figure 2). In total, 11 items were sampled from the assessment item
pool for the purpose of this study:

• Sequence: 3 items
• Repetition: 3 items
• Conditionals: 3 items
• Decomposition: 2 items

Although we had assessment items related to variables, there was
no Variables LT in the literature. Therefore, we did not discuss the
variables items in this paper.

Validity. Validation is a process of argumentation, in which one
makes claims about the intended interpretive uses and evidence
for those uses is collected and interpreted [1, 10]. The evidence can
be multi-faceted, as different evidence is needed for different inter-
pretive uses, and multiple pieces of evidence can provide stronger
support for the assessment argument [1]. While the research team
continues to marshal validity evidence of using these assessment
items to understanding fourth-grade students' CT, existing evidence
comes from following the principled design process and from con-
ducting an internal review process prior to piloting the assessment
items. An additional source of evidence comes from the analysis of
student response data, in which statistical models are fit to the data
[17]. After conducting preliminary analysis on data from multiple
classrooms in which students completed the assessment items, it
was found that the items range in difficulty, and are appropriate for
measuring students with a range of CT abilities [8]. Further, the
cognitive interviews reported in this paper will provide additional
evidence for the cognitive aspect of validity [17].

3 METHODS
3.1 CT Instruction
This study used an integrated math-CT curriculum ("Action Frac-
tions") aligned with the Common Core State Standards for Math

(CCSS-M). The lessons provided fractions instruction for 4th-grade
students. CT concepts such as sequencing, repetition, decomposi-
tion, conditionals, and variables are interwoven into the fractions
lessons. The lessons include discussion prompts, reflections, un-
plugged activities, and hands-on coding exercises where students
use the Scratch programming platform to build projects while build-
ing CT skills. Four of these lessons were taught to fourth-grade
students prior to data collection to introduce the students to the
CT content over the course of a month.

3.2 Data Collection
Participants. This study involved 13 fourth-grade students (four
girls and nine boys) from a southeastern elementary school, whose
student demographics reflect that of the state. Among the 13 stu-
dents, there were eight white, two Hispanic, one African American,
one Asian American, and one mixed ethnicity (as identified by their
community learning leader).

Cognitive interview. Given the qualitative nature of this study, a
small student sample size allowed the research team to interview
each student individually and obtain information about their think-
ing while completing the CT assessment tasks. Cognitive interviews
utilized a think-aloud protocol wherein the students were encour-
aged to verbalize their thinking as they addressed each assessment
item. Each participant was presented with three assessment items
that were randomly selected from the 11 sampled items. Each inter-
view started with the interviewer's brief introduction of what the
participant was expected to do and the interviewer modeling what
“thinking aloud” looked like. A total of 31 responses were collected
and analyzed.

3.3 Data Analysis
The data analysis was operationalized by adapting Maxwell's [13]
categorizing strategies. The categorizing strategy to use the CGs
[19][18] in each of the LTs as a priori codes to categorize students'
think-aloud verbalization. For example, the sequence LT has a total
of 10 CGs, four in the beginning level, four in the intermediate level,
and two in the advanced level. All 10 CGs were used verbatim as
code categories. Therefore, in this paper, the content in a “CG” and a
“code category” was identical, only that “CG” was used as a general
reference to the LTs, as “code category” was to data analysis.

The data analysis followed the following steps:

• For each excerpt of data, the participants'response to an
item was examined and the code categories that best fit the
student's understanding of the corresponding computing
concept was assigned.

• Then, to understand how students' articulated CT under-
standing corroborate the hypothetical cognitive progression
of the LTs, the researchers traced backward the connecting
black arrows to see if the source CGs were manifested in
the data. Recall that, theorized by Rich et. al. [19], the black
arrows attached to a CG show what prior understanding is
necessary.

• Lastly, to make sure that the assigned codes were accurate
reflections of participants' verbalization, the destination CG
connected to the assigned code was examined to see if that
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Figure 3: Sample sequence item

was alsomanifested in the data. If yes, that code category (the
destination CG) was added, otherwise, the process stopped.

Note that since Rich and colleagues [18] used arrows in the de-
composition LT differently than in the other LTs, the “trace-down”
was not applicable when analyzing decomposition item responses.
Rather, the adjacent CGs of the assigned code category were ex-
amined in a collective manner. During the data analysis process
described above, the research team documented any agreement or
disagreement between the theorized trajectory and what students
actually demonstrated and articulated. Two researchers analyzed
students’ verbal data by engaging in collaborative coding and by rig-
orously discussing the codes for each excerpt of data. An inter-coder
reliability with at least 80% of coding agreement was established.

Here is an example of what the coding of a participant's verbal-
ization entails. When solving a sequence item (Figure 3), participant
11 traversed the four Scratch program choices and selected the an-
swer with the correct sequence of code instructions. In this case,
the code category, “The order in which instructions are carried out
can affect the outcome,” was initially assigned, suggesting that, in
answering this item, the participant understood that the order of
instructions could affect the outcome. Later, since there was no
black arrow connected to this CG, no tracing back was needed. The
only relevant CG was the one in the destination box (also in the
intermediate level), “Computers have a default order of execution,
so order matters in programming.” It was decided that this afore-
mentioned code was also relevant, given that the item was set in
the context of coding in Scratch and the participant was able to
mentally run the programs to select the correct answer. Therefore,
in conclusion, this response demonstrated an intermediate level of
understanding of sequencing.

After coding all participant verbal responses, data was aggre-
gated by LT and students' understanding of each of the four con-
cepts was presented in the Discussions and Results section below.

4 RESULTS AND DISCUSSION
The following section presented aggregated results by LT.

Sequence. Overall, participants' responses demonstrated that
they understood that “Different sets of instructions can produce
the same outcome,”“The order in which instructions are carried out
can affect the outcome,” and that “Computers have a default order
of execution, so order matters in programming.” For example, when
asked to provide two different ways for Aisha to carry 8 toys from
the kitchen to the bedroom with a maximum of 3 toys each time,
two students gave the following answer:

P1: "So, I did two, two, two, and two. And then, I
gotta thinking [think] another way. You can do one
at [for] eight times."

P2: "...you can do, she carries 2 toys and repeat[s] it
4 times, right? ... So he can also carry 1 at a time,
and then repeat it 8 times."

Another sequence item (Figure 4), which asked students to write
instructions to move along a specific path, revealed interesting
results. Participant 3 provided correctly ordered instructions “[go]
right and up, then right.” However, this answer lacked precision
and completeness (i.e. to move how far right or up), which were
two core ideas of the beginning-level CGs of the sequence LT. This
students' answer meant that the participant had intermediate-level
understanding of sequence (“The order in which instructions are
carried out can affect the outcome”) but not the beginning-level
understanding (“Precision and completeness are important when
writing instructions in advance”). While it may have seemed anti-
intuitive for a student to have intermediate understanding without
beginning understanding, it was indeed consistent with how the
sequence LT was mapped. In the sequence LT, most beginning-level
CGs and the intermediate CGs are parallel and are not connected
by any arrows, indicating that, by theory, most intermediate CGs
do not necessarily require an understanding of the beginning CGs
and that learners can reach the intermediate level (understanding
about order) without necessarily mastering the beginning level
(understanding about precision and completeness of instructions).
The only intermediate CG that requires prior understanding is,
“Creating working programs requires considering both appropriate
commands and their order,” which is computer-based. However,
given that none of the items sampled for sequence asked students
to create a computer program, discussion about this CG is beyond
the scope of this paper.

Repetition. Unlike the sequence items, where all students an-
swering an item demonstrated the same level of understanding, the
repetition items received responses with varying levels of under-
standing. More specifically, six of nine responses had intermediate-
level understanding that “Repeating things can have a cumulative
effect,” two had a beginning-level understanding (“Instructions like
'Step 3 times' do the same thing as 'Step, step, step'”), and two did
not have any understanding of repetition in the context of coding
(programming).
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Figure 4: Sample sequence item 2

For example, one repetition item asked students to decide the
end result of both the “move 3 steps” and “sound meow” actions
repeating five times. Students' responded “It takes 3 steps and me-
ows 5 times” (P11) and “... the cat will take 3 steps and [meow] 5
times” (P2) while the answer should have been “move 15 steps and
sound meow 5 times.” The responses showed that both students had
intermediate-level understanding, that “Repeating things can have
a cumulative effect.” However, that understanding was incomplete
given that the responses were only partially correct.

Interestingly, when answering the item which asked students
to “Circle the script that will make the computer count up by 4
from 0 to 12, and say the results each time (4,8,12),” participant
6 asked the researcher what the “repeat” and the “say” Scratch
blocks meant. After getting an explanation, the participant was
able to select the correct script out of the four choices given. It
was decided that this participant was at the intermediate level
(“Repeating things can have a cumulative effect”) even though he
did not initially understand the Scratch blocks. The reason was
that the aforementioned CG was an offline or unplugged CG (in a
gray box). This example showed how students could understand
repetition and its cumulative effect outside the context of coding.
Also, depending on what the purpose of the item is, an item outside
the context of coding may be more appropriate than one specifically
set in the coding context in soliciting students' understanding of
repetition.

Conditionals. In this trajectory, items involved using the “if-
else” conditional statements, both in the unplugged, everyday con-
text and the coding context. The unplugged problem asked students
to complete an “If...then” sentence by adding a condition or an ac-
tion. For example, “a. If , then put on a jacket. b. If I see a
spider, then .” Four participants responding to this item all
provided a reasonable condition or an action, such as, “If I see a
spider, then run away” and “if it were cold, I would put on a jacket.”
Student responses showed that students understood “A conditional
connects a condition to an outcome,” which was a beginning-level
CG.

The two other conditionals items were similar. One item in un-
plugged form asks for the end result of the code "If 5 < 8 then
say ’pop’ Else say ’bing’" and the other in Scratch script asked for
the end result of the program “If 7<5, then start sound pop; Else

Figure 5: Sample decomposition item

start sound bing” (Figure 2). Data analysis showed that three re-
sponses demonstrated an understanding of “A conditional connects
a condition to an outcome.” However, no evidence of student un-
derstanding of the source CG “A condition is something that can
be true or false” was found.

Here the response from participant 5 was used as an illustration.
When solving the unplugged item, he gave the rationale saying,

"...you'd have to write another fraction that's
not 5<8 [for it to say 'bing']. So, for it to say
'else,' or for it to say this ['bing'], it has
to say another fraction like 4<8 or 3<8...For it
to say 'pop,' you need this fraction [5<8]..."

This answer suggested that while he knew that a condition was
connected to an outcome, he did not understand that he needed to
evaluate the number comparison statement (5<8) in order to come
to the corresponding action. In fact, the other three respondents
were in a similar blind spot, not knowing that the outcome action
depended on the state of the condition (true or false). Therefore,
it is suggested that the understanding that there are two states of
a condition does not come intuitively to children and needs to be
specifically taught before they know how to evaluate and connect
the condition to its corresponding outcome. In fact, it is suggested
that in the Conditionals LT, “A condition is something that can
be true or false” should be the target, instead of the source, of “A
conditional connects a condition to an outcome.”

Decomposition. One of the items asked students to decompose
a number (Figure 5) and the other asked students to decompose
a problem wherein they needed to find the area of the backward
L-shape outlined in white (Figure 6). In the case of the number de-
composition, two responses were correct (distances added up to 7),
both demonstrating a beginning-level understanding of decomposi-
tion, that “Systems are made up of smaller parts” ( “system” refers
to any object, concrete or abstract, that can be broken into parts).
Participant 8, in his response, did not provide an answer for the
distances to add up to 7 and confessed that he would need to at least
know "how much Ariel ran" before being able to solve the problem.
For the second decomposition item, two students responded that
they "counted 14 squares" in the shape while the item instruction
specifically prompted for the multiple steps involved to find the
area of the outlined L-shape. However, it was nonetheless decided
that the responses demonstrated an understanding of decomposi-
tion because the research team agreed that the 14 squares could be
considered “smaller parts” of the “system”–the outlined L-shape.
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Figure 6: Sample decomposition item 2

In total, four responses demonstrated beginning-level under-
standing of decomposition, that “System are made up of smaller
parts,” and two did not demonstrate any understanding of decom-
position.

5 CONCLUSION AND LIMITATIONS
This paper presented a qualitative account of how students demon-
strated and articulated various levels of understanding of the four
CT concepts: sequence, repetition, conditionals, and decomposi-
tion. The paper also discussed how CT understanding corresponded
to the learning progressions within LTs proposed by Rich and col-
leagues [18, 19]. Data from the cognitive interviews revealed a close
alignment between the fourth-grade students' CT understanding
and the beginning and intermediate levels of the computational
thinking LTs. This finding points to the utility of the LTs in as-
certaining students’ CT understanding. Additionally, the LTs were
not grade specific. Rather, they proposed a general progression
of CT understanding. Therefore, if a student shows misconcep-
tions matched to a specific consensus goal, the LTs can be used to
approximate potential activities that address those misconceptions.

One incongruity between the data from this study and the LTs
was the directional relationships of two statements in the exist-
ing Conditionals LT. This finding was unsurprising as students’
learning progression may not always be anticipated and may not
be linear in nature. It is possible, for some students, that they may
understand that "a conditional connects a condition to an outcome"
even if they have not had instructional experiences to understand
that "a condition is something that can be true or false." This finding
also points to Clements and Sarama's [2] explanation that we can-
not always know students’ prior knowledge and experience; hence,
we need to consider LTs in a flexible manner that accounts for
learner variability. Future research should therefore delve into the
incongruity discovered in this study to further understand whether
the LT should be modified or whether the students in this sample
had different experiences that would influence their understanding
of conditionals.

As the research in computational thinking LTs is only emerging,
this study presented several limitations. Firstly, the results of this
study are highly sample-dependent. The participants sampled were
from an elementary school where systematic CT instruction was
not implemented at the school level. The results described only
the likely landmarks these specific participants encountered after
going through four CT integrated lessons. However, given that
most schools do not have systematic CT instruction, the results
of this study may, in fact, be representative of the scenarios in
which CT is only beginning to be taught. Nonetheless, given the
demographics and backgrounds of the participants, interpretations
should be made with caution and future research is encouraged to
include a more inclusive sample. Secondly, acknowledging that the
LTs do not and should not dictate how every student accumulates
increasingly complex knowledge and skills, this study presented
how different learners may demonstrate CT understanding while
solving assessment items. Lastly, the assessment items sampled
for the purpose of this study cover only a specific portion of the
knowledge for elementary CT. Therefore, the items may have lim-
ited what understanding a participant could have demonstrated
in relation to the LTs. It was possible that participants had more
advanced CT knowledge that was not captured due to the way
items were sampled. Future research is encouraged to examine
students' understanding with items that assess more advanced CT
knowledge. Also, more empirical evidence is needed to help the
field understand how these LTs can be used to guide CT instruction
and learning and help teachers prepare instructional activities and
set learning goals.
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