A climate migrant escapes its parasites Running head: Parasite escape in fiddler crabs David S. Johnson, 1 Jeffrey D. Shields, 1 Danielle Doucette 1, Richard Heard 2 7 ¹Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA ²Department of Coastal Sciences, Gulf Coast Research Laboratory Campus, University of Southern Mississippi, Ocean Springs, Mississippi, USA 39564 Corresponding author: David S. Johnson. dsjohnson@vims.edu

ABSTRACT

1

22

23

2 When a species colonizes a new range, it can escape enemies found in its original range. 3 Examples of enemy escape abound for invasive species, but are rare for climate migrants, which 4 are populations of a species that colonize a new range due to climate-driven range shifts or 5 expansions. The fiddler crab, Minuca (=Uca) pugnax, is found in the intertidal salt marshes of 6 the east coast of the United States. It recently expanded its range north into the Gulf of Maine 7 due to ocean warming. We tested the hypothesis that M. pugnax had escaped its parasite 8 enemies. Parasite richness and trematode intensity were lower in populations in the expanded 9 range than those in the historical range, but infection prevalence did not differ. Although M. 10 pungax escaped most of its historical parasites when it migrated northward, it was infected with 11 black-gill lamellae (indicative of Synophrya hypertrophica), which was found in the historical 12 range, and by the trematode *Odhneria* cf. *odhneri*, which was not found in the historical range. 13 To our knowledge, this is the first time that *Odhneria* cf. *odhneri* has been reported in fiddler 14 crabs. These results demonstrate that although M. pugnax escaped some of its historical parasites 15 when it expanded its range, it appears to have gained a new parasite (O. cf. odhneri) in the 16 expanded range. Overall, our results demonstrate that climate migrants can escape their enemies 17 despite colonizing habitats adjacent to their enemy-filled historical range. 18 19 **Keywords** 20 Parasite escape, enemy-release hypothesis, climate change, global change, range expansions, 21 range shift, climate migrant

1. INTRODUCTION

1

2 Species across the planet are shifting or expanding their ranges towards greater elevations, 3 latitudes or depths in response to climate change (Parmesan & Yohe 2003, Sorte et al. 2010, 4 Telwala et al. 2013, Johnson 2015, Pershing et al. 2015, Hale et al. 2017). Populations of a 5 species that colonize a new habitat or range as a result of climate-driven range shifts or 6 expansions are climate migrants (Johnson et al. 2019). The successful recruitment of a climate 7 migrant to the expanded range can be attributed to a change in abiotic factors, such as warming 8 temperatures (Pinsky et al. 2013, Pecl et al. 2017). This is logical from a biogeographical point 9 of view as it follows Shelford (1931)'s law of tolerance and Grinnell (1917)'s niche concept 10 which predict that a species' distribution is set by its tolerance for abiotic factors. While changes 11 in abiotic factors such as temperature are the primary drivers of climate-migrant colonization, not 12 all species expand or shift their range as temperatures rise (Sorte et al. 2010, Hale et al. 2017). 13 This may be due, in part, to stochastic factors such as dispersal ability or deterministic factors 14 such as interactions with other species (Pöyry et al. 2009). 15 16 Charles Elton hypothesized that some non-native species, specifically invasive species, fail to 17 colonize a new habitat because they "meet resistance" and are rebuffed by enemies, such as 18 predators, parasites, and competitors (Elton 1958). He called this "ecological resistance," though 19 "biotic resistance" is the term more commonly used today (e.g., Kimbro et al. 2013). However, 20 many non-native species successfully establish outside of their original range. For example, the 21 European green crab, Carcinus maneas, is an invasive species that has established in coastal 22 habitats worldwide, in part, because it has met little biotic resistance (Torchin et al. 1996, 23 Carlton & Cohen 2003). The enemy-release hypothesis is commonly invoked to explain the

1 success of non-native species in new ranges (Elton 1958, Keane & Crawley 2002, Colautti et al.

2 2004). It predicts that a non-native species will successfully colonize a new range if two

3 conditions are met: it escapes enemies found in the original range and that escape benefits its

fitness (e.g., body size, fecundity) (Wolfe 2002, Keane & Crawley 2002). This hypothesis has

5 been well-tested for invasive species, but rarely for climate migrants (but see Menéndez et al.

2008, Hopper et al. 2014). Here, we focus on the first condition of the enemy-release hypothesis

and test the hypothesis that a climate migrant was able to escape its parasite enemies.

Climate migrants, like invasive species, are non-natives in their expanded ranges. Both climate migrants and invasive species involve the movement of individuals from a source (sometimes called 'donor') community into a recipient one. Following Hopper et al. (2014), we define climate migrants as having an historical (source) range and an expanded (recipient) range, which is analogous to the terminology of native (source) and introduced (recipient) range used for invasive species (Sorte et al. 2010). Climate migrants differ from invasive species in at least two ways. First, invasive species colonize their introduced ranges as a result of direct human transport, whereas, climate migrants expand or shift their range as a result of indirect effects of human activities (i.e., climate change) (Sorte et al. 2010, Hopper et al. 2014). Second, invasive species often colonize areas geographically separated from their source range, whereas, climate migrants colonize areas adjacent to their source range (Sorte et al. 2010, Hopper et al. 2014). Because the expanded range of a climate migrant is adjacent to its historical range, but typically separated by biogeographic barriers, one might predict little chance for enemy-escape as enemies would presumably track climate as well. However, model predictions (Moorcroft et al. 2006) and

1 empirical evidence (Menéndez et al. 2008, Phillips et al. 2010, Hopper et al. 2014) suggest that 2 some species can escape their enemies as their ranges shift or expand. 3 4 Parasites are fundamental members of ecological communities. Yet, they are poorly studied in 5 terms of their ecology relative to their free-living counterparts (Blakeslee et al. 2012, Johnson & 6 Heard 2017). Nonetheless, host-parasite relationships are excellent for testing the enemy-escape 7 hypothesis because of the intimate symbiotic relationship between host and parasite. 8 Furthermore, aspects of their relationship can be used analyze patterns. For example, climate-9 migrant hosts may escape parasites with indirect life cycles (i.e., have multiple hosts) if other 10 hosts are missing in the expanded range. Similarly, we can look to invasive species for evidence 11 of parasite escape. For example, in a wide-ranging review that included molluscan, fish, 12 crustacean, avian and mammalian hosts, Torchin et al. (2003) found that most invasive species 13 had fewer parasite species in their introduced ranges than conspecifics in their native ranges, 14 suggesting parasite escape. 15 16 17 Cape Cod, Massachusetts, United States is a well-known biogeographic boundary between the 18 Acadian and Virginian provinces and the northern limit for many warm-water marine species 19 (Briggs 1974). North of Cape Cod is the Gulf of Maine, which is much cooler than the ocean 20 south of Cape Cod (Briggs 1974). The Gulf of Maine is warming rapidly (Pershing et al. 2015), 21 and as a result warm-water species are expanding northward (Johnson 2014, Johnson 2015, 22 McDermott & Kraeuter 2015, Wilson & Pohle 2016). One such species is the Atlantic mud

fiddler crab Minuca (=Uca) pugnax (Smith 1870) (Figure 1). Minuca pugnax is a small crab (up

to 26 mm carapace width) that lives in salt marshes, which are intertidal grasslands, on the east coast of the United States. It is a burrowing crab with strong sexual dimorphism in which males have a single enlarged claw used in defense and courtship displays and a smaller claw used for foraging and burrowing. *Minuca pugnax* is an excellent species to test the parasite-escape hypothesis for climate migrants because it has a clearly defined historical range and expanded range. Historically, M. pugnax ranged from northern Florida to Cape Cod, Massachusetts (Williams 1984). It was first detected in the Gulf of Maine in 2003 (Sanford et al. 2006) and has expanded at least to New Hampshire (Johnson 2014). Based on the evidence for parasite escape in invasive hosts, we predicted that the climate migrant, M. pugnax, would have lower parasite diversity, prevalence, and intensity in the expanded range (i.e., the Gulf of Maine) than the historical range.

2. METHODS

14 <u>2.1 Field collections</u>

From 15-25 August 2017, we collected crabs from ten marshes, spanning almost 12° latitude from Sapelo Island, Georgia to Portsmouth, New Hampshire, United States. (Figure 2, Table 1). We refer to their range from Cape Cod, Massachusetts to Florida as 'historical' and their range from Cape Cod, Massachusetts north (i.e., the Gulf of Maine) as 'expanded.' At each site, we haphazardly collected the first 50 adult crabs we encountered by hand on the surface or excavated from burrows they escape into. Crabs were collected within 3 m of the marsh edge in stands of smooth cordgrass, *Spartina alterniflora*. After collection, crabs were kept in 70-L plastic bins containing a thin layer of sediment and water from the collection site and transported

to the laboratory for processing. Crabs were dissected within 5 days of collection. All crabs were
 alive when dissected.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2.2 Laboratory processing Prior to dissection, crabs were sexed and measured for size (carapace width) to the nearest 0.1 mm with Vernier calipers. For dissection, the carapace was physically removed, and the body placed in clean, filtered seawater for further dissection under a stereo-microscope. The following tissues were examined for the presence of parasites: branchial chamber, gills, hepatopancreas, thoracic nerve ganglia, brain and associated optic ganglia, sternal and apodemal musculature, epidermis of the dorsal carapace, gonads, antennal glands, midgut, hindgut, and foregut. Egg clutches of ovigerous crabs were also examined for parasites. The clutches were removed from the abdomen and examined with a stereo-microscope. The number and location of the various parasites and any gross conditions were recorded. Parasites were counted *in situ* and removed to separate well plates for further identification. Metacercarial cysts of trematodes were excysted using gentle warming provided by an electric lamp placed ~15 cm overhead. Those that excysted were identified with a compound microscope by morphological comparisons with trematodes in existing literature (e.g., Hunter & Vernberg 1953, Heard 1966, Heard & Overstreet 1983, Schell 1985, Dunn et al.1990). Nematodes were identified based on their morphology and the tissues in which they were encysted as in Wong, Anderson & Bartlett (1989) and Wong & Anderson (1990). Non-metazoan parasites were identified from primary references (e.g., DeTurk 1940, Tuzet & Manier 1962, McCloskey & Caldwell 1965, Bourdon & Bowman 1970, Mattson 1988) and recorded as present or absent.

2 2.3 Variables

Except for rarefaction analysis of diversity, we quantified parasite infection at the site-level for each of the ten sites. Prevalence of infection (number of infected crabs/total number of crabs) was estimated for each parasite taxa. For statistical analysis, we used total prevalence (the prevalence of infection by any parasite). Mean intensity (mean number of parasites per infected host per site) was calculated for metazoan parasite (i.e., trematodes, nematodes, crustaceans) but not for non-metazoan parasites. We grouped all trematode infections into one variable because trematodes that use crabs as intermediate hosts can be considered as a guild of similar resource users. Parasite richness (number of parasite taxa) was calculated for all taxa present (metazoans plus non-metazoans). We also estimated diversity in each range with rarefaction analyses on all hosts using Coleman curves in EstimateS, 8.0, (Colwell 2006). Coleman rarefaction curves are a powerful technique to examine differences in diversity between different communities. Crabs were entered randomly into the rarefaction analysis and were grouped collectively by range, not site.

2.4 Statistics

To test the hypothesis that crabs in the expanded range had escaped their historical-range parasites we used generalized linear mixed effects models (GLMM) in the lme4 package (Bates et al. 2012) in R (version 3.6.1, "Action of the Toes," R Core Team 2014). We set range (expanded versus historical) as the fixed factor and site nested within range. We used the following error distributions and their standard link functions for the following dependent variables: total parasite richness (Poisson), total parasite prevalence (binomial), and trematode

- 1 intensity (negative binomial). Because trematodes were absent from two sites in the historical
- 2 range, they were excluded from the intensity analysis. P-values were obtained via stepwise
- 3 model reduction using likelihood-ratio tests comparing full and reduced models (Crawley 2007).

5

3. RESULTS

- 6 3.1 Overall findings
- We dissected 500 fiddler crabs, 50 from each of the 10 sites. We identified 13 different parasite
- 8 taxa from M. pugnax from across the study. For metazoans these included six trematode species
- 9 (Odhneria cf. odhneri, Maritrema sp., Gynaecotyla adunca, Microphallus cf.
- 10 basodactylophallus, Levinseniella sp., Maritrema cf. heardi), two nematode species
- 11 (Ancyracanthopsis winegardi, Skrjabinoclava inornatae), and a bopyrid isopod (Leidya distorta).
- 12 Microphallus cf. basodactylophallus and Levinseniella sp. had morphologically similar
- metacercarial cysts that did not all excyst for identification; hence they were grouped in the
- analyses. Microbial symbionts included an unidentified bacterial infection, blackened gill
- 15 lamellae indicative of *Synophyra hypertrophica*, the haplosporidian hyperparasite *Urosporidium*
- crescens infecting individuals of Microphallus cf. basodactylophallus and Leviseniella sp.,
- 17 commensal peritrich ciliates in the gills, and a species of *Enterobryus*, an endocommensal fungi
- in the order *Eccrinales* infesting the foregut and hindgut (Table 2). *Urosporidium crescens* is a
- microparasite that infects individual microphallid trematodes with high intensity infections that
- are difficult to quantify; therefore, we calculated its mean intensity as the mean intensity of
- 21 infected trematodes in their crab hosts; its overall prevalence is the percentage of crabs with
- 22 infected metacercariae in the population.

3.2 Parasite diversity

1

2 Parasite richness was significantly greater in the historical range (mean richness = 5.4) than in the expanded range (mean richness = 1.2) (χ^2 = 14.45, df = 1, p < 0.001) (Figure 3A). In the 3 4 expanded range, only one metazoan parasite was found, Odhneria cf. odhneri. This parasite was 5 not found in crabs from the historical range (Table 2). Black-gill lamellae characteristic of 6 Synophrya hypertrophica were found at low prevalence-levels in the expanded range and the 7 historical range. When symbionts were grouped by geographic region in rarefaction analysis, 8 parasite richness reached an asymptote of 13 in the historical range and 2 in the expanded range 9 (Figure 4). With a sample size of 50 randomly selected crabs, richness was estimated at 9.8 10 species in the historical range and 1.5 species in the expanded range. The mean and maximum 11 richness in the historical range calculated by rarefaction is higher than those calculated by site 12 because it included all the parasites found in the crabs dissected from within the historical range. 13 14 3.3 Parasite prevalence 15 Despite significant differences in parasite richness, there was no difference in total parasite prevalence between the historical (mean = 0.58) and expanded ranges (mean = 0.49) (χ^2 = 0.40, 16 17 df = 1, p = 0.53) (Figure 3B). There were, however, differences in the prevalence patterns for 18 individual symbionts (Appendix Table A1) such as the trematode Odhneria cf. odhneri, which 19 was only found in crabs from the expanded range. There were also several differences in 20 prevalence levels of individual species of parasites between sites within the historical range. For 21 example, crabs from Stonington, Connecticut, in the historical range had higher prevalence 22 levels of the parasitic isopod *Leidva distorta* compared to the other sites, as well as few other 23 helminths. Most trematode infections occurred in crabs from the southern and central portion of

- 1 the historical range, and this was in sharp contrast to the other historical sites that had low levels
- 2 of these parasites, with the notable exception of the aforementioned *Odhneria* cf. odhneri
- 3 infections in the expanded range (Appendix Table A1).

- 5 3.4 Trematode intensity
- 6 The mean intensity of trematode infections was more than 4x higher in the historical range
- 7 (mean = 14) than in the expanded range (mean = 3) (Figure 3C). This difference was significant
- 8 $(\gamma^2 = 4.63, df = 1, p = 0.03).$

9

10 4. DISCUSSION

- Our study demonstrates that the climate migrant, *Minuca pugnax*, escaped all but one of its
- 12 historical parasites when it expanded its range. We know of only two other documented
- examples of parasite escape in climate migrants: Kellet's whelk, *Kelletia kelletii*, on the West
- 14 Coast of the United States (Hopper et al. 2014) and the brown Argus butterfly, *Aricia agestis*, in
- Britain (Menéndez et al. 2008). Taken together, climate migrants appear to follow the same
- parasite-escape pattern found in invasive species: they have fewer parasites in their expanded
- 17 ranges versus their historical ones (Torchin et al. 2003, Blakeslee et al. 2012, Blakeslee et al.
- 18 2013). Thus, climate migrants can escape their enemies despite colonizing habitats that are
- adjacent to their enemy-filled historical range.

20

21

4.1 Mechanisms of parasite escape

- 22 At least four mechanisms can be invoked to explain why a climate migrant may escape its
- parasites. (1) A climate migrant may arrive in the expanded range while in a life stage that is not

1 infected. In marine systems, non-native species often arrive as planktonic larvae and are likely 2 free of parasites, which typically infect juvenile and adult stages or kill their larval host before 3 metamorphosis (Shields 2012, Shields et al. 2015). This mechanism may apply to Minuca 4 pugnax because it disperses as planktonic larvae and has no known parasites that infect its larval 5 and post-larval stages. (2) A climate migrant may expand ahead of intermediate or definitive 6 hosts required to complete the multi-host, indirect life cycles of some parasites (Hopper et al. 7 2014). It is unlikely that this mechanism explains the parasite escape we see for M. pugnax in the 8 expanded range because many of intermediate and definitive hosts used by parasites that infect 9 M. pugnax are found in both ranges. For instance, migratory birds, such as Virginia rails (Rallus 10 *limicola*) and saltmarsh sparrows (*Ammodramus caudacutus*), are definitive hosts and move 11 between the expanded (Gulf of Maine) and historical ranges seasonally. Many parasites of M. 12 pugnax are trematodes, which use specific gastropods as first intermediate hosts. Several 13 gastropod hosts including the coffee-bean snail, Melampus bidentatus, the Atlantic mudsnail, 14 Tritia (=Ilyanassa) obsoleta, and hydrobiid snails are found in marshes in the expanded and 15 historical ranges (Gosner 1978, Johnson et al. 2009, Johnson 2011, Johnson & Short 2013, 16 Johnson & Heard 2017). (3) Phenological mismatch between hosts and parasites may limit M. 17 pugnax infection in the expanded range. Crabs and their parasites in the expanded range are at 18 higher latitudes and thus have a shorter growing season. Migratory birds, as definitive hosts, may 19 arrive too late in northern latitudes for certain parasites to develop and successfully overwinter in 20 their snail or fiddler-crab intermediate hosts (Paull & Johnson 2014). For instance, trematodes 21 have well-known seasonal cycles that match the migration patterns of their hosts, which are 22 being disrupted by climate change, leading to phenological mismatch (Galaktionov et al. 2006). 23 (4) Minuca pugnax may have escaped parasites due to its small population size in the Gulf of

- 1 Maine, which can limit density-dependent transmission (Blakeslee et al. 2012). Crab densities at
- 2 the leading edge of the expanded range (i.e., northern Massachusetts) are <6 m⁻² on average (K.
- 3 Martinez-Soto and D.S. Johnson unpublished data), which is much lower than those found in the
- 4 historical range (60-120 m⁻², Culbertson et al. 2007, Luk & Zajac 2013).

- 4.2 Acquisition of a novel parasite?
- 7 Although M. pugnax in the expanded range escaped all metazoan parasites found in the historical
- 8 range, they may have acquired a new one, the trematode *Odhneria* cf. *odhneri*. To our
- 9 knowledge, this is the first time O. cf. odhneri has been reported in M. pugnax. This parasite was
- 10 not found in crabs in the historical range. Moreover, although it was initially reported in
- 11 Palaemonetes vulgaris from the Woods Hole area (Stunkard, 1979), it has not observed in a
- 12 large collection of this host from Georgia (Pung et al. 2002), nor has it been reported in
- crustaceans from locations south of Cape Cod, Massachusetts. Notably, O. cf. odhneri was not
- found in our collections in the northernmost portion of the historical range, which is less than 8
- km away from the area where Stunkard (1979) found it in grass shrimp. Thus, although O. cf.
- odhneri infects M. pugnax in the expanded range, it does not appear to infect M. pugnax in the
- 17 historical range even though they are found in the same locations.
- 18 Invasive species can acquire new parasites in their invaded ranges (Torchin et al. 2003,
- 19 Kelly et al. 2009). For example, the invasive shrimp, *Palaemon macrodactylus*, was infected by
- a species of *Odhneria* and a balanid barnacle when it invaded Argentina (Martorelli et al. 2012).
- 21 In another example, Torchin et al. (2002) found that the invasive European green crab, Carcinus
- 22 maenas, gained novel parasites in its invaded ranges worldwide. Because O. cf. odhneria appears
- 23 to be a novel parasite for *M. pugnax*, then, as with invasive species, the crab host was able to

1 escape its historical parasites in terms of parasite diversity, but in the expanded range it did not

escape its vulnerability to host generalists (Torchin et al. 2002, Selechnik et al. 2017).

3

4

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2

4.3 Parasite escape or parasite reduction?

5 Although M. pugnax had an average of one parasite per site in the expanded range and an

6 average of five in the historical range, total parasite prevalence was similar between the ranges.

7 These results indicate that *M. pugnax* is equally susceptible to parasite infections in their

historical and expanded ranges. Parasite intensity (number of parasites per infected host) can

strongly determine a parasite's impact on host fitness (Lafferty & Morris 1996, Shields & Wood

1993, Colautti et al. 2004), though sometimes only one parasite is required to influence host

fitness (Lafferty & Kuris 2009). For instance, the trematode Levinsiniella byrdi turns its second

intermediate host, the amphipod Orchestia grillus, orange and negates the photatic response with

an average infection intensity of 1 metacecariae per host, presumably making it more susceptible

to predators (Johnson & Heard 2017). We found that trematode intensity was significantly lower

in crabs in the expanded than in the historical range, further evidence of parasite escape in M.

pugnax. The lower parasite richness and intensity may benefit M. pugnax fitness in the expanded

range. In a previous study, we found that male M. pugnax are larger and females more fecund in

the expanded range relative to the historical range (Johnson et al. 2019). Similarly, the invasive

green crab, Carcinus maenas is larger in its invaded range than in its native Europe, which

Torchin et al. (2001) attribute to parasite escape. These results support the second prediction of

the enemy-release hypothesis: a release from parasite enemies will benefit the host's fitness

(Keane and Crawley 2002). More work is required to explicitly test this prediction.

4.4 The honeymoon phase

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A species that escapes its enemies today may not escape them tomorrow. This may be particularly true for climate migrants whose expanded range is adjacent to an enemy-filled historical range. The honeymoon hypothesis predicts that when a climate migrant or invasive species escapes its enemies those enemies will eventually migrate into the expanded/invaded range from nearby sources (Phillips et al. 2010) or native parasites will colonize the novel host and accumulate over time (Kołodziej-Sobocińska et al. 2018). Again, we can look to invasive species for precedence. For example, in Australia, the invasive cane toad, Rhinella marina (formerly, *Bufo marinus*), is expanding westward. Toads at the leading edge of the expansion escape the lungworm parasite, Rhabdias pseudosphaerocephala. After 1-3 years, however, lungworms also expand their range and catch-up to infect previously uninfected toads (Phillips et al. 2010). In a marine example, Blakeslee et al. (2012) found that the periwinkle, Littorina saxitilis, escaped more parasites than the mud snail, Tritia obsoleta, when introduced into San Francisco Bay, United States. They suggest that the differences in parasite escape are driven, in part, to the fact the L. saxitilis was introduced more recently than T. obsoleta. Minuca pugnax was first observed in its expanded range in 2003 (Sanford et al. 2006). Because we found no historical-range metazoan parasites in expanded-range crabs, our results indicate that M. pugnax is currently enjoying at least a 14-year honeymoon from their historical metazoan parasites.

19

20

21

22

23

4.5 Conclusions

We show that in terms of parasite richness and intensity, *Minuca pugnax* escaped parasites from its historical range as it migrated into its expanded range. If this result is typical of other climate migrants, then it suggests that they follow the same parasite-escape pattern seen in invasive

1 species: they have fewer parasites in their expanded ranges versus their historical ones (Torchin 2 et al. 2003, Blakeslee et al. 2012, Blakeslee et al. 2013). Thus, our results suggest that climate 3 migrants can escape their parasites despite colonizing habitats that are adjacent to their enemy-4 filled historical range. However, that escape may only be temporary as parasites catch-up (i.e., 5 honeymoon phase, Phillips et al. 2010, Kołodziej-Sobocińska et al. 2018) or as host-generalist 6 parasites start using expanding populations of a new host (Kelly et al. 2009). Despite the 7 ubiquity of parasites and the growing number of documented climate-migrant hosts (Sorte et al. 8 2010, Pecl et al. 2017), our study is one of only three that we are aware of to investigate the 9 parasites of climate migrants (Menéndez et al. 2008, Hopper et al. 2014). We advocate exploring 10 host-parasite relationships in the context of climate change to answer fundamental ecological 11 questions. 12 13 **ACKNOWLEDGEMENTS** 14 We thank Rebecca Atkins, Dr. Gina Wimp, Bethany Williams, Cynthia Crowley, Scott and Joan 15 Warren, Caroline Failon, Manisha Pant, Serina Wittyngham, and Dr. Anne Giblin for help with 16 logistics and crab collection. We thank Dr. Juan Pablo Huchin-Mian for help with crab 17 dissections and two anonymous reviewers for their comments. This project was funded in part by 18 the National Science Foundation (grant numbers 1637630, 1832221, 1754259) and the Virginia 19 Institute of Marine Science. The authors declare no conflicts of interest. This paper is 20 contribution 3879 of the Virginia Institute of Marine Science, William & Mary. 21 22

LITERATURE CITED

- Bates D, Maechler M, Bolker, B (2012) lme4 version 1.1-5: linear mixed-effects models using Eigen and S4.
 - Blakeslee AMH, Altman I, Miller AW, Byers JE, Hamer CE, Ruiz GM (2012) Parasites and invasions: a biogeographic examination of parasites and hosts in native and introduced ranges: Invasion history influences parasite biogeographic patterns. Journal of Biogeography 39:609–622.
 - Blakeslee AMH, Fowler AE, Keogh CL (2013) Marine invasions and parasite escape: updates and new perspectives: In Advances in Marine Biology. Academic Press, p 87–169
 - Bourdon R, Bowman TE (1970) Western Atlantic species of the parasitic genus *Leidya* (Epicaridea: Bopyridae). Proceedings of the Biological Society of Washington, 83:409-424.
- Briggs, JC (1974) Marine zoogeography. McGraw-Hill, New York.
- Carlton JT, Cohen AN (2003) Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs *Carcinus maenas* and *C. aestuarii*. Journal of Biogeography 30:1809–1820.
- Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecology Letters 7:721–733.
- Colwell RK (2006) Estimates, Version 8.0: statistical estimation of species richness and shared species from samples (Software and User's Guide). Freeware for Windows and Mac OS.
- Crawley MJ (2007) The R Book. John Wiley & Sons Ltd., Chichester, England.
- Culbertson JB, Valiela I, Peacock EE, Reddy CM, Carter A, VanderKruik R (2007) Long-term biological effects of petroleum residues on fiddler crabs in salt marshes. Marine Pollution Bulletin 54:955–962.
- Dery DW (1958) A description of *Maritreminoides raminellae*, n. sp. (Trematoda: Microphallidae). Proceedings of the Helminthological Society of Washington 25: 40-43.
- DeTurk WE (1940) The occurrence and development of a hyper-parasite, *Urosporidium crescens* sp. nov.(Sporozoa, Haplosporidia), which infests the metacercariae of *Spelotrema nicolli*, parasitic in *Callinectes sapidus*. Journal of the Elisha Mitchell Scientific Society 56:231-232.
- Dunn TS, Ownbey TC, Vannarath T (1990) In vitro excystment of the metacercariae of *Gynaecotyla adunca* and *Probolocoryphe uca* (Microphallidae) from the fiddler crab, *Uca pugilator*. Canadian Journal of Zoology 68:2376–2384.
- Elton CS (1958) The ecology of invasions by animals and plants–Methuen & Co. Ltd., London, 181.
- Galaktionov KV, Irwin SWB, Prokofiev VV, Saville DH, Nikolaev KE, Levakin IA (2006)
 Trematode transmission in coastal communities temperature dependence and climate change perspectives. In International Congress of Parasitology XI. MEDIMOND sRL, p 85-90.
- Gosner K (1978) A Field Guide to the Atlantic Seashore. Houghton Mifflin Company, New
 York, New York.
- 42 Grinnell J (1917) The Niche-Relationships of the California thrasher. The Auk 34:427–433.
- Hale SS, Buffum HW, Kiddon JA, Hughes MM (2017) Subtidal benthic invertebrates shifting northward along the US Atlantic Coast. Estuaries and Coasts 40:1744–1756.

Heard, R.W. (1970). Parasites of the Clapper Rail, *Rallus longirostris* Boddaert. II. Some
 trematodes and cestodes from *Spartina* marshes of the Eastern United States. Proceedings
 of the Helminthological Society of Washington 37:147-153.

- Heard RW, Overstreet RM (1983) Taxonomy and Life Histories of Two North American Species of "Carneophallus" (=Microphallus) (Digenea: Microphallidae). Proceedings of the Helminthological Society of Washington 50: 170-174.
- Hopper JV, Kuris AM, Lorda J, Simmonds SE, White C, Hechinger RF (2014) Reduced parasite diversity and abundance in a marine whelk in its expanded geographical range. Journal of Biogeography 41:1674–1684.
- Hunter WS, Vernberg WB (1953) Early stages in the life cycle of the trematode, *Gynaecotyla adunca* (Linton, 1905). Transactions of the American Microscopical Society 72:163-170.
 - Johnson DS, Fleeger J, Deegan L (2009) Large-scale manipulations reveal that top-down and bottom-up controls interact to alter habitat utilization by saltmarsh fauna. Marine Ecology Progress Series 377:33–41.
 - Johnson DS (2011) High-marsh invertebrates are susceptible to eutrophication. Marine Ecology Progress Series 438:143–152.
 - Johnson DS, Short MI (2013) Chronic nutrient enrichment increases the density and biomass of the mudsnail, *Nassarius obsoletus*. Estuaries and coasts 36:28–35.
 - Johnson DS (2014) Fiddler on the roof: a northern range extension for the marsh fiddler crab *Uca pugnax*. Journal of Crustacean Biology 34:671–673.
 - Johnson DS (2015) The savory swimmer swims north: a northern range extension of the blue crab *Callinectes sapidus*? Journal of Crustacean Biology 35:105–110.
 - Johnson DS, Heard RW (2017) Bottom-up control of parasites. Ecosphere 8.
 - Johnson MW (1957) The copepod *Choniosphaera cancrorum* parasitizing a new host, the green crab *Carcinides maenas*. The Journal of Parasitology 43:470-473.
 - Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17:164–170.
 - Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056.
 - Kimbro DL, Cheng BS, Grosholz ED (2013) Biotic resistance in marine environments. Ecology Letters 16:821–833.
 - Kołodziej-Sobocińska M, Brzeziński M, Niemczynowicz A, Zalewski A (2018) High parasite infection level in non-native invasive species: it is just a matter of time. Ecography 41:1283–1294.
- Kuris AM, Gurney R (1997) Survey of Tasmanian crabs for parasites: a progress report.
 Proceedings of the first international workshop on the demography, impacts and management of the introduced populations of the European crab, *Carcinus maenas*.
 Centre for Research on Introduced Marine Pests 11: 92-94. Technical Report.
- Lafferty KD, Kuris AM (2009) Parasitic castration: the evolution and ecology of body snatchers.
 Trends in Parasitology 25:564–572.
- Lafferty KD, Morris AK (1996) Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390–1397.

Luk YC, Zajac RN (2013) Spatial ecology of fiddler crabs, *Uca pugnax*, in southern New
 England salt marsh landscapes: potential habitat expansion in relation to salt marsh change. Northeastern Naturalist 20:255–274.

- Martorelli SR, Alda P, Marcotegui P, Montes M, La Sala L (2012) New locations and parasitological findings for the invasive shrimp *Palaemon macrodactylus* in temperate southwestern Atlantic coastal waters. Aquatic Biology 15:153–157.
- Mattson RA (1988) Occurrence and abundance of eccrinaceous fungi (Trichomycetes) in brachyuran crabs from Tampa Bay, Florida. Journal of Crustacean Biology 8:20-30.
 - McCloskey LR, Caldwell SP (1965) *Enteromyces callianassae* Lichtwardt (Trichomycetes, Eccrinales) in the mud shrimp *Upogebia affinus* (Say). Journal of the Elisha Mitchell Scientific Society 114-117.
- McDermott JJ, Kraeuter JN (2015) Occurrence of first crab instars of the Atlantic ghost crab *Ocypode quadrata* (Decapoda: Brachyura: Ocypodidae) along the coast of Maine, U.S.A. Proceedings of the Biological Society of Washington 128:98–102.
- Menéndez R, González-Megías A, Lewis OT, Shaw MR, Thomas CD (2008) Escape from natural enemies during climate-driven range expansion: a case study. Ecological Entomology 33:413–421.
- Moorcroft PR, Pacala SW, Lewis MA (2006) Potential role of natural enemies during tree range expansions following climate change. Journal of Theoretical Biology 241:601–616.
- Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.
- Paull SH, Johnson PTJ (2014) Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk. Ecology Letters 17:445–453.
- Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214.
- Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Le Bris A, Mills KE, Nye JA, Record NR, Scannell HA, Scott JD, Sherwood GD, Thomas AC (2015) Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–812.
- Phillips BL, Kelehear C, Pizzatto L, Brown GP, Barton D, Shine R (2010) Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91:872–881.
- Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA (2013) Marine taxa track local climate velocities. Science 341:1239–1242.
- Pöyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology 15:732–743.

- Pung OJ, Khan RN, Vives SP, Walker CB (2002) Prevalence, geographic distribution, and fitness effects of *Microphallus turgidus* (Trematoda: Microphallidae) in grass shrimp (*Palaemonetes* spp.) from coastal Georgia. Journal of Parasitology 88:89–92.
 - R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
 - Sanford E, Holzman SB, Haney RA, Rand DM, Bertness MD (2006) Larval tolerance, gene flow, and the northern geographic range limit of fiddler crabs. Ecology 87:2882–2894.
 - Schell SC (1985) Handbook of trematodes of North America north of Mexico. University Press of Idaho.
 - Selechnik D, Rollins LA, Brown GP, Kelehear C, Shine R (2017) The things they carried: the pathogenic effects of old and new parasites following the intercontinental invasion of the Australian cane toad (*Rhinella marina*). International Journal for Parasitology: Parasites and Wildlife 6:375–385.
- 14 Shelford VE (1931) Some concepts of bioecology. Ecology 12:455–467.

- Shields JD, Wood FE (1993) Impact of parasites on the reproduction and fecundity of the blue sand crab *Portunus pelagicus* from Moreton Bay, Australia. Marine Ecology Progress Series 92:159–170.
 - Shields JD (2012) The impact of pathogens on exploited populations of decapod crustaceans. Journal of Invertebrate Pathology 110:211–224.
 - Shields JD, Williams JD, Boyko CB (2015) Parasites and diseases of Brachyura. In: The Crustacea. Treatise on Zoology-Anatomy, Taxonomy, Biology, Castro P, Davie PJF, Guinot D, Schram F, von Vaupel Klein J (eds) Brill, Leiden, p 639–774
 - Sinclair NR (1971) A reviewal of *Odhneria odhneri* Travassos, 1921 (Trematoda: Microphallidae). The Journal of Parasitology 57:980.
 - Smith, S. I. 1870. Notes on American Crustacea. No. I. Ocypodoidea. Transactions of the Connecticut Academy of Arts and Sciences 2: 113-176.
 - Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts: Range shifts and non-native species introductions. Global Ecology and Biogeography 19:303–316.
 - Stunkard HW (1979) The morphology, life-history, and taxonomic relations of *Odhneria odhneri* Travassos, 1921 (Digenea: Microphallidae). The Biological Bulletin 156:234–245.
 - Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8:e57103.
 - Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630.
 - Torchin ME, Lafferty KD, Kuris AM (1996) Infestation of an introduced host, the European green crab, *Carcinus maenas*, by a symbiotic nemertean egg predator, *Carcinonemertes epialti*. The Journal of Parasitology 82:449.
 - Torchin ME, Lafferty KD, Kuris AM (2002) Parasites and marine invasions. Parasitology 124:137–151.
- Tuzet O, Manier JF (1962) *Enteromyces callianassae* Licht-wardt Trichomycète Eccrinale commensal de l'estomac de Uca pugilator Latreille. Ann Sci Nat Bot, Paris Série 12:615-617.

Wang Q, An S, Ma Z, Zhao B, Chen J, Li B (2006) Invasive *Spartina alterniflora*: biology, ecology and management. Acta Phytotaxonomica Sinica 44:559-588.

- Williams AB (1984) Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, D.C., USA.
- Wilson BM Pohle, GW (2016) Northern range expansion of the American talon crab, *Euchirograpsus americanus* A. Milne-Edwards, 1880 (Decapoda, Grapsoidea, Plagusiidae), to the Bay of Fundy, Canada. Crustaceana 89:163–173.
- Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. The American Naturalist 160:705-711.
- Wong PL, Anderson RC, Bartlett CM (1989) Development of *Skrjabinoclava inornatae* (Nematoda: Acuarioidea) in fiddler crabs (*Uca* spp.) (Crustacea) and western willets (*Catoptrophorus semipalmatus inornatus*) (Aves: Scolopacidae). Canadian Journal of Zoology 67:2893–2901.
- Wong PL, Anderson RC (1990) *Ancyracanthopsis winegardi* n.sp. (Nematoda: Acuarioidea) from *Pluvialis squatarola* (Aves: Charadriidae) and *Ancyracanthus heardi* n.sp. from *Rallus longirostris* (Aves: Rallidae), and a review of the genus. Canadian Journal of Zoology 68:1297–1306.

Figure 1: A male fiddler crab, *Minuca pugnax*, in Rowley, Massachusetts, which is in the expanded range. Note the blue face of the crab, a characteristic field marking of this species. Photo credit: DS Johnson.

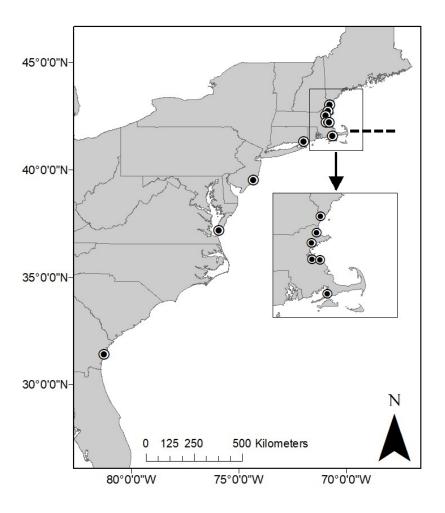


Figure 2: Location of marshes sampled (circles). Dashed line indicates northern limit of historical range.

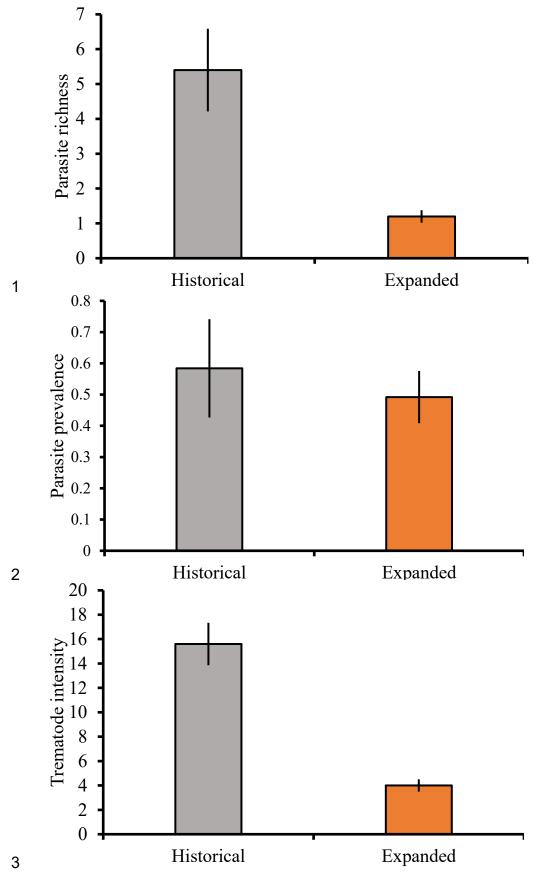


Figure 3: Mean (± 1 SE) A) taxonomic richness of parasites, B) total parasite prevalence (proportion of the population at each site infected with a parasite, regardless of species) and C) trematode intensity (number of parasites per infected crab) found in *Minuca pugnax* in its ranges.

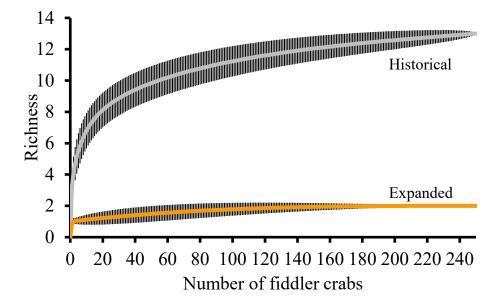


Figure 4: Parasite richness as a function of sample size for fiddler crabs sampled in their historical vs. expanded ranges (Coleman rarefaction curves). Solid line indicates richness estimate, whereas bars are standard deviations.

10 Table 1: Location of marshes sampled.

Range	Marsh or Estuary	Location	Latitude (N)	Longitude (W)
Expanded	Sagamore Creek	Portsmouth, New Hampshire	43° 3' 3.58"	70° 46' 13.08"
Expanded	Plum Island Estuary	Rowley, Massachusetts	42° 44' 19.63"	70° 50' 23.23"
Expanded	Waters River	Danvers, Massachusetts	42° 32' 47.84"	70° 56' 19.95"
Expanded	Bare Cove	Weymouth, Massachusetts	42° 13' 47.27"	70° 55' 37.26"
Expanded	Musquashcut Brook	Scituate, Massachusetts	42° 13' 34.25"	70° 46' 35.92"
Historical	Great Sippewissett	Falmouth, Massachusetts	41° 35' 0.55"	70° 38' 14.22"
Historical	Mason's Island	Stonington, Connecticut	41° 19' 58.37"	71° 58' 16.98"
Historical	Great Bay Estuary	Little Egg Harbor Township, New Jersey	39° 31' 18.28"	74° 19' 6.32"
Historical	Cushman's Landing	Cape Charles, Virginia	37° 10′ 30.94″	75° 56' 32.28"
Historical	Sapelo Island	McIntosh County, Georgia	31° 25' 20.74"	81° 17' 24.25"

Table 2. Prevalence and mean intensity of the parasites and symbionts in *Minuca pugnax* from its native and expanded range.

	Historical range		Expanded range		
Parasite	Prevalence	Mean intensity \pm sd	Prevalence	Mean intensity ±	
	(%)		(%)	sd	
Microbial parasites and symbionts					
Bacterial infection	0.4	nd	0.0		
Eccrinales (Fungi)	4.0	nd	0.0		
Peritrich ciliates ^a	土	nd	土	nd	
Black gill lamellae cf. Synophrya hypertrophica	0.8	nd	0.8	nd	
Urosporidium crescens	8.8	2.82 ± 3.07^{b}	0.0		
Trematoda					
Odhneria cf. odhneri	0.0	0.0	48.4	4.00 ± 5.54	
Maritrema sp.	21.6	5.17 ± 5.02	0.0		
Gynaecotyla adunca	18.4	22.24 ± 19.71	0.0		
Microphallus cf. basodactylophallus & Levinesenilla sp.	26.0	7.69 ± 8.89	0.0		
Maritrema cf. heardi	2.4	3.17 ± 2.99	0.0		
Nematoda					
Ancyracanthopsis winegardi	16.4	1.32 ± 0.72	0.0		
Skrjabinoclava inornatae	1.6	1.00 ± 0.00	0.0		
Isopoda					
Leidya distorta ^c	7.6	1.37 ± 0.50	0.0		

^aThe peritrich ciliates were only noted when they had high population densities on individuals. They were not included in the analyses. ^bBecause they are hyperparasites and microparasitic on their trematode hosts, the mean intensity for *U. crescens* is the mean number of infected metacercariae in infected crabs. Prevalence is given as proportion of infected crab hosts with trematodes infected by *U. crescens*.

^cThe isopod is a parasitic castrator and the only metazoan parasite using the crab as a definitive host. Mature parasites typically occur in pairs.

nd=no data.

42 Appendix: Table A1. Parasite prevalence (mean intensity ± sd) of *Minuca pugnax* by location from north to south. Only prevalence is given for bacterial, black gill and *Eccrinales* infections.

		Bacterial			Urosporidium	Odhneria cf.	
Range	Site	infection	Black gill	Eccrinales	crescens ^a	odhneri	Maritrema sp.
Expanded	Portsmouth, NH	0	0	0	0	$66 (3.85 \pm 3.42)$	0
Expanded	Rowley, MA	0	0	0	0	$26 (1.46 \pm 0.66)$	0
Expanded	Danvers, MA	0	4	0	0	$72 (7.00 \pm 8.65)$	0
Expanded	Weymouth, MA	0	0	0	0	$40 (2.35 \pm 1.53)$	0
Expanded	Scituate, MA	0	0	0	0	$38 (2.26 \pm 2.68)$	0
Historical	Falmouth, MA	2	0	0	0	0	0
Historical	Stonington, CT	0	0	8	0	0	0
Historical	Little Egg Harbor, NJ	0	0	12	0	0	$54 (6.44 \pm 6.22)$
Historical	Cape Charles, VA	0	4	0	$28 (2.07 \pm 2.06)$	0	$20 (4.30 \pm 3.56)$
Historical	McIntosh County, GA	0	0	0	$16 (4.13 \pm 4.16)$	0	$34 (3.65 \pm 2.76)$

Table A1, continued

Range	Site	Microphallus sp. A & Levinseniella	<i>Microphallus</i> sp. B	Ancyracanthopsi s winegardi	Skrjabinonem a inornatae	Leidya distorta	Parasite Richness
Expanded	Portsmouth, NH	0	0	0	0	0	1
Expanded	Rowley, MA	0	0	0	0	0	1
Expanded	Danvers, MA	0	0	0	0	0	2
Expanded	Weymouth, MA	0	0	0	0	0	1
Expanded	Scituate, MA	0	0	0	0	0	1
Historical	Falmouth, MA	0	0	0	0	0	1
Historical	Stonington, CT	0	0	$2(3.00 \pm 0.00)$	0	$20 (1.50 \pm 0.53)$	3
Historical	Little Egg Harbor, NJ	0	0	$28 (1.14 \pm 0.36)$	$6(1.00 \pm 0.00)$	0	4
Historical	Cape Charles, VA	$58 (7.28 \pm 6.55)$	4 (1.00)	$22(1.64 \pm 1.03)$	$2(1.00 \pm 0.00)$	$2(2.00 \pm 0.00)$	9
Historical	McIntosh County, GA	$72 (8.03 \pm 10.48)$	$8(4.25 \pm 3.20)$	$30 (1.13 \pm 0.52)$	0	$16(1.13 \pm 0.35)$	7

^aMean intensity of *U. crescens* is the mean intensity of infected metacercariae in the crab population. Prevalence is the percentage of crabs with infected worms.