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ABSTRACT
The NO and NO2 radicals are used to demonstrate how instabilities in Hartree-Fock wavefunctions
can result in unsatisfactory, or even unphysical, values of the diagonal Born-Oppenheimer correction
(DBOC). For NO, an avoided crossing between two UHF solutions of 2� symmetry results in a nearly
1 kJ/mol (80 cm−1) defect in the SCF-level DBOC just beyond the equilibrium bond distance. In that
case, CCSD is able to recover essentially correct behaviour. For ground-state (X̃2A1) NO2, a second-
order CPHF pole is observed in the dependence of the DBOC on the bending angle at a geometry
rather far from the true conical intersection between the X̃2A1 and Ã2B2 states, an artifact that can-
not be completely ameliorated by any method short of full CI. These effects arise from well-known
problems associatedwith (near) instabilities of Hartree-Fock solutions, though there is little in the lit-
erature about this in the current context. Thegoal of this paper is to raise awarenessof thesepotential
problems, as the DBOC (adiabatic correction) is now an essential part of many modern protocols for
high-accuracy calculations, and to provide some comments of the causes of these phenomena.
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1. Introduction

For the majority of chemical applications, ab initio
calculations are performed within the framework of the
Born-Oppenheimer approximation (BOA) [1], where
the electronic Schrödinger equation is solved with the
assumption that contributions from the nuclear kinetic
energy operator can be safely ignored. It is this process
that permits the construction of molecular potential
energy surfaces (that are identical for all isotopo-
logues). The BOA is both computationally and concep-
tually straightforward, and provides the foundation upon
which many of our qualitative models of chemistry are
built.

CONTACT John F. Stanton johnstanton@chem.ufl.edu The Quantum Theory Project, Department of Chemistry, The University of Florida, Gainesville,
FL 32611, USA

However, when high accuracy is called for, it is fairly
common to include the first-order correction to the elec-
tronic energy due to the nuclear kinetic energy opera-
tor, even when interactions with other electronic states
(non-adiabatic effects) are unimportant. This contribu-
tion is known as the diagonal Born-Oppenheimer cor-
rection (DBOC), or sometimes the ‘adiabatic correction’.
Addition of the DBOC to the usual electronic energy
produces potential energy surfaces that are still well-
defined, but are now mass- (isotope-) dependent. The
DBOC is one of a handful of small corrections that are
sometimes included when very high accuracy is sought.
This is particularly important for hydrogen-containing
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Figure 1. Plot of the UHF (filled circles) and ROHF (unfilled squares) level DBOC as a function of bond distance for 2� NO with the aug-
cc-pVTZ basis set. Solid points are ‘real’ data, while curves are obtained via cubic spline interpolation. The UHF DBOC rapidly swells just
beyond the equilibrium bond distance of roughly 1.15 Å, a result of near instabilities in the wavefunction.

molecules, where the effects of the DBOC are generally
more pronounced.

For example, the (small) electric dipole moment of
the HDmolecule can be attributed to contributions from
the DBOC [2], rather than to more complicated non-
adiabatic interactions with excited electronic states. In
addition, the DBOC is commonly employed in rigor-
ous treatments of potential energy surfaces [2–16], and
is widely used as an ingredient in high-accuracy recipes
for thermochemical calculations [17–28].

Particularly in the world of high-accuracy thermo-
chemistry, the DBOC is most commonly evaluated using
SCF wavefunctions [17–31], though it has been imple-
mented at coupled-cluster and other correlated levels
of theory [32–35]. The computational cost of evaluat-
ing the DBOC is comparable to that of an analytic sec-
ond derivative (Hessian) calculation, so evaluation of
this quantity at correlated levels is correspondingly com-
plicated, somewhat uncommon, and expensive. While
the dipole moment of HD referenced above was done
with CISD (which is exact for two electrons), the SCF-
level DBOC is typically employed as a (small) correction
when other properties of molecules, such as bond ener-
gies or force constants, have otherwise been evaluated
with great care using various high-level techniques and
methods.

The purpose of this (short) paper is to demonstrate
that the DBOC should perhaps be monitored with care,
especially when calculated at the SCF level of theory.
Since it is formally a second-order property, and there-
fore depends upon the response of thewavefunction to an
external perturbation, and, consequently, the treatment

of ‘excited states’ (in the sense of standard first-order
perturbation theory), one can expect relatively large
diagonal Born-Oppenheimer corrections when there is
efficient coupling with low-lying electronic states [36].
However, as has been amply documented and demon-
strated [37–42], the ‘excitation energies’ associated with
the SCF wavefunction response (the eigenvalues of the
associated orbital rotation stability matrix [43–47]) are
frequently poor approximations of the true values. Thus,
(near) instabilities of the SCF solutions can result in
divergent response of the wavefunction, and with it, the
DBOC. It is important to recognise that this can occur
in regions of the potential energy surface that contain no
such features at the full CI limit.

These curious effects have previously been studied in
some detail [37, 40, 41] for other properties depending
on wavefunction response, such as force constants, elec-
tric polarisabilities, etc., but, to the best of our knowledge,
the fact that the DBOC is susceptible to similar issues has
only been mentioned once before in the literature [6]. To
this end, the following sections will use the NO and NO2
radicals to illustrate some qualitative features of problems
associated with the DBOC, and to recommend a few tests
that can be made when the adiabatic correction displays
troublesome behaviour in numerical work.

2. The DBOC

The energy correction known as the DBOC is given by

�EDBOC = 〈�(r;R)|T̂N(R)|�(r;R)〉 (1)
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Figure 2. Plot of theDBOC (top) and the totally symmetric orbital rotation eigenvalue (bottom) for 2�NOas a function of bonddistance.
Values are calculatedwithUHF/aug-cc-pVTZ. Solidpoints are ‘real’ data,while curves are obtainedvia cubic spline interpolation. Thenear-
zero orbital rotation eigenvalue is a result of an avoided crossing with an alternate SCF solution, and results in an artifact in the UHF-level
DBOC.

where � is the normalised Born-Oppenheimer elec-
tronic wavefunction and T̂N is the nuclear kinetic energy
operator. The pioneering work of Sellers and Pulay [29,
30] demonstrated that the SCF-level DBOC can be calcu-
lated using only first derivatives of the wavefunction [48].
The later efforts of Handy et al. [31] demonstrated how
to efficiently and analytically compute this correction by
employing the CPHF equations of Gerratt andMills [49].

As has already beenmentioned, these CPHF solutions
are sensitive to instabilities in the SCF wavefunction, and
become singular when there is a zero eigenvalue of the
orbital rotation stability matrix (when the RPA excita-
tion energy is zero). One of the terms in the SCF-level

DBOC equations depends upon the square of the CPHF
coefficients, and results in a positive, second-order pole
structure of the DBOC near a CPHF singularity, regard-
less of whether the nearby ‘state’ is higher or lower in
energy (that is, unphysically large and positive values are
obtained whether the solution is ‘barely stable’ or ‘barely
unstable’).

3. NO

The NO radical is an illustrative (and cautionary) exam-
ple of SCF-level DBOC instabilities, and it is this species
that first brought these potential dangers to the authors’
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Figure 3. Plot of the DBOC of 2�NO as a function of bond distance calculated using UHF (filled circles) and CCSD (unfilled squares) with
the aug-cc-pVTZ basis set. Solid points are ‘real’ data, while curves are obtained via cubic spline interpolation. The CCSD DBOC appears
to overcome the artifact displayed by its UHF reference wavefunction.

attention. While modifying the HEAT model chemistry
[20], it was observed that ROHF and UHF DBOCs for
the X̃2� state of thismolecule differed by nearly 70 cm−1,
a finding briefly commented upon in that work. Further
investigation reveals that the UHFDBOC changes rather
rapidly at bond lengths just beyond equilibrium, a region
where the ROHF DBOC is relatively stable, as shown in
Figure 1. In Figure 2, theUHF level DBOC and the lowest
totally symmetric orbital rotation eigenvalue are plotted
as a function of interatomic distance. At a bond length of
roughly 1.15Å, there is a local minimum of this orbital
rotation eigenvalue in a region where CPHF reveals an
avoided crossing between two SCF solutions. While the
orbital rotation eigenvalue never reaches zero, the influ-
ence of the nearby SCF solution is enough to cause a
nearly 1 kJ/mol artifact in the SCF-level DBOC. While
this might seem like a small contribution to the energy,
it is certainly relevant in the domain of high-accuracy
computational thermochemistry.

In this case, where the orbital rotation eigenvalue
is simply varying rapidly, rather than leading to a sin-
gularity in the CPHF equations, the behaviour of the
DBOC can largely be remedied using CC wavefunctions.
Figure 3 plots the SCF and CCSD level DBOC of NO as
a function of bond distance: the nearly 80 cm−1 anomaly
that plagues the UHF DBOC essentially disappears with
CCSD. That there is no significant fluctuation in the
CCSD DBOC clearly indicates that the behaviour of the
Hartree-Fock level correction here is entirely unphysi-
cal, and is a testament to the ability of coupled-cluster

theory to correct for moderate deficiencies in reference
wavefunctions [50].

The example of the NO radical should be regarded as
somewhat of a warning to computational chemists who
regularly employ the Hartree-Fock level DBOC in their
high-accuracy protocols. For open-shell molecules, SCF
wavefunctions (bothUHF andROHF) are prone to issues
of the kind displayed by NO, and erroneously large diag-
onal Born-Oppenheimer corrections could easily escape
the attention of the practicing computational chemist.

4. NO2

The NO2 radical provides another example of issues
encountered with the SCF-level DBOC. Figure 4 shows
the DBOC for the 2A1 state and the orbital rotation
eigenvalue that serves to connect the 2A1 and 2B2 solu-
tions at the UHF/cc-pVDZ level of theory as a function
of ONO bond angle. At a bond angle of roughly 128◦,
this orbital rotation eigenvalue passes through zero (that
is, at smaller angles, the 2A1 SCF solution is unstable
with respect to a symmetry-broken solution). As a con-
sequence, properties that depend on derivatives of the
wavefunction, the DBOC included, become singular at
this threshold angle.

Figure 5 plots the SCF and CCSD level DBOC as a
function of bond angle. Unlike NO, CCSD for NO2 does
not resolve the singularity at 128◦ arising fromdivergence
of the CPHF equations (it is now truly a CPHF pole of
the kind referenced in [37, 41]), though it goes a long
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Figure 4. Plot of the UHF/cc-pVDZ DBOC (top) and orbital rotation eigenvalue of b2 symmetry (bottom) for the 2A1 state of NO2 as a
function of ONO bond angle, with fixed bond lengths of 1.27 Å. Solid points are ‘real’ data, while curves are obtained via cubic spline
interpolation. The orbital rotation eigenvalue, which connects the 2A1 and 2B2 states, passes through zero at a bond angle of roughly
128◦, resulting in a divergence of the response of the SCF wavefunction.

way toward reducing the width of this diabolical feature.
It should be emphasised that the pole here is unphysi-
cal – the true crossing point of the 2A1 and 2B2 states
occurs at a bond angle below 110◦, to which the SCF-
DBOC is oblivious. That the response of the SCF wave-
function cannot satisfactorily account for the approach
of these two states speaks to its inability to represent
behaviour associated with vibronic (Herzberg-Teller)
coupling with even a semblance of fidelity. It is possi-
ble that an orbital-unrelaxed approach to the CCSD level
DBOC,where the response of the referencewavefunction
orbitals is excluded, could overcome these CPHF-poles.

We are currently considering such a development
in our lab.

CCSD, on the other hand, predicts a correlation pole
at the crossing point of the CCSD 2A1 and EOMEE-
CCSD 2B2 potential energy surfaces (of the type dis-
cussed in Ref. [41]), which is indeed in the region of
the true singularity. However, it exhibits a complicated
pole structure, which leads in one limit to a negative
(and therefore clearly wrong) value of the DBOC. This
point is discussed in the appendix, where it is shown
that the pole becomes second-order in the full CI limit
(as it must be), but its behaviour here is compromised
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Figure 5. Plot of the UHF (unfilled squares) and CCSD (filled circles) DBOCs for the 2A1 state of NO2 calculatedwith the cc-pVDZ basis set
as a function of ONO bond angle at a fixed bond length of 1.27 Å. Solid points are ‘real’ data, while curves are obtained via cubic spline
interpolation. The CPHF pole of the DBOC at 128◦ is a consequence of instability of the Hartree-Fock wavefunction. The correlation pole
at roughly 108◦ is centred around the crossing point of the CCSD 2A1 and EOMEE-CCSD 2B2 potential energy surfaces. Off the scale of the
graph is a region (just below a bond angle of 108◦) at which the CCSD DBOC attains unphysical, negative values.

by the incomplete treatment of electron correlation in
CCSD.

5. Diagnostics

Following the analysis above, a few methods can be rec-
ommended to diagnose potentially problematic DBOCs.
The first, and most reliable, has been employed though
the majority of this paper: the eigenvalues of the orbital
rotation stability matrix. It should be pointed out that
negative eigenvalues (which indicate a lower-lying SCF
solution) in-and-of themselves are not predictors of poor
SCF behaviour. Rather, only the magnitude of the eigen-
value should be considered: values near zero can poten-
tially give rise to the CPHF poles discussed above. It is
difficult to say exactly when a nearby SCF solution will
cause problems, but in the case of NO, an orbital rota-
tion eigenvalue of 0.03 a.u. was sufficient to cause a nearly
1 kJ/mol error in the SCF DBOC.

The second check for potential issues has also been
mentioned already: disagreement between DBOC ener-
gies calculated with UHF and ROHF wavefunctions. In
a well behaved system, the value of the DBOC should
not vary much between these two levels of theory. As
these treatments tend to (though by no means always)
encounter instabilities in different regions of potential
energy surfaces, significant differences between their
DBOCs could indicate that at least one of them is prob-
lematic [51].

Last, in the case of high-accuracy calculations on
molecules that are well-represented by the adiabatic
approximation, the DBOC contribution to quantities
such as total atomisation energies and enthalpies of for-
mation should be small [52]. If this is not the case, it
is quite possible that the SCF solutions are near a point
of instability, and the orbital rotation eigenvalues should
be checked. If neither SCF solution is near a point of
instability, then it is worthwhile to do a (more expensive)
correlated calculation. If the large DBOC persists, then it
is likely that there is a true nearby and strongly coupled
state, and it might be that the adiabatic approximation is
inappropriate. In such situations, the DBOC should be
abandoned and a multistate treatment may be in order.

6. Summary

In the majority of quantum chemical calculations,
the electronic wavefunction is calculated within the
clamped nucleus approximation. The resulting Born-
Oppenheimer electronic energy is missing a contribu-
tion from the nuclear kinetic energy. In high-accuracy
work, quantum chemists account for this typically small,
but sometimes important, contribution via the diagonal
Born-Oppenheimer correction, usually at the SCF level
of theory. In this work, we have given two exampleswhere
the Hartree-Fock level DBOC yields unsatisfactory, or
even unphysical, results. As the DBOC depends upon
the response of the wavefunction (in a manner similar to
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force constants), it is sensitive to instabilities of the SCF
solutions; zero eigenvalues of the orbital rotation stabil-
ity matrix result in divergent CPHF solutions and DBOC
energies. In the case of NO, an avoided crossing of two
SCF solutions results in a nearly 1 kJ/mol artifact in the
DBOC near the equilibrium bond distance, which could
largely be mended using CCSD theory. However, for
NO2, nearby SCF states result in singular CPHF solutions
and a second-order CPHF pole that cannot be reme-
died with a CCSD wavefunction. These results indicate
that the DBOC, though usually only a small contribution
to molecular properties, should be considered in high-
accuracy work with the same degree of caution as force
constants, which are well understood to be potentially
problematic, especially in open-shell systems [53]. Last,
we suggested a few simple tests, namely careful obser-
vation of the orbital rotation eigenvalues and chemical
intuition, to help diagnose potentially flawed DBOCs.
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Appendix

A.1 Correlation poles of the DBOC

The DBOC for a molecule consisting of N atoms can be
expressed in coupled-cluster theory [33] as

�EDBOC = −
3N∑
α

(
1

2Mα

〈
�̃CC

∣∣∣∣ ∂2

∂α2

∣∣∣∣ �CC

〉
+ NRR

)
, (A1)

or, equivalently,

�EDBOC =
3N∑
α

(
1

2Mα

〈
∂

∂α
�̃CC

∣∣∣∣ ∂

∂α
�CC

〉
+ NLR

)
. (A2)

Here α runs over all Cartesian coordinates associated with
nuclei of mass Mα , and NRR and NLR are normalisation fac-
tors that come from the requirement that the wavefunction be

normalised in order to exploit the treatment of the DBOC put
forward by Kutzelnigg [54]. The 〈�̃CC| and |�CC〉 are the left-
and right-hand CC wavefunctions respectively, and are given
by

〈�̃CC| = 〈0| L exp(−T), (A3)

L = 1 + �, (A4)

and

|�CC〉 = exp(T) |0〉 . (A5)

Here T is the excitation operator that serves to parameterise
the CC wavefunction, and � are the CC response amplitudes
[55, 56]. |0〉 is the reference wavefuction, taken here as the SCF
solution.

Clearly the latter expression for the DBOC (Equation (A2))
is advantageous for evaluating this correction, as secondderiva-
tives of thewavefunction are expensive to calculate, whereas the
former (Equation (A1)) better lends itself to analysis of the pole
structure of the adiabatic correction, as it avoids derivatives of
L. However, we shall start with Equation (A1), and then recast
∂L/∂α in terms of commutators of H̄N and ∂T/∂α.

We begin with the form of the DBOC given by Gauss et al.
[33],

�EDBOC =
3N∑
α

1
2Mα

(〈
∂

∂α
�̃CC

∣∣∣∣ ∂

∂α
�CC

〉

+
∣∣∣∣〈�̃CC

∣∣∣∣ ∂

∂α

∣∣∣∣ �CC

〉∣∣∣∣2
)
. (A6)

Here, and in the rest of the derivation, terms involving deriva-
tives of the referencewavefunctionwill be excluded, as theywill
not contribute to the correlation pole structure. Expanding the
above equation, we get

�EDBOC =
3N∑
α

1
2Mα

(
〈0| ∂

∂α

(
L exp(−T)

) ∂

∂α

(
exp(T)

) |0〉

+
∣∣∣∣〈0|L exp(−T)

∂

∂α

(
exp(T)

) |0〉
∣∣∣∣2

)

=
3N∑
α

1
2Mα

(
〈0|

(
∂L
∂α

exp(−T) − L exp(−T)
∂T
∂α

)

× exp(T)
∂T
∂α

|0〉

+
∣∣∣∣〈0|L exp(−T) exp(T)

∂T
∂α

|0〉
∣∣∣∣2

)

=
3N∑
α

1
2Mα

(
〈0| ∂L

∂α

∂T
∂α

|0〉 − 〈0|L∂T
∂α

∂T
∂α

|0〉

+
∣∣∣∣〈0|L∂T

∂α
|0〉

∣∣∣∣2
)
. (A7)

First we address the leftmost term, A.

A ≡ 〈0| ∂L
∂α

∂T
∂α

|0〉 . (A8)
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Insert the identity, and the form of ∂L/∂α given in part B of the
appendix.

A = 〈0| ∂L
∂α

|p〉 〈p|∂T
∂α

|0〉

=
(

−〈0|LH̄N
∂T
∂α

|p〉 + 〈0|L∂T
∂α

H̄N |p〉 − 〈0|LH̄α
N |p〉

)
× 〈p|H̄N |p〉−1 〈p|∂T

∂α
|0〉 , (A9)

where
H̄N ≡ H̄ − 〈0|H|0〉 , (A10)

and

H̄α ≡ exp(−T)
∂H
∂α

exp(T). (A11)

It is convenient to partition the space of Slater determinants
as follows: 0, which is the reference Slater determinant; g, the
determinants reached by operation of T onto the reference; p,
the union of 0 and g; and q, the determinants outside the scope
of the truncated CC treatment in question.

With this, the first term of A (I) can be separated into two
contributions:

I ≡ −〈0|LH̄N
∂T
∂α

|p〉 〈p|H̄N |p〉−1 〈p|∂T
∂α

|0〉

=
(

−〈0|LH̄N |p〉 〈p|∂T
∂α

|p〉 − 〈0|LH̄N |q〉 〈q|∂T
∂α

|p〉
)

× 〈p|H̄N |p〉−1 〈p|∂T
∂α

|0〉 . (A12)

The first of these vanishes because 〈0|LH̄N |p〉 = 0 (the defining
equation of L), leaving only

I = −〈0|LH̄N |q〉 〈q|∂T
∂α

|p〉 〈p|H̄N |p〉−1 〈p|∂T
∂α

|0〉 , (A13)

which includes the influence of excitations outside the range
defined by the truncated level of theory (for instance, triples,
quadruples, etc, for CCSD).

The second term of A (II) simplifies to

II ≡ 〈0|L∂T
∂α

H̄N |p〉 〈p|H̄N |p〉−1 〈p|∂T
∂α

|0〉

= 〈0|L∂T
∂α

|p〉 〈p|H̄N |p〉 〈p|H̄N |p〉−1 〈p|∂T
∂α

|0〉

= 〈0|L∂T
∂α

∂T
∂α

|0〉 , (A14)

which cancels the second term of Equation (A7). Gathering all
of the terms of Equation (A7) yields the easily analyzed form:

�EDBOC =
3N∑
α

1
2Mα

(
− 〈0|LH̄N |q〉 〈q|∂T

∂α
|p〉 〈p|H̄N |p〉−1

× 〈p|∂T
∂α

|0〉 − 〈0|LH̄α
N |p〉 〈p|H̄N |p〉−1 〈p|∂T

∂α
|0〉

+
∣∣∣∣〈0|L∂T

∂α
|0〉

∣∣∣∣2
)
. (A15)

Short of full CI, the CC level DBOC clearly displays a compli-
cated pole structure, with the first term (which makes a third-
order contribution) in the equation above dominating close to
the crossing of the states (see similar, butmore detailed, analysis
in ref. [41]). At full CI this leading term vanishes and ‘proper’
(second order) behaviour is regained. Additionally, at full CI,
the sign of the DBOC is necessarily positive, as is demanded
on physical grounds from the expectation value of the kinetic
energy.

A.2 Deriving ∂L/∂α

In the above text, a useful substitution was made that expressed
∂L/∂α in terms of commutators of ∂T/∂α and H̄N , which is
show below.

We begin with the defining equation for the L operator.

〈0|LH̄N |p〉 = 0. (A16)

The derivative of which is

〈0| ∂L
∂α

H̄N |p〉 + 〈0|LH̄N
∂T
∂α

|p〉

− 〈0|L∂T
∂α

H̄N |p〉 + 〈0|LH̄α
N |p〉 = 0. (A17)

Then,

〈0| ∂L
∂α

|p〉 =
(

−〈0|LH̄N
∂T
∂α

|p〉 + 〈0|L∂T
∂α

H̄N |p〉

− 〈0|LH̄α
N |p〉

)
〈p|H̄N |p〉−1 , (A18)

which is used above.
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