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1. Introduction. Many state-of-the-art classification algorithms require a large training set that
is statistically similar to the test set. For example, deep learning–based approaches require a large
number of representative samples in order to find near-optimal network weights and biases [5, 10].
Similarly, template-based approaches require large dictionaries of training images so that each test
image can be represented by an element of the dictionary [23, 29, 19, 7]. For each technique, if test
images cannot be represented in a feature space that has been determined from the training set,
then classification accuracy is poor.

In applications such as synthetic aperture radar (SAR) automatic target recognition (ATR), it is
infeasible to collect the volume of data necessary to naively train high-accuracy classification net-
works. Additionally, due to varying operating conditions, the features measured in SAR imagery
are different from those extracted from electro-optical (EO) imagery [14]. As such, off-the-shelf net-
works that have been pre-trained on the popular EO-based ImageNet [3] or CIFAR-10 [9] datasets
are insufficient for performing accurate ATR tasks in different imaging domains. In fact, recent
work has demonstrated that pre-trained networks fail to effectively generalize to random pertur-
bations on test sets [21, 20]. To build more representative training sets, additional data are often
generated using modeling and simulation software. However, due to various model errors, simu-
lated data often misrepresent the real-world scattering observed in measured imagery. Thus, even
though it is possible to augment training sets with a large amount of simulated data, the inherent
differences in sensor modalities and data representations make modifying classification networks a
non-trivial task [22]. Overall, for this SAR application, one must perform the nontrivial task of
transfer learning before applying other machine learning algorithms.

In this paper, we introduce matching component analysis (MCA) to help remedy this sit-
uation. Given a small number of images from the training domain and matching images from
the testing domain, MCA identifies a low-dimensional feature space that both domains have in
common. With the help of MCA, one can map augmented training sets into a common domain,
thereby making the classification task more robust to mismatch between the training and test-
ing domains. We note that other transfer learning methods, image-to-image domain regression
techniques, and generative adversarial networks have all been developed with a similar task in
mind [13, 8, 25, 18, 12, 4], but little theory has been developed to explain the performance of
these machine learning–based adaptation techniques. By contrast, in this paper, we estimate the
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number of matched samples needed for MCA to identify a common domain, and provide theoretical
guarantees on the convergence rate of the algorithm. In addition, we show that the proposed MCA
algorithm successfully performs transfer learning on real-world problems (see the SAR application
discussed above) given a small amount of training data.

The rest of the paper is organized as follows. Section 2 introduces the MCA algorithm and our main
theoretical results. In Section 3, we use a sequence of numerical experiments involving MNIST [11]
and SAR [14] data to demonstrate that classifying data in the common domain allows for more
accurate classification. We discuss limitations of MCA in Section 4. Sections 5 and 6 contain the
proofs of our main theoretical results.

2. Matching component analysis. Let Rd1 and Rd2 denote the training and testing domains,
respectively. Traditionally, our training set would consist of labeled points in Rd1 , whereas our test
test would consist of labeled points in Rd2 . In order to bridge the disparity between the training
and testing domains, we will augment our training set with a matching set of n labeled pairs in
Rd1 ×Rd2 . Then our full training set, whose size we denote by N � n, consists of a conventional
training set of N − n labeled points in Rd1 and a matching set of n labeled points in Rd1 × Rd2 .
The matching set will enable us to identify maps g1 and g2 from the training and testing domains
to a common domain Rk, where we can train a classifier h on the full training set:

training domain

testing domain

HHHHj

g1

��
�
�*

g2

common domain -h
label domain

We model our setting in terms of unknown random variables X1 ∈ Rd1 , X2 ∈ Rd2 , Y ∈ R over a
common probability space (Ω,F ,P). In particular, suppose points {ωj}j∈[N ] are drawn indepen-
dently at random from (Ω,F ,P), and we are given

{X1(ωj)}j∈[N ], {X2(ωj)}j∈[n], {Y (ωj)}j∈[N ]

for some n � N with the task of finding f : Rd2 → R such that f(X2) ≈ Y . Our approach is
summarized by the following:

(i) Select k ∈ N and a class Fi of functions that map Rdi to Rk for each i ∈ {1, 2}.
(ii) Use {X1(ωj)}j∈[n] and {X2(ωj)}j∈[n] to (approximately) solve

minimize E‖g1(X1)− g2(X2)‖2(2.1)

subject to gi ∈ Fi, Egi(Xi) = 0, Egi(Xi)gi(Xi)
> = Ik, i ∈ {1, 2}.

(iii) Train h : Rk → R on {g1(X1(ωj))}j∈[N ] and {Y (ωj)}j∈[N ], and return f := h ◦ g2.
For (i), we are principally interested in the case where Fi is the set of affine linear transformations
from Rdi to Rk. This choice of function class is nice because it locally approximates arbitrary
differentiable functions while being amenable to theoretical analysis. Considering the ubiquity of
principal component analysis in modern data science, this choice promises to be useful in practice.
The constraints in program (2.1) ensure that the training set in (iii) is normalized, while simultane-
ously preventing useless choices for gi, such as those for which gi(Xi) = 0 almost surely. Intuitively,
(ii) selects g1 and g2 so as to transform X1 and X2 into a common domain, and then (iii) leverages
the large number of realizations of X1 to predict Y in this domain, thereby enabling us to predict
Y from X2. We expect this approach to work well in settings for which
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• each gi(Xi) captures sufficient information about ω to predict Y ,
• h is robust to slight perturbations so that h(g1(X1)) ≈ h(g2(X2)),
• Y |X2 is too complicated to be learned from a training set of size n, and
• Y |g1(X1) can be learned from a training set of size N .

To solve program (2.1) in the case of affine linear transformations, gi must have the form gi(x) =
Aix + bi for some Ai ∈ Rk×di and bi ∈ Rk. Let µi and Σi denote the mean and covariance
of Xi. The constraint in program (2.1) forces Aiµi + bi = Egi(Xi) = 0, and so bi = −Aiµi,
i.e., gi(x) = Ai(x − µi). The constraint also forces AiΣiA

>
i = Egi(Xi)gi(Xi)

> = Ik. Overall,
program (2.1) is equivalent to

(2.2) minimize E‖A1(X1 − µ1)−A2(X2 − µ2)‖2 subject to AiΣiA
>
i = Ik, i ∈ {1, 2}.

Notice that this program is infeasible when k > min{rank Σ1, rank Σ2}. Of course, we do not have
access to X1 and X2, but rather n realizations of each, and so we are forced to approximate. To
this end, we estimate the means and covariances as

(2.3) µ̂i :=
1

n

∑
j∈[n]

Xi(ωj), Σ̂i :=
1

n

∑
j∈[n]

(Xi(ωj)− µ̂i)(Xi(ωj)− µ̂i)>,

and then consider the following approximation to program (2.2):

minimize
1

n

∑
j∈[n]

‖A1(X1(ωj)− µ̂1)−A2(X2(ωj)− µ̂2)‖2(2.4)

subject to AiΣ̂iA
>
i = Ik, i ∈ {1, 2}.

Observe that program (2.4) is equivalent to

minimize
1

n

∑
j∈[n]

‖A1(X1(ωj)− µ̂1)−A2(X2(ωj)− µ̂2)‖2(2.5)

subject to AiΣ̂iA
>
i = Ik, imA>i ⊆ im Σ̂i, i ∈ {1, 2}.

Indeed, if (A1, A2) is feasible in (2.4), then we can project the rows of Ai onto im Σ̂i without
changing the objective value. Next, define ri := rank Σ̂i, take Vi to be any di × ri matrix whose
columns form an orthonormal basis for im Σ̂i, and define Zi to be the ri × n matrix whose jth
column is V >i (Σ̂†i )

1/2(Xi(ωj)− µ̂i), i.e., Zi is an isotropic version of Xi. Then every solution of

(2.6) minimize
1

n
‖B1Z1 −B2Z2‖2F subject to BiB

>
i = Ik, i ∈ {1, 2}

can be transformed to a solution to program (2.5) by the change of variables Ai = BiV
>
i (Σ̂†i )

1/2,
where Bi ∈ Rk×ri . In fact, by this change of variables, programs (2.5) and (2.6) are equivalent.
In the special case where k = d1 = d2, one may take B2 = Ik without loss of generality, and then
program (2.6) amounts to the well-known orthogonal Procrustes problem [6]. In general, we refer
to (2.6) as the projection Procrustes problem; see Figure 1 for an illustration. Considering
orthogonal Procrustes enjoys a spectral solution, there is little surprise that projection Procrustes
also enjoys a spectral solution:

Lemma 2.1. Suppose ZiZ
>
i = nIri for both i ∈ {1, 2}. If k > min{r1, r2}, then the projection Pro-

crustes problem (2.6) is infeasible. Otherwise, select any k-truncated singular value decomposition
W1ΣW

>
2 of Z1Z

>
2 . Then (B1, B2) = (W>1 ,W

>
2 ) is a solution to (2.6).

Proof. Since Bi is a k × ri matrix, the constraint BiB
>
i = Ik requires k ≤ ri. Suppose k ≤

min{r1, r2}, and consider any feasible point (B1, B2) in program (2.6). Then

‖BiZi‖2F = tr(Z>i B
>
i BiZi) = tr(B>i BiZiZ

>
i ) = n tr(B>i Bi) = n tr(BiB

>
i ) = nk,
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Figure 1. Illustration of the projection Procrustes problem. (left) Draw 300 points from a uniform distribution
over a Mickey Mouse shape in the xy-plane of R3. (middle left) Perform the following deformation twice in order to
produce matched datasets Z1 and Z2: Add independent spherical Gaussian noise (σ = 0.1) to each data point, randomly
rotate the entire dataset, and then normalize the result to have zero mean and identity covariance. (middle) Solve
the projection Procrustes problem for Z1 and Z2 with k = 2. The optimal B1 and B2 have the property that B>i Bi is
a 3×3 orthogonal projection matrix of rank 2, and we plot the projected data B>i BiZi. (middle right) The resulting
2-dimensional transformation of the data, namely, the columns of BiZi. (right) We superimpose both datasets in the
2-dimensional transform space to illustrate how well they are aligned.

and so the objective is proportional to

‖B1Z1 −B2Z2‖2F = ‖B1Z1‖2F − 2 tr(Z>1 B
>
1 B2Z2) + ‖B2Z2‖2F

= 2nk − 2 tr((Z2Z
>
1 )(B>1 B2)) ≥ 2nk − 2

∑
l∈[k]

σl(Z2Z
>
1 ),

where the last step applies the von Neumann trace inequality (see Section 7.4.1 in [6]). This
inequality is saturated when the columns of B>1 and B>2 are leading left and right singular vectors
of Z1Z

>
2 .

As a consequence of Lemma 2.1, we now have a fast method to solve program (2.4), which we
summarize in Algorithm 2.1; we refer to this algorithm as matching component analysis (MCA).
(To be clear, given a matrix A ∈ Rm×n of rank r, the thin singular value decomposition
A = UΣV > consists of U ∈ Rm×r and V ∈ Rn×r, both with orthonormal columns, and a diagonal
matrix Σ ∈ Rr×r of the positive singular values of A.) Recalling our application, we note that
matching data is an expensive enterprise, and so we wish to solve program (2.4) using as few
samples as possible. For this reason, we are interested in determining how many samples it takes
for (2.4) to well approximate the original program (2.2). We summarize our study of MCA sample
complexity in the remainder of this section.

2.1. Sample complexity of MCA approximation. Given a random X := [X1;X2] ∈ Rd1×Rd2 ,
consider the covariances

ΣXi := E(Xi − EXi)(Xi − EXi)
>

for i ∈ {1, 2}. We are interested in minimizing

fX(A) = fX(A1, A2) := E‖A1(X1 − EX1)−A2(X2 − EX2)‖22
over the subset of V := Rk×d1 × Rk×d2 defined by

SX := {(A1, A2) ∈ V : AiΣXiA
>
i = I, i ∈ {1, 2}}.
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Algorithm 2.1 Matching component analysis

1: Data: {xij}j∈[n] in Rdi for i ∈ {1, 2} and k ∈ N.

2: Result: Ai ∈ Rk×di and bi ∈ Rk for i ∈ {1, 2} such that
(i) {Aixij + bi}j∈[n] has zero mean and identity covariance for both i ∈ {1, 2}, and

(ii) A1x1j + b1 ≈ A2x2j + b2 for every j ∈ [n].

3: Step 1: Normalize the data.
4: for i = 1 to 2 do
5: Put xi = 1

n

∑
j∈[n] xij , Σi = 1

n

∑
j∈[n](xij − xi)(xij − xi)>, and ri = rank Σi.

6: Compute thin singular value decomposition ViΛiV
>
i of Σi.

7: Construct ri × n matrix Zi with jth column given by Λ
−1/2
i V >i (xij − xi).

8: end for

9: Step 2: Solve the projection Procrustes problem.
10: if k > min{r1, r2} then
11: Return INFEASIBLE

12: else
13: Compute k-truncated singular value decomposition W1ΣW

>
2 of Z1Z

>
2 .

14: For each i ∈ {1, 2}, put Ai = W>i Λ
−1/2
i V >i and bi = −Aixi.

15: end if

Given n independent instances of X, we may approximate the distribution of X with the uniform
distribution over these n independent instances, producing the random vector X̂. Notice that X̂i

has mean µ̂i and covariance Σ̂i, as defined in (2.3). We therefore have the following convenient
expressions for (2.2) and (2.4):

(2.2) = min
A∈SX

fX(A), (2.4) = min
A∈SX̂

fX̂(A).

The following is our first result on MCA sample complexity:

Theorem 2.2. Fix p ∈ (0, 1]. There exists C = C(p) > 0 such that the following holds: Suppose
‖X − EX‖2,∞ ≤ β almost surely and mini∈{1,2} λmin(ΣXi) ≥ σ2 > 0. Then for every ε ∈ (0, 1], it
holds that ∣∣∣ min

A∈SX̂
fX̂(A)− min

A∈SX
fX(A)

∣∣∣ ≤ ε · β2
σ2

in an event of probability ≥ 1− p, provided

n ≥ C
(

(d1 + d2) · kε2 log( k
ε2

) + ( βεσ )4 · log(d1 + d2)
)
.

Note that the boundedness assumption ‖X−EX‖2,∞ ≤ β is reasonable in practice since images have
pixel values with finite ranges, e.g., [0, 1] or {0, 1, . . . , 255}. Also, we may assume λmin(ΣXi) > 0
without loss of generality by restricting Rdi to the image of ΣXi if necessary. Intuitively, the ratio
β/σ provides a notion of condition number for X, and accordingly, the bounds are worse when X
is poorly conditioned. We prove this theorem in Section 5 using ideas from matrix analysis and
high dimensional probability.

2.2. Conditions for exact matching. Next, we study matching component analysis in the
context of a particular data model. We focus our attention on a family of random vectors that are
particularly well suited for MCA. Suppose our probability space (Ω,F ,P) takes the form (RD,B,P)
for some unknown D ∈ N. We say X ∈ Rd is an affine linear random vector if there exists
S ∈ Rd×D and µ ∈ Rd such that X(ω) = Sω + µ for every ω ∈ RD. While every random vector
can be viewed as an affine linear random vector over the appropriate probability space, we will



6 C. CLUM, D.G. MIXON, AND T. SCARNATI

be interested in relating two affine linear random vectors over a common probability space. Since
D and P are both unknown, we may assume without loss of generality that ω has zero mean and
identity covariance in RD, and so X has mean µ and covariance SS>.

As an example, suppose ω1, ω2 and ω3 are independent Gaussian random variables with zero mean
and unit variance, and consider the random vectors X1 := (ω1 + 1, ω2) and X2 := (0, ω1, ω3). Then
X1 ∈ R2 and X2 ∈ R3 are affine linear random vectors over the probability space (R3,B, N(0, I3)).
Intuitively, the information that X1 and X2 have in common about ω = (ω1, ω2, ω3) is contained
in the first coordinate of X1 and the second coordinate of X2. In fact, if we define g1 : R2 → R
by g1(x, y) = x − 1 and g2 : R3 → R by g2(x, y, z) = y, then we can use g1 and g2 to isolate this
common information: g1(X1) = ω1 = g2(X2). Since g1 and g2 are affine linear maps, one might
expect MCA to recover these maps given enough independent samples of (X1, X2). In what follows,
we clarify our intuition about the common information between X1 and X2, and then we compute
the sample complexity of finding g1 and g2 that isolate this common information.

Let X1 and X2 be affine linear random vectors, and suppose we encounter affine linear functions
g1 and g2 such that g1(X1) = g2(X2). Then gi(Xi(ω)) determines ω up to a coset of some subspace
K ⊆ RD, and the smaller this subspace is, the better we can predict Y (ω). As one might expect,
there is a limit to how small K can be:

Lemma 2.3. Suppose Xi(ω) = Siω + µi for each i ∈ {1, 2}. Then A1X1 + b1 = A2X2 + b2 implies
A1S1 = A2S2 =: T , which in turn implies kerT ⊇ kerS1 + kerS2.

Proof. Suppose A1X1 + b1 = A2X2 + b2. Since

(AiXi(ω) + bi)− (AiXi(0) + bi) = AiSiω,

it follows that A1S1 = A2S2. For each i ∈ {1, 2}, we have T = AiSi, and so kerSi ⊆ kerT . Since
kerT is closed under addition, the result follows.

Given affine linear random variables X1 and X2 over a common probability space, we are interested
in the sample complexity of finding affine linear maps g1 and g2 such that g1(X1) = g2(X2), and
furthermore, gi(Xi(ω)) determines ω up to a coset of the smallest possible subspace. To help us
approach this, we introduce the following formalism:

Definition 2.4. Given d1, d2, n ∈ N, the corresponding affine linear model ALM(d1, d2, n) receives
a distribution P over some real vector space RD and returns the random function

EP : (S1, µ1, S2, µ2) 7→ {Siωj + µi}i∈{1,2},j∈[n]

defined over all Si ∈ Rdi×D and µi ∈ Rdi, and with {ωj}j∈[n] drawn independently with distribution
P. We say ALM(d1, d2, n) is exactly matchable if there exists a measurable function

D : {xij}i∈{1,2},j∈[n] 7→ (A1, b1, A2, b2)

such that for every D ∈ N, every continuous probability distribution P over RD, and every input
(S1, µ1, S2, µ2), the random tuple

(A1, b1, A2, b2) := (D ◦ EP)(S1, µ1, S2, µ2)

almost surely satisfies both

(i) A1(S1ω + µ1) + b1 = A2(S2ω + µ2) + b2 for all ω ∈ RD, and

(ii) kerAiSi = kerS1 + kerS2.

Our second result on MCA sample complexity provides a sharp phase transition for the affine linear
model to be exactly matchable:
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Theorem 2.5.

(a) If n ≥ d1 + d2 + 1, then ALM(d1, d2, n) is exactly matchable.

(b) If n < d1 + d2 + 1, then ALM(d1, d2, n) is not exactly matchable.

In particular, we use MCA to define a witness D for Theorem 2.5(a). We prove this theorem in
Section 6 using ideas from matrix analysis and algebraic geometry.

3. Experiments. In this section, we perform several experiments to evaluate the efficacy of
matching component analysis for transfer learning (see Table 1 and Figure 3 for a summary). For
each experiment, in order to produce a matching set, we take an example set of labeled points
from the testing domain and match them with members of the conventional training set. (While the
example set resides in the testing domain, it is disjoint from the test set in all of our experiments.)
Each experiment is described by the following features; see Figure 2 for an illustration.

training domain. Space where the conventional training set resides.

testing domain. Space where the example and test sets reside.

match. Method used to identify a matching set, which is comprised of pairs of points from
the conventional training and example sets.

n. Size of example set.

r. Number of points from the conventional training set that are matched to each member
of the example set, producing a matching set of size nr. (While our theory assumes r = 1,

we find that taking r > 1 is sometimes helpful in practice.)
k. Dimension of common domain selected for matching component analysis.

training domain

conventional
training set

example set test set

testing domain

Figure 2. Illustration of experimental setup in Section 3. The goal is to train a classifier on a training set that
performs well on a test set. The training set, depicted in blue hatching, consists of both a conventional training set
in the training domain and a small example set in the testing domain. The test set, depicted in red dots, is unknown
and resides in the testing domain. Importantly, the example set is disjoint from the test set despite both residing in
the testing domain. We match each member of the example set to r members of the conventional set to produce a
matching set. (In the above illustration, r = 2.) This matching set is then processed by MCA to identify mappings
that send both the training domain and the testing domain to a common domain.

For each experiment, we run MCA to find affine linear mappings to the common domain Rk, and
then we train a k-nearest neighbor (k-NN) classifier in this domain on the conventional training set,
and we test by first mapping the test set into the common domain. For comparison, we consider
three different baselines, which we denote by BL1, BL2 and BL3. For BL1, we train a k-NN
classifier on the example set (whose size is only n) and test on the test set. For BL2, we train a
k-NN classifier on the conventional training set (which resides in the training domain Rd1) and test
on the test set (which resides in the testing domain Rd2). This latter baseline is possible whenever
d1 = d2, which occurs in all of our experiments. For BL3, we train a k-NN classifier using 80% of
the available data in the testing domain Rd2 and test with the remaining 20% of data available in
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Rd2 . Since we train the k-NN with a large amount of data in the testing domain, we can think of
BL3 as an upper bound on the classification performance for each experiment. Table 1 highlights
the experiments which perform closest to the upper bound found in BL3. In order to isolate the
performance of MCA in our experiments, we set the number of neighbors to be 10 for all of our
k-NN classifiers.

In half of the experiments we consider, we are given a matching set with r = 1, and in the other
experiments, we are only given an example set. In this latter case, we have the luxury of selecting
r, and in both cases, we have the additional luxury of selecting k. We currently do not have a rule
of thumb for selecting these parameters, although we observe that overall performance is sensitive
to the choice of parameters. See Section 4 for more discussion along these lines.

Table 1
Summary of transfer learning experiments

training domain testing domain match n r k BL1 BL2 BL3 MCA
MNIST (1st half) MNIST (2nd half) `2 2000 5 30 86% 94% 92% 90%
MNIST (1st half) MNIST (2nd half) label 2000 5 30 86% 94% 92% 69%

MNIST (crop) MNIST (pixelate) source 20 1 19 18% 23% 94% 83%
MNIST (crop) MNIST (pixelate) source 2000 1 50 91% 23% 94% 94%

CF (2 & 5) MNIST (2 & 5) `2 10 100 5 54% 98% 99% 84%
CF (0 & 1) MNIST (0 & 1) `2 10 100 5 55% 100% 100% 100%
CF (4 & 9) MNIST (4 & 9) `2 10 100 5 51% 89% 96% 71%

SAMPLE (sim) SAMPLE (real) expert 100 1 99 62% 20% 99% 87%

3.1. Transfer learning from MNIST to MNIST. For our first experiment, we tested the per-
formance of the MCA algorithm in a seemingly trivial case: when the training and testing domains
are identical. As illustrated in Figure 3(top-left), the training and testing domains are already
aligned, and so this is not a classic transfer learning experiment. For this reason, the MCA algo-
rithm should not outperform the baseline BL2 in this simple case. In fact, since the training and
testing domains are the same for this experiment, we also expect BL2 to outperform BL3, as BL2
contains more training data. Despite these peculiarities, this setup allows us to isolate the impact
of using different matching procedures.

We partitioned the training set of 60,000 MNIST digits into two subsets of equal size. We arbitrarily
chose the first 30,000 to represent the training domain, and interpreted the remaining 30,000 points
as members of the testing domain. We then matched n of the points from the testing domain with
r = 5 of their nearest neighbors (in the Euclidean sense) in the training domain with the same
label. For a cheaper alternative, we also tried matching with r = 5 randomly selected members of
the training domain that have the same label.

As expected, MCA does not outperform the classifier trained on the entire training set (BL2).
However, with sufficiently many matches, MCA is able to find a low-dimensional embedding of
R28×28 that still allows for accurate classification of digits. Judging by the poor performance of the
label-based matching, these experiments further illustrate the importance of a thoughtful matching
procedure. In general, when label classes exhibit large variance and yet the matching is determined
by label information alone, we observe that MCA often fails to identify a common domain that
allows for transfer learning.

3.2. Transfer learning from cropped MNIST to pixelated MNIST. Our second experiment
replicates the affine linear setup from Subsection 2.2. Here, we view the MNIST dataset as a
subset M of a probability space Ω = R28×28 with P distributed uniformly over M . Next, we
linearly transform the MNIST dataset by applying two different maps ω 7→ Xi(ω). In particular,
X1(·) crops a given 28×28 image to the middle 14×14 portion, while X2(·) forms a 14×14 pixelated
version of the original image by averaging over each 2×2 block; see Figure 4 for an illustration. We
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MNIST to MNIST Cropped to Pixelated CF to MNIST (4 & 9) SAMPLE

Figure 3. Two-dimensional visualizations of data provided by t-SNE [15]. (top) Raw data before applying the
MCA algorithm. Red ◦’s denote data from the training domain and the blue ×’s denote data from the testing domain.
(middle) We run MCA on n data points from the training and testing domains to identify a common domain, and
we plot these points in the common domain. In each experiment, most training points appear to be well-aligned with
with a testing point in the common domain. (bottom) Once a common domain has been identified, we map all of the
data to this domain and plot the results. In general, data from the training and testing domains appear to be better
aligned in the common domain. In the case of MNIST to MNIST, the training and testing domains were identical,
and mapping to the common domain appears to destroy relevant structure in the data.

interpret the cropped images {X1(ω)}ω∈M as belonging to the training domain and the pixelated
images {X2(ω)}ω∈M to the testing domain. Notice that this setup delivers a natural matching
between members of both domains, i.e., X1(ω) is matched with X2(ω) for every ω ∈ M ; as such,
r = 1. Figure 3 illustrates that before MCA processing, the training and testing domains are not
well aligned. We evaluate the performance of MCA against the baselines with both n = 20 and
n = 2000. These experiments are noteworthy because MCA beats BL1 and BL2 for both small
and large values of n. In addition, for n = 2000, the classification accuracy of MCA matches that
of BL3, indicating we are able to achieve the upper limit of performance for this experiment. We
credit this behavior to the affine linear setup, since in general, we find that MCA beats BL1 only
when n is small. See Figure 4 for an additional visualization of the information captured in the
MCA common domain.

3.3. Transfer learning from computer fonts to MNIST. For this experiment, we attempted
transfer learning from the computer font (CF) digits provided in [1] to MNIST digits. While the
MNIST digits are 28× 28, the CF digits are 64× 64. In order to put both into a common domain,
we resized both datasets to be 16× 16; see Figure 5 for an illustration of the imagery and Figure 3
for an illustration of the need for transfer learning. Interestingly, resizing MNIST in this way makes
BL1 succeed with even modest values of n. In order to make MCA competitive, we decided to focus
on binary classification tasks, specifically, classifying 2 vs. 5, 0 vs. 1, and 4 vs. 9. To identify a
matching between CF and MNIST digits, we looked for r = 100 CF digits that were closest to each
of the n MNIST digits in the Euclidean distance. (For runtime considerations, we first selected
5,000 out of the 56,443 computer fonts that tended to be close to MNIST digits, and then limited
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Figure 4. Transfer learning from cropped MNIST digits to pixelated MNIST digits. We crop each 28×28 MNIST
digit to its middle 14× 14 portion. We also form a 14× 14 pixelated version of each MNIST digit by averaging over
2× 2 blocks. For example, (left) depicts a 4 from the MNIST test set, while (middle left) depicts both cropped and
pixelated versions of the same 4. We run MCA with k = 19 to identify a common domain. We provide two illustrations
of the information captured in the common domain. (middle right) For an image in domain i ∈ {1, 2}, we apply
the MCA-learned affine-linear map gi to send the image to the common domain, and then apply the pseudoinverse
of gi to return the image back to domain i. (right) For an image in domain i ∈ {1, 2}, we apply the MCA-learned
affine-linear map gi to send the image to the common domain, and then apply the pseudoinverse of gi′ to send the
image to the other domain i′ := 3− i. The fact that these projections look so similar illustrates that MCA identified
well-matched components.
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Figure 5. Transfer learning from computer font digits [1] to MNIST digits. We train binary classifiers for 2 vs.
5, 0 vs. 1, and 4 vs. 9. In each setting, select n ∈ [10 : 10 : 150], and draw n MNIST digits at random. For each
of these digits, find the r = 100 closest computer font digits in the Euclidean distance. An example of a match is
depicted in (left) and (middle left). As a baseline, we train a k-NN classifier on the MNIST portion of the matching
set. We also run MCA on the matching set with k = 5, and then train a k-NN classifier on the common domain.
The accuracy of these classifiers on the test set is depicted in (middle) for 2 vs. 5, in (middle right) for 0 vs. 1,
and in (right) for 4 vs. 9.

our search to digits in these fonts.) Since we used the Euclidean distance for matching, it comes as
no surprise that BL2 outperforms MCA. While Table 1 details the n = 10 case, Figure 5 illustrates
performance for each n ∈ [10 : 10 : 150]. Surprisingly, the performance of MCA drops for larger
values of n. We discuss this further in Section 4.

3.4. Transfer learning with the SAMPLE dataset. Finally, we consider transfer learning with
the Synthetic and Measured Paired and Labeled (SAMPLE) database of computer-simulated and
real-world SAR images [14]. The publicly-available SAMPLE database consists of 1366 paired
images of 10 different vehicles, each pair consisting of a real-world SAR image and a corresponding
computer-simulated SAR image; see Figure 6 for an illustration.

In this experiment, the training domain corresponds to simulated data, and the testing domain
corresponds to real-world data. The training set consists of 80% of the simulated set of SAMPLE
images, n = 100 of which are matched with corresponding real-world data. The test set consists of
the real-world data corresponding to the withheld 20% of simulated training set. In practice, this
is an important problem because the set of all real-world SAR imagery can never cover all possible
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Figure 6. Transfer learning with the SAMPLE database of computer-simulated and real-world SAR images [14].
The SAMPLE database consists of 1366 paired images of 10 different vehicles, each pair consisting of a real-world
SAR image and a corresponding computer-simulated SAR image. For example, (left) is a real-world SAR image
of an M548 tracked cargo carrier, while (middle left) is a corresponding computer-simulated SAR image that was
developed with the help of a CAD model of the M548. Our goal is to use 80% (1092) of the computer-simulated
images, 100 of which are paired with corresponding real-world images, to train a classifier that performs well on a test
set comprised of the other 20% (274) of real-world images. (middle) For a first baseline, we train a k-NN classifier
on the 100 real-world images. We depict the resulting normalized confusion matrix over the test set. For this baseline,
62% of the test set is classified correctly. (middle right) For a second baseline, we train a k-NN classifier on the
1092 computer-simulated images. In this case, the classifier labels most images as the third vehicle type, namely, the
BTR-70 armored personnel carrier. Only 20% of the test set is classified correctly. (right) Finally, we run matching
component analysis (Algorithm 2.1) with k = 99 on the 100 paired images to identify a common domain, and then
we train a k-NN classifier on the 1092 computer-simulated images in this common domain. For this alternative, 87%
of the test set is classified correctly in the common domain.

targets, environments and sensor operating conditions. Thus, machine learning training sets must
be augmented with simulated data. Unfortunately, previous work [14, 22] has shown that, when
trained with synthetic data, a small convolutional neural network (CNN) achieves 24% accuracy,
and a densely connected CNN achieves 55% accuracy, indicating the necessity of transfer learning
prior to training of the network.

In this paper, MCA substantially out-performs both BL1 and BL2, and thus is closest to the BL3
upper bound on performance; see Figure 6 for a depiction of the normalized confusion matrices in
these cases. We note that BL2 is inspired by the SAR classification challenge problem outlined
in [14] and [22]. Impressively, by using a small amount of measured data to find the MCA common
domain, mapping the same training data to the common domain, we can simply use a k-NN classifier
and increase performance to 87%.

4. Discussion. This paper introduced matching component analysis (MCA, Algorithm 2.1) as
a method for identifying features in data that are appropriate for transfer learning. In this section,
we reflect on our observations and identify various opportunities for future work.

Figure 3 illustrates the effects of MCA on the experiments considered in this paper. Here, we use
t-SNE [15] to visualize our data at each stage of the MCA processing. In the case of transferring
from MNIST to MNIST, the data from the training and testing domains were already well aligned
before running MCA. For the other experiments, MCA provides a common domain in which the
data appear much better aligned than before. Thanks to this alignment, classification tends to be
more successful in the common domain; see Table 1 for a summary.

The theory developed in this paper concerned the sample complexity of MCA. The fundamental
question to answer is

How large of a matching set is required to perform high-accuracy transfer learning?

In order to isolate the performance of MCA, our theory does not rely on the choice of the classifier,
and because of this, our sample complexity results rely on different proxies for success. Overall, a
different approach is needed to answer the above question.

Like many algorithms in machine learning, MCA requires the user to select a parameter, namely, k.
We currently do not have a rule of thumb for selecting this parameter. Also, one should expect that
a larger matching set will only help with transfer learning, but some of our experiments seem to
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suggest that MCA behaves worse given more matches (see Figure 5, for example). While we do not
understand this behavior, one can get around this by partitioning the matching set into batches,
training a weak classifier on each batch, and then boosting. The drop in performance might reflect
the fact that MCA is oblivious to the data labels. In particular, it may be beneficial to instead
encourage points from different classes to be well separated in the common domain, suggesting a
label-aware alternative (cf. PCA vs. SqueezeFit [17]). The performance drop might also reflect our
choice of affine linear maps and Euclidean distances, suggesting alternatives involving non-linear
maps and other distances.

As one would expect, transfer learning is more difficult when the matching set is poorly matched.
Indeed, we observed this when transfer learning from MNIST to MNIST using two different match-
ing techniques. In practice, it is expensive to find a good matching set. For example, for the
SAMPLE dataset [14], it took two years of technical expertise to generate accurate computer-
simulated matches. We note that most of this time was spent carefully articulating the computer
aided design (CAD) models of targets and matching radar sensor parameters, while actual sim-
ulation times were relatively minimal given access to Department of Defense High Performance
Computing resources. In general, one might attempt to automate the matching process with an
algorithm such as GHMatch [27], but we find that runtimes are slow for even moderately large
datasets; e.g., it takes several minutes to match datasets with more than 50 points. Overall, find-
ing a matching set appears to be a bottleneck, akin to finding labels for a training set. As an
alternative, it would be interesting to instead develop theory that allows for transfer learning given
non-matched data in both domains without having to first match the data, which could be cate-
gorized as unsupervised domain adaptation [28]. Along these lines, there has been some work to
efficiently solve the Procrustes problem in cases where the data points are not matched [4], and it
would be interesting to transfer these techniques to our setting.

5. Proof of Theorem 2.2. It is convenient to define the diagonal operator

D :=

[
Id1 0
0 −Id2

]
so that our objective function takes the form

fX(A) = fX(A1, A2) := E‖A1(X1 − EX1)−A2(X2 − EX2)‖22 = E‖AD(X − EX)‖22.

In what follows, we let ‖ · ‖V denote the norm on V defined by

‖(A1, A2)‖V := max{‖A1‖2→2, ‖A2‖2→2}.

This determines a Hausdorff distance dist between nonempty subsets of V . Throughout, we denote
Tα := {A ∈ V : ‖A‖V ≤ α}. Our approach is summarized in the following lemma:

Lemma 5.1. Let X,Y ∈ Rd1 × Rd2 be random vectors such that

(i) dist(SX , SY ) ≤ ε1,

(ii) fX , fY : (SX ∪ SY , ‖ · ‖V )→ R are both L-Lipschitz, and

(iii) |fX(A)− fY (A)| ≤ ε2 for every A ∈ SX ∪ SY .

Then
∣∣∣ min
A∈SX

fX(A)− min
A∈SY

fY (A)
∣∣∣ ≤ Lε1 + ε2.

Proof. Without loss of generality, it holds that minA∈SX fX(A) ≥ minA∈SY fY (A). Let A? denote
an optimizer for fY . By (i), there exists B ∈ SX such that ‖B − A?‖V ≤ ε1, and then by (ii), it
holds that fX(B) ≤ fX(A?) + Lε1. As such,∣∣∣ min

A∈SX
fX(A)− min

A∈SY
fY (A)

∣∣∣ ≤ fX(B)− fY (A?) ≤ Lε1 + fX(A?)− fY (A?) ≤ Lε1 + ε2,

where the last step applies (iii).
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As such, it suffices to show that X̂ and X satisfy Lemma 5.1(i)–(iii). In order to verify Lemma 5.1(i),
it is helpful to have a bound on the members of SX :

Lemma 5.2. Suppose Σ � 0. If AΣA> = I, then ‖A‖22→2 ≤ λmin(Σ)−1.

Proof. First, we observe that

1 = ‖I‖2→2 = ‖AΣA>‖2→2 = ‖Σ1/2A>‖22→2.

Next, select a unit vector x such that ‖A>x‖2 = ‖A‖2→2. Then

‖Σ1/2A>‖2→2 ≥ ‖Σ1/2A>x‖2 ≥ λmin(Σ1/2) · ‖A>x‖2 = λmin(Σ1/2) · ‖A‖2→2.

The result then follows by combining and rearranging the above estimates.

Lemma 5.3. Suppose ΣXi ,ΣYi � 0 for both i ∈ {1, 2}. Then

dist(SX , SY )2 ≤ max
i∈{1,2}

‖ΣXi − ΣYi‖2→2

λmin(ΣXi) · λmin(ΣYi)
.

Proof. Define the function gXY : V → V by

gXY (A1, A2) := (A1Σ
1/2
X1

Σ
−1/2
Y1

, A2Σ
1/2
X2

Σ
−1/2
Y2

).

Observe that gXY maps every point (A1, A2) ∈ SX to a point in SY :

(AiΣ
1/2
Xi

Σ
−1/2
Yi

)ΣYi(AiΣ
1/2
Xi

Σ
−1/2
Yi

)> = AiΣXiA
>
i = I.

Furthermore, for every (A1, A2) ∈ SX , we may apply sub-multiplicativity, Lemma 5.2, and then
Theorem X.1.1 in [2] to obtain

‖AiΣ1/2
Xi

Σ
−1/2
Yi

−Ai‖22→2 = ‖Ai(Σ1/2
Xi
− Σ

1/2
Yi

)Σ
−1/2
Yi
‖22→2

≤ ‖Ai‖22→2 · ‖Σ
1/2
Xi
− Σ

1/2
Yi
‖22→2 · ‖Σ

−1/2
Yi
‖22→2

≤
‖Σ1/2

Xi
− Σ

1/2
Yi
‖22→2

λmin(ΣXi) · λmin(ΣYi)
≤ ‖ΣXi − ΣYi‖2→2

λmin(ΣXi) · λmin(ΣYi)
.

Maximizing over i ∈ {1, 2} produces an upper bound on supA∈SX ‖gXY (A)− A‖2V . By symmetry,
the same bound holds for supA∈SY ‖gY X(A)−A‖2V , implying the result.

Overall, for Lemma 5.1(i), it suffices to have spectral control over the covariance. In the special
case where Y = X̂, we will accomplish this with the help of Matrix Hoeffding [16]. Before doing
so, we consider Lemma 5.1(ii):

Lemma 5.4. For every A ∈ V , it holds that ‖A‖2→2 ≤
√

2 · ‖A‖V .

Proof. Select a unit vector x = [x1;x2] such that ‖A‖2→2 = ‖Ax‖2. Then the triangle and Cauchy–
Schwarz inequalities together give

‖A‖2→2 = ‖A1x1 +A2x2‖2 ≤ ‖A1‖2→2‖x1‖2 + ‖A2‖2→2‖x2‖2

≤
(
‖A1‖22→2 + ‖A2‖22→2

)1/2(
‖x1‖22 + ‖x2‖22

)1/2
≤
√

2 · max
i∈{1,2}

‖Ai‖2→2 =
√

2 · ‖A‖V .

Lemma 5.5. Suppose ‖X−EX‖2,∞ ≤ β almost surely. Then fX : (Tα, ‖·‖V )→ R is 8αβ2-Lipschitz.
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Proof. Put Z := X − EX so that fX(A) = E‖ADZ‖22, and select any A,B ∈ Tα. Then

|fX(A)− fX(B)| =
∣∣E‖ADZ‖22 − E‖BDZ‖22

∣∣
≤ E

∣∣‖ADZ‖22 − ‖BDZ‖22∣∣
= E

[(
‖ADZ‖2 + ‖BDZ‖2

)
·
∣∣‖ADZ‖2 − ‖BDZ‖2∣∣].

To proceed, we bound each of the factors in the right-hand side. First,

‖ADZ‖2 = ‖A1Z1 −A2Z2‖2 ≤ ‖A1‖2→2‖Z1‖2 + ‖A2‖2→2‖Z2‖2 ≤ 2αβ

almost surely. Similarly, ‖BDZ‖2 ≤ 2αβ almost surely. Next,∣∣‖ADZ‖2 − ‖BDZ‖2∣∣ ≤ ‖ADZ −BDZ‖2 ≤ ‖A−B‖2→2 · ‖Z‖2 ≤ 2β · ‖A−B‖V

almost surely, where the last step follows from Lemma 5.4. Combining these estimates then gives
the result.

Our approach for demonstrating Lemma 5.1(iii) is a net-based argument that is specialized to the
case where Y = X̂. Our choice of net is a modification of what is used to estimate the spectral
norm of subgaussian matrices:

Lemma 5.6. Fix α, η > 0. There exists N ⊆ Tα+η such that

(i) for every x ∈ Tα, there exists y ∈ N such that ‖x− y‖V ≤ η, and

(ii) |N | ≤ (1 + 2
√
2kα
η )k(d1+d2).

Proof. We will construct N by first identifying an η-net Nη for the Frobenius ball B of radius√
2kα, and then taking N := Nη ∩ Tα+η. Indeed, Lemma 5.4 implies

‖A‖F ≤
√
k · ‖A‖2→2 ≤

√
2k · ‖A‖V ,

and so Tα ⊆ B. As such, for every x ∈ Tα ⊆ B, there exists y ∈ Nη such that

‖x− y‖V ≤ ‖x− y‖2→2 ≤ ‖x− y‖F ≤ η.

Furthermore, this choice of y necessarily resides in Tα+η:

‖y‖V = ‖x− x+ y‖V ≤ ‖x‖V + ‖x− y‖V ≤ α+ η.

As such, N = Nη ∩ Tα+η satisfies (i). A standard volume comparison argument (see Proposi-
tion 4.2.12 in [26], for example) gives that Nη satisfies the bound in (ii), and we are done by
observing that |N | ≤ |Nη|.

The remainder of our proof is specialized to the case where Y = X̂, and throughout, we make use
of the following extensions to Hoeffding’s inequality:

Proposition 5.7 (Matrix Hoeffding [16]). Suppose {Xj}j∈[n] are independent copies of a random sym-

metric matrix X ∈ Rd×d such that EX = 0 and ‖X‖2→2 ≤ b almost surely. Then for every t ≥ 0,
it holds that

P
{∥∥∥∥ 1

n

∑
j∈[n]

Xj

∥∥∥∥
2→2

≥ t
}
≤ 2d · e−nt2/(2b2).

Proposition 5.8 (Vector Hoeffding). Suppose {Xj}j∈[n] are independent copies of a random vector

X ∈ Rd such that EX = 0 and ‖X‖2 ≤ b almost surely. Then for every t ≥ 0, it holds that

P

{∥∥∥∥ 1

n

∑
j∈[n]

Xj

∥∥∥∥
2

≥ t

}
≤ 2(d+ 1) · e−nt2/(2b2).
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Proof. Following Section 2.1.16 in [24], for each column vector v ∈ Rd, we consider the symmetric
matrix

M(v) :=

[
0 v>

v 0

]
.

Then since

M(v)2 =

[
‖v‖22 0>

0 vv>

]
,

it holds that ‖M(v)‖22→2 = ‖M(v)2‖2→2 = ‖v‖22. Linearity then gives∥∥∥∥ 1

n

∑
j∈[n]

Xj

∥∥∥∥
2

=

∥∥∥∥M( 1

n

∑
j∈[n]

Xj

)∥∥∥∥
2→2

=

∥∥∥∥ 1

n

∑
j∈[n]

M(Xj)

∥∥∥∥
2→2

.

By assumption, ‖M(X)‖2→2 = ‖X‖2 ≤ b almost surely, and so Matrix Hoeffding implies

P

{∥∥∥∥ 1

n

∑
j∈[n]

Xj

∥∥∥∥
2

≥ t

}
= P

{∥∥∥∥ 1

n

∑
j∈[n]

M(Xj)

∥∥∥∥
2→2

≥ t

}
≤ 2(d+ 1) · e−nt2/(2b2).

For the remainder of this section, we make the following assumptions without mention: X =
[X1;X2] is a random vector in Rd1 × Rd2 with mean µ = [µ1;µ2], and X̂ is a random vector with
mean µ̂ = [µ̂1; µ̂2] that is distributed uniformly over independent realizations {Xj = [X1j ;X2j ]}j∈[n]
of X. It will always be clear from context whether X1 refers to the first component of X or the
first independent copy of X. We first tackle Lemma 5.1(i) with the help of Lemma 5.3:

Lemma 5.9. Suppose ‖X − µ‖2,∞ ≤ β almost surely. Then for every δ ≥ 0, it holds that

max
i∈{1,2}

‖ΣX̂i
− ΣXi‖2→2 ≤ δ w.p. ≥ 1− 8(d1 + d2) · e

−n
2
·f( δ

2β2
)
,

where f(z) := min(z, z2).

Proof. Add zero and expand to obtain

ΣX̂i
=

1

n

∑
j∈[n]

(Xij − µ̂i)(Xij − µ̂i)>

=
1

n

∑
j∈[n]

(
(Xij − µi)− (µ̂i − µi)

)(
(Xij − µi)− (µ̂i − µi)

)>
=

1

n

∑
j∈[n]

(Xij − µi)(Xij − µi)> − (µ̂i − µi)(µ̂i − µi)>.

The triangle inequality then gives

‖ΣX̂i
− ΣXi‖2→2 ≤

∥∥∥∥ 1

n

∑
j∈[n]

(
(Xij − µi)(Xij − µi)> − ΣXi

)∥∥∥∥
2→2

+

∥∥∥∥ 1

n

∑
j∈[n]

(Xij − µi)
∥∥∥∥2
2

.

For the first term, note that ‖A−B‖2→2 ≤ max{‖A‖2→2, ‖B‖2→2} when A,B � 0, and so∥∥∥(Xij − µi)(Xij − µi)> − ΣXi

∥∥∥
2→2
≤ max

{
‖Xij − µi‖22, ‖ΣXi‖2→2

}
≤ β2

almost surely. Matrix Hoeffding then gives∥∥∥∥ 1

n

∑
j∈[n]

(
(Xij − µi)(Xij − µi)> − ΣXi

)∥∥∥∥
2→2

≤ δ1 w.p. ≥ 1− 2di · e−nδ
2
1/(2β

4).
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Next, we bound the second term by Vector Hoeffding:∥∥∥∥ 1

n

∑
j∈[n]

(Xij − µi)
∥∥∥∥
2

≤ δ2 w.p. ≥ 1− 2(di + 1) · e−nδ22/(2β2).

The result follows by setting δ1 = δ22 = δ/2 and applying the union bound.

In our case, Lemma 5.1(ii) is immediate from Lemma 5.5. For Lemma 5.1(iii), our net-based
argument requires a pointwise estimate:

Lemma 5.10. Suppose ‖X − µ‖2,∞ ≤ β almost surely, and fix A ∈ Tα. Then for every δ ≥ 0, it
holds that

|fX̂(A)− fX(A)| ≤ δ w.p. ≥ 1− 4(d1 + d2) · e
−n

2
·f( δ

8α2β2
)
,

where f(z) := min(z, z2).

Proof. First, add zero and expand the square to get

fX̂(A) = E‖AD(X̂ − µ̂)‖22 = E‖AD(X̂ − µ)−AD(µ̂− µ)‖22
= E

(
‖AD(X̂ − µ)‖22 − 2〈AD(X̂ − µ), AD(µ̂− µ)〉+ ‖AD(µ̂− µ)‖22

)
= E‖AD(X̂ − µ)‖22 − ‖AD(µ̂− µ)‖22.

Next, put Zj := Xj − µ. Then the triangle inequality and Lemma 5.4 together give

|fX̂(A)− fX(A)| =
∣∣∣E‖AD(X̂ − µ)‖22 − ‖AD(µ̂− µ)‖22 − E‖AD(X − µ)‖22

∣∣∣
≤
∣∣∣E‖AD(X̂ − µ)‖22 − E‖AD(X − µ)‖22

∣∣∣+ 2α2 · ‖µ̂− µ‖22

=

∣∣∣∣ 1n ∑
j∈[n]

(
‖ADZj‖22 − E‖ADZ‖22

)∣∣∣∣+ 2α2 ·
∥∥∥∥ 1

n

∑
j∈[n]

Zj

∥∥∥∥2
2

.

We will bound both terms above in a high-probability event by passing to (Vector) Hoeffding. First,
0 ≤ ‖ADZj‖22 ≤ ‖A‖22→2‖Zj‖22 ≤ 4α2β2 almost surely, and so∣∣∣‖ADZj‖22 − E‖ADZ‖22

∣∣∣ ≤ 4α2β2

almost surely. As such, Hoeffding implies∣∣∣∣ 1n ∑
j∈[n]

(
‖ADZj‖22 − E‖ADZ‖22

)∣∣∣∣ ≤ δ1 w.p. ≥ 1− 2e−nδ
2
1/(32α

4β4).

Similarly, since ‖Zj‖2 ≤
√

2 · β almost surely, Vector Hoeffding implies∥∥∥∥ 1

n

∑
j∈[n]

Zj

∥∥∥∥
2

≤ δ2 w.p. ≥ 1− 2(d1 + d2 + 1) · e−nδ22/(4β2).

The result then follows by setting δ1 = 2α2δ22 = δ/2 and applying the union bound.

We are now ready to prove Theorem 2.2. What follows is a more explicit theorem statement. (Note:
We did not optimize the constants in this statement.)

Theorem 5.11. Suppose ‖X − µ‖2,∞ ≤ β almost surely and mini∈{1,2} λmin(ΣXi) ≥ σ2 > 0. Fix any
ε ∈ (0, 25]. Then ∣∣∣ min

A∈SX̂
fX̂(A)− min

A∈SX
fX(A)

∣∣∣ ≤ ε · β2
σ2

in an event of probability ≥ 1− p, provided

n ≥ max

{
215

ε2

(
k(d1 + d2) log(2

22k
ε2

) + log(2p)
)
, 2

25

ε4
(βσ )4

(
log(23(d1 + d2)) + log(2p)

)}
.
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Proof. Let Nα,η denote the net described in Lemma 5.6, and let Eδ,α,η,γ denote the event{
max
i∈{1,2}

‖ΣX̂i
− ΣXi‖2→2 ≤ δ and max

A∈Nα,η
|fX̂(A)− fX(A)|+ 16(α+ η)β2η ≤ γ

}
.

Let ξ ∈ [0, 1] be arbitrary (to be selected later), and put δ := ξ2σ2/2 and α := 2/σ. Then the first
part of Eδ,α,η,γ together with Weyl’s inequality gives

λmin(ΣX̂i
) = λmin(ΣXi + ΣX̂i

− ΣXi) ≥ λmin(ΣXi)− ‖ΣX̂i
− ΣXi‖2→2 ≥ σ2 − δ ≥

σ2

2

for each i ∈ {1, 2}, where the last step uses the fact that ξ ≤ 1. Lemma 5.3 then gives

(i) dist(SX̂ , SX) ≤ ( δ
σ2·(σ2/2)

)1/2 = ξ
σ .

In addition, by Lemma 5.2, every A ∈ SX̂ ∪ SX satisfies ‖A‖V ≤
√

2/σ ≤ α, and so we have
SX̂ ∪ SX ⊆ Tα. Lemma 5.5 then implies

(ii) fX̂ , fX : (SX̂ ∪ SX , ‖ · ‖V )→ R are both 8αβ2-Lipschitz.

Taking f(A) := |fX̂(A) − fX(A)|, then Lemma 5.5 also implies that f : (Tα+η, ‖ · ‖V ) → R is
16(α+ η)β2-Lipschitz. This together with the second part of Eδ,α,η,γ then gives

(iii) |fX̂(A)− fX(A)| ≤ γ for every A ∈ SX ∪ SY .

Now that we have (i)–(iii), we may conclude by Lemma 5.1 that∣∣∣ min
A∈SX̂

fX̂(A)− min
A∈SX

fX(A)
∣∣∣ ≤ 16ξβ2

σ2
+ γ

over the event Eδ,α,η,γ . At this point, we select ξ := 2−5ε so that δ = 2−11ε2σ2, and we select
η := 2−8εσ−1 and γ := 2−1εβ2σ−2 so that the right-hand size above equals εβ2σ−2. Then since
ε ≤ 25 and β ≥ σ, the union bound together with Lemmas 5.9, 5.6, and 5.10 gives

P[(Eδ,α,η,γ)c]

≤ 8(d1 + d2) · e−
n
2
·(2−12ε2σ2β−2)2 + (1 + 210

√
2kε−1)k(d1+d2) · 4(d1 + d2) · e−

n
2
·(2−7ε)2

≤ exp
[

log(23(d1 + d2))− n · 2−25(εσβ−1)4
]

+ exp
[
k(d1 + d2) log(222kε−2)− n · 2−15ε2

]
,

and each term of the final sum is smaller than p/2 by our choice of n.

6. Proof of Theorem 2.5. The following lemma will help us prove both parts of the result:

Lemma 6.1. Suppose A1, A2, S1, S2 are real matrices such that

A1S1 = A2S2 and imA>i ⊆ imSi, i ∈ {1, 2}.

Then kerAiSi = kerS1 + kerS2 if and only if

(6.1) ker[A1,−A2] = im[S1;S2] + (kerS>1 ⊕ kerS>2 ).

Proof. Let di and ri denote the number of rows and the rank of Si, respectively. Let Vi denote a
di × ri matrix whose columns form an orthonormal basis for imSi. We first claim that (6.1) holds
if and only if ker[A1V1,−A2V2] = im[V >1 S1;V

>
2 S2]. To see (⇒), note that

ker[A1V1,−A2V2] =

[
V >1 0
0 V >2

](
ker[A1,−A2] ∩ (imS1 ⊕ imS2)

)
=

[
V >1 0
0 V >2

]
im[S1;S2]

= im[V >1 S1;V
>
2 S2].
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For (⇐), observe that since imA>i ⊆ imSi, it holds that Ai = AiViV
>
i , and so

ker[A1,−A2] = ker[A1V1V
>
1 ,−A2V2V

>
2 ]

=

[
V1 0
0 V2

]
ker[A1V1,−A2V2] +

(
(imV1)

⊥ ⊕ (imV2)
⊥
)

=

[
V1 0
0 V2

]
im[V >1 S1;V

>
2 S2] +

(
(imV1)

⊥ ⊕ (imV2)
⊥
)

= im[S1;S2] + (kerS>1 ⊕ kerS>2 ).

In addition, AiSi = AiViV
>
i Si. Overall, if imSi is a proper subspace of Rdi , then we may redefine

Si ← V >i Si without loss of generality. As such, from now on, we assume that A1S1 = A2S2 =: T
and imSi = Rdi for both i ∈ {1, 2}, and our task is to prove the equivalence

kerT = kerS1 + kerS2 ⇐⇒ ker[A1,−A2] = im[S1;S2].

(⇐) By Lemma 2.3, it suffices to show kerT ⊆ kerS1 + kerS2. Suppose x ∈ kerT . Then AiSix =
0, and so [±S1x;S2x] ∈ ker[A1,−A2], which by averaging gives [0;S2x] ∈ ker[A1,−A2]. Since
ker[A1,−A2] = im[S1;S2] by assumption, there must exist v such that S1v = 0 and S2v = S2x,
that is, x ∈ v + kerS2 ⊆ kerS1 + kerS2, as desired.

(⇒) Since A1S2 = A2S2 by assumption, it holds that ker[A1,−A2] ⊇ im[S1;S2]. It therefore suffices
to prove dim ker[A1,−A2] ≤ rank[S1;S2]. To do so, we will apply the following intermediate claims:

(i) kerA1 = S1 kerS2.

(ii) dimS1 kerS2 = dim kerS2 − dim ker[S1;S2].

First, we verify (i). For (⊆), select x ∈ kerA1. Since S1 has full row rank by assumption, there exists
y such that x = S1y. It follows that y ∈ kerT . By assumption, we may decompose y = u1+u2 with
ui ∈ kerSi. Then x = S1(u1 + u2) = S1u2 ∈ S1 kerS2. For (⊇), select u2 ∈ kerS2 ⊆ kerT . Then
0 = Tu2 = A1S1u2, and so S1u2 ∈ kerA1. For (ii), select a basis B0 for ker[S1;S2] = kerS1∩kerS2
and extend to a basis B2 for kerS2. Then span{S1x}x∈B2 = S1 kerS2. Since S1x = 0 for every x ∈
B0, we have span{S1x}x∈B2\B0

= S1 kerS2. By construction, no nontrivial linear combination of
B2 \B0 resides in kerS1, and so {S1x}x∈B2\B0

is linearly independent. It follows that {S1x}x∈B2\B0

is a basis for S1 kerS2, and the claim follows by counting.

At this point, it is convenient to enunciate dimensions: Ai ∈ Rk×di and Si ∈ Rdi×D. In what
follows, we obtain the result after multiple applications of the rank–nullity theorem. First, we
apply rank–nullity on [A1,−A2] and on A1 to get

dim ker[A1,−A2] = d1 + d2 − rank[A1,−A2] ≤ d1 + d2 − rankA1 = d2 + dim kerA1.

Next, we apply (i) and (ii) and the fact that S2 has full row rank to get

dim ker[A1,−A2] ≤ d2 + dim kerA1 = d2 + dim kerS2 − dim ker[S1;S2]

= rankS2 + dim kerS2 − dim ker[S1;S2].

Finally, we apply rank–nullity on S2 and on [S1;S2] to get

dim ker[A1,−A2] ≤ rankS2 + dim kerS2 − dim ker[S1;S2] = D − dim ker[S1;S2]

= rank[S1;S2].

Lemma 6.2. Fix any m×n matrix A of rank r. Then AX also has rank r for a generic n×p matrix
X that satisfies X1 = 0, provided p ≥ r + 1.
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Proof. First, we write X = [xij ]i∈[n],j∈[p]. Since X1 = 0, we observe that X consists of n(p−1) free
variables {xij}i∈[n],j∈[p−1] that together determine the final column xip = −

∑
j∈[p−1] xij . Select

size-r index sets S ⊆ [m] and T ⊆ [n] such that the r × r submatrix AST of A has rank r. Let AS
denote r×n submatrix of A whose row indices reside in S, and let Xr denote the n×r submatrix of
X whose column indices reside in [r]. Then p(X) := det(ASXr) is a polynomial in {xij}i∈[n],j∈[p−1]
that we claim is nonzero. To see this, write T = {t1, . . . , tr} and consider the n × p matrix B
defined by

Bij =


1 if i = tj
−1 if i ∈ T, j = p

0 otherwise.

Then B1 = 0 and ASBr = AST , meaning p(B) = det(ASBr) = det(AST ) 6= 0. This establishes
that p(X) is a nonzero polynomial, and so the complement of its zero set is generic. Over this
generic set of X’s, since ASXr is a submatrix of AX, it holds that

r = rankASXr ≤ rankAX ≤ rankA = r.

Proof of Theorem 2.5(a). For the requisite functionD, we run matching component analysis (MCA,
Algorithm 2.1) with a data-dependent choice for k, namely,

k := dim(imZ>1 ∩ imZ>2 ).

Here, Z1 and Z2 are determined in the normalization stage of MCA. Notice that MCA requires
k ≥ 1. As such, in the degenerate case where k = 0, we say D outputs Ai = 0 ∈ R1×di and
bi = 0 ∈ R.

We claim that D witnesses that ALM(d1, d2, n) is exactly matchable. To see this, fix D ∈ N, select
any continuous distribution P over RD, select Si ∈ Rdi×D and µi ∈ Rdi for i ∈ {1, 2}, and then draw
{ωj}j∈[n] independently with distribution P. We run MCA on data of the form xij := Siωj +µi for

i ∈ {1, 2} and j ∈ [n]. Put ω := 1
n

∑
j∈[n] ωj . Then xi = Siω+µi, and so xij −xi = Si(ωj −ω). Let

F denote the D×n matrix whose jth column is ωj −ω. Then Zi = Λ
−1/2
i V >i SiF . The choice of Λi

and Vi ensures that the columns of 1√
n
Z>i are orthonormal. As such, the singular values of 1

nZ1Z
>
2

are cosines of the principal angles between imZ>1 and imZ>2 . It follows that ‖Z1Z
>
2 ‖2→2 ≤ n, and

the multiplicity of the singular value n equals our choice for k.

Case I: k ≥ 1. MCA finds Wi ∈ Rk×ri with orthonormal columns for i ∈ {1, 2} such that
nW1W

>
2 = Z1Z

>
2 . This in turn implies that nIk = W>1 Z1Z

>
2 W2, and since the columns of 1√

n
Z>i Wi

are orthonormal, it follows that W>1 Z1 = W>2 Z2. Since Ai := W>i Λ
−1/2
i V >i , this then implies

A1S1F = W>1 Λ
−1/2
1 V >1 S1F = W>1 Z1 = W>2 Z2 = W>2 Λ

−1/2
2 V >2 S2F = A2S2F.

Equivalently, we have [A1,−A2][S1;S2]F = 0. Next, since n ≥ d1 + d2 + 1 ≥ rank[S1;S2] + 1,
Lemma 6.2 implies that the following holds almost surely:

im[S1;S2] = im[S1;S2]F ⊆ ker[A1,−A2].

As such, [A1,−A2][S1;S2] = 0, that is, A1S1 = A2S2. Considering bi = −Ai(Siω + µi), we further
have

A1(S1ω + µ1) + b1 = A1S1(ω − ω) = A2S2(ω − ω) = A2(S2ω + µ2) + b2

for every ω ∈ RD. This establishes Definition 2.4(i). For Definition 2.4(ii), first note that

(6.2) imA>i = imViΛ
−1/2
i Wi ⊆ imVi ⊆ imSi
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for both i ∈ {1, 2}, and so the hypothesis of Lemma 6.1 is satisfied. Taking orthogonal complements
of (6.2) gives kerS>i ⊆ kerAi. Since ker[A1,−A2] is closed under addition, this then implies

(6.3) ker[A1,−A2] ⊇ im[S1;S2] + (kerS>1 ⊕ kerS>2 ).

We count dimensions to demonstrate equality. For the left-hand side, the rank–nullity theorem
gives

dim ker[A1,−A2] = d1 + d2 − rank[A1,−A2] = d1 + d2 − k.

For the right-hand side, notice that im[S1;S2], kerS>1 ⊕ {0 ∈ Rd2}, and {0 ∈ Rd1} ⊕ kerS>2 are
pairwise orthogonal, and so

dim
(

im[S1;S2] + (kerS>1 ⊕ kerS>2 )
)

= rank[S1;S2] + dim kerS>1 + dim kerS>2 .

Put ri := rankSi = rankSiF = rankZi, where the second equality holds almost surely by
Lemma 6.2. Then

rank[S1;S2] = rank[S1;S2]F = rank

[
Λ
−1/2
1 V >1 0

0 Λ
−1/2
2 V >2

] [
S1F
S2F

]
= rank[Z1;Z2]

= rank[Z>1 , Z
>
2 ] = dim(imZ>1 + imZ>2 ) = r1 + r2 − k.

Also, dim kerS>i = di − ri for both i ∈ {1, 2} by rank–nullity. Overall, (6.1) holds, and so we may
conclude Definition 2.4(ii).

Case II: k = 0. Definition 2.4(i) holds since both sides of the equality are zero. For Defini-
tion 2.4(ii), we again appeal to Lemma 6.1. In this case, (6.3) is immediate since ker[A1,−A2] =
Rd1+d2 , and equality follows from the same dimension count.

Proof of Theorem 2.5(b). Suppose to the contrary that ALM(d1, d2, n) is exactly matchable for
some n < d1 + d2 + 1 with witness D. We may take n = d1 + d2 without loss of generality. Put
D = d1 +d2 and let P1 be any continuous distribution that is supported on all of RD. Let {ωj}j∈[D]

denote independent random variables with distribution P1, and let V denote the distribution of the
shortest vector v({ωj}j∈[D]) in the affine hull of {ωj}j∈[D]. Notice that v({ωj}j∈[D]) 6= 0 almost

surely, and for every v ∈ RD \ {0}, v({ωj}j∈[D]) = v is equivalent to having ωj ∈ v⊥ + v for every
j ∈ [D]. As such, {ωj}j∈[D] remain independent after conditioning on v({ωj}j∈[D]). Let P1|v denote

the distribution of ωj conditioned on ωj ∈ v⊥ + v. Select any piecewise continuous mapping that
sends v ∈ RD \ {0} to a D× (D− 1) matrix S(v) whose columns form an orthonormal basis for v⊥,

and define P(v)
2 to be the continuous distribution on RD−1 such that if X has distribution P(v)

2 then

S(v)X has distribution P1|v. Now put [S1;S2] := ID, [S
(v)
1 ;S

(v)
2 ] := S(v), and [v1; v2] := v. Drawing

V ∼ V, we therefore have

(6.4) EP1(S1, 0, S2, 0) ≡ EP(V )
2

(S
(V )
1 , V1, S

(V )
2 , V2).

Here, ≡ denotes equality in distribution. At this point, we define

(A1, b1, A2, b2) := (D ◦ EP1)(S1, 0, S2, 0),

(A
(v)
1 , b

(v)
1 , A

(v)
2 , b

(v)
2 ) := (D ◦ EP(v)

2

)(S
(v)
1 , v1, S

(v)
2 , v2), v ∈ RD \ {0}.

By assumption, we have both

(i) A1(S1ω + 0) + b1 = A2(S2ω + 0) + b2 for all ω ∈ RD, and

(ii) kerAiSi = kerS1 + kerS2.
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Setting ω = 0 in (i) reveals that b1 = b2, which implies that A1S1ω = A2S2ω for all ω ∈ RD, i.e.,
A1S1 = A2S2. Also, our choice of Si ensures that imA>i ⊆ Rdi = imSi for both i ∈ {1, 2}, and so
the hypothesis of Lemma 6.1 is satisfied. As such, (ii) and Lemma 6.1 together imply that

ker[A1,−A2] = im[S1;S2] + (kerS>1 ⊕ kerS>2 ) = im[S1;S2] = imS.

The same argument gives ker[A
(v)
1 ,−A(v)

2 ] = imS(v) for generic v 6= 0. Now define the function
K : (X1, y1, X2, y2) 7→ dim ker[X1,−X2]. Then continuing (6.4), we have

D = rankS = dim ker[A1,−A2] = K(A1, b1, A2, b2)

≡ K(A
(V )
1 , b

(V )
1 , A

(V )
2 , b

(V )
2 )

= dim ker[A
(V )
1 ,−A(V )

2 ] = rankS(V ) = D − 1

almost surely, a contradiction.
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