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Abstract

Given labeled points in a high-dimensional vector space, we seek a low-dimensional subspace
such that projecting onto this subspace maintains some prescribed distance between points
of differing labels. Intended applications include compressive classification. Taking inspiration
from large margin nearest neighbor classification, this paper introduces a semidefinite relaxation
of this problem. Unlike its predecessors, this relaxation is amenable to theoretical analysis,
allowing us to provably recover a planted projection operator from the data.

1 Introduction

The last decade of sampling theory has transformed the way we reconstruct signals from measure-
ments. For example, the now-established theory of compressed sensing allows one to reconstruct
a signal from a number of random linear measurements that is proportional to the complexity of
that signal [12, 9, 14], potentially speeding up MRI scans by a factor of five [27]. This theory has
since transferred to the setting of nonlinear measurements in the context of phase retrieval [10, 7],
leading to new algorithms for coherent diffractive imaging [33]. Today, we witness major techno-
logical advances in machine learning, where neural networks have recently achieved unprecedented
performance in image classification and elsewhere [22, 34]. This motivates another fundamental
problem for sampling theory:

How many samples are necessary to enable signal classification?

For instance, why waste time collecting enough samples to completely reconstruct a given signal if
you only need to detect whether the signal contains an anomaly?

This different approach to sampling is known as compressive classification. While the idea
has been around since 2007, to date, only three works provide theory to derive sampling rates for
compressive classification. First, [11] considered the case where each class is a low-dimensional
manifold. Much later, [30] compressively classified mixtures of Gaussians of low-rank covariance,
and then [3] derived sampling rates for random projection to maintain separation between full-
dimensional ellipsoids. Overall, these works assumed that the classes follow a specific model (be
it manifolds, Gaussians or ellipsoids), and then derived conditions under which a good projection
exists. The present work takes a dual approach: We assume that compressive classification is
possible, meaning there exists a planted low-rank projection that facilitates classification, and the
task is to derive conditions on the classes for which finding that projection is feasible:
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Problem 1 (projection factor recovery). Let II denote orthogonal projection onto some unknown
subspace T C R? of some unknown dimension. What conditions on f: T — [k] := {1,...,k} and
X C R enable exact or approximate recovery of I from data of the form {(z, f(Ilz))}scx?

In words, we assume the classification function factors through some unknown orthogonal pro-
jection operator II, and the objective is to reconstruct II. Once we find II of rank r, then we
may write Il = AT A for some r x d sensing matrix A, and then Az determines the classification
f(Ilz) of = despite using only r < d samples. Here and throughout, we consider a sequence of
data D = {(2,¥;) }iez in R? x [k] and denote Z(D) := {z; — z; : 1,7 € T, y; # y;}. The following
program finds the best orthogonal projection for our purposes:

minimize rankIl subject to |[IIz|| > A Vze Z(D), N’ =1II, I?=1I (1)

Here, II is the decision variable, whereas A > 0 is a parameter that prescribes a desired minimum
distance between projected points Ilz; and Ilz; with differing labels. This parameter reflects a fun-
damental tension in compressive classification: We want A to be large so as to enable classification,
but we also want rankII to be small so that this classification is compressive. Since it is not clear
how to tractably implement (1), we consider a convex relaxation:

minimize tr M subject to z' Mz > A% Vze€ Z(D), 0=<M =<1 (sqz(D, A))

We refer to this program as SqueezeFit. If Z(D) is finite, then sqz(D, A) is a semidefinite program,
otherwise sqz(D, A) is a semi-infinite program [16]. In either case, the minimum exists whenever
sqz(D, A) is feasible by the extreme value theorem. As Figure 1 illustrates, SqueezeFit is well suited
for projection factor recovery.

1.1 Relationship to previous work

We note that our formulation of projection factor recovery in Problem 1 can be viewed as an
instance of the general problem of learning multiple-index models (MIMs). Specifically, an
MIM consists of an unknown matrix A € R™? a (possibly unknown) link function f: R” — R, a
random vector X € R?, and random noise Z € R:

Y = f(AX) + Z.

The learning task is to estimate A or im(A") from a collection of examples of (X,Y). From this
general perspective, projection factor recovery can be thought of as learning an MIM in which
f is an unknown classification function. We note that when r = 1, the general MIM reduces to
a so-called single-index model, which has received considerable attention. For example, the case
where f(t) = t? corresponds to phase retrieval [10, 7], and f(t) = sign(t) corresponds to one-bit
sensing [4]. There has been considerably less work in learning MIMs with » > 1, see [40] and
references therein. However, ideas from semidefinite programming also appear relevant in this
context, as [40] leverages the sparse PCA semidefinite program from [38] to learn sparse MIMs.
When formulating SqueezeFit, the authors took inspiration from the large margin nearest
neighbor (LMNN) algorithm [39], which finds the d x d matrix M > 0 such that {(MY2x;, ;) }iez
is best conditioned for k-nearest neighbor classification in the Euclidean distance (unlike above, k
does not correspond to the number of classes here). To accomplish this, LMNN first identifies
for each x;, the k closest x; such that y; = y;; these are called target neighbors. Next, x; is
called an impostor of x; under M if x; has a target neighbor z; such that ||[M'/?(x; — 2;)||> <
|MY2(2; — x;)||? + 1. Intuitively, {(M'/2z;,y;)}ier is well conditioned for k-nearest neighbors if
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Figure 1: (far left) Plot of 60 data points in R3, half in one class, half in another. These points were
drawn according to a random model with an unknown planted projection factor (as in Problem 1).
(middle left) Principal component analysis (PCA) suggests one-dimensional structure in the data.
Projecting onto this subspace (which was identified without regard for the points’ classes) results
in an undesirable mixture of the classes. (middle right) Unlike PCA, linear discriminant analysis
(LDA) actually considers which class each point belongs to. Since there are two classes, the result
is projection onto a 1-dimensional subspace, obtained by applying the classes’ inverse covariance
matrix to the difference of class centroids. Unfortunately, the result is again an unhelpful mixture of
classes. (far right) Unlike PCA and LDA, SqueezeFit finds a low-rank projection that maintains
some amount of distance between points from different classes. The resulting projection is a close
approximation to the planted projection factor. See Section 2 for theoretical guarantees that help

explain this behavior.

the target neighbors are all close to each other, and the number of impostors is small. To this
end, LMNN uses a semidefinite program to find the M > 0 that simultaneously optimizes these
conflicting objectives.

While LMNN has proven to be an effective tool for metric learning, there is currently a dearth
of theory to explain its performance. By contrast, our formulation of SqueezeFit is particularly
amenable to theoretical analysis, which we credit to two features: First, we do not require a pre-
processing step to define target neighbors, thereby isolating how our algorithm depends on the
data. In exchange for this lack of pre-processing, we accept the hyperparameter A to provide some
notion of “impostor.” Second, SqueezeFit includes the identity constraint M =< I, which proves
particularly valuable to the theory. For example, the identity constraint plays a key role in the
proof that, if M is SqueezeFit-optimal for {(x;,y;)}icz, then the only SqueezeFit-optimal operator
for {(M'/2x;,y;)}ier is orthogonal projection onto span{M'/2z;};cz (see Theorem 13). In words,
you don’t need to squeeze your data more than once.

Finally, we note that SqueezeFit bears some resemblance to a dimensionality reduction method
known as nuclear norm minimization with max-norm constraints (NuMax) [18]. This
method makes use of inter-class and intra-class secant sets:

Ti—T;
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For compressive classification, we intuitively want a compressive operator that grows members of



S1(D) while simultaneously shrinking members of Sa(D). This suggests the following program:

minimize trM subject to v' Mv>1—4 Yo € Si(D), (NuMax(D, ¢))
w' Mu<1+6 YueSy(D), M=0

Perhaps surprisingly, NuMax does not perform well in the context of projection factor recovery.
For example, running NuMax on the example in Figure 1 produces a matrix M that is approxi-
mately equal to a multiple of the identity. The reason for this behavior stems from the constraints
corresponding to the inter-class secants S;(D), which we illustrate in the following example:

Example 2. Select a unit vector w € R"™, and suppose the (infinite) dataset D = {(zi, ¥;) }iez
consists of the hyperplane {z € R" : (z,w) = 1} with label y = 1 and the hyperplane {z € R" :
(z,w) = 2} with label y = 2. The solution to projection factor recovery in this case is Il = ww .
To see what NuMax delivers, observe that S1(D) consists of all members of the unit sphere in R™
that are not orthogonal to w, and so the constraint v' Mv > 1 — § for v € S1(D) is equivalent
to M > (1 —9)I. It follows that M = (1 — 0)I is the unique solution to NuMax(D,J). On the
other hand, SqueezeFit determines II: For A < 1, the unique solution to sqz(D,A) is A%l as a

consequence of Theorem 11, Lemma 10(i), and Theorem 3, while sqz(D, A) is infeasible for A > 1.

1.2 Notation

Given an objective function f: R™ — R and feasibility region S C R™, consider the program
minimize f(x) subjectto z € S (P)

Then we denote
val P := ;relgf(x), arg P:={x € S: 2 =val P}.

If instead P were a maximization program, then we take val P := sup,cg f(z). Given A € R™*", we
write im(A) := {Az : € R"} to denote the image of A as a linear transformation. By default, all
vectors are to be interpreted as column vectors. Throughout, 1 denotes an all-ones (column) vector,
the dimensionality of which will be clear from context. For example, if z € R, then 1"z denotes
the sum of the entries of x. Given a set T and k € N, we denote G;) ={SCT:|S|=k}. Givena
function f(k,n), we write f(k,n) = Ok(g(n)) if for every k, there exists a constant C' = C'(k) such
that f(k,n) < C - g(n) for every n. We also write f(k,n) = on—00(1) if for every k, it holds that
limy, o0 f(k,n) = 0.

1.3 Outline

In the next section, we report conditions under which SqueezeFit successfully performs projection
factor recovery. We prove these results in Section 3, where (as prerequisites) we also study fun-
damental geometric features of SqueezeFit, and then use these features to analyze strong duality.
SqueezeFit also performs well in practice, which we illustrate in Section 4 with an assortment of
numerical experiments. We conclude in Section 5 with a discussion of various open questions and
opportunities for future work.

2 Projection factor recovery with SqueezeF'it

Throughout, D = {(z;,%;)}ier denotes a sequence of points in R x [k] with a possibly uncountable
index set Z. We observe that SqueezeFit frequently succeeds in projection factor recovery when the



T-component {(I1z;, y;) }icz of the data is “well behaved” and the T*-component {(I —II)z;};ez of
the data is “independent” of the T-component. See Figure 1 for an illustrative example; in this case,
we defined D by first selecting points from concentric circles in the zy-plane (the T-component)
and then adding Gaussian noise in the z-direction (the T"-component). In this section, we present
two general instances of this phenomenon. The first instance enjoys a short proof:

Theorem 3. Given Dy = {(z;,vi)}icz, select any nonempty set S C (span{z;}icz)™ and define
D= {(xl + s, yi)}iGI,s€S~ Then

(i) argsqz(D,A) = argsqz(Dy, A), and
(ii) every M € argsqz(Dy, A) satisfies im(M) C span{x; }iez.

In particular, if the T-component Dy is “well behaved” (in the sense that every M € argsqz(Dg, A)
satisfies im(M) = span{x; };c7), then SqueezeFit succeeds in projection factor recovery from D (just
find any M € argsqz(D,A) and take IT = M(M T M)~ MT).

Proof of Theorem 3. We prove (ii) first. Let II denote orthogonal projection onto span{z;}cz.
Then for every M that is feasible in sqz(Dp, A), IIMII is also feasible with tr(IIMTI) = tr(MII) <
tr M. The last inequality follows from the von Neumann trace inequality, where equality occurs
only if im(M) C im(II). As such, M € argsqz(Dyp, A) only if M = IIMII. For (i), Z(Dy) C Z(D),
and so sqz(Do, A) is a relaxation of sqz(D,A). Since every IIMII € argsqz(Dy,A) is trivially
feasible in sqz(D, A), we then have argsqz(Dy, A) C argsqz(D, A) C argsqz(Dy, A). O

The above guarantee uses a weak notion of “well behaved” for the T-component of D, but
a strong notion of “independent” for the T-component. In what follows, we strengthen “well
behaved” to mean A-fized (defined below), and weaken “independent” so that the T--component
isn’t identical (but follows the same Gaussian distribution) as you vary the T-component.

Definition 4.
(i) The contact vectors of D are the shortest vectors in Z(D), when they exist.

(ii) We say D = {(x, ;) iz is A-fixed if there exists M € argsqz(D, A) such that M'/?z; = x;
for every i € T.

Intuitively, the contact vectors dictate which directions of the dataset are able to be squeezed.
If the contact vectors are longer than A, then we can squeeze the data in all directions. If the
contact vectors have length A, then we can only squeeze in the orthogonal complement of the
contact vectors. If the contact vectors have length A and they span the data, then the data cannot
be squeezed any further, and so the data is A-fixed. If the contact vectors have length smaller than
A, then the SqueezeFit program is infeasible. We provide a rigorous treatment of these claims in
Subsection 3.1. As an example of a A-fixed dataset, consider the far-right panel of Figure 1. Here,
the classes form two concentric circles in the zy-plane; if we let A denote the distance between
these two circles (i.e., the difference between their radii), then this dataset is A-fixed.

Definition 5. Given Dy = {(zi,¥:) }ic[q) in R? x [k], let IT denote orthogonal projection onto the
r-dimensional span{z; };c(, in RY. Select any o > 0.

(i) For each i € [a], draw {git};cp5 independently from N(0, o?(I — 1)), and consider the per-
turbed dataset D := {(x; + git, yi)}ie[a“e[b]. We say D is drawn from the projection factor
model, and we write D ~ PFM(Dy, 02, b).



(ii) Let Zy denote the contact vectors of Dy, and let A denote the smallest non-zero eigenvalue of
> ez, 2z, Then we write SNR(Dy, 02) := \/(2ra?).

We note that the data in the far-left panel of Figure 1 was drawn from PFM(Dy, 02, 1), where Dy
corresponds to data points sampled along concentric circles in the xy-plane. In order to appreciate
the above definition of SNR, first note that the contact vectors of Dy contain whatever “signal”
SqueezeFit uses to find II. In the idealized setting where the contact vectors consist of an orthogonal
basis B for T' = span{z; };c[,) together with its negation —B, then \/2 equals the squared length A?
of each contact vector. Since this energy is spread over r dimensions, we can say that the amount
of signal per dimension is A/(2r). Intuitively, if the contact vectors “barely” span (meaning A is
small), then the signal is weaker, whereas additional contact vectors provide stronger signal. Our
notion of signal-to-noise ratio SNR compares the amount of signal per dimension of 7" to the amount
of noise per dimension of 7.

Our main result requires a technical lemma, which in turn requires a definition: Given a closed
convex cone C C R", the statistical dimension of C is given by

2
6(C):= E sup (x, ,
© g~N(0,1) (:cecrwr])Bn< g>)

where B" denotes the unit Euclidean ball in R™. The notion of statistical dimension was introduced
in [1] to characterize phase transitions in compressed sensing and elsewhere.

Lemma 6. There exist universal constants ¢y, co,c3 > 0 for which the closed convex cone

c1y/logn 1o }

C, = {UER” :v>0, maxv <
n
has statistical dimension §(Cp,) € [can, in] for every n > cs.

Theorem 7 (main result). Let c1,ca,c3 > 0 be the constants in Lemma 6. Suppose Dy is A-fixed,
and draw D ~ PFM(Dy, 02,b). Then argsqz(D, A) = {11} with probability at least 1 — 6| Z|e2b/48
provided

2
b > max {(d - r),C3}, SNR(Do, 02) > 3¢1 (4 + %2) J/loghb.

C2
Our proof of Theorem 7 appears in Subsection 3.3 and leverages the following:
(i) argsqz(Dg, A) = {II} because Dy is A-fixed,
(ii) the optimality of IT in argsqz(Dy, A) enjoys an easy-to-construct dual certificate, and
(iii) the dual certificate for D is a predictable perturbation of the dual certificate for Dy.

We establish (i) in Subsection 3.1, (ii) in Subsection 3.2, and (iii) in Subsection 3.3. Interestingly,
the SNR threshold in Theorem 7 is tight up to logarithmic factors:

Theorem 8. Fiz k =2 and A = 1. For every € € (0,2), there exists dy € N, along with a sequence
{(Do)a}asd, of A-fired datasets in R? x [k] and a sequence {04}q>d, in R>o such that

(i) SNR(Dy, 0%) = € for every d > dy, and

(i) Dg ~ PFM((Do)a, 03, ba) satisfies argsqz(Dg, A) = {114} with probability at least 1/2 for each
d > dy only if by grows superpolynomially with d.



Going the other direction, as a consequence of Theorem 7, it holds that for every o > 0, there
exists a sufficiently large b such that argsqz(D,A) = {II} with high probability:

Corollary 9. Fiz any A-fived Dy and o > 0. For each b € N, draw Dy ~ PFM(Dy, c2,b). Then
lim IP{ arg sqz(Dy, A) # {H}} ~0.
— 00

We note that for large o, the rate of convergence in Corollary 9 is very slow, as we take b
to be exponentially large in d in order to obtain argsqz(Dy, A) = {II} with high probability. By
contrast, such a large choice of b is unnecessary for projection factor recovery to be information
theoretically possible. For example, it suffices to have b > d — r, even when ¢ is arbitrarily large.
Indeed, for such b, it is straightforward to show that with probability 1, every size-b subcollection
of {Zi + git }ic[a) tepp) has affine rank > d —r, and the subcollections of affine rank d —r are precisely
those of the form {x; + gix : t € [b]}. As such, for projection factor recovery, it suffices to first
find the unique balanced partition of the data that minimizes maximum affine rank, then apply
principal component analysis to one of the resulting size-b subcollections to recover (span{w; }ic(q)) "
and finally take II to be orthogonal projection onto the orthogonal complement of this subspace.
Interestingly, this method does not use the labels {yi}ie[a} to recover the projection. Of course, this
procedure is not computationally tractable, and it heavily exploits the model of the data.

3 A theoretical treatment of SqueezeFit

3.1 The geometry of SqueezeFit

In this subsection, we rigorously treat the geometric intuition captured in the paragraph following
Definition 5. First, we prove that A-fixed data enjoys a unique SqueezeF'it optimizer, namely, the
orthogonal projection onto the span of the data:

Lemma 10. Pick any D = {(x;, yi) }iez-

(i) D is A-fized if and only if the orthogonal projection onto span{x;};cz is the unique member
of argsqz(D, A).

(ii) If D is A-fized, then span Z(D) = span{z; }iez.

Proof. (i) First, (<) is immediate. For (=), we have by assumption that there exists M €
argsqz(D, A) with a leading eigenvalue of 1 whose eigenspace contains every x;. Let II denote

orthogonal projection onto span{z;};cz. Then we may write M = II 4+ T' for some I" satisfying
0 <I' <[ and I'll = IIT" = 0. Note that IT is feasible in sqz(D, A) since 0 < IT < I and

2 Mz = (2) ' (I2) =2 2> 2" Mz > A?

for every z € Z(D). Finally, we must have M =11, i.e., I = 0, since otherwise trII < trII +trI" =
tr M, thereby violating the assumption that M € argsqz(D, A).

(ii) By (i), II is feasible in sqz(D,A). Let IIz denote orthogonal projection onto span Z(D).
Then 0 <IIz < I and

2 Hzz=Ilzz2) (Ilz2) =22 > 2"z > A?

for every z € Z(D), and so Iz is also feasible in sqz(D, A). Since II € argsqz(D, A) by (i), we
then have
dimspan{z; }icz = trIl < trllz = dimspan Z(D).



Figure 2: Examples of A-fixed data that fail to admit a spanning set of contact vectors. Both
examples exhibit k& = 2 classes in R%2. On the left, the classes are open sets, and they admit
no contact vectors. On the right, the classes are compact sets, and the only contact vectors are
(0,£1). These examples illustrate why Theorem 11 requires | Z(D)| < oo for the converse to hold.
By Theorem 15, SqueezeFit fails to admit a Haar dual certificate in these examples.

The definition of Z(D) implies that span Z(D) C span{z;}icz, and so the above dimension count
gives the desired equality. O

While Lemma 10(i) is a critical to our the proof of Theorem 7, Lemma 10(ii) will allow us to
prove another portion of our geometric intuition: If the contact vectors have length A and they
span the data, then the data cannot be squeezed any further, and so the data is A-fixed. We make
this rigorous in the following:

Theorem 11. If D = {(z;,yi) }iez has contact vectors of length A that span span{z;}icz, then D
is A-fized. Furthermore, the converse holds when |Z(D)| < oc.

See Figure 2 for (necessarily infinite) examples in which the converse fails to hold. The proof
of Theorem 11 requires the following lemma:

Lemma 12. If D is A-fized, then its contact vectors have length A, provided they exist.

Proof. Suppose D has a contact vector. Since D is A-fixed, sqz(D, A) is feasible, and so this contact
vector has length > A. Suppose the contact vector has length Ag > A, put a = (A/Ag)? < 1, and
select II € argsqz(D, A) such that IT'/2z; = z; for every i € Z. By Lemma 10(i), II is orthogonal
projection onto span{z;};cz. We will show that M := «ll is feasible in sqz(D, A) with smaller trace
than I, contradicting the fact that IT is optimal in sqz(D, A). Since o € (0, 1), we have 0 = M < I.
Next, every z € Z(D) satisfies

2T Mz=az"llz=az' 2z > A2,

where the last equality applies Lemma 10(i) and the inequality uses the definition of . Finally,
tr M = atrII < trII, producing the desired contradiction. ]

Proof of Theorem 11. Pick any M € argsqz(D, A). Then for every contact vector z of D, we have

A2<2TMz<2T2=A2%



Considering the far left- and right-hand sides, all inequalities are necessarily equalities. In particu-
lar, equality in the second inequality combined with M < I implies that M has a leading eigenvalue
of 1 whose eigenspace contains every contact vector, and therefore every z; (by assumption). This
implies that D satisfies the definition of A-fixed.

For the converse, suppose |Z(D)| < oo and D is A-fixed. Since |Z(D)| < oo, D necessarily has
a contact vector. By Lemma 12, the contact vectors of D necessarily have length A. Let S denote
the span of these contact vectors. We seek to prove S = span{z;};cz, and by Lemma 10(ii), it
is equivalent to show S = span Z(D). Since S C span Z(D), it suffices to show span Z(D) C S.
To this end, consider the set A := {||z| : z € Z(D) \ S} C (A,00). If A is empty, then we are
done, since this implies Z(D) C S. Otherwise, since |Z(D)| < oo, we have a := (A/(min A))?
Let IIg and II7 denote orthogonal projection onto S and T := S+ N span{x; };c7, respectively, and
select II € argsqz(D, A). We will show that M := IIg + ollr is feasible in sqz(D, A) with smaller
trace than II, contradicting the fact that II is optimal in sqz(D, A).

Since a € (0,1), we have 0 < M =< I. Next, we will verify 2" Mz > A? for every z € Z(D). For
z € Z(D)NS, we have

2T Mz=2"(Hg+ollp)z = 2 gz = 2 2 > A2
Meanwhile, for z € Z(D) \ S, we have

2" Mz = 2" (g + olly)z > az ' (g + II7)z ® 02T = ||Hz:||2 = a|| 1?2 > A2,

where (a) and (b) follow from Lemma 10(i), and the final inequality follows from the definition of
a. Overall, M is feasible in sqz(D, A), and yet

tr M = trllg 4+ atrlp < trllg + tr Iy = tr(Ilg 4+ p) = tr1I,

where the last equality again follows from Lemma 10(i). This is the desired contradiction. 0

As an aside, we establish that you need not squeeze data more than once:
Theorem 13. Given D = {(z;,y;) Yiez, then {(M'/2z;, y;) Yier is A-fized for every M € argsqz(D, A).
Proof. Pick M € argsqz(D,A), put D' = {(M'/2z;,y;) }icz, and pick N € argsqz(D’,A). We
claim that My := (MY/2)T NM'/? is feasible in sqz(D, A). First, we have Z(D') = M'/2Z(D), and
so the feasibility of N in sqz(D’, A) implies
2T Moz = (MY22)TN(MY?2) > A?

for every z € Z(D). Similarly, 0 < My < I follows from the facts that 0 < N < T and M < I:

z" Moz = (MY22)TN(M?z) > 0,

z " Moz = (MY22)TN(MY22) < (MY22)T(MY?2) =2 "Mz < z'x
for every z € R Overall, we indeed have that My is feasible in sqz(D, A).

Next, let a; > --- > ag and B > --- > (B4 denote the eigenvalues of M and N, respectively.
Then the von Neumann trace inequality gives

d d
Za]—trM<tng—trMN gz Z
J=1 Jj=1 Jj=1

where the last inequality uses the facts that a; > 0 and 3; < 1 for every j. Considering the far
left- and right-hand sides, all inequalities are necessarily equalities. Equality in the von Neumann
trace inequality implies that M and N are simultaneously unitarily diagonalizable, while equality
in the last inequality implies that §; = 1 whenever a; # 0. As such, N 1/2 fixes the column space
of M2 meaning D' = {(M"?x;,y;)}icr satisfies the definition of A-fixed, as desired. O



3.2 Conditions for strong duality

Our proof of Theorem 7 leverages the construction of a dual certificate, motivating our study of
the dual program. We follow [16] to find the Haar dual program of sqz(D,A) in the case where
Z(D) is infinite:

sup AZ Z v(z) —trY (dual(D, A))
z€Z(D)
subject to > y(z)zz' =Y <XI, Y =0, y>0, [supp(y)| < oo
z€Z(D)

Here, the decision variables are v: Z(D) — R and Y € R%?  The above program reduces
to the dual semidefinite program when Z(D) is finite. In either case, weak duality gives that
valsqz(D, A) > valdual(D, A) when sqz(D, A) is feasible. We are interested in when sqz(D, A) ad-
mits a Haar dual certificate, that is, a maximizer of dual(D, A). Indeed, a Haar dual certificate
certifies the optimality of a given optimal point in sqz(D, A) by witnessing equality in weak duality.
In the finite case, we can prove the existence of a Haar dual certificate by manipulating sqz(D, A)
and applying Slater’s condition:

Theorem 14. Suppose |Z(D)| < oo and sqz(D, A) is feasible. Then sqz(D, A) admits a Haar dual
certificate.

Proof. Put 2y ={z € Z(D): ||z]| = A}, 25 = Z(D) \ 21, and T = span{z},cz,, and consider the

related semidefinite program:

min  tr(Ilp. XTIp1) (2)
subject to 2 Iy XTpiz > A% — |Tpz||? Vz € 2o, HpXHp=0, 0<X =<1

Importantly, every feasible point X of (2) can be transformed into a feasible point M = I XTI, +
II7 of sqz(D, A). Indeed, if z € 25, then

2T (Mp XMy + 7))z = 2 ' Tpo XTpo 2 + [ Tpz]|? > A2

while if z € 21, then z € T, and so z' (Il Xy + II7)z = ||2]|> = A% Furthermore, 0 <
HTLXHTL + I < HTl + Iy =1.

Next, we demonstrate that the related program (2) satisfies strong duality by Slater’s theorem.
To see this, define a = § + ﬁmin{”z”2 : 2 € Z3}. Then 1 < a < ||z||?/A? for every z € Z,.
Consider Xy = éHTJ_. Then for every z € Z,, we have

1 1 1
2 e Xollprz = —[[Tpez|? = =[[2]* = =[[Tzz]* > A — [Tz,
o e} e}
Furthermore, X lies in the relative interior of {X : IIp XTIy = 0,0 < X < I}. Overall, X lies

in the relative interior of the feasibility region of (2), and so Slater’s theorem [6] implies that the
value of (2) equals the value of its dual:

max (A = |Hpz|?)y(z) — trY (3)
zEZy
subject to Z F(2)Mprz)(prz)" =Y <Mpr, HpYHOp=0, Y >0, >0
zZEZo
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Here, the decision variables are 57: Z5 — R and Y € R9%4,

Next, we demonstrate how to transform every feasible point (7,Y) of (3) into a feasible point
(7,Y) of dual(D,A). To this end, define Z =3 - zz', and let A denote the smallest nonzero
eigenvalue of Z. Then we take

1/ ifzeZ . N 1 ~
) = { 3(2) ifze Z; } T ZEZ:QW(Z)(HTZ)(HTZW T2ty

Then we immediately have v > 0 and Y > 0. Furthermore,

R:=1- Z Y(2)zz" +Y =Tlps — Z 7(2) (zzT = (HTz)(HTz)T> +Y
2€Z(D) 2€Z2

satisfies IIp RIl7 = 0 and Il;. RII;. > 0 by feasibility in (3), and so R > 0, as desired.

By assumption, sqz(D, A) is feasible, and so I is feasible in (2); also, (3,Y) = (0, 0) is feasible
in (3). By this feasibility and the extreme value theorem, we may take optimizers X% and (34, Y?)
of (2) and (3), respectively, and let M and (v, Y") denote corresponding feasible points of sqz(D, A)

and dual(D, A), respectively. Then the dual value of (v,Y") equals the primal value of M:

A2 A2 -~
A% D0 () Y =A% 5()+ |2 - ( > FE)re]? + 512 - dimT+trY“)
z€Z(D) 2€EZ3 2€Z3

=val (3) + dim 7T = val (2) + dim T = tr(Ilp. X ps ) 4 trIp = tr M.
Combining this with weak duality gives

valdual(D, A) > A? Z v(z) —trY = tr M > valsqz(D,A) > valdual(D, A).
z€Z(D)

Considering the far left- and right-hand sides, we may conclude the desired equality. O

In the infinite case, strong duality is no longer guaranteed. Interestingly, we can characterize
strong duality for A-fixed data:

Theorem 15. Suppose D = {(xi,yi) }iex s A-fized. Then sqz(D, A) admits a Haar dual certificate
if and only if the contact vectors of D span span{z;}icz.

Proof. (<) Select any finite collection Zj of contact vectors of D that span span{z;};c7, and put
X:=) ez, zz'. Let A be the smallest non-zero eigenvalue of X, and define

{1/ ifze 2 1
V(Z)‘_{ 0 ifzeZ(D)\Zo}’ Yy

where IT denotes orthogonal projection onto span{z; };ez. It is straightforward to check that (v,Y)
is feasible in dual(D,A) with objective value trII. By Lemma 10(i) and weak duality, (v,Y) is
therefore a Haar dual certificate.

(=) Let IL, denote orthogonal projection onto the column space of }°, . z(p) v(2)zz". We first
claim that if (v,Y) is feasible in dual(D, A), then so is (v, I1,Y1l,), and with monotonically larger
objective value. Indeed, feasibility follows from

I— Y A(2)zz! + YL, = (I - 11,) + 10, <I - Y 2T+ Y) I, = 0,
2€Z(D) 2€Z(D)
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and the objective value is monotonically larger since tr(IL,Y1ly) = tr(Y1l,) < tr(Y"), where the last
step follows from the von Neumann trace inequality. As such, the assumed Haar dual certificate
(7,Y) satisfies im(Y") C im(Il,) without loss of generality.

Put Q :== > .cz(p) ’y(z)ﬁzz—r — Y. Then tr Q equals the dual value of (v,Y). Let II denote
orthogonal projection onto span{z;};cz. Then im(Y’) C im(Il,) C im(IT), and so we may strengthen
an inequality that is implied by the dual feasibility of (v,Y):

2
A:=11—- Z 7(2)(1—”§H2>zzT_Q:H— Z Y(z)zz" +Y = 0.

2€2(D) 2€2(D)

By Lemma 10(i), IT € argsqz(D, A), and so trII = tr ). As such,

0<trA=— 3 A2 - A <o
z€Z(D)

Considering the far left- and right-hand sides, we infer two important conclusions:

(a) Since A > 0 and tr A = 0, we necessarily have A = 0.

(b) Since Z v(2)(||2]|> = A%) = 0, then y(2) > 0 only if z is a contact vector of D.
2€Z(D)

To be explicit, (b) applies Lemma 12. Let T denote the span of the contact vectors of D. Rear-
ranging A = 0 from (a) gives > _.c z(p Y¥(2)zz" =T +Y, and so (b) implies

span{z;}ier = im(Il) C T C span{z; }ic1,
meaning 7' = span{z; };cz, as desired. O

When strong duality holds, one may seek a dual certificate of a given SqueezeFit optimizer.
The following lemma facilitates this pursuit:

Lemma 16 (complementary slackness). Suppose sqz(D,A) admits a Haar dual certificate and
select any M € argsqz(D,A). Then argdual(D,A) is the set of points (v,Y) that are feasible in
dual(D, A) and further satisfy

supp() € {= € Z(D) : [|M"/22]| = A}, (4)

im(Y) C {a::Ma:::c}, (5)

M= " Az)(MV2)(MY2)T . (6)
z€Z(D)

Proof. Suppose (v,Y) is feasible in dual(D,A). Then I — ZzGZ(D) (2)zz" +Y = 0. Multiplying
by M2 on both sides then gives

M= > )Mz T MY+ MY MY - 0., (7)
z€Z(D)

We take the trace and rearrange to get

tr M > Z (2)z" Mz —tr(MY) > A? Z v(z) = tr(MY) > A? Z v(z) —trY,
2€Z(D) 2€Z(D) 2€Z(D)
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where the last step applied the von Neumann trace inequality. Since sqz(D, A) admits a Haar dual
certificate by assumption, arg dual(D, A) is the set of points (v,Y") that are feasible in dual(D, A)
and further make all of the above inequalities achieve equality.

Equality in the second inequality is characterized by (4), while equality in the third inequality is
characterized by (5). Equality in the first inequality occurs precisely when the positive-semidefinite
matrix in (7) has trace zero, i.e., the matrix equals zero. As such,

M = Z Ml/szTMl/Z M1/2YM1/2.
z€Z(D)

Furthermore, (5) implies MY/2Y M1/?2 = Y| and so the above is equivalent to (6). O

In the finite case, strong duality is guaranteed by Theorem 14. Given M € argsqz(D, A), then
Lemma 16 enables a quick procedure to find a dual certificate for M. Denote

Zy = {z € Z(D) : |MY2|| = A}, E = {x . Mz = m}

and consider the feasibility semidefinite program

find (7,Y) (8)
subject to Z Y(2)zz" =Y < I, HpiYg =0,
zZEZ
M= y()(M"P)M2)T-Y, Y=0, 7>0
z€Z

Importantly, solving (8) is much faster than solving dual(D, A) since | Zy| < |Z(D)|, and so (8) can
be used to promote any heuristic SqueezeFit solver to a fast certifiably correct algorithm, much
like [2, 20, 31]. Indeed, given a prospective solution M satisfying 0 < M =< I, we may:

(i) Find the shortest vectors in {Ml/QZ}ZEZ('D) from {M'/?2;};c7. If these shortest vectors have
length A, then this certifies that M is feasible in sqz(D, A) and gives Zj for the next step.

(ii) Solve the feasibility semidefinite program (8) to find a dual certificate (vy,Y).

By Lemma 16, the primal value of M equals the dual value of (v,Y’), and one may verify this a
posteriori. Weak duality then implies M € argsqz(D, A).

One way to solve (i) is to partition Z(D) into subsets Zg = {2; —x; : 4,j € T,y; = 5,y = t}
and then find the shortest vectors in {M/22},cz_, from {M/2x;};cr for each s,t € [k] with s # t.
This amounts to a fundamental problem in computational geometry: Given A, B € R?, find the
closest pairs (z,7) € A x B. Litiu and Kountanis [26] devised an Og(n log? ! n) divide-and-conquer
algorithm that solves the problem for the taxicab metric in the special case where A and B are
linearly separable. In practice, one might construct a k-d tree for A in Og(nlogn) time, and then
use it to perform nearest neighbor search in O4(logn) time on average [15] for each member of B.
Next, (ii) is polynomial in d and | 2|, and furthermore, Lemma 17 below gives that |Zo| < d* for
generic data (we suspect this upper bound is loose). Overall, one may expect to accomplish (i) and
(ii) in time that is roughly linear in n.

Lemma 17. For every d,k,n > 0 and every {yi}icn € [K]", there exists a set X' that is open and
dense in (R such that for every {7itiepn) € X, A >0, and every M € argsqz({(zi, yi) }iez, D),

{G) 1 << <nye# 0 1IN — )] = A < (51 +1)"
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Proof. Fix d,k,n > 0 and {y;},cn € [k]", and denote Q := {(i,5) : 1 <i < j < n,y # y;} and
D = (d;ﬂ). We may assume |Q| > (D + 1)2, since the result is otherwise immediate. In this
case, we will find X for which something stronger than the desired conclusion holds: For every
{Titicpm) € & and every J € ((DSI)Q), there is no nonzero L € R¥™? such that |L(z; — z;)||? is
constant over (i,7) € J. In particular, for every such J, we will find K € ( D{Ll) for which there is
no L € R4 guch that ||L(z; — x;)||> = 1 for every (i,7) € K.

We start by finding {2 }c(p41) € (RY)P+1 for which there is no L € R4 such that ||Lz]|?> = 1
for every I € [D + 1]. Let {A;};c|p) be any basis of the D-dimensional vector space of symmetric
matrices. By the spectral theorem, each A; can be decomposed as a linear combination of rank-1
matrices {vijvg }jela) of unit trace, and so {vijvg }ie[D],je|d) SPans the vector space. Select any basis
from this spanning set, define the first D of the z;’s to be the corresponding v;;’s, and take zp41 :=
2z1. Since {zlle}le[D] is a basis of unit-trace matrices, we have that 1 = ||Lz||> = (LT L, 2" ) for
every | € [D] if and only if LTL = I. In this case, |[Lzpy1||> = 4||Lz1]|*> = 4, and so there is no
L € R4 such that ||Lz||> =1 for every | € [D + 1].

Next, for each K € ( D?q)v we will construct a polynomial px € R[X;; : i € [d],j € [n]] such
that pxc(P) is nonzero only if there is no L € R?¥*? such that || L(z; —z;)||? = 1 for every (i, ) € K.
To this end, select any basis {Al}le[D] of the D-dimensional vector space of symmetric matrices.
For each (i,5) € K, consider the decomposition (z; — z;)(z; — ;)T = >_1e[D) €)1 AL, and let
F e REXIDH be defined by

cuqa ifle[D]
F@J)»l:{ 7 if | =D+1.
We will take px to be the polynomial that maps {;};c[, to det(F'). Indeed, if det(F) # 0, then
the all-ones vector does not lie in the span of the first D columns of F', i.e., there is no L such that

1L (i — )| = (LT Ly (i = 2j) (@i =) T) = > capu(l LAY =1 V(i,j) € K.
le[D]

We claim that px is a nonzero polynomial provided there exists {;}icpn) € (RH)™ and a bijection
[+ K — [D + 1] such that x; — x; = 2y(; j), where {z};c[p41) is the example constructed above.
Indeed, since {zlzl—r}le[ p] is a basis, the corresponding D X D block of F' has full rank, meaning the
first D columns of F are linearly independent. By construction, these columns are also independent
of the all-ones vector, and so det(F) # 0. Finally, since there exists {;};c|n € (RH)™ such that
pc({Zi}iepm)) = det(F) # 0, we must have px # 0.

We now use the polynomials px to construct a larger polynomial p € R[X;; : 4 € [d],j € [n]]:

px)= J[ D (x>

je((Dfl)Q) ’CG(D‘L)

We claim that the result follows by taking X = {{xi}icn] : P({®i}icjn)) # 0}. By construction,
we have that every {z;}ic, € X satisfies p({;}icn)) # 0, meaning that for every J € ((Dfl)z),
there exists K € (D‘il) such that px({Zi}icfn) # 0 (implying there is no L € R4 guch that
|L(z; — x;)||* = 1 for every (i,7) € K). It remains to establish that X' is open and dense, i.e., that

p # 0, or equivalently, that for every J € ((Dfl)z), there exists IC € (D‘Zrl) such that px # 0.
Pick J € (( Dfl)g) and consider the graph with vertex set [n] and edge set J. This graph has

(D+1)?% edges, and so the main result in [17] implies that either (i) there exists a vertex of degree at
least D+1, or (ii) there exists a matching of size at least D+ 1. In the case of (i), let K be any D+1
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of the edges incident to the vertex of maximum degree. Then K = {(i,j) : i € K'} for some j € [n]
and K’ € ([’}])E{}). In this case, we can take any bijection f': K" — [D + 1] and define {z;};c[,) so
that x; = zp(;) whenever i € K’ and otherwise x; = 0 (here, z; is defined in the example above).
Then f: K — [D + 1] defined by f(4,5) = f'(i) is also a bijection and x; — x; = ; = 2p;) = 2535
for every (i,7) € K, implying px # 0. In the case of (ii), let K be any D + 1 of the edges in the
maximum matching, and define {;};c|, as follows: Select any bijection f: K — [D + 1], and for
each (i,7) € K, define z; = z5(; ;) and x; = 0. (For each vertex i € [n] that is not incident to an
edge in K, we may take z; = 0, say.) Then z; —x; = x; = z5; ;) for every (i, j) € K, and so px # 0.
In either case, we have that there exists IC € ( D{-l) such that px # 0, as desired. ]

3.3 Proofs for Section 2

Having studied the geometric features and duality theory of SqueezeFit, we are now ready to prove
the results from Section 2.

Proof of Theorem 8. Fix € € (0,2). We will show that for every a € (0, (14 §)7!), there exists
dp = do(a) such that for every d > dy, there exists a requisite A-fixed Dy with r := rank(Il) = [ad].
To see this, let {e;};c[q denote the identity basis, put @ = r + 1, and define Dy by (x4, y;) = (e;,0)
for i € [r] and (2y41,yr+1) = (0,1). Then Dy is A-fixed with A = 1 and contact vectors {+e; }ic[,
resulting in A = 2. Now take 02 = 1/(r¢) so that SNR = ¢, and draw D ~ PFM(Dy, o%,b). By
our assumptions on € and «, we may select 3 € (5, min{a,1 — a}), p = [8d], and let II, denote
orthogonal projection onto span{e; :;rf 41~ We claim that, unless b is superpolynomial in d, then
for sufficiently large d, it holds with probability > 1/2 that II, is feasible in sqz(D,A). Since
trII, = p < r = trll, we then have II ¢ argsqz(D, A).
To proceed, we estimate

2
A o= min [, (e ) = (v +-90010)) | = i 1Myl = gesr I
ER) s,t€b]

First, for every i € [r] and s,t € [b], expanding the square gives

9,
ML, (gis — gri1.)l1? = IMpgisl® = 2 Mpgry 1l - (Mpgis, M) + T gr 41,17

: 12 o pgryae
> 2min [Ty * — 2 (max Mgl ) ( max KTgie, st
s€|[b] s,t€(b]

Next, recall that if Z is standard Gaussian and Q is y2-distributed with ¢ degrees of freedom, then
Pr(|Z] > €) <272, Pr(|Q—q| 2 €) <2e7emmE g > (9)

for some universal constant ¢ > 0; in particular, these estimates follow from the Chernoff bound
and Hanson-Wright inequality [32], respectively. We apply these bounds to obtain the estimate

AZz o (2p— &) — 200+ €)' &)
with probability > 1 — 2abe~cmin{eLE1/pY — 272 =E5/2. If we select & = p*/* and & = p/4, then

we may conclude A2 > 253/(eqr) — 04-00(1) with probability > 1/2 unless b is superpolynomial in
d. Since 8 > ea/2, we have AIQ, > 1= A2 for large d, which implies II,, is feasible in sqz(D,A). O
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Proof of Corollary 9. Set

B 2 L C2 2. _ #
by = {max{ (d—r),c;:,}-‘, SNR; := 301<4—|— 5 )\/105%2751, o] = TTSNR

C2

If 0 < o1, we may take b = by by Theorem 7. Otherwise, set p := (01/0)%", and select b large

enough so that for independent Bernoulli random variables {Bit}ie[a],te[b] with mean p, it holds
with high probability that Zte[b] Bj; > by for every i € [a]. To see why this suffices, observe that
there exists a distribution F such that

N(0,0%(I —=11)) = p- N(0,03(I —II)) + (1 — p) - F.

Let D; denote the data points in D corresponding to the N'(0,03(I — II)) component. In the high-
probability event that } ., Bir = by for every i € [a], Theorem 7 gives that argsqz(Dy, A) = {II}
with high probability, which is also feasible in sqz(D,A). Since sqz(Di,A) is a relaxation of
sqz(D, A), we may conclude that argsqz(D, A) = {II} in the same event. O

Proof of Theorem 7. By Lemma 10(i), arg sqz(Dp, A) = {II}, which is trivially feasible in sqz(D, A).
We will modify a dual certificate for sqz(Do, A) to produce a point (7,Y) in dual(D, A) of the same
value. By the proof of Theorem 15, sqz(Dy, A) enjoys a dual certificate (7,Y") of the form

1A ifze Z o1 _
W)‘{ 0 iszZ(DO)\ZO}’ Y'Agzz i,
z2€Zg

Our choice of (7,Y) will take Y = Y, but selecting an appropriate v will be more delicate. Denote
Ay = ZZGZ(D) ¥(2)zz" =Y and II; := I — II. We will select v > 0 such that

A 250 <1, [TLATT[lase <1, TAIL =0, Y A(z)= > F(2)
2€Z(D) 2€Z(Do)

The first three above together imply A, =< I, thereby ensuring (v,Y) is feasible in dual(D, A),
while the final condition ensures that the value of (v,Y) in dual(D, A) equals the value of (3,Y)
in dual(Dy, A), as desired.

We first claim that with high probability, it suffices to have the following: For every i,j € [a]
such that z; — z; € 2y, there exists v;; € R such that

u 1 c1v/logb

Vij =+ maxv;; < U

Vij ZO, N\

Gijvij = 0, (10)
where G;; is the d x b matrix whose tth column is g;; — gj;. To see this, consider « defined by

(vij)e ifxj—a;€ Zpand s=t
0 otherwise.

(e a0 = @+ a0) = {
Then v > 0 is immediate, while |[IIA,II|j2—2 <1 follows from

AT = Y S (g)elwi — 2j) (@i — ;)T — VT = H(%X - Y)H — 1L

i,j€la] te[D]
T —x;€2Z0
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Next, (5) implies I1; Y = 0, and so

ITLL AT o2 = H ST wipilgie — gie)(gi — gi0)
i,j€[a] teb] 22
z;—x; €20
c1v/1ogb
ST X | 2 gnlen - a0
i,j€[a] te[b] 232
Tj—T;€Z0
c1v/logb 9 2 3¢, /Togh sd—r
STy T —r+2 < : 4) <1
< B (Va=r+2v0) < e (b +a) <1,

where the last line applies Corollary 5.35 in [37] with a union bound, the inequality (p + ¢)? <
3(p% + ¢?), and finally our assumptions on b and SNR; in particular, the first inequality in this last
line is valid in an event & of probability > 1 — 2e~%2. Finally, we also have

MAIL = D Y (vig)e(w —2) (g —g36) " = > (i — ;) (Gijuyy) " =0,

i,j€la] teb] i,j€la]
CEj-J,‘jEZO acj—;rjEZO
and )
0 -
SRCEND DD SUNEE-E S E!
2€Z(D) i,j€la] te[b] 2€Z(Dyo)
l'j—LEjEZO

It remains to find v;;’s that satisfy (10). Equivalently, we must show that with high probability,
it holds that for every 4, j € [a] such that z; — x; € Zj, the random subspace Null(G;;) nontrivially
intersects the cone C, defined in Lemma 6. Importantly, each Null(G;;) has the same distribution
as Null(G), where G is (d —r) x b with independent standard Gaussian entries, meaning Null(G};)
is drawn uniformly from the Grassmannian of (b — d + r)-dimensional subspaces of R®. Then
Theorem 7.1 in [1] gives

—£2/8
d—r < 6(Cy) — — P(CﬂNllGi-:0><4e (
r> ( b) g r b u ( ]) { } — Xp 5(Cb)+€
whenever ¢ > 0. Recalling Lemma 6 and selecting §& = c2b/2, then since d — r < c2b/2 by
assumption, we obtain nontrivial intersection between C, and each Null(G;;) in an event & of
probability > 1 — 4| Zy|e~°2*8. The result then follows by a union bound between & and &. [

Proof of Lemma 6. First, C, is contained in the self-dual nonnegative orthant R’. As such, Propo-
sitions 3.1 and 3.2 in [1] together give

1
0(Cp) <O6(RY) = 3™
Next, given any bounded set T' C R", let N(T,¢) denote the size of the largest e-packing, that is,
the largest S C T such that

min ||z —y[| > e.
T, YyeS
TH#Y

By Sudakov minoration (see the proof of Theorem 7.4.1 in [36], for example), we may bound
statistical dimension in terms of packing numbers:

2
3(Cpn) > ( E sup <x,g>> > ¢-sup € log N(C,, N snL €), (11)
g~N(O,I) zec,nsn—1 >0
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where ¢ > 0 is some universal constant (one may take ¢ = 1 — e~!, for example). As such, for the
remaining lower bound, it suffices to estimate packing numbers of C, N S"~!.

To this end, we make a general observation: Fix a measurable set T C S"! of normalized
surface area s(T) := area(T)/area(S"~!), let P denote a largest e-packing of S"~!, and find a
rotation Qg9 € SO(n) that maximizes the cardinality of QoP N T. If we draw @ uniformly from
SO(n), then the linearity of expectation gives

N(T,€) > |QPNT| >EQPNT|=E Y 1ligmery = »_ Pr(QeeT)=s(T)-N(S" ' ¢). (12)
zeP zeP
A volume comparison argument gives the following estimate:

cosf

snn1g

N(S" 1,250 8) > (1 + 0p00(1)) - V2710 - -
in

Vo € (0, 5). (13)

(See [21] for a recent improvement to this estimate, and references therein for historical literature
related to (13), which will suffice for our purposes.) With this, one obtains a lower bound on
N(T,€) by computing s(T'), which equals the probability that g ~ N (0, I) resides in the positively
homogeneous set | J,., 71" generated by T'.

In our special case of T = C,, N S"~1, we condition on the event {g > 0} to obtain

s(C,NS" ) =Pr(geC,)=2""-Pr (maxh < Cl]% . lTh>,

where there coordinates of h are independent with standard half-normal distribution. Next, for
every choice of o > 0, the union bound gives

V1 V1
Pr(maxh < aveoen . 1Th> > Pr (maxh < ay/logn < avooen lTh)
n n
>1-Pr (maxh > a\/logn) — Pr (C—llTh < a).
n

We apply another union bound with (9) to estimate the first term:

2
Pr (maxh > om/logn) <n-Pr(|Z] > ay/logn) < T

To estimate the second term, we use the fact that each coordinate h; of h has mean /2/7 and
variance 1 — 2/m and apply Chebyshev’s inequality:

Cl.71 1 2
P(—l h< )<P N h =2
f(C1Th<a) < (‘nz 2

i€[n]

> 2—0‘>< L-2/m
Vmoa) T (V2/r-afa)?

Combining these estimates, we may select o = 4 and ¢; = 50 (say) to get s(C, NS"71) > 1 .27"
s

for every n > 2. Then taking # = {5 and combining with (12) and (13) gives

log N(C,, NS™ !, 25in &) > 0.65n + 3 logn — 1.86 + 0500 (1).

By (11), we are done. O
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4 Numerical experiments

4.1 Implementation variants

Before describing our numerical experiments, we first discuss a few different implementations of
SqueezeFit that allow for scalability and robustness to outliers.

Hinge loss. SqueezeFit is not feasible if A is larger than the minimum distance between two
points with different labels. In order to make SqueezeFit robust to outliers, we replace the A
constraints in sqz(D, A) with a hinge-loss penalization in the objective:

minimize trM+A Y (A2 - zTMz) subject to 0 < M < T (sqz,(D, A))
+
z€Z(D)

Here, a4 := max{0,a}. Importantly, sqz,(D, A) is feasible regardless of A, but this comes at the
price of an additional hyperparameter \ > 0.

Relaxing A constraints. Suppose D = {(z;,:)}ic[n is comprised of n data points that are
balanced over k labels. Then sqz(D,A) is a semidefinite program with d? variables and Og(n?)
constraints. When implemented directly, we find this program to be too slow once n > 200, even
when d is small. However, Lemma 17 indicates that typically, most of these A constraints are not
tight, and so to accommodate larger values of n, we relax many of these constraints. Fix s > 1, let
S(i,¢) denote the indices of the s nearest neighbors to x; with label ¢, and put

zm = | {$ —xjijE S(i,e)}.
i€[n] Le(k]
Fy;
Then replacing Z(D) in sqz(D, A) with Z5(D) results in a relaxation with only O(sn) constraints.
In practice, we obtain Z5(D) in O4(nlogn) time using a k-d tree. Overall, passing to Zs(D) results
in the following variants:

minimize trM subject to z' Mz > A% Vze Z(D), 0=<M=<1I (sqz®(D, A))
minimize trM4+A Y (A2 - zTMz> subject to 0 < M < I (sqz5 (D, A))
+
2€Z4(D)

As one might expect, we observe that the optimizers of these variants are close approximations
to optimizers of the original programs, even for moderate values of s, and the approximation is
especially good when D exhibits clustering structure.

Relaxing the identity constraint. For every D, there exists § = 6(D) > 0 such that for
every A < ¢, it holds that every M € argsqz(D, A) satisfies tr M < 1, meaning the constraint
M < I is not tight. As such, we can afford to relax the identity constraint when A is small. In
the absence of the identity constraint, then up to scaling, we may equivalently put A = 1. For this
reason, we define the variant

minimize trM subjectto z' Mz>1 Vze Z(D), M >0 (sqz(D,01))
We similarly define sqz,(D,07"), etc. We observe that solving this relaxation is considerably faster.

4.2 Handwritten digits

In this subsection, we use SqueezeFit to perform compressive classification on the MNIST database
of handwritten digits [23]. Specifically, we focus on binary classification between 4s and 9s, since
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Figure 3: Take low-resolution versions of MNIST digits (4s and 9s) to obtain images in [0, 1]10*10.

The two leading principal components of this data are displayed on the left. Letting D denote 50
of these low-resolution images, we run a variant of SqueezeFit to obtain M of rank 5. Letting II
denote orthogonal projection onto the span of the two leading eigenvectors of M, the right-hand
plot illustrates Ilz for 2000 randomly selected x’s from the low-resolution 4s and 9s. The 50 points
from D are indicated with ‘+’ and ‘0’. Impressively, SqueezeFit identifies components that keep all
of the 4s and 9s separated, despite only seeing a small sample.

these digits are easily confused. There are 11,971 of such digits in the training set and 1,991 in the
test set. In order to apply SqueezeFit, we first decrease the dimensionality of the space by forming
low-resolution versions of these digits in [0,1]19%19. Next, we select n points D at random from
the training set and compute M € argsqz§(D,0%) with A = 1 and s = 5. We then apply M2
to the entire training set. Figure 3 illustrates this SqueezeFit compression with n = 50. After
compression, we apply K-nearest neighbor classification on the test set. Figure 4 illustrates this
classification in the case of n = 800 and K = 15. Table 1 compares the misclassification rates
for K-nearest neighbor classification after compression with PCA, LDA, NuMax, and SqueezeFit.
This comparison indicates that SqueezeFit is competitive with NuMax at finding low-dimensional
components that are amenable to classification.

4.3 Hyperspectral imagery

The Indian Pines hyperspectral dataset [19] consists of a 145 x 145 x 200 data cube, representing a
145 x 145 overhead scene of farm land with 200 different spectral reflectance bands ranging from 0.4
to 2.5 micrometers. Each of the 1452 pixels in this scene is labeled by a member of {0,1,...,16};
labels 1 through 16 either correspond to some sort of crop or some other material, whereas the
label 0 means the pixel is not labeled. Since real-world hyperspectral data collection is slow, we
wish to classify the contents of a pixel in a hyperspectral image from as few spectral measurements
as possible. For simplicity, we consider the binary classification task of distinguishing crops from
non-crops. In order to evaluate per-pixel compressive classification, we split the Indian Pines pixels
with nonzero labels into 70% training data and 30% testing data. Much like we did for MNIST
digits above, we downsampled each 200-dimensional feature vector into a point in R'%. We then
applied PCA, LDA, NuMax, and SqueezeFit to a subset of the training set in order to compute a
compression operator, and we then applied this operator to the entire training set before performing
K-nearest neighbor classification on the test set. The results are summarized in Table 2. Much
like Table 1, this comparison indicates that SqueezeFit is well suited for finding low-dimensional
components for classification.
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Figure 4: (left) Low-resolution versions of 4s and 9s from the MNIST test set. (middle) Given
800 random members of the MNIST training set, run a variant of SqueezeFit to obtain M of
rank 11, and then apply M 1/2 to the digits in the left panel. (right) Apply K-nearest neighbor
classification with K = 15 to the compressed digits in the middle panel to predict labels. Squares
indicate misclassified images.

Id PCA LDA NuMax SqueezeFit ‘
n 0 11,791 11,791 800 11,791 50 800 50 800
r 100 5 11 1 1 6 14 5 11
K=1 2.15 16.62 5.47 7.78 6.07 7.03 2.96 5.97 4.01
K=5 1.95 12.55 4.26 5.32 4.62 5.47 2.31 5.47 3.61
K=15 2.26 12.00 4.11 5.32 3.87 5.67 2.51 5.27 3.87

Table 1: Percentage of misclassified MNIST digits (4s and 9s) from K-nearest neighbor classification
after compressing with either PCA, LDA, NuMax, or SqueezeFit. For each column, n points from
the training set were used to find a compression operator of rank r. (The Id column takes identity to
be the “compression” operator.) This compression operator was then applied to the entire training
set (of size 11,971) before running K-nearest neighbor classification on the test set (of size 1,991).
For each n € {50,800}, the corresponding columns computed a compression operator based on the
same random sample of the training set.

5 Discussion

In this paper, we introduced projection factor recovery as an idealization of the compressive classi-
fication problem, we proposed SqueezeFit as a semidefinite programming approach to this problem,
and we provided theoretical guarantees for SqueezeFit in the context of projection factor recovery,
as well as numerical experiments that compare SqueezeFit to alternative methods for compres-
sive classification. Through this investigation, the authors encountered a trove interesting research
questions and opportunities for future work, which we discuss below.

First, under what conditions is projection factor recovery possible, both computationally and
information theoretically? In this paper, we focused on the case where SqueezeFit is well suited
to perform projection factor recovery. In particular, we established that the SNR threshold in
Theorem 7 is tight up to logarithmic factors, but is the y/logb factor necessary? Importantly, the
projection factor model allows for exact projection factor recovery when b is not too small (e.g.,
when b > d — r). However, when b = 1, exact projection factor recovery is no longer possible,
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Id PCA LDA NuMax | SqueezeFit

n 0 7,175 7,175 300 7,175 100 300 100 300

T 100 3 5 1 1 4 6 3 5
K=1 1.39 4.81 2.76 4.81 3.96 3.83 2.04 2.73 2.11
K=5 1.69 4.35 2.79 3.12 3.02 3.41 2.08 2.83 2.27
K =15 2.14 4.81 3.38 2.89 2.86 3.51 2.50 2.96 2.83

Table 2: Percentage of misclassified pixels in the Indian Pines test set from K-nearest neighbor
classification after compressing with either PCA, LDA, NuMax, or SqueezeFit. For each column,
n points from the training set were used to find a compression operator of rank r. (The Id column
takes identity to be the “compression” operator.) This compression operator was then applied to
the entire training set (of size 7,175) before running K-nearest neighbor classification on the test
set (of size 3,074). For each n € {100,300}, the corresponding columns computed a compression
operator based on the same random sample of the training set.

although we observe approximate recovery in Figure 1. Under what conditions does SqueezeFit
give approximate recovery in this model?

While SqueezeFit has proven to be particularly amenable to theoretical investigation, our nu-
merical experiments encountered a barrier to running the semidefinite program on large data. For
instance, it takes about 50 minutes to run SqueezeFit on a 100-dimensional dataset comprised of
800 data points (on a standard Macbook Air 2013). This limitation forced us to randomly sample
the training sets before running SqueezeFit (mimicking [29]), but presumably, one can devise better
sampling techniques based on some choice of leverage scores that account for the full geometry of
the training set. Without such sampling, then in order to handle datasets with more points in higher
dimensions (e.g., the full MNIST training set [23]), we require a different approach to solving (1).
For example, one might consider a reformulation of (1) that optimizes over the O(rd)-dimensional
Grassmannian of r-dimensional subspaces of R? instead of the €(d?)-dimensional cone of positive
semidefinite d x d matrices. While such a formulation will be non-convex, there is a growing body
of work that provides performance guarantees for such optimization problems [8, 24, 28, 5]. In fact,
[35] proposes such a non-convex formulation of LMNN, and it performs well in practice.

Finally, there is room to further improve SqueezeFit for more effective compressive classification.
In practice, one will encounter application-specific design constraints on the sensing operator, and
it would be interesting to incorporate these constraints into the SqueezeFit program. For example,
if the sensor A is required to be a linear filter, then M = A" A is diagonalized by the discrete
Fourier transform, and so SqueezeFit reduces to a linear program. This constrained formulation
enjoys runtime speedups over the original semidefinite program (see [13]), and presumably, one
may obtain refined performance guarantees. Also, the numerical experiments in this paper focused
on k-nearest neighbor classifiers in order to isolate the performance of dimensionality reduction
alternatives. However, the best known algorithms for image classification use convolutional neural
networks (see [22], for example), and so it would be interesting to impose relevant convolution-
friendly constraints in the SqueezeFit program to make use of this performance (see [25] for related
work).
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