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Abstract—RecentprogressinZauner’sconjecturehaslever-
ageddeepconjecturesinalgebraicnumbertheorytopromotenu-
mericallinepackingstoexactandverifiablesolutionstotheline
packingproblem. Weintroduceanumerical-to-exacttechnique
intherealsettingthatdoesnotrequiresuchconjectures.Our
approachiscompletelyreproducible,matchingSloane’sdatabase
ofputativelyoptimalnumericallinepackingswithMathematica’s
built-inimplementationofcylindricalalgebraicdecomposition.
Asaproofofconcept,wepromoteaputativelyoptimalnumerical
packingofeightpointsintherealprojectiveplanetoanexact
packing,whoseoptimalityweestablishinaforthcomingpaper.

I.INTRODUCTION

SelectF∈{R,C},andconsidertheso-calledlinepacking
problemofpackingnpointsinFPd−1sothattheminimum
distanceismaximized.Thisfundamentalproblemresembles
theclassicalTammesproblem[23],originallyposedin1930,
whichseekstopackpointsonthesphereS2,andindeed,the
TammesproblemisequivalenttospecialcaseinwhichF=C
andd=2.Thegenerallinepackingproblemwasoriginally
studiedinthe1960sand70sbyFejesT́oth[9], Welch[24],
Delsarte,GoethalsandSeidel[8],andLevenshtein[16].In
1996,Conway,HardinandSloane[6]rejuvenatedinterest
inthisproblem,providingaplethoraofputativelyoptimal
packings(availableinSloane’sonlinedatabase[21])andalso
provingtheso-calledorthoplexbound.Thelastdecadeof
researchhasidentifiedvariousapplicationsofoptimalline
packings,includingcompressedsensing[2],digitalfinger-
printing[17],quantumstatetomography[20],andmultiple
descriptioncoding[22].Thisinturnhassparkedaflurry
ofworktoconstructoptimalpackings. Mostofthiswork
findsnewpackingsthatachieveequalityinthe Welchbound
(see[10]forasurvey),thoughtherehasalsobeenprogress
inachievingequalityintheorthoplexbound[3]andthe
Levenshteinbound[13].Inaddition,lastyear,Bukhand
Cox[4]discoveredanewboundalongwithcorresponding
optimalpackings.Despitethesubstantialprogress,optimal
packingsremainunidentifiedforthevastmajorityoftriples
(F,d,n).Intermsofrealdegreesoffreedom,thesmallest
opencasetodateis(R,3,8).
Theapplicationofquantumstatetomographyconcernsa

ratherinterestinginstanceofthecomplexcase.Inparticular,
Zauner[26]conjecturedthatforeveryd>1,theoptimal
packingsofd2pointsinCPd−1necessarilyachieveequality
intheWelchbound,andfurthermore,theycanbeconstructed
toexhibitsymmetriesfromtheWeyl–Heisenberggroup.After

adecadeofsignificantefforttoproveZauner’sconjecture[12],
theconjectureisonlyknowntoholdforfinitelymanychoices
ofd.Someofthelatestworkalongtheselineshasleveraged
anobservationthatalloftheknownoptimalpackingsof
Zauner’sformfeaturecoordinatesthatresideinapredictable
numberfield[1].Onemayexploitthisobservationtopromote
anumericalsolutiontoanexactsolution:obtainthousands
ofdigitsofprecision,usethesedigitstoguesstheexact
coordinates,andthenusesymboliccalculationstoverifythat
theresultingpackingachievesequalityinthe Welchbound.
Thisprocedurehasledtoseveralnewconstructions.
Inthepresentpaper,wetakeinspirationfrom[1]todevelop
acompletelydifferenttechniquethatpromotesnumerical
packingstoexactpackings.Thisapproachismadepossible
bySloane’sdatabase[21],whichprovidesmanyputatively
optimalnumericalpackingsintherealcase.UnliketheZauner
instance,wedonothaveaccesstoconjecturesthatpredictthe
fieldstructureofoptimalpackingcoordinates.Instead,wewill
borrowideasintroducedin[11],whichleveragedquantifier
eliminationovertherealstofindcomputer-assistedproofs
ofcertainoptimallinepackings. Wewillfocusonthecase
of8pointsinRP2(i.e.,thesmallestopencasetodate),
butourmethodsgeneralizetoarbitraryrealpackings.Sadly,
thisexactpackingdoesnotachieveequalityinanyknown
bound,andsowecannotsimplyverifyoptimalitybysymbolic
calculation,asintheZaunerinstance.Instead, weprove
optimalityinaforthcomingpaperusingacomputationalgraph
theoryapproachthattakesinspirationfromrecentprogresson
theTammesproblem[18],[19].
Inthenextsection,wesetnotationandreviewthenecessary
backgroundbeforestatingthemainresult.SectionIIIthen
outlinesthecomputer-assistedproofofourresult, which
wedocumentcarefullyforthesakeofreproducibility. We
concludeinSectionIVwithvariousdirectionsforfuturework.

II. MAINRESULT

Wedefinean n-packinginRPd−1tobeasequenceof
nlinesthroughtheorigininRd,whichweidentifywitha
d×nmatrixΦ=[ϕ1···ϕn]whosecolumnsareunitvectors
spanningthecorrespondinglines.Definethecoherenceby

µ(Φ):= max
1≤i<j≤n

|ϕi,ϕj|.

WesayΦisoptimalwhenµ(Φ)≤µ(Φ)foreveryn-packing
Φ inRPd−1.



GCHS:=















1.00000 −0.59840 0.64759 −0.12425 0.16026 −0.64759 −0.22283 −0.64759
−0.59840 1.00000 −0.64759 −0.44579 −0.64759 −0.01815 −0.64759 0.39325
0.64759 −0.64759 1.00000 0.64759 −0.16026 −0.64759 0.16026 0.10359
−0.12425 −0.44579 0.64759 1.00000 −0.10359 −0.01815 0.64759 0.64759
0.16026 −0.64759 −0.16026 −0.10359 1.00000 0.64759 0.64759 −0.64759
−0.64759 −0.01815 −0.64759 −0.01815 0.64759 1.00000 0.64759 −0.01815
−0.22283 −0.64759 0.16026 0.64759 0.64759 0.64759 1.00000 0.12425
−0.64759 0.39325 0.10359 0.64759 −0.64759 −0.01815 0.12425 1.00000















Fig.1. TheGrammatrixoftheputativelyoptimal8-packinginRP2,fromSloane’sonlinedatabase[21].

Whensearchingforanoptimal n-packing,itisequivalent
tosearchforacorrespondingGram matrixΦTΦ.Areal
symmetricn×nmatrixGistheGrammatrixforsomen-
packingΦinRPd−1ifandonlyifrank(G)≤d,Gispositive
semidefinite,anditsdiagonalentrieseachsatisfyGii=1.
Fromthisperspective,thelargestoff-diagonalentriesofG
achievethecoherence:

max
1≤i<j≤n

|Gij|=µ(Φ).

TheexplicitnumericalsolutionsofConway,Hardinand
Sloane[6]provideupperboundsonthecoherenceofop-
timaln-packings.Forthecaseofan8-packinginRP2,
theircorrespondingGrammatrixGCHSisdepictedinFig.1,
wherewehaveroundedthecorrespondingentriesfordisplay
onthepage.TheConway–Hardin–Sloanepackingwitnesses
thatanyoptimal8-packingΦinRP2necessarilysatisfies
µ(Φ)≤0.64759.

Severallowerboundsoncoherenceareknown,butthe
boundmostrelevantto8-packingsinRP2isoriginallydue
toLevenshtein[16];see[13]forarecentaccount.

LemmaII.1.IfΦisann-packinginRPd−1,then

µ(Φ)≥
3n−d2−2d

(n−d)(d+2)
.

Inparticular,ifΦisan8-packinginRP2,thenµ(Φ)≥0.6.

WhilemanyoftheentriesinthematrixinFig.1appear
tobeequaluptonumericalprecision,wehavenoguarantee
thattheserelationshipsmusthold.Regardless,weproceedby
assumingthattheentriesthatareroughly±0.64759areindeed
equalinabsolutevalue.Tojustifythisassumption,weconsider
thecontactgraphofann-packingΦ=[ϕ1···ϕn],wherethe
verticesarethenumbers{1,...,n}andweconnectitoj
withanedgeexactlywhen|ϕi,ϕj|=µ(Φ).Inforthcoming
work,weprovethattheadjacencymatrixofthecontactgraph
oftheoptimal8-packinginRP2canbeobtainedfromGCHS
byreplacingtheentriesof±0.64759with1andzeroingout
allotherentries.SeeFig.2fortheresultingembeddingofthis
graphintheprojectiveplane.

Whatfollowsisourmainresult:
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Fig.2.Theprojectiveplanarembeddingofthecontactgraphofthepacking
correspondingtoGCHS.Forinstance,vertices1and8areconnectedbyan
edge.Vertexlabelscorrespondtotheorderofthepackingasgivenin[21].

TheoremII.2.Thereisauniquerealmatrixoftheform

G=















1 a1 µ a2 a3 −µ a4 −µ
a1 1 −µ a5 −µ a6 −µ a7
µ −µ 1 µ a8 −µ a9 a10
a2 a5 µ 1 a11 a12 µ µ
a3 −µ a8 a11 1 µ µ −µ
−µ a6 −µ a12 µ 1 µ a13
a4 −µ a9 µ µ µ 1 a14
−µ a7 a10 µ −µ a13 a14 1















withthefollowingproperties:

(i)rank(G)=3,
(ii)Gispositivesemidefinite,
(iii)0.6≤µ≤0.64759,and
(iv)|aj|<µforall1≤j≤14.

Moreoverµ=µ0,whereµ0isthelargestrootof

1+5x−8x2−80x3−78x4+146x5−80x6−584x7+677x8+1537x9

andisgivennumericallybyµ0≈0.6475889787.

ThematrixinTheoremII.2equalsGCHSuptoprecision.

III.PROOFOFMAINRESULT

Inprinciple,TheoremII.2amountstoquantifierelimination
overthereals.Indeed,wecanensurethatrank(G)≤3by



TABLEI
OUTLINEOFCAD-ASSISTEDPROOFOFµ=µ0

Step Rows Columns VariableOrder ConstraintsObtained
1 2,5,6,7 2,5,6,7 µ,a6 a6=(1+µ−4µ2)/(1+µ)
2 2,3,5,6,7 2,3,5,6,7 µ,a8,a9 a28=(1+µ−3µ

2−µ3)/(2+4µ);a9=−a8
3 1,2,3,5,6,7 1,2,3,5,6,7 µ,a8,a3,a1,a4 a4=(−a1−µ−a1µ−2a3µ−µ2)/(2µ);µ≥(1+

√
17)/8≈0.64038

4 3,4,6,7 3,4,6,7 µ,a8,a12 a212=a
2
6

5 2,3,4,6,7 2,4,6,7 µ,a5,a12,a8 a12=a6;a8<0
6 2,3,5,6 1,2,3,5,6,7 µ,a8,a3,a1 a1=(−µ−a8µ−4a3a8µ+2a28µ+3µ

2−a8µ
2−2µ3)/(−1+a8+2a

2
8+µ+a8µ)

7 1,2,3,5,6 1,2,3,5,6 µ,a3,a8 a3=−a8
8 4,5,6,7 2,3,5,6,7 µ,a8,a5,a11 a11=(1−a5+µ−a5µ−6µ2)/(2µ)
9 1,3,4,6,7 1,3,4,6,7 µ,a2,a8 a2=(−3µ−2µ2+9µ3)/(1+2µ+µ2)
10 1,4,5,6,8 1,4,5,6,8 µ,a8,a5,a13 µ=µ0

ensuringthateachofits4×4minorsvanish.Furthermore,
bySylvester’scriterion,G ispositivesemidefiniteifand
onlyifallofitsprincipalminorsarenonnegative.Hence,
theadmissiblechoicesforGarepreciselythesolutionstoa
finitecollectionofpolynomialequalitiesandinequalities.For
relativelysmallproblems,thiscanbeaccomplishedsomewhat
efficientlybyappealingtothecylindricalalgebraicdecomposi-
tion(CAD)algorithmintroducedbyCollins[5],forwhichwe
usetheimplementationavailablein Mathematica.Themain
ideabehindCADinvolvesconstructingaprojectionfromour
solutionsettoasemialgebraicsetofonedimensionlower,
eliminatingavariable.Thisprocessisiterateduntilasubset
ofR isreached,atwhichpointthedesiredsemialgebraic
decompositionofthesolutionsetcanbeobtainedbyitera-
tivelylifting.ForausefulintroductiontousingCADwith
Mathematica,see[15].
Unfortunately,theruntimeofCADisdoublyexponential
inthenumberofvariables,whichwasshowntobeintrinsic
totheproblembyDavenportandHeintz[7]. Moreover,the
speedofthealgorithmishighlysensitivetotheorderinwhich
theprojectionsareconstructed,i.e,theorderinwhichthe
variablesarespecified.Itmaycomeasnosurprisethatfor
our15-variablesystem,naiveCADqueriesfailtodeliverthe
desireddecompositioninareasonableamountoftime.As
such,weproceedbyiterativelyapplyingCADtosubsystems
oftheoriginalprobleminordertosuccessivelyreducethe
numberofvariables.
InTableI,weoutlineourcomputer-assistedproofthat

µ= µ0.Ineachstep,weselectanumberofrowsand
columnstoanalyze,insistingthateach4×4minorvanishes
andtheboundsonµandeach|aj|aresimultaneouslysatisfied.
Inpractice,wefoundthatitwasmoreefficienttoignore
thepositivesemidefiniteconstraintandverifyattheend
thatoursolutionforG satisfiedSylvester’scriterion.For
eachCADquery,wemustalsochooseanorderingofthe
variablesinvolved,andCADreportsthefirstlistedvariable
asindependentandeachsubsequentvariabledependingupon
possiblyalloftheprecedingvariables.Ourmotivationfor
eachselectionwastokeepthenumberofvariablessmallso
thatCADwouldterminatequickly,andoverall,ourapproach
computesµ=µ0intenstepsthattakeatotalofroughly5
minutesinMathematica11ona3.4GHzIntelCorei5.
InStep1ofourprocedure,weusetherowsandcolumns

withindicesin{2,5,6,7},sincetheresultingminorproduces
thetwo-variableequation

1 −µ a6 −µ
−µ 1 µ µ
a6 µ 1 µ
−µ µ µ 1

=0,

whichamountsto

(a6+1)(µ−1)(a6(µ+1)+4µ
2−µ−1)=0.

Therestrictions|a6|<µ≤0.64759thenguaranteethat

a6=
1+µ−4µ2

1+µ
.

Thisallowsustoreplacea6witharationalfunctionofµin
allsubsequentcomputations.
Next,inStep2,weconsiderthe4×4minorswithrows
andcolumns{2,3,5,6,7}toobtainfivepolynomialequations
inthethreevariablesµ,a8,a9.Noticethatwewouldhave
beenburdenedbyanadditionalvariablehadwenotalready
performedStep1toeliminatea6.TheseequationsleadCAD
toreporta9 = −a8,asone mighthaveguessedfrom
inspectingFig.1.Importantly,thisreducesthenumberof
variablesonceagain.CADalsoreportsthenewconstraint

a8=±
1+µ−3µ2−µ3

2+4µ
.

Evenwithoutthesignambiguity,whichiseventuallyremoved
inStep5,thisdoesnotquiteallowustoreplacethevariable
a8witharationalfunctioninµ.Forthisreason,wecontinue
treatinga8asafreevariablefortheremainderofourproof.
Steps3–10proceedinasimilarmanner,collectingcon-
straintsuntilfinallyarrivingatµ=µ0.Atthispoint,CAD
reportsexactexpressionsforeverycoefficientofGexcepta7,
a10,anda14.Theseremainingcoefficientscanbedetermined
fromthefollowingprincipalminors:{2,5,6,8}determinesa7,
{3,4,6,8}determinesa10,and{5,6,7,8}determinesa14.
EachcoefficientofGhasalgebraicdegree9,andtheentries
apparentlyequalinabsolutevalueinGGHSareindeedso.
WestillneedtoensurethattheresultingmatrixGhasrank
3andispositivesemidefinite. Mathematicaquicklyreports
rank(G)=3,sincethisonlyrequiresverifyingthatasingle
3×3minorisnon-vanishing.However,queryingwhetherG



ispositivesemidefinitedoesnotterminateinareasonable
amountoftime,sincecomputingeitheritseigenvaluesor
its3×3principalminorssymbolicallyiscomputationally
expensive.Toavoidthis, wesimplyapplyaperturbation
argument:itis morethanenoughtoask Mathematicato
reportanumericalapproximationofGtowithin100digitsof
precisionandthennumericallyverifythateach3×3principal
minoroftheapproximationisboundedbelowby0.0001.

IV.FUTUREWORK

Inthispaper,weprovideanewapproachforfindingexact
linepackingsfromnumericalsolutions. Wefocusedonthe
specialcaseof8pointsinRP2,butthereishopetoapplyour
methodtomanymoreinstancesintherealcase.Sloane[21]
providesputativelyoptimalnumericaln-packingsforn≤100
inRP2(aswellasvariousnumericalpackingsinRPd−1for
d≤16),andwesuspectthatCADcanbeappliedproductively
wellbeyondourtestcase.Thenextcaseof 9pointsin
RP2isbelievedtohavetwoessentiallydistinctoptimalline
packings[6].Solvingforthesepackingsexactlywouldallow
ustoverifythattheircoherencesareindeedequal.

Itwouldbeparticularlyusefultoautomateourseemingly
ad-hocchoicesofefficientlysolvablesubsystemsinTableI.
Forexample,theso-calledsketch-and-solveparadigmofsolv-
ingrandomsubsystemshasfoundsuccessinsolvinglarge
least-squaressystems[25].Recently,Huanget.al[14]applied
machinelearningtoselectbetweenvariouspopularheuristics
fororderingthevariablesinaCADquery.Presumably,onecan
effectivelyapplymachinelearningtoassistintheconstruction
ofexactlinepackings.

AlternativestoCADcouldplausiblyspeedupourproof
inTableI,andmoreinterestingly,allowforthecomputation
ofevenmoreexactpackings.Indeed,thisnumerical-to-exact
approachcouldserveasabenchmarkforvariousalternatives
toCADthatmayemergefromthecomputationalalgebraic
geometrycommunity.

Sinceourmethodreliesonquantifiereliminationoverthe
reals,applyingittothecomplexcasenecessarilyinvolves
doublingthenumberofvariables.Thispresentsanotherreason
topursuealternativestoCAD.Also,Sloane’sdatabaseonly
providesnumericalpackingsintherealcase,andsowedesire
asimilartableforthecomplexcase.

Whilewehavecomputedanexactversionofthepacking
correspondingtoGCHS,itremainstodemonstratethatthisisin
factanoptimalpacking,asconjecturedin[6].Mostproofsof
optimalityintheliteratureproceedbyestablishingequalityin
agenerallowerboundforcoherence.Thisapproachseemsto
havelimitations,sincemostoftheknownnumericalsolutions
forthelinepackingproblemdonotapproachthisthreshold.
Inourforthcomingproofofoptimality,weusecomputational
graphtheorymethodsthatdonotyethaveanappropriate
analogueinRPd−1ford>2.Inparticular,wemakeuse
ofprojectiveplanarity,muchlikehowrecentcomputational
solutionstotheTammesproblemleverageplanarity[18],[19].
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