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Human achievements are often preceded by repeated attempts that fail, but little is

known about the mechanisms that govern the dynamics of failure. Here, building on
previous research relating to innovation'”, human dynamics
develop asimple one-parameter model that mimics how successful future attempts

8 and learning?", we

build on past efforts. Solving this model analytically suggests that a phase transition
separates the dynamics of failure into regions of progression or stagnation and
predicts that, near the critical threshold, agents who share similar characteristics and
learning strategies may experience fundamentally different outcomes following
failures. Above the critical point, agents exploitincremental refinements to
systematically advance towards success, whereas below it, they explore disjoint
opportunities without a pattern of improvement. The model makes several
empirically testable predictions, demonstrating that those who eventually succeed
and those who do not may initially appear similar, but can be characterized by
fundamentally distinct failure dynamics in terms of the efficiency and quality
associated with each subsequent attempt. We collected large-scale data from three
disparate domains and traced repeated attempts by investigators to obtain National
Institutes of Health (NIH) grants to fund their research, innovators to successfully exit
their startup ventures, and terrorist organizations to claim casualties in violent
attacks. We find broadly consistent empirical support across all three domains, which
systematically verifies each prediction of our model. Together, our findings unveil
detectable yet previously unknown early signals that enable us to identify failure
dynamics that will lead to ultimate success or failure. Given the ubiquitous nature of
failure and the paucity of quantitative approaches to understand it, these results
represent an initial step towards the deeper understanding of the complex dynamics

underlying failure.

To understand the dynamics of failure, we collected three large-scale
datasets (Supplementary Information1). The first dataset (D,) contains
all RO1grant applications submitted to the NIH (776,721 applications
by 139,091 investigators,1985-2015; Supplementary Information 1.1).
Foreachgrantapplication, we obtained ground-truthinformationon
whether or not it was funded, allowing us to reconstruct individual
application histories and their repeated attempts to obtain funding.
Our second dataset (D,) traces start-up investment records from Ven-
tureXpert™ (58,111 startup companies involving 253,579 innovators,
1970-2016; Supplementary Information 1.2). Tracing every startup
in which venture capital firms invested, D, allows us to reconstruct
individual career histories counting successive ventures in which they
wereinvolved. Here we follow previous studies in the entrepreneurship
literature®, and classify successful ventures as those that achieved
initial public offering (IPO) or high-value mergers and acquisitions,
and correspondingly failed attempts as those that failed to obtain

such an exit within five years after their first investment by venture
capital firms. Going beyond traditional innovation domains, we col-
lected our third dataset (D) from the Global Terrorism Database?
(170,350 terrorist attacks by 3,178 terrorist organizations, 1970-2017;
Supplementary Information1.3). For each organization we trace their
attack histories®*, and classify success as fatal attacks that killed at
least one person, and correspondingly failure as those that failed to
claim casualties.

Mechanisms of chance and learning

Chance and learning are two primary mechanisms that explain how
failures may lead to success. If each attempt has a certain likelihood
of success, the probability that multiple attempts all lead to failure
decreases exponentially with each trial. The chance model therefore
emphasizestherole of luck, suggesting that success eventually arises

'Center for Science of Science and Innovation, Northwestern University, Evanston, IL, USA. 2Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
3McCormick School of Engineering, Northwestern University, Evanston, IL, USA. *Kellogg School of Management, Northwestern University, Evanston, IL, USA. °Department of Sociology,
University of Chicago, Chicago, IL, USA. °Santa Fe Institute, Santa Fe, NM, USA. *e-mail: dashun.wang@northwestern.edu

190 | Nature | Vol 575 | 7 November 2019



a Chance b Learning © NIH grants d Startups e Terrorist attacks
0.6 0.6 0.8 = 06 a2
o 5 S 1.0
3 8 S P=110x108 g P 601 x 102 2
§ & 207 T/ G 04y PRI 3 P =266 x 107
E 05 £ 05 S — — E s <05
2 2 T o6 e g =
a a g 3 S -
i} 2 o
0. 0.5 £ 0 =
First Penultimate First Penultimate First Penultimate First Penultimate First Penultimate
f <] h i j
100 10°( 1090, O Data O Data 10%¢ O Data
— Model — Model
L 102 L 102 L 102 w %
i,
8 8 8 8102 R
O 10~ 9 O 104 b O 104 o N -
O Hypothesis O Hypothesis®) 10°
106 106 — 10® 106 104
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Number of failures Number of failures

Fig.1|Mechanisms of chance and learning. a-j, We compare theoretical
predictions and empirical measurements for performance changes (a-e) as
wellasthelengthdistribution of failure streaks (f-j). a, f, The chance model
predicts no performance change (a) with a failure streak length that follows an
exponential distribution (f). b, g, The learning hypothesis predicts improved
performance (b) with failure streaks that are shorter than expected by the
chancemodel, correspondingto afaster-than-exponential distribution (g). Both
hypotheses are contested by empirical patterns observed across the three
datasets. Toensure that performance metrics are comparable across dataand
models, we standardized performance measures according to their underlying
distribution (Supplementary Information 5.1). c-e, We find that failures in real
dataareassociated withimproved performance between the firstand

fromanaccumulation ofindependent trials. To test this, we compared
the performance of the first and penultimate attempt within failure
streaks (Supplementary Information 5.1), measured by NIH percentile
score for a grant application (D,), investment size by venture capital
firmstoacompany (D,) and number of wounded individuals by anattack
(D5). We find that across all three datasets, the penultimate attempt
shows systematically better performance than the initial attempt
(Fig.1c-e). Theseresults reject that success is simply driven by chance
(Fig.1a) butlend supportto thelearning mechanism (Fig.1b), which sug-
gests that failure may teach valuable lessons that are difficult to learn
otherwise'*>®, Assuch, learning reduces the number of failuresrequired
to achieve success, and predicts that failure streaks should follow a
narrower length distribution (Fig. 1g) than the exponential distribu-
tion predicted by chance (Fig. 1f). However, across all three domains,
thelength of failure streaks follows a fat-tailed distribution (Fig. 1h—j,
Supplementary Information5.2), indicating that despite improvements
in performance, failures are characterized by longer-than-expected
streaks before the onset of success. Together, these observations dem-
onstrate thatneither chance norlearningalone canexplain the empirical
patterns that underlie failures, suggesting that more complex dynamics
may be at work.

Modelling dynamics of failure

Here we explore the interplay between chance and learning by develop-
ing a simple one-parameter model that mimics how future attempts
buildon previousfailures (Fig.2a, b, Supplementary Information 3.1). We
consider that each attempt consists of many independent, unweighted
components, witheach componentibeing characterized by an evalua-
tionscore x‘ (Fig. 2a). For example, components for the submission of
anNIH proposalinclude constructing a biosketch, assembling abudget,
writing a datamanagement plan, adding preliminary data and outlining
broader impacts. We also note that granting agencies often provide
rubrics to grade proposals on specific components.

Toformulate anew attempt, one goes through each component, and
decidestoeither create anew version (with probability p) or reuse the
best version x* among the previous k attempts (with probability 1-p)
(Fig. 2b). Anew version is assigned a score drawn randomly from a
uniform distribution U[0, 1], approximating the percentile of score
distributions real systems follow. The decision to create anew version

Number of failures

Number of failures Number of failures

penultimate attempt. Two-sided Welch’s t-test; dataare mean +s.e.m.
c,n=4,872(first), 5,966 (penultimate).d, n=579 (first), 548 (penultimate).

e, n=231(first), 230 (penultimate). h-j, At the same time, however, failure
streaks are characterized by afat-tailed length distribution, indicating that
failure streaksinreal dataarelonger than expected by chance. For clarity, here
we show results for failure streaks for which the lengthis less than 21
(Supplementary Information 5.2). We further construct arandomized
sequence of successes and failures by assigning each attempt to agents at
random (Supplementary Information 5.2). We find that failure streak lengthin
therandomized sequence follows an exponential-like distribution, showing
clear deviations from the data.

is often not random, but driven by the quality of previous versions.
Indeed, giventhe best versionx*,1-x* captures the potential toimprove
it'e. The higher this potential, the more likely one may create a new
version, prompting us to consider a simple relationship, p = (1-x*)%,
witha>0 (Methods, Supplementary Information 3.6). Creating anew
version takes one unit of time with no certainty that its score will be
higher or lower than the previous one. By contrast, reusing the best
version from the past saves time, and allows the component to retain
its best score x*.

Here we explore a single parameter k for our model, measuring the
number of previous attempts one considers when formulating a new
one (Fig.2b). Mathematically the dynamical process canbe described
as: with probability p, x,,~ U[0, 1] or x,,= x,,otherwise (with probability
1-p) where x;;= max {x,, -, X,,_}. We quantify the dynamics of the
model by calculating the quality of the nthattempt, (x,), whichmeasures
the average score of all components, and the efficiency after that
attempt, (t,), which captures the expected proportion of components
updated in new versions. Let us first consider the two extreme cases.
In the first case, k= 0 means that each attempt is independent from
previous attempts (Supplementary Information 3.2). Here our model
recovers the chance model, predicting that as nincreases, both (x,) and
(t,) remain constant (Extended DataFig. 1a, d). That s, without consid-
ering past experience, failure does not lead to quality improvement.
Nor is it more efficient to try again.

The other extreme (k > «) considers all past attempts. The model
predicts atemporal scaling in failure dynamics (Supplementary Infor-
mation 3.3). Thatis, the time it takes to formulate anew attempt decays
with n, asymptotically following a power law (Extended Data Fig. 1e):

To=(t,)/(ty ~n™ o

wherey=y..=a/(a+1) falls between 0 and 1and ‘~’ indicates ‘asympo-
totically proportional to’. Besides increased efficiency, new attempts
alsoimprovein quality, as the average potential forimprovement decays
accordingto (1-x,) ~n ™ where .= min{y.,, 1 - y..} (Extended Data
Fig.1b).Here the model recoversthe canonical result from the learning
literature%2, commonly known as Wright’s law®. This is because,
as experience accumulates, high-quality versions are preferentially
retained, whereas their lower-quality counterparts are more likely to
receive updates. As fresh attemptsimprove in quality (Extended Data
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Fig.2|The kmodel.a, We treateach attempt asa combination of many
independent components (c). For attemptj, each componentiis characterized
byanevaluationscore x‘j which fallsbetween 0 and 1. The score for anew
versionis often unknown until attempted, hence anew versionis assigneda
score,drawnrandomly from therange 0-1.b, To formulate anew attempt, one
caneither create anew version (with probability p, green arrow) or reuse an
existing version by choosing the best one among past versions x* (with
probability 1-p, red arrow). P(x 2x*) =1-x* captures the potential toimprove on
prior versions, prompting usto assume p = (1-x*)*where a> 0 characterizes the
propensity of an agent to create new versions given the quality of existing ones.
¢, Theanalytical solution of the model reveals that the systemis separated into
threeregimesby two critical points k*and k*+1. The solid line shows the
extended solution space of our analytical results. d-i, Simulation results from
the model (a=0.6) for quality (d-f) and efficiency (g-i) trajectories for different
kparameters, showing distinct dynamical behaviour in different regimes. All
results are based onsimulations averaged over 10* times. j, k, A phase transition
around k* predicts the coexistence of two groups that fallin the stagnation and
progressionregimes, respectively.

Fig.1b),theyreducethe needtostartanew, thusincreasingthe efficiency
of future attempts (Extended Data Fig. 1e).

These two limiting cases (Extended DataFig. 1c, f) mightlead one to
suspectagradual emergence of scaling behaviour as we learn frommore
failures. By contrast, as we increase parameter k, the scaling exponent
y follows a discontinuous pattern (Fig. 2c, Supplementary Informa-
tion 3.4) and only varies within a narrow interval of | k* | <k<T[k*] +1
where k*=1/a. Indeed, when k is small (k < k*), the system converges
back to the same asymptotic behaviour as k = 0 (Fig. 2c, d, g). In this
region, kis not large enough to retain agood version once it appears.
As aresult, while performance might improve slightly in the first few
attempts, it quickly saturates. In this region, agents reject previous
attempts and flail around for new versions, not processing enough
feedback to initiate a pattern of intelligent improvement, prompting
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usto callitthe stagnation region. Once k passes the critical threshold
k*, however, scaling behaviour emerges (Fig. 2¢, e, h), indicating that
the systementersaregion of progression, inwhich failureslead to con-
tinuousimprovementinboth quality and efficiency. Nevertheless, with
asingle additional experience considered, the system quickly hits the
second critical pointk*+1,beyond which the scalingexponentybecomes
independent of k (Fig. 2c, f,i). This means that once[k*] + 1number of
previousfailuresis considered, the systemis characterized by the same
dynamical behaviour as k > «, indicating that [k*] +1 attempts are
sufficient torecover the same rate ofimprovement as considering every
failure from the past.

Importantly, the two critical points in our model can be mapped
to phase transitions within a canonical ensemble consisting of three
energy levels (Extended Data Fig. 1g-j, Methods, Supplementary
Information 3.5). Phase transitions indicate that small variations at the
microscopic level may lead to fundamentally different macroscopic
behaviours. For example, two individuals near the critical point may
initially appear identicalin their learning strategy or other character-
istics, but depending on which region they inhabit, their outcomes fol-
lowing failures could differ considerably (Fig. 2j, k). In the progression
region (k> k*), agents exploit rapid refinements to improve through past
feedback. By contrast, those in the stagnation region (k< k*) donot seem
to profit from failure, as their efforts stall in efficiency and saturate in
quality. Assuch, the phase transitions uncovered in our simple model
make four distinct predictions, which we now test directly in the contexts
of science, entrepreneurship and security.

Testing model predictions

Not all failures lead to success

Although we tend to focus on examples that eventually succeeded
following failures, the stagnation region predicts that there exists a
non-negligible fraction of cases that do not succeed following failures.
We measure the number of failed cases that did not achieve eventual
success in our three datasets, finding not only that members of the
unsuccessfulgroup exist, but also that the size of the unsuccessful group
is of a similar order of magnitude as the successful group (Fig. 3a-c).
Notably, the number of consecutive failures before the last attempt
for the unsuccessful group follows a statistically similar distribution
fromthose thatlead to success (Fig. 3a-c), suggesting that people who
ultimately succeeded did not try more or less than their unsuccessful
counterparts.

Early signals for ultimate success or failure

Our model predicts that the successful group is characterized by power-
law temporal scaling (Eq. (1)), whichis absent for the unsuccessful group
(Fig. 2j), predicting that the two groups may follow fundamentally
different failure dynamics that are distinguishable at an early stage. To
test this prediction, we measure the average inter-event time between
two failures T,,as afunction of the number of failures (Supplementary
Information5.3). Figure 3d-fshows threeimportant observations. First,
for the successful group, T, decays with n across all three domains,
approximately following a power law, as captured by Eq. (1) (Extended
DataFig. 2, Supplementary Information 5.3, Supplementary Table 4).
The scaling exponents are within a similar range as those reported in
learning curves®, further supporting the validity of power-law scaling.
Although the three datasets are among the largest in their respective
domains, agents with alarge number of failures are exceedingly rare,
limiting the range of n that can be measured empirically. We therefore
test whether alternative functions may offer abetter fit, finding apower
law to be the consistently preferred choice (Supplementary Informa-
tion 6.2). Second, we found that temporal scaling disappears when
we measure the same quantity for the unsuccessful group (Fig. 3d-f),
consistent with predictions about the stagnation region. Third, the
two groups show distinguishable failure dynamics asearlyasn=2,
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Fig.3|Testing model predictions. a-c, Cumulative distribution function
(CDF) ofthe number of consecutive failures before the last attempt for
successfuland unsuccessful groups. To eliminate the possibility that agents
were simplyinthe process of formulating their next attempt, we focus on cases
forwhichithasbeen atleast five years since their last failure. Ineach of our
three datasets, the two distributions are statistically indistinguishable
(Kolmogorov-Smirnov test for samples with at least one failures). For clarity,
here we show results for less than 21 failures (Supplementary Information 5.2).
Inset, the sample size of successful and unsuccessful groups, showing their size
isof asimilar order of magnitude.d-f, Early temporal signals separate
successfuland unsuccessful groups. d, n=43,705 (successful), 15,132
(unsuccessful). e, n=2,455 (successful), 16,656 (unsuccessful).f,n=446
(successful), 321 (unsuccessful). For each group, we measure the average inter-
event time between two failures 7, =¢,/t;as afunction of the number of
attempts. Dotsand shaded areas are mean +s.e.m. measured from data
(Supplementary Information 5.3). All successful groups manifest power-law
scaling T~ n”Y (Extended Data Fig. 2). The two groups show distinguishable
temporal dynamics for n=2. Two-sided Welch’s t-test; P=3.02x107*,7.18 1073,
9.42x107*for comparisons of successful and unsuccessful groupsin

d, e, frespectively. Thistemporal scalingis absent for unsuccessful groups.
g-i, Performanceat first attemptappears indistinguishable between
successfuland unsuccessful groups thatexperienced alarge number of
consecutive failures before the last attempt (at least 5 for D, 3 for D,and 2 for D,,
two-sided Welch'’s t-test), but becomes distinguishable at the second attempt
(two-sided Welch’s t-test). Whereas performance improves for the successful
group (one-sided Welch’s t-test), thisimprovement is absent for the
unsuccessfulgroup (one-sided Welch’s t-test). Dataare mean+s.e.m. g, n= 628,
145,571,123 (from left toright). h, n=248,1,332,237,1,312 (from left to right).
i,n=231,173,229,174 (fromleft to right).

suggesting noteworthy early signals that separate those who eventu-
ally succeed from those who do not.

Observations uncovered in Fig. 3d-f are notable for two main rea-
sons. First, failures captured by the three datasets differ widely in their
scope, scale, definition and temporal resolution, yet despite these
differences, they are characterized by remarkably similar dynamical
patterns predicted by our simple model. Second, although one might
expect that the last attempt was crucial in separating the two groups,
asthe model predicts, successful and unsuccessful groups each follow
their respective, highly predictable patterns, which are distinguishable
long before the eventual outcome becomes apparent. Indeed, we use
D, toset up a prediction task (Extended Data Fig. 3, Methods, Supple-
mentary Information 6.1) to predict ultimate success or failure using

only temporal features, which yielded substantial predictive power.
To test whether the observed patterns in Fig. 3d-f may simply reflect
preexisting population differences, we take agents who experienced
alarge number of failures, and measure performance from their first
attempt. We find that for all three domains, the two populations were
statistically indistinguishable in their initial performance (Fig. 3g-i),
whichleads us to the next prediction.

Diverging patterns of performance improvement

Although the two groups may have begun with similar performances,
the model predicts that they may experience different performance
gains through failures (Fig. 2k). We compared performance at first and
second attempts, finding significant improvement for the successful
group (Fig.3g-i), whichis absent for the unsuccessful group. We further
repeated our measurements by comparing the first and penultimate
or halfway attempt, arriving at the same conclusion (Extended Data
Fig.9j-0, Supplementary Information 7.3). This prediction explains the
patterns that were observed in Fig. 1c-e, whichleads us to the second
puzzle describedin Fig.1h-j:if performance improves, why are failure
streaks longer than we expect?

Failure streaks follow a Weibull distribution

One key difference between progression and stagnation regimes is
the propensity to reuse past components. From the perspective of
exploration versus exploitation””?, however, reuse helps one to retain
agood version when it appears, but it could also keep one in a subop-
timal position for longer, leading to our final prediction: the length of
failure streaks follows a Weibull distribution (Supplementary Table 4):

P(N>n)- e @V? (2)

Moreover, the shape parameter B is connected with the tempo-
ral scaling exponent y through a scaling identity (Supplementary
Information 3.8)

B+y=1 3

This means that if we fit the streak length distribution in Fig. 1h-j
to obtainthe shape parameter §, it should relate to the temporal scal-
ing exponent y, which is obtained from Fig. 3d-f. Comparing § and
y measured independently across all three datasets shows consist-
ency between our dataandthe scalingidentity Eq. (3) (Supplementary
Table 4).

We test the robustness of our results along several dimensions, arriv-
ingatbroadly consistent conclusions (Methods, Extended DataFigs.5-9,
Supplementary Information 7). We include further quantitative tests
for model assumptions and additional interpretations of the modelin
the Methods.

Discussion

Asasingle parameter, knecessarily combinesindividual, organizational
and environmental factors in learning®? (Supplementary Informa-
tion3.1). The one-parameter model developed here represents amini-
mal model (Supplementary Information 3.7), which can be extended
into more complex frameworks. For example, agents may have varied
incentives to improve or may differ in their confidence and ability to
judge their previous work. Such factors trace heterogeneity in the
population and can be captured by the « parameter, which quantifies
the propensity of individuals to change given feedback. This led us to
develop the k-a model (Methods), which predicts atwo-dimensional
phase diagram with three distinct phases (Extended Data Fig.10a, b,
Methods, Supplementary Information 4.1). The model can be further
extended to capture fuzzy inference from past feedback, allowing
agents to not always choose the best previous versions (see ‘k-a-6
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model’ in the Methods, Extended Data Fig. 10c, d, Supplementary
Information 4.2).

The model also offers relevant insights for the understanding of
learning curves. For example, the second critical point of the model
suggests the existence of aminimum number of failures one needs to
consider (k*+1), indicating thatitis unnecessary tolearn fromall past
experiences to achieve a maximal learning rate. This finding poses a
potential explanation for the widespread nature of Wright’s law across
awide variety of domains, particularly given the fact that in many of
those domains not all past experiences can be considered (Supple-
mentary Information 2).

Furthermore, our simple model does not explicitly account for many
ofthe complexities that characterize real settings that may affect failure
dynamics, such as knowledge depreciation®, competition, forgetting
and transfer or vicarious learning from others*’. However, the model
offers a theoretical basis to incorporate additional factors, including
individual and organizational characteristics that may affect learn-
ing'>" (see Methods for various factorsrelated tolearning rate, including
organizationallearning, previousachievementsandgenderdifferences),
demonstrating thatour modelling framework canserveasaspringboard
for anchoring future models and analyses.

Concluding remarks

Together, these results support the hypothesis that if future attempts
systematically build on past failures, the dynamics of repeated failures
may reveal statistical signatures that are discernible at an early stage.
Traditionally the main distinction between ultimate success and fail-
ure following repeated attempts has been attributed to differences
inluck, learning strategies or individual characteristics, but here our
model offers animportant explanation with crucial implications: Even
in the absence of distinguishing initial characteristics, agents may
still experience fundamentally different outcomes. Indeed, Thomas
Edison once said, ‘Many of life’s failures are people who did not real-
ize how close they were to success when they gave up. Our results
unveil identifiable early signals that help us to predict the eventual
outcome to which failures lead. Together, they not only deepen our
understanding of the complex dynamics beneath failure, but also
holdlessons forindividuals and organizations that experience failure
and the institutions that aim to facilitate or hinder their eventual
breakthrough.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
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Methods

Model assumptions

Parameter kin our model can be viewed as approximating the ‘memory’
of past versions. The rationale of using k for the model is rooted in the
learningliterature showing that the general notion of ‘forgetting’ takes
multiple forms, often representing acombination of individual, organi-
zationaland environmentalfactors.Indeed, several relevant factors may
beat play, which can generate patterns similar to forgetting. For exam-
ple,inrapidly shiftinginnovation domains, not all past failures remain
useful over time and some become obsolete. Consider the possibility
of knowledge depreciation®, which could also apply in our settings as
environments (of scientific knowledge, capital markets or security situa-
tions) evolve over time, such that past experience could become useless
evenifmemorized. For example, an NIH proposal four failures ago may
becomeirrelevant as the ideas proposed have been proven wrong, or
published by the principal investigator or another research group®*,
Similarly, startup ideas from the dot-com era may be irrelevant in the
eraofartificial intelligence and Blockchain®*. Terrorist tactics can also
depreciate over time, as past strategies attracted media coverage and
gave rise to tighter security measures to defend against them?. This
line of reasoning supports the intuition that recent attempts are most
relevant.Itis also consistent with the learning literature, which suggests
knowledge forgetting can happen in distinct ways, either voluntarily
orinvoluntarily®. Given these factors, here we select a single parameter
kto encapsulate a variety of potential contributing factors.

Quantifying component dynamics

To empirically measure the dynamics of components, we collected
abstract information for all RO1 applications submitted after 2008
(Supplementary Information 5.4). To this data corpus we applied a nat-
ural-language-processing technique to extract MeSH (medical subject
headings) terms from each abstract, which approximate the methods,
physical states and processes involved in the proposed research. This
allows us to quantify the dynamics of component reuse from previous
proposalsforthesuccessfulgroup. We measure the new versions of com-
ponents by the number of new MeSH terms (terms that did not appear
inthe previous ksubmissions, defined as m,,) and plot M, =(m,)/{m,) as
afunction of n. Our model suggests that given k, we can use M, to mimic
the temporal dynamics of T,. More precisely, for the successful group,
we expect to observe that for large k (k> k*), M, and T, are characterized
by similar dynamics. For small k (k < k*), however, the two quantities
couldbe quite different. As shownin Extended DataFig. 4, our empiri-
cal analysis shows that the two curvesindeed follow different dynamics
for small k (k< 3), but the dynamics of M, and T,, become statistically
indistinguishable for k>3 (from4 to «), approximately followingapower
law with y - 0.35. We cannot directly examine component dynamics for
the unsuccessfulgroup due to the lack of sufficient data—by definition
agentsin this group submitted no proposal after 2010, and the unsuc-
cessful abstract data only go back to 2008.

Phase transitions
To understand the nature of two transition points in our model, here
we consider a canonical ensemble of N particles (VN > «) and three
energy states E,(h) =1, E,(h) = (2h - 1)? and E.(h) =1 where h denotes
the external field. We can write down the partition function of the
system Z= e VEa®) 1 g"NEb() 4 o"NEC) and calculateits free energy density
f=In[Z/N].In this system, it can be shown that the magnetization den-
sity m= ﬁ is discontinuous at the boundary of two energy states
E,(h) = E,(h) and E(h) = E.(h), characterized by two phase transitions
ath=0andh=1, respectively.

We notice that the canonical ensemble considered above hasamap-
ping to our model. Indeed, denoting I'=k*x y/(1-y) and K= k - k*,
we can rescale the system as = min{max{/,(K), I,(K)}, I.(K)} where

I, (K)=0,l,(K)=Kand I(K) =1, allowing us to map the two systems
through f~> (2r-1)%, N> In[n], h > K and E;(h) = (2 (K) - 1)? (Extended
DataFig. 1g-j).

To understand the origin of the two transition points, we can calcu-
late the expected lifespan of a high-quality version, obtaining (u(x))
~((1—-x) mintk-Vk By (Supplementary Information 3.4). The first critical
point k* occurs when the first moment (u) diverges. Indeed, when ks
small (k< k*), (u)isfinite, indicating that high-quality versions can only
be reused for a limited period of time. Once k passes critical point k*,
however, (u) diverges, offering the possibility for a high-quality ver-
siontoberetained for an unlimited period of time. The second critical
pointarises due to the competition between two dynamical forces: (1)
whether the current best version becomes forgotten after k consecutive
attemptsincreating new versions (dominated by the k/k* term); or (2) it
issubstituted by anevenbetter version (dominated by the 1/k*+1term).

Note that while phase transitions carry exceptional importance in
statistical physics, similar phenomena and concepts are also of fun-
damental relevance in the social and behavioural science literatures.
For example, critical thresholds have been observed and modelled
insocial settings that include shifts in the segregation of neighbour-
hoods?, the formation of social networks* and changes in collective
opinions®, In each case, slight shifts in microscale phenomena, such
asaverage preference, group size or interaction intensity, conditiona
qualitative transition in macroscale outcomes.

Alternative hypothesis, interpretation and robustness checks
Tobetterunderstand therole of heterogeneity in learning, we separated
the successful group into narrow-win and clear-win subgroups based
on their eventual performance. We find that, despite their eventual
difference, the temporal dynamics of the two groups remain statisti-
cally indistinguishable (two-sided Welch’s ¢-test, P=0.763 (D,), 0.813
(D,),0.259 (D), Extended DataFig. 4), suggesting that the distinction
between successfuland unsuccessful groups appears the most critical,
whereas agents within the successful group are characterized by similar
dynamics, consistent with the predictions of our model.

Analternative interpretation for the stalled efficiency of the unsuc-
cessfulgroupis an effort to hedge against failures—their efficiency did
notimprovebecausetheyspent moreeffortelsewhere. The three profes-
sionsthatwe studied, NIH investigators, entrepreneurs and terrorists,
involve varied levels of risk, exposure and commitment, which renders
this explanation less likely.

Totest the robustness of our results, we vary the definitions of what
constitutes the successful group (Supplementary Information 7.1) by
excluding revisions in D, (Extended Data Fig. 6), changing the thresh-
old of high-value mergers and acquisitions or controlling for unicorn
companiesinD, (Extended DataFig.7), and varying the types of attack
or changingthe threshold for fatal attacks in D, (Extended Data Fig. 8).
Wealso vary the definition of unsuccessful groups (Extended DataFig. 5,
Supplementary Information 7.2) and test other measures to approxi-
mate performance (Extended Data Fig. 9j-o, Supplementary Informa-
tion7.4,7.5). We further adjust for temporal variation by controlling for
the overall success rate across different years (Extended Data Fig. 9a-i,
Supplementary Information 7.3). Across all variations, our conclusions
remain the same.

Predicting ultimate success

We use a simple logistic model to predict whether one may achieve
success following N previously failed attempts in D,, using only tem-
poral features t, (1<n<N-1) as predictors. To evaluate prediction
accuracy, we calculatethe areaunder the receiver operating characteris-
tic (AUC) curve withtenfold cross-validation. We find that, by observing
the timing of the first three failures alone, our simple temporal fea-
ture yields high accuracy in predicting the eventual outcome with an
AUC close to 0.7, which is significantly higher than random guessing
(Mann-Whitney U-test, P<107'®; Extended DataFig. 3a, Supplementary
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Information 6.1). We repeated the same prediction task on D, and D,,
arriving at similar conclusions (Extended Data Fig. 3b, c, Supplementary
Information 6.1). The predictive power from temporal features alone
is somewhat unexpected. Indeed, there are alarge number of docu-
mented factors that affect the outcome of agrant application®*, rang-
ing from the previous success rate to publication and citation records
totherace, ethnicity and gender of the applicant. Here we ignore these
factors, however, using only features that pertain to temporal scaling
as prescribed by our model. This suggests that our predictive power
represents alower bound, which could be furtherimproved and lever-
aged by incorporating additional factors.

k-amodel

Agents may differ in the judgment of their own work or incentives to
change given feedback, which canbe captured by varying the a param-
eterinthe original k model. Of the many influences on p, one key factor
isthe quality of existing versions, suggesting that p should be afunction
of x*. Consider the following two extreme cases. If x* > 0, existing ver-
sions of this component have one of the worst scores and, hence, a high
potential forimprovement when replaced with a new version. In this
case, the likelihood of creating a new versionis high, thatis, p>1.On
the other hand, x* > 1corresponds to anear-perfect version, yielding a
decreasedincentive tocreateanewone (p~ 0).Indeed, P(x>x*)=1-x*
captures the potential toimprove on previous versions, prompting us
toassumethat p=(1-x*)*where a>0 characterizes the propensity of an
agentto create new versions given the quality of existing ones. There-
fore, a > Oindicates that regardless of one’s evaluation, the agent will
always create anew version, whereas a - « points to the other extreme
where one does not create a new version unless it is extremely bad
(Extended Data Fig. 10a). Considering a another tunable parameter,
we arrive at a two-parameter model: the k-a model (Supplementary
Information 4.1).

Tosolve this model we cansubstitute k* with 1/a, and the indexes k/k*
and1/k*+1nowbecome ka and a +1. The extended model thus predicts
the existence of three different phases on a two-dimensional phase
diagram, withboundaries ka =1and (k—-1)a=1that separate the three
phases (Extended Data Fig. 10b). The k-a model reduces back to the
two critical pointsin the original k model when we fix a. The two param-
etersjointly define an effective K=k - k* = k—1/a. The critical bounda-
ries therefore reduce into two simple equations: K= 0 and K=1. Note
that the assumed relationship between pand (1-x*) isnotlimited toa
power lawbut canbe relaxed into its asz)mptotic form.Indeed, we show
thatas longasthe function satisfies |nl(;]—;1*) > qasx*~>1, themodel offers
the same predictions® (Extended Data Fig. 3, Supplementary Informa-
tion 3.6).

k-a-6 model

Agents may have fuzzy or unclear inference regarding past feedback,
and may therefore not always choose the version with highest quality.
We can model the choice between different versions in a probabilistic
fashion, by introducing a § parameter to the k-amodel. Here the prob-
ability to choose the ith version as a baseline follows

~ 1 _
P(i) = 2(1 =X)Ly geicn1

where Zis the normalization factor, Z= Y/ ,(1-x)? andk>1.6=0
means one cannot differentiate between the quality of past versions
and selects randomly among different versions, whereas § > «indicates
that one always chooses the previous version with highest quality, con-
verging back to our original k model or the k-a model. Incorporating §
leads to the k-a-6 model (Supplementary Information 4.2).

Analytically solving the model reveals interesting scaling behaviours
based on § (Supplementary Information 4.2).Indeed, we find the scaling
behaviour of the system follows

vk, a, 6)=1-{max[min(a+ (k-1)min{l, a, 6}, a +1), m

with richmathematical properties. When § > «, the new solutions con-
verge back to the original solution for the k-a model. With §, the three-
parameter model is characterized by four different phases. Three of
the regimes are generalizations of those found in the k-a model, where
the scaling exponent y does not depend on ¢ in the limit of § > «, that
is, y(k, a, 6) = y(k, a, ). The fourth one, however, is a new phase and
only exists for small §. The intuitionis thatin this regime the inability to
select a high-quality version (small §) dominates the scaling behaviour,
with exponenty(k, a, §) =1-[(k-1)6 +a] ™. Together, these extensions
offer further support for the predictions of our original model, while
demonstrating the theoretical potential of the model by enriching its
mathematical properties for more realisticinterpretations. They also
pointto promising future research thatexplores the interplay between
different perspectives on learning.

Note that although all three variations of the model predict the exist-
ence of different phases, the primary focus of this paper concerns the
fundamental differences in the nature of these regimes (that is, stagna-
tion versus progression), rather than the behaviour of the systemasit
approachesthe critical threshold. As such, the conclusions of the paper
hold the same regardless of any specific critical behaviour around the
threshold.

Factorsrelated tolearningrate

Our model offers aframework to anchor potential factors relevant to
learning***. As an example, here we test three different factors. First,
theliteraturehasidentified several factors for the emergence of learning
at the level of organizations'??, suggesting that individual learning is
justonefactorin how and why organizations learn. This suggests that
settings closer to organizational learning (such as terrorist groups)
should correspondingly experience higher learning rates than those
closertoindividual learning (such as NIH principal investigators) (Sup-
plementary Information 5.5). We test this hypothesis by calculating the
average scaling exponent y measured from our data (Supplementary
Table 4), and find that our estimations support this hypothesis; learning
rates are lowest for individual researchers, higher for entrepreneurs
andtheir founding teams and highest for terrorist organizations. Note
that although these results show consistency with theories from the
organizational learningliterature, these differences could alsobe due
to inherent domain-specific differences.

Second, higher previous achievements often bring recognition and
resources,aphenomenareferred toas the Matthew effect*¢, which might
translateinto higher learning rates. To test this we link NIHgrant applica-
tion datato the Web of Science citation database through a systematic
effort to disambiguate authors, and match the citations of previous
research papers with submitted proposals** (Supplementary Informa-
tion 5.6). We take principal investigators who failed more than three
times before their eventual success and calculate the total number of
citations fromall his/her papersincluding only papers published before
thefirst failure. We find that prior acclaimis positively and significantly
correlated withlearning rate y (P< 0.001).

Third, persistent gender inequalities in science and entrepreneur-
ship**>%suggest the possibility that failure dynamics may be mediated
by gender®*2, Our regression analysis reveals a significant correlation
betweengender and learning rate (Supplementary Information 5.7). All
else being equal, the learning rate y of amale principal investigator in
the NIH system exceeds that of afemale principal investigator by 0.14
(P=0.001), suggesting that male principal investigators fail faster than
their female colleagues. This difference appears substantial, consider-
ing that the average learning rate is centred around 0.35. We further
test this relationship in the startup dataset, finding a similar gap of 0.10
between male and female innovators, but this resultis not significant,
possibly owing to asmaller sample size. Note that these gender differ-
ences probably flow frominstitutional as well as individual causes, such



asaculture that discourages women from persistence and encourages
oversensitivity to feedback. Indeed, one irony suggested by our model
is that agents in the stagnation region did not work less. Rather they
made more, albeit unnecessary modifications to what were otherwise
advantageous experiences.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

This paper makes use of restricted access data from the National Insti-
tutes of Health (NIH), protected by the Privacy Act of 1974 as amended
(5U.S.C.552a). Deidentified datanecessary to reproduce all plots and
statistical analyses are freely available at https://yian-yin.github.io/
quantifyFailure. Those wishing to access the raw data can apply for
access following the procedures outlined in the NIH Data Access
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VentureXpert databaseis available from Thomson Reuters. The Global
Terrorism Database is publicly available at https://www.start.umd.
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Code availability
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canonical systemis characterized by three different statesa, b, cwith
corresponding energy densities £,(h), Ey(h), E.(h). Here we assume
E,(h)=(Q2eh-1)* E,(h)=(2h-1)*and E.(h)=[2e(1- h) - 1]*wheree~> 0*. The
introduction of eis to distinguish state afrom state c, both of whichcanbe
approximated in the limiting condition £,(h) = E.(h) =0.We mapf~> (2 -1)?,
N-In[n], h~> Kand E,(h)=[2I;(K) -1]*. In this case, the two transition points k*and
k*+1correspondtoh=0andlinthe canonicalensemble systems.
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measured on thesame subset. All k>3 lead tosimilar trends between M, and T,.

c-e, Length of failure streak after randomization inscience (c),

entrepreneurship (d) and security (e). We take the samples used in Fig.1and
shuffle the success/failure label from each attempt. This operation keeps both
the overall success rate and the total number of attempts for each individual
constant. f-h, Temporal scaling patterns within the successful group inscience
(f), entrepreneurship (g) and security (h). We separated the successful group
into two subgroups (narrow winners and clear winners) based on eventual
performance (0.9 in evaluationscore for D,, 0.5 ininvestment amount for D,
andlinwoundedindividuals for D). Theshaded areashows mean ts.e.m.of T,
(logscale).
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Extended DataFig. 5| Robustness check ondefinition ofunsuccessful
group. a-1,Robustness check as we change the threshold of inactivity to3 years.
a-c, Failurestreakinscience (a), entrepreneurship (b) and security (c). Blue
circlesrepresentreal datafromthe successful group and dashedlines represent
fitted Weibull distributions. d-f, Temporal scaling patternsinscience (d),
entrepreneurship (e) and security (f). The shaded areashows mean ts.e.m.of T,
(logscale). g-i, Performance dynamicsinscience (g, n =641, 231,578,190,
fromleft toright), entrepreneurship (h,n=248,1,332,237,1,312 fromleft to
right) and security (i, n=238,198,236,199, from left to right). The successful
and unsuccessful groups that experienced alarge number of consecutive
failures before thelast attempt (atleast 5 for D,, 3 for D,and 2 for D,) appear
indistinguishable for first failures (two-sided Welch’s t-test; P=0.566, 0.671and
0.349), but quickly diverge for second failures (two-sided Welch'’s t-test;

P=2.09x1072,4.95x102and 7.77 x10%). The successful group also shows
significantimprovementin performance (one-sided Welch’s t-test;
P=7.03x107,2.37x102and 2.32 x10%), which is absent for the unsuccessful
group (one-sided Welch’s t-test; P=0.717,0.176 and 0.786). Dataare
meants.e.m.j-1, AUCscore of predicting ultimate success in science (j),
entrepreneurship (k) and security (I). The centres and error bars of AUC scores
denote the mean ts.e.m calculated from tenfold cross-validation over 50
randomized iterations. m-x, Asina-Ibut using 7 years as the threshold of
inactivity. Samplesizesares:n=620,101, 559, 76; t: n=248,977,237,989;
u:n=216,152,214,153. Pvaluesins-u (frombottomto top) are P=0.883 (s),
0.671(t), 0.456 (u); P=2.25x107%(s),1.38 x1073(t), 8.34 x 10 ? (u); P=4.59 x10?
(s),2.37x1072(t),3.33x107%(u); P=0.838 (s), 0.446 (t), 0.775 (u).*P< 0.1,
**P<0.05,***P<0.01,NS, notsignificant (P>0.1).
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Extended DataFig. 6| Robustness check onD,. a-c, Failure streak as we change
thescorethreshold to 55 (a), exclude revisions as successes (b) and only focus on
new principalinvestigators without previousRO1 grants (c). Blue circles
representreal datafromsuccessful groups and dashed lines represent fitted
Weibull distributions. d-f, Temporal scaling patterns as we change the score
threshold to 55 (d), excluderevisions as successes (e) and only focus on new
principalinvestigators without previous RO1grants (f). The shaded areashows
meants.e.m.of T, (logscale). g-i, Performance dynamics as we change the score
thresholdto55(g,n=768,189, 686,170, from left toright), exclude revisions as
successes (h,n=252,145,216,123, fromleft toright) and only focus on new
principalinvestigators without previousRO1grants (i,n=1,164,308,1,530, 334,
fromlefttoright). The successful and unsuccessful groups thatexperienced a

large number of consecutive failures before their last attempt (at least 5 for g and
h, and 3 fori) appearindistinguishable for first failures (two-sided Welch'’s -test;
P=0.242,0.819,0.289) but quickly diverge for second failures (two-sided Welch’s
t-test; P=3.40x107*,3.40x1072,9.70 x107). The successful group also shows a
significantimprovementin performance (one-sided Welch’s -test; P=4.23x1072,
3.04x1072,1.92x10™*), whichis absent for the unsuccessful group (one-sided
Welch's t-test; P=0.863,0.754,0.997). Dataare mean +s.e.m.j-1, AUC score of
predicting ultimate success as we change the score threshold to 55 (j), exclude
revisions assuccesses (k) and only focus on new principal investigators without
previous RO1grants (I). The centres and error bars of AUC scores denote the
mean ts.e.mcalculated from tenfold cross-validation over 50 randomized
iterations.*P<0.1,**P<0.05,**P<0.01,NS, P>0.1.
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Extended DataFig.7|Robustness check onD,. a-c, Failure streak as we change
the threshold of high-value mergers and acquisitions (M&A) to 5% (a), exclude
M&As as successes (b) and classify unicorns assuccesses (c). Blue circles
represent real datafromsuccessful groups and dashed lines represent fitted
Weibull distributions. d-f, Temporal scaling patterns as we change the threshold
ofhigh-value M&A to 5% (d), exclude M&As as successes (e) and include unicorns
assuccesses (f). Theshaded areashows mean +s.e.m. of T, (log scale). g-i,
Performance dynamics as we change the threshold of high-value M&A to 5%
(g,n=251,1,304,243,1,284, fromleft toright), exclude M&As as successes
(h,n=248,1,335,237,1,315, fromleft to right) and include unicorns as successes
(i,n=257,1,330,244,1,311, fromleft to right). The successful and unsuccessful
groups thatexperienced alarge number of consecutive failures before their last

attempt (atleast 3) appear indistinguishable for first failures (two-sided Welch’s
t-test; P=0.937,0.647,0.620) but quickly diverge for second failures (two-sided
Welch's t-test; P=9.92x107,4.94 x1073,6.33 x107%). The successful group also
shows asignificantimprovementin performance (one-sided Welch’s t-test;
P=2.16x107,2.37x107%,2.77 x107%), whichis absent for the unsuccessful group
(one-sided Welch'’s t-test; P=0.224,0.158,0.167). Dataare mean +s.e.m. j-1, AUC
score for predicting ultimate success as we change threshold of high-value M&A
t0 5% (j), exclude M&As as successes (k) and include unicorns as successes (I).
The centresand error bars of AUCscores denote the mean +s.e.mcalculated
fromtenfold cross-validation over 50 randomized iterations.*P<0.1,**P<0.05,
***P<0.01,NS,P>0.1.
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Extended DataFig. 8| Robustness check onD;. a-c, Failure streak as we focus
onallsamples (a), samples of human-targeted attacks (b) and include vague
data on fatalities (c). Blue circles represent real data from successful groups
and dashedlines represent fitted Weibull distributions. d-f, Temporal scaling
patternsaswe focusonallsamples (d), samples of human-targeted attacks (e)
andinclude vague dataon fatalities (f). The shaded areashows mean +s.e.m. of
T,(logscale). g-i, Performance dynamics as we focus on all samples (g, n=231,
231,229,232, fromleft toright), samples of human-targeted attacks (h, n=176,
173,173,174, fromleft to right) and include vague data on fatalities (i, n=227,147,
225,148, fromleft toright). The successful and unsuccessful groups that
experienced alarge number of consecutive failures before their last attempt
(atleast 2) appearindistinguishable for first failures (two-sided Welch’s t-test;
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P=0.400,0.859,0.395), but quickly diverge for second failures (two-sided
Welch’s t-test; P=2.08 x107,6.70 x107%,3.76 x 107%). The successful group also
shows asignificantimprovementin performance (one-sided Welch’s t-test;
P=2.55%107,5.65%x107,3.77x107%), whichis absent for the unsuccessful group
(one-sided Welch’s t-test; P=0.970,0.901,0.967). Dataare mean =s.e.m.j-1,AUC
score of predicting ultimate success as we focus on all samples (j), samples of
human-targeted attacks (k) and include vague data on fatalities (I). The centres
anderror barsof AUCscores denote the mean +s.e.m calculated from tenfold
cross-validation over 50 randomized iterations.m-o, Temporal scaling patterns
aswe change the threshold for the successful group to fatalattacks thatkilled at
least5(m),10 (n) and 100 (o) people.*P<0.1,**P<0.05,**P<0.01,NS,P>0.1.



Startups NIH Grants

Terrorist Attacks

a 10° 90 NS
| o
n o Sos -
C 2 -
w10 5 NS
S 8 g
10° kR
G °© 3
10-4 g
T 51 06
= 1078
Z s 4
o 0 10 20 10 100 10' 05 First failure Second failure
Number of failures n
b i e h 06 NS
101 305 o
0 ; P
g 10 ; 04 —
=] 8 10-3 S g 03 NS
% 1074 go2
-+ >
(%)) 107 o o1
6. -1
o 0 10 20 0 10° 2x10° 3x10%x10° 6x10° 0o First failure  Second failure
Number of failures n
j »08
g ¢ el f : El ,—|NS
o
O S -
] bS] 1.
= £ NS
< 3
o
- c
0 302
= =
(e}
— 102 10~ o
P 0 10 20 10° 2x10°  3x10° 4x10° First failure  Second failure
g Number of failures n
H 9. [}
i e NS m o NS P 10
o |—| <4 e
308 = Qo8 309
0 ’—| 12} 1]
c c s c
S NS 51 §o8
0 el NS pe
=07 =07 =
R R Sor
© © ©
T 06 |1 06 D 06
05 05 08 10-¢
- . . . . . . 5 10 15 20 0 10 20
First failure Halfway failure First failure Penultimate failure Number of failures Number of failures
k_os NS n.os NS q. t oo
305 o 305 = 3 4
3 I — g 1 g 1071 Q
Sos ,—|" Sos ,—\" 52 102 %X
€ NS S NS k= & 6@3
T 03 3 03 [ e = — Q100
E-l M I £ ° e
§ 02 § 0. § -2 104
Lot o1 £.4 105
0.0 0. 106
X . . . . ) . 0 5 10 15 0 10 20
First failure Halfway failure First failure Penultimate failure Number of failures Number of failures
| o o8 008 r o u
] NS < NS T4 1000
he] he] o o
=06 - 208 —— =
2 e - ™ - g’ w10
£ —/ £ [ £ 5
T 04 T 04 T )
() L5} (3] 's)
el i) el
5 5 54 1072
302 302 3
= = = A A AT
ool : e . . 0 10
First failure Halfway failure irst failure Penultimate failure 0 5 10 15 20 0 10 20

Extended DataFig.9|See next page for caption.
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Extended DataFig.9|Additional robustness checks. a-i, Robustness check
aswe control for temporal variation. a-c, Failure streak in science (a),
entrepreneurship (b) and security (c). Blue circles represent real data of
successful groups and dashed lines represent fitted Weibull distributions.

d-f, Temporalscaling patternsinscience (d), entrepreneurship (e) and security
(f). Theshaded areashows mean +s.e.m. of T, (log scale). g-i, Performance
dynamicsinscience (g, n=628,145,571,123, from left to right),
entrepreneurship (h,n=248,1,332,237,1,312, from left to right) and security
(i,n=231,173,229,174, from left to right). The successful and unsuccessful
groupsthatexperiencedalarge number of consecutive failures before their last
attempt (atleast 5 for D;, 3 for D, and 2 for D;) appear indistinguishable for first
failures (two-sided weighted Welch’s t-test; P=0.814, 0.728, 0.330) but quickly
diverge for second failures (two-sided weighted Welch’s t-test; P=1.80 x 1072,
3.10x1072,4.56 x1072). The successful group also shows significant
improvementin performance (one-sided weighted Welch’s t-test; P=2.10 X102,
1.92x1072,4.53 x107%), which isabsent for the unsuccessful group (one-sided
weighted Welch’s t-test; P=0.755,0.175,0.903). Dataare mean +s.e.m. j-1,
Performance dynamics as we compare first and halfway attemptsinscience (j,
n=628,145,582,111, fromleft to right), entrepreneurship (k, n=248,1,332, 240,
1,294, fromleft toright) and security (I, n=231,173, 228,175, from left to right).
Thesuccessfuland unsuccessful groups thatexperienced alarge number of
consecutive failures before their last attempt (at least 5 for D, 3 for D, and 2 for
D;)appear indistinguishable for first failures (two-sided Welch’s t-test; P=0.898,
0.671,0.289) but diverge for halfway failures (two-sided Welch’s t-test;
P=2.18x107,1.34x1072,1.34 x1072). The successfulgroup also shows significant

improvement in performance (one-sided Welch’s t-test; P=2.35x1072,
4.54x1072,3.69 x1072), whichis absent for the unsuccessful group (one-sided
Welch’s t-test; P=0.992,0.252,0.955). Dataare mean +s.e.m.m-o, Performance
dynamics as we compare the first and penultimate attemptsin science (m,
n=628,145,896, 87, from left toright), entrepreneurship (n, n=248,1,332,227,
1,199, fromleft toright) and security (o, n=231,173,230,173, from left to right).
The successful and unsuccessful groups thatexperienced alarge number of
consecutive failures before thelastattempt (at least 5 for D,, 3 for D,and 2 for D)
appear indistinguishable for first failures (two-sided Welch’s ¢-test, P=0.898,
0.671,0.289) but diverge for penultimate failures (two-sided Welch’s t-test;
P=8.50x107%,3.12x107?,1.13x107%). The successful group also shows a
significantimprovementin performance (one-sided Welch’s t-test;
P=5.79x107%,4.30x107%,1.33 x107?), which is absent for the unsuccessful
group (one-sided Welch’s t-test; P=0.980, 0.138,0.923). Dataare mean £s.e.m.
p-r, The correlation between length of failure streak and initial performance
(samples with repeated failures) inscience (p, n=12,171), entrepreneurship (q,
n=2,086)andsecurity (r,n=441). Correlationis weak across all three datasets
(Pearson correlation; r=-0.051,-0.011,-0.107 for p, q, r, respectively).s-u,
Lengthoffailure streak still follow fat-tailed distributions conditionalonbottom
10%initial performance samplesinscience (s, n=6,339), entrepreneurship (t,
n=2,438) and security (u,n=1,092). Two-sided Kolmogorov-Smirnov test
betweensample and exponential distributions rejects the hypothesis that the
two distributions areidentical with P<0.01.*P<0.1,**P<0.05,***P< 0.01,NS,
P=0.1.
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Non-participation There are no participants in this study.

Randomization This is a data driven study, not a randomized experiment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[ ] Antibodies [] chip-seq
[ ] Eukaryotic cell lines [] Flow cytometry
|:| Palaeontology |:| MRI-based neuroimaging

[] Animals and other organisms
|:| Human research participants

[ ] clinical data
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