A Delsarte-Style Proof of the Bukh—Cox Bound

Mark Magsino, Dustin G. Mixon, Hans Parshall
Department of Mathematics
The Ohio State University

Abstract—The line packing problem is concerned with the
optimal packing of points in real or complex projective space so
that the minimum distance between points is maximized. Until
recently, all bounds on optimal line packings were known to be
derivable from Delsarte’s linear program. Last year, Bukh and
Cox introduced a new bound for the line packing problem using
completely different techniques. In this paper, we use ideas from
the Bukh-Cox proof to find a new proof of the Welch bound,
and then we use ideas from Delsarte’s linear program to find
a new proof of the Bukh—-Cox bound. Hopefully, these unifying
principles will lead to further refinements.

I. INTRODUCTION

The last decade has seen a surge of progress in the line pack-
ing problem, where the objective is to pack n points in RP%~1
or CP9~! so that the minimum distance is maximized. Indeed,
while instances of this problem date back to Tammes [1] and
Fejes Téth [2], the substantial progress in recent days has been
motivated by emerging applications in compressed sensing [3],
digital fingerprinting [4], quantum state tomography [5], and
multiple description coding [6]. Most progress in this direction
has come from identifying new packings that achieve equality
in the so-called Welch bound (see [7] for a survey), but last
year, Bukh and Cox [8] discovered a completely different
bound, along with a large family of packings that achieve
equality in their bound.

Focusing on the complex case, let X = {z;}ic[n) be a
sequence of unit vectors in C4, and define coherence to be
X):= max T, Ti)|.
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Then the Buhk—Cox bound guarantees
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provided n > d. The Bukh—Cox bound is the best known lower
bound on coherence in the regime where n = d 4+ O(V/d).
While the other lower bounds can be proven using Delsarte’s
linear program [9], the proof of the Bukh—Cox bound is
completely different: it hinges on an upper bound on the first
moment of isotropic measures.

In the present paper, we provide an alternate proof of the
Bukh—Cox bound. We start by isolating a lemma of Bukh
and Cox that identifies a fundamental duality between the
coherence of n = d + k unit vectors in d dimensions and
the entrywise 1-norm of the Gram matrix of 7-tight frames of
n vectors in k£ dimensions. Next, we illustrate the power of this
lemma by using it to find a new proof of the Welch bound.
Finally, we combine the lemma with ideas from Delsarte’s

w(X) >

linear program to obtain a new proof of the Bukh—Cox bound.
This new proof helps to unify the existing theory of line
packing, and hopefully, it will spur further improvements (say,
by leveraging ideas from semidefinite programming [10]).

II. THE BUKH-COX LEMMA

Let X = {2;}", denote any sequence in C?. By abuse
of notation, we identify X with the d x n matrix whose ¢th
column is z;. We say X is a c-tight frame if X X* = cI. Let
N(d,n) denote the set of matrices in C?*™ with unit norm
columns, and let T'(d,n) denote the set of matrices in CZ*"
corresponding to 7-tight frames. Define

~v(d,n) = ,ax IY*Y]:.

€T (d,n)

(Indeed, the maximum exists by a compactness argument.) We
say X € N(d,n) is equiangular if there exists a constant ¢
such that |(z;,z;)| = ¢ for every 1 < ¢ < j < n. With this
nomenclature, we are ready to state the following lemma of
Bukh and Cox:

Lemma 1. Let n = d + k. Then every X € N(d,n) satisfies
X)> ———. 1
Furthermore, X minimizes (X)) over N(d,n) if X is equian-
gular and there exists Y = {y;}7, € T(k,n) such that

(i) Y maximizes |Y*Y ||1 over T(k,n),

(i) XY* =0, and

(i) sgn(z;, ;) = —sgn(y;,y;) for 1 <i<j<n
Proof. Given X € N(d,n), select Y € T(k,n) such that
XY* = 0. Then,
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Bringing ||y;||3 to the left hand side of (2) and taking absolute
values, we have that
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where (3) uses the triangle inequality and (4) is by the
definition of coherence. Using (4) and YY™* = (n/k)I,

n=t(YY*) = (YY) = > [lyil3
=1

< X)) Wy = pX)([YY |y — (YY)
i=1 j=1
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= pX)(Y*Y 1 —n).

Thus, we conclude that
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This proves the bound. Considering (2), equality occurs in (3),

(4) and (5) when X is equiangular and (i)—(iii) holds. O

y(k,n) —n’ )

ITII. THE WELCH BOUND
Theorem 2. For all Y € T(k,n) we have

k

Equality is achieved if and only if Y is an equiangular tight
frame.

2 1/2
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Proof. First we separate the diagonal part of ||Y*Y'||; and use
the Cauchy—Schwarz inequality,
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Noting that the the sum in (7) is (almost) ||Y*Y||% and once
again using the Cauchy—Schwarz inequality,

n n n
SO Ky P = VY= il
i=1 j=1 i=1

J#i

=tr(Y'YY*Y) —n-

> _(lwill3)?
i=1

n? 1 9 ’

T E;Hying ®)

= —n 9)

Putting this back into (7) we obtain the inequality
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Equality is achieved in the Cauchy—Scwharz inequality if
and only if the vectors are scalar multiples. For the first
instance of Cauchy—Schwarz, this occurs if and only if YV
is equiangular. For the second instance of Cauchy—Schwarz,

2 1/2
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equality is achieved if and only if ||ly;||3 is constant, that is
Y € N(k,n). Thus, equality is achieved in (6) if and only if
Y is an equiangular tight frame. O

Equality in (6) depends on the existence of equiangular tight
frames of n vectors in C*. The Gerzon bound says that if Y’
forms an equiangular tight frame of n vectors in CF, then
n < k% [7]. This gives the bound k > 1/2 + /1 +4d/2 as
a necessary condition for Y to be an equiangular tight frame.
On the other hand, if Y in Lemma 1 is an equiangular tight
frame, then X is also an equiangular tight frame since X and
Y are Naimark complements [11]. In particular, this gives the
upper bound k < d? — d as a necessary condition for Y to
be equiangular, because the Gerzon bound applied to X gives
the requirement that n < d?.

Being within the range 1/2 ++/1+4d/2 < k < d? —d is
not a sufficient condition. The existence of equiangular tight
frames of n vectors in k& dimensions for k + 1 < n < k2 is
an open question. Some equiangular tight frames are known
to exist, by construction, for certain values of n and k. An
overview of the known constructions can be found in [7]. On
the other hand, there are known values of n and k for which
equiangular tight frames cannot exist. One such example is
the case when n = 8 and k = 3 [12]. In particular, equality
in the Welch bound is achieved for some values of n and k
which satisfy k+1 <n < k2, but not necessarily achieved at
all values of n and k& which satisfy that inequality.

By combining Lemma 1 with Theorem 2, we obtain

Corollary 3 (Welch). Let n > d. For all X € N(d,n),
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IV. BUKH-C0OX BOUND VIA LINEAR PROGRAMMING

We now turn our attention to the range 1 < k < 1/2 +
v/1+4d/2. Since the Gerzon bound prevents Y from being
an equiangular tight frame in this range, equality in (6) cannot
be achieved and a sharper bound can be obtained. The Bukh—
Cox bound is an improvement in this range, and is sharp if
Y is given by concatenated copies of k2 vectors in C* which
forms an equiangular tight frame. In order to apply Delsarte’s
linear programming ideas, we require the following special
polynomials [9]:

QO(J:) = 1a
Q) =3,
Qo(z) = 2 : &
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Theorem 4. For all Y € T'(k,n) we have

n?(1+ (k—1)vV1+k)
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Equality is achie\ged when'Y is of the formY = [Z|Z]---|Z]

where Z € CF*F s an equiangular tight frame.

[Y*Y]; < . (12)



0.6

5 10 15 20

Fig. 1. The coherence of best known line packings in R® for n € {5,..
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.,40}, along with the best known lower bounds. The black dots correspond to

packings found in Sloane’s database [13]. The Bukh—Cox bound is displayed in green, the Welch bound in blue, the orthoplex bound [14] in pink, and the
Levenshtein bound [15] in red. In this setting, the Bukh—Cox bound is the best known lower bound for n = {8, 9}.

Proof. By continuity, we may assume y; # 0 for every i €
{1,---,n} without loss of generality. First, we normalize the
columns of Y, {y;}I"_;, by defining z; := y;/||y;||2. We obtain
the desired bound considering the following linear program,
inspired by Delsarte’s LP bound,

minimize cg

subject to f(z) = coQo(z) + c1Q1(x) + c2Qa(x)
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f(z) >z, Vo € 0,1].

Suppose we have a feasible (co, ¢1, ¢2). Then,
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We now establish an upper bound for each innermost term for
¢ €{0,1,2}. For £ = 0, since Qo(x) = 1, we have
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For ¢ = 1, we have
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To bound the first term of (16), we use Cauchy—Schwarz and
the fact that Y is an n/k-tight frame:
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Overall this gives the following bound for the ¢ = 1 case:

n n 1
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Last, we need a bound for the £ = 2 case. Let {e,, }?2_, be any

orthonormal basis for the (finite) do-dimensional vector space
spanned by degree-4 projective harmonic polynomials in k



variables. Then, by the addition formula, there is a constant
C4, .1, which depends on dy and k, such that
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Multiplying both sides of (19) by ca < 0 then gives
D0 eaQa(I(zi, 2) P)llwil2 s 2 < 0. (20)
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Finally, returning to (13) we have
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where we have used that S < n2. The bound (12) comes from
observing that the following choice of (cg, 1, c2) is feasible:
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This feasible choice comes from forcing f(47) = 1/vEk + 1,
f1) = 1, and f’(k%H) = +k+1/2, and solving for
(co, €1, c2). Equality is achieved in inequalities (13), (18), (20),
(21) when

D i, 2 = (o u)], Vi, d,

2) f(zi, 2)7) = [(zi, 25), Vi, 5,

3) 3222, Q2((zi, ) lwillz llysll2 = 0,

4) lyill2 = 1, Vi.
All four are achieved if Y is multiple copies of an equiangular
tight frame of k2 vectors in CF. O

The proof of Theorem 4 actually generates a bound for any
feasible (cg, ¢1,c2) in the described linear program. Minimiz-
ing cq gives the best possible bound generated by this method.
Computational experiments suggest that this particular feasi-
ble (cg,c1,c2) gives the minimum co. Although equality is
achieved when Y is multiple copies of an equiangular tight
frame of k2 vectors in C¥, the existence of such frames is an
open question, and is known as Zauner’s conjecture [16].

By combining Lemma 1 with Theorem 4, we obtain

Corollary 5 (Bukh—Cox). Let n > d. For all X € N(d,n),
(n—d)?
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Bukh and Cox also provide a new bound for the case of n
vectors in R?. For the real case, it suffices to adjust the special
polynomials in the proof of Theorem 4 [9]. Qo(z) and Q4 ()
remain the same, but Q2(x) is replaced with:

) 3
@fz) =27 = g7 d+2)(d+4)

This adjustment changes the feasible region for the linear
program and leads to a different optimal (¢, ¢, ¢2), and thus
a different bound for the R? case. Fig. 1 demonstrates the
Bukh—-Cox bound improvement over the Welch bound for
small values of k in the case where the vectors are in RS.
We illustrate the real case since, in this case, packing data is
available and provided in [13].
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