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ABSTRACT

The Lovász theta number is a semidefinite programming bound on the clique number of (the complement of) a
given graph. Given a vertex-transitive graph, every vertex belongs to a maximal clique, and so one can instead
apply this semidefinite programming bound to the local graph. In the case of the Paley graph, the local graph is
circulant, and so this bound reduces to a linear programming bound, allowing for fast computations. Impressively,
the value of this program with Schrijver’s nonnegativity constraint rivals the state-of-the-art closed-form bound
recently proved by Hanson and Petridis. We conjecture that this linear programming bound improves on the
Hanson–Petridis bound infinitely often, and we derive the dual program to facilitate proving this conjecture.
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1. INTRODUCTION

The Paley graph Gp is defined for every prime p ≡ 1 (mod 4) with vertex set Fp = {0, 1, . . . , p− 1}, the finite
field of p elements, and an edge between x, y ∈ Fp if and only if x− y ∈ Qp, where

Qp := {x ∈ Fp : there exists y ∈ Fp such that x = y2}

is the multiplicative subgroup of quadratic residues modulo p. The Paley graphs provide a family of quasi-random
graphs (see Chung, Graham and Wilson1) with several nice properties (see §13.2 in Bollobas2). For instance, the
Paley graph Gp is a so-called strongly regular graph in which every vertex has (p − 1)/2 neighbors, every pair
of adjacent vertices share (p − 5)/4 common neighbors, and every pair of non-adjacent vertices share (p − 1)/4
common neighbors. The Paley graph of order p can be used to construct an optimal packing of lines through
the origin of R(p+1)/2, known as the corresponding Paley equiangular tight frame,3–5 and these packings have
received some attention in the context of compressed sensing.6,7

For a simple, undirected graph G = (V,E), we say C ⊆ V is a clique if every pair of vertices in C is adjacent,
and we define the clique number of G, denoted by ω(G), to be the size of the largest clique in G. It is a
famously difficult open problem to determine the order of magnitude of ω(Gp) as p → ∞. The best known
closed-form bounds that are valid for all primes p ≡ 1 (mod 4) are given by

(1 + o(1))
log(p)

log(4)
≤ ω(Gp) ≤

√
2p− 1 + 1

2
. (1)

The lower bound in (1) is due to Cohen.8 The same lower bound, with a weaker o(1) term, is actually valid
for any self-complementary graph. Recall that the Ramsey number R(s) is the least integer such that every
graph on at least R(s) vertices contains either a clique of size s or a set of s pairwise non-adjacent vertices. Then
for any self-complementary graph G on at least R(s) vertices, it holds that ω(G) ≥ s. Together with the classical
upper bound of R(s) ≤

(
2s−2
s−1

)
by Erdős and Szekeres,9 it is straightforward to establish the lower bound in (1).

The work of Graham and Ringrose10 on least quadratic non-residues shows that there exists c > 0 such that
ω(Gp) ≥ c log(p) log log log(p) for infinitely many primes p, and so the lower bound in (1) is not sharp in general.

The upper bound in (1) was proved very recently by Hanson and Petridis11 using a clever application of
Stepanov’s polynomial method. This improved upon the previously best known closed-form upper bounds of
ω(Gp) ≤

√
p− 4, proved by Maistrelli and Penman,12 and ω(Gp) ≤

√
p − 1, proved to hold for a majority of
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primes p ≡ 1 (mod 4) by Bachoc, Matolcsi and Ruzsa.13 Numerical data for primes p < 10000 by Shearer14 and
Exoo15 suggests that there should be a polylogarithmic upper bound on ω(Gp), but it remains an open problem
to determine whether there exists ε > 0 such that ω(Gp) ≤ p1/2−ε infinitely often.

This open problem bears some significance in the field of compressed sensing. In particular, Tao16 posed the
problem of finding an explicit family {Φn} of m × n matrices with m = m(n) ∈ [0.01n, 0.99n] and n → ∞ for
which there exists α ≥ 0.51 such that for every n, it holds that

0.5 · ‖x‖22 ≤ ‖Φnx‖22 ≤ 1.5 · ‖x‖22
for every x ∈ Rn with at most nα nonzero entries. Such matrices are known as restricted isometries. Families
of restricted isometries are known to exist for every α < 1 by an application of the probabilistic method, and
yet to date, the best known explicit construction17,18 takes α ≤ 1

2 + 10−23. It is conjectured7 that the Paley
equiangular tight frame behaves as a restricted isometry for a larger choice of α, but proving this is difficult, as
it would imply the existence of ε > 0 such that ω(Gp) ≤ p1/2−ε for all sufficiently large p. As partial progress
along these lines, the authors recently established that the singular values of random subensembles of the Paley
equiangular tight frame obey a Kesten–McKay law.19

The goal of this paper is to describe a promising approach to find new upper bounds on the clique numbers of
Paley graphs. In Section 2, we recall a semidefinite programming approach of Lovász20 that yields bounds on the
clique numbers of arbitrary graphs. By passing to an appropriate subgraph of Gp, we show that this produces
numerical bounds on ω(Gp) that usually coincide with the Hanson–Petridis bound and sometimes improve upon
it. In Section 3, we show how to compute these bounds by linear programming, extending the range in which we
are able to produce computational evidence. In Section 4, we derive the relevant dual program and summarize
how one might use weak duality to prove a new bound on ω(Gp) by constructing appropriate number-theoretic
functions; see Proposition 5. We then conclude with suggestions for future work in this direction.

2. SEMIDEFINITE PROGRAMMING BOUNDS

For a graph G = (V,E), its complement G is the graph on vertices V with edges
(
V
2

)
\ E. An isomorphism

between graphs G = (V,E) and G′ = (V ′, E′) is a bijection ϕ : V → V ′ such that E contains an edge between
v, w ∈ E if and only if E′ contains an edge between ϕ(v), ϕ(w) ∈ V ′, and an automorphism is an isomorphism
between G and itself. When G is isomorphic to G, we say that G is self-complementary. We say G = (V,E) is
vertex-transitive if, for every pair of vertices v, w ∈ V , there exists an automorphism ϕ of G with ϕ(v) = ϕ(w).

In the sequel, we label the vertices of every graph G on n vertices by Zn = {0, 1, . . . , n − 1} and similarly
index the rows and columns of matrices X ∈ Rn×n by Zn with addition considered modulo n. The Lovász
theta number for a graph G on n vertices is defined by the semidefinite program

ϑL(G) := max
n−1∑
j=0

n−1∑
k=0

Xjk s.t. TrX = 1, Xjk = 0 ∀{j, k} ∈ E(G), X � 0.

Lovász20 proved the following.

Proposition 1. Let G be any graph on n vertices.

(i) ω(G) ≤ ϑL(G).

(ii) If G is vertex-transitive, then ϑL(G)ϑL(G) = n.

Proof. For (i), suppose C ⊆ Zn is a maximal clique in G, consider the indicator function 1C : Zn → {0, 1} as
a column vector in Rn indexed by Zn, and put X := 1

ω(G)1C1TC . Then X is feasible in the program ϑL(G).

Counting the nonzero entries of X then gives

ω(G) =
n−1∑
j=0

n−1∑
k=0

Xjk ≤ ϑL(G).

The proof of (ii) is more involved; see Theorem 8 in Lovász.20



As a consequence of Proposition 1, every self-complementary vertex-transitive graph G on n vertices satisfies
ω(G) ≤ ϑL(G) =

√
n. This is enough to recover the well-known bound of ω(Gp) ≤

√
p. Indeed, to show that Gp

is self-complementary, fix any nonzero quadratic non-residue s ∈ F∗p \Qp and consider the bijection µ : Fp → Fp
defined by µ(x) := sx. Then for all v, w ∈ Fp, we have v − w ∈ Qp if and only if µ(v)− µ(w) = s(v − w) 6∈ Qp.
That is, µ is an isomorphism between Gp and Gp. To show that Gp is vertex-transitive, let a, b ∈ Fp and consider
the map τ : Fp → Fp defined by τ(x) := x − a + b. Clearly τ(a) = b. To see that τ is an automorphism of Gp,
it suffices to observe that for any two vertices v, w ∈ Fp, τ(v) − τ(w) = v − w. Hence, ω(Gp) ≤ ϑL(Gp) =

√
p

follows from Proposition 1.

We can improve upon this bound by focusing our attention to the neighborhood of 0 in Gp, namely, the set
Qp of quadratic residues. Let Lp denote the subgraph of Gp induced by Qp. Since Gp is vertex-transitive, there
exists a maximal clique of Gp containing the vertex 0. In particular, ω(Lp) = ω(Gp) − 1. By Proposition 1(i),
we conclude that

ω(Gp) ≤ ϑL(Lp) + 1. (2)

For a graph G on n vertices, Schrijver21 proposed strengthening ϑL(G) to

ϑLS(G) := max

n−1∑
j=0

n−1∑
k=0

Xjk s.t. TrX = 1, Xjk = 0 ∀{j, k} ∈ E(G), X � 0, X ≥ 0,

where X ≥ 0 denotes entrywise nonnegativity. Clearly ϑLS(G) ≤ ϑL(G), and the proof of Proposition 1(i) further
establishes establishes ω(G) ≤ ϑLS(G). This strengthening leads to the bound

ω(Gp) ≤ ϑLS(Lp) + 1. (3)

To compare the bounds (2) and (3) to the Hanson–Petridis bound (1), we set

HP(p) :=

√
2p− 1 + 1

2
, L(p) := ϑL(Lp) + 1, LS(p) := ϑLS(Lp) + 1,

and we compare these in the range p < 3000 in Figure 1 and Table 1. We observe bL(p)c = bLS(p)c = bHP(p)c for
most primes in this range, providing an equivalent upper bound on ω(Gp). Interestingly, bLS(p)c = bHP(p)c− 1
for 17 values of p < 3000.

Gvozdenović, Laurent and Vallentin22 used semidefinite programming to compute several values of L(p),
which in their notation is N+(TH(Pp)). For instance, they compute L(809) in 4.5 hours on a 3GHz processor
with 1GB of RAM. They further introduced the so-called block-diagonal hierarchy of semidefinite programs,
which allowed them to compute sharper bounds than L(p) somewhat more efficiently in the range p ≤ 809. In
order to compute numerical values of L(p) and LS(p) efficiently, we leverage the symmetry of Lp to reformulate
both ϑL(Lp) and ϑLS(Lp) as linear programs in the next section. Using this approach on a 3.4GHz processor
with 8GB of RAM, we compute L(809) in under 20 seconds.

3. REDUCTION TO LINEAR PROGRAMMING

Recall that a matrix X ∈ Rn×n is circulant if Xj+1,k+1 = Xjk for all j, k ∈ Zn. A graph G is said to be circulant
if there exists a labeling of its vertices such that its adjacency matrix is circulant. We note that for every prime p,
the graph Lp is circulant. Indeed, select a generator α of the mulitplicative subgroup Qp, and order the elements
of Qp as 1, α, . . . , αn−1. Then Lp is circulant since αj − αk ∈ Qp if and only if αj+1 − αk+1 ∈ Qp. Since the
complement of a circulant graph is also circulant, it holds that Lp is circulant as well.

Schrijver21 showed that the semidefinite programming formulations of both ϑL and ϑLS can be reduced to
linear programs for certain classes of graphs. In order to state one such linear programming formulation, we take
the Fourier transform of f : Zn → C to be the function f̂ : Zn → C defined by

f̂(k) :=
n−1∑
j=0

f(j)e−2πijk/n.
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Figure 1. Comparison of LS(p) and HP(p) for the 211 primes p ≡ 1 (mod 4) with p < 3000. For 60 such primes,
LS(p) ≤ HP(p). For 17 such primes, LS(p) < �HP(p)�. (left) The blue points (p,LS(p)) appear to concentrate around
the red curve y = HP(p). (right) If a point (p,LS(p) − HP(p)) lies below the red curve y = �HP(p)� − HP(p), then
LS(p) < �HP(p)�, in which case we plot the point as a circle.

Proposition 2. Let G be any circulant graph with vertex set Zn. Then

ϑL(G) = max n
n−1∑
k=0

f(k) s.t. f(0) =
1

n
, f(k) = 0 ∀{0, k} ∈ E(G), f̂ ≥ 0. (4)

Proof. Let ϑLLP(G) denote the right-hand side of (4). First, we show that ϑLLP(G) ≤ ϑL(G). Take any feasible
f in the program ϑLLP(G) and consider the circulant matrix X defined by X0k := f(k). Then Tr(X) = 1 follows
from f(0) = 1/n, the edge constraints on X follow from the edge constraints on f , and since the eigenvalues

of X are the Fourier coefficients {f̂(k) : k ∈ Zn}, we see that X � 0 follows from f̂ ≥ 0. Furthermore,∑n−1
j=0

∑n−1
k=0 Xjk = n

∑n−1
k=0 f(k). Since every feasible point in ϑLLP(G) can be mapped to a feasible point in

ϑL(G) with the same value, we conclude that ϑLLP(G) ≤ ϑL(G).

For the other direction, fix any X(0) that is feasible in ϑL(G), and for each � ∈ Zn, consider the matrix

X(�) ∈ Rn×n defined by X
(�)
jk := X

(0)
j+�,k+�. Then X(�) is also feasible in ϑL(G) with the same value:

n−1∑
j=0

n−1∑
k=0

X
(�)
jk =

n−1∑
j=0

n−1∑
k=0

X
(0)
j+�,k+� =

n−1∑
j=0

n−1∑
k=0

X
(0)
jk .

Averaging over this orbit produces a circulant matrix X := 1
n

∑n−1
�=0 X(�) that, by convexity, is also feasible in

ϑL(G), and that, by linearity, has the same value. Take f : Zn → R defined by f(k) := X0k to obtain a feasible
point in ϑLLP(G) with the same value. This implies the reverse inequality ϑL(G) ≤ ϑLLP(G).

Arguing similarly establishes the following.

Proposition 3. Let G be any circulant graph with vertex set Zn. Then

ϑLS(G) = max n
n−1∑
k=0

f(k) s.t. f(0) =
1

n
, f(k) = 0 ∀{0, k} ∈ E(G), f̂ ≥ 0, f ≥ 0. (5)

We used the linear program formulations in Propositions 2 and 3 to compute the values of L(p) and LS(p)
reported in Figure 1 and Table 1.



4. DUAL CERTIFICATES

In this section, we derive the dual program of ϑLS(G) for arbitrary circulant graphs G. Since every feasible point
of the dual program of ϑLS(Lp) gives an upper bound on ω(Gp), this section might allow one to prove a new
closed-form upper bound on ω(Gp). Recall that for a closed convex cone K ⊆ Rn, its dual cone is given by

K∗ := {y ∈ Rn : 〈x, y〉 ≥ 0 for all x ∈ K}.

Given closed convex cones K,M ⊆ Rn, the primal program

max 〈c, x〉 s.t. b−Ax ∈ K, x ∈M (6)

has the corresponding dual program

min 〈b, y〉 s.t. AT y − c ∈M∗, y ∈ K∗.

We will use the above formulation to derive a relatively clean expression for the dual program of (5).

Proposition 4. Let G be any circulant graph with vertex set Zn. Then

ϑLS(G) = min f(0) s.t. f(k) = 0 ∀{0, k} ∈ E(G), f ≥ g + 1, ĝ ≥ 0.

Proof. By strong duality, it suffices to show that the right-hand side is the dual program of (5). To this end, we
first write the linear program (5) in the form (6). We identify functions f : Zn → R with column vectors in Rn

indexed by Zn. Let P denote the projection operator defined by

(Pf)(k) :=

{
0 if {0, k} ∈ E(G)

f(k) otherwise.

Then f(0) = 1
n and f(k) = 0 for every {0, k} ∈ E(G) if and only if Pf = 1

nδ0. Next, let R denote the reversal
operator defined by (Rf)(k) := f(−k), and let C denote the cosine transform defined by

(Cf)(k) :=
n−1∑
j=0

f(j) cos(2πjk/n).

Then f ∈ Rn satisfies f̂ ≥ 0 if and only if Rf = f and Cf ≥ 0. Overall, (5) is equivalent to

ϑLS(G) = max 〈n1, f〉 s.t.

 1
nδ0
0
0

−
 P
I −R
−C

 f ∈ {0 ∈ Rn} × {0 ∈ Rn} ×Rn
≥0, f ∈ Rn

≥0,

where R≥0 denotes the set of nonnegative real numbers. Since ({0 ∈ Rn}×{0 ∈ Rn}×Rn
≥0)∗ = Rn×Rn×Rn

≥0,

the dual program is given by following, written in terms of dual variables y = (u, v, w) ∈ (Rn)3:

min
1

n
u(0) s.t. Pu+ (I −R)v − Cw − n1 ∈ Rn

≥0, w ∈ Rn
≥0. (7)

Since G is a circulant graph, we see that {0, k} ∈ E(G) precisely when {0,−k} ∈ E(G), and so RP = PR. Also,
RC = CR. We apply these facts to observe that (u, v, w) is feasible in (7) if and only if (Ru,−v,Rw) is feasible
in (7), and with the same value. Indeed, R maps Rn

≥0 to itself, and

P (Ru) + (I −R)(−v)− C(Rw)− n1 = R(Pu+ (I −R)v − Cw − n1),
1

n
(Ru)(0) =

1

n
u(0).

By averaging these two feasible points, we obtain the following equivalent program:

min
1

n
u(0) s. t. Ru = u, Rw = w, Pu ≥ Cw + n1, w ≥ 0. (8)

At this point, we may relax the constraint Ru = u since Cw+ n1 is even. Also, w ∈ Rn satisfies Rw = w if and
only if Cw = ŵ. Changing variables to f = 1

nPu and g = 1
n ŵ then gives the result.



As such, given a circulant graph G, any (f, g) that is feasible in the corresponding linear program in Propo-
sition 4 yields an upper bound on ϑLS(G). Recalling (3), we now specialize to the case of Paley graphs:

Proposition 5. Given a prime p ≡ 1 (mod 4), let α denote a generator of the multiplicative group Qp of
quadratic residues modulo p, and set n = (p− 1)/2. Suppose that f, g : Zn → R together satisfy

(i) f(k) = 0 for every k ∈ Zn with αk − 1 ∈ Qp,

(ii) f ≥ g + 1, and

(iii) ĝ ≥ 0.

Then ω(Gp) ≤ f(0) + 1.

Arguing similarly to Proposition 4 gives a comparable dual program for ϑL(G). In fact, the resulting program
corresponds to adding the constraint f = g+ 1 to the program in Proposition 4. Considering the numerical data
in Table 1, we expect these bounds to match frequently.

5. FUTURE WORK

In this paper, we used linear programming to find numerical upper bounds on ω(Gp) that usually match and
sometimes improve on the Hanson–Petridis bound bHP(p)c. Our experiments suggest the following.

Conjecture 6. For infinitely many primes p ≡ 1 (mod 4), it holds that LS(p) < bHP(p)c.

With appropriate number-theoretic functions, one might use Proposition 5 to prove Conjecture 6. This pursuit
of “magic functions” bears some resemblance to recent progress in sphere packing; see Cohn23 for a survey. We
note that Gvozdenović, Laurent and Vallentin22 introduced a semidefinite programming hierarchy that gives
numerical bounds on ω(Gp) that are sharper than HP(p) in the range p ≤ 809. However, these semidefinite
programs are still rather slow. For our linear programming computations, we used GLPK within SageMath.24

We believe that our code could be sped up significantly by incorporating the fast Fourier transform,25 possibly
giving new bounds on ω(Gp) for significantly larger primes p.
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Table 1. Comparison of ω(Gp) with the upper bounds HP(p),L(p) and LS(p) for the 63 primes p ≡ 1 (mod 4) with p < 3000
and bHP(p)c 6= bLS(p)c. For the 148 unlisted primes p ≡ 1 (mod 4) with p < 3000, we observed bHP(p)c = bLS(p)c.

p ω(Gp) HP(p) L(p) LS(p)

61 5 6.0000 5.9009 5.8886

109 6 7.8655 8.0070 8.0018

173 8 9.7871 10.3165 10.2339

281 7 12.3427 11.9023 11.8916

293 8 12.5934 13.1270 13.1145

353 9 13.7759 14.4454 14.3045

373 8 14.1473 13.7229 13.6952

421 9 15.0000 15.0253 14.9892

457 11 15.6079 16.3859 16.3503

541 11 16.9393 17.4222 17.3589

673 11 18.8371 19.0862 19.0251

733 11 19.6377 20.3389 20.1800

757 11 19.9487 20.1284 20.0668

761 11 20.0000 20.0297 19.9851

773 11 20.1532 19.8771 19.8033

797 9 20.4562 20.1191 19.9988

821 12 20.7546 21.3005 21.1115

829 11 20.8531 21.1864 21.0711

877 13 21.4344 22.2406 22.0372

997 13 22.8215 23.5064 23.4550

1009 11 22.9555 23.2465 23.0941

1013 11 23.0000 23.0713 22.8647

1033 11 23.2211 23.0159 22.9210

1093 12 23.8720 24.2033 24.1343

1181 12 24.7951 25.2438 25.1739

1289 15 25.8821 26.4445 26.4064

1373 14 26.6964 27.3171 27.1684

1481 15 27.7075 28.5703 28.3694

1489 13 27.7809 28.3456 28.1480

1597 13 28.7533 29.0803 29.0021

1613 14 28.8945 29.2067 29.1143

1621 13 28.9649 29.8909 29.7006

p ω(Gp) HP(p) L(p) LS(p)

1697 13 29.6247 30.1311 30.0687

1709 13 29.7276 30.6383 30.5067

1721 13 29.8300 30.2173 30.1523

1801 14 30.5042 31.3490 31.2143

1949 14 31.7130 32.1343 32.0719

1973 13 31.9046 32.3272 32.1354

2017 13 32.2530 31.9977 31.8802

2029 14 32.3473 33.3049 33.0499

2081 14 32.7529 33.5041 33.3159

2089 14 32.8149 33.3957 33.1789

2113 13 33.0000 32.9818 32.6315

2129 13 33.1228 32.8782 32.7089

2141 13 33.2147 32.7483 32.6685

2213 15 33.7603 34.5759 34.3880

2221 15 33.8204 34.5585 34.4287

2281 17 34.2676 35.2916 35.1050

2309 15 34.4743 35.2676 35.0910

2333 14 34.6504 35.1840 35.0862

2357 15 34.8256 35.2750 35.0886

2477 15 35.6888 36.4402 36.2304

2549 15 36.1966 36.0154 35.9006

2609 15 36.6144 37.5661 37.2694

2617 15 36.6697 37.2249 37.0475

2657 15 36.9452 37.9459 37.7595

2677 15 37.0821 37.1579 36.9388

2789 15 37.8397 38.6001 38.3378

2797 15 37.8932 38.5759 38.4791

2837 15 38.1597 38.1846 37.9661

2861 16 38.3186 37.8309 37.6733

2897 15 38.5559 39.4579 39.1647

2909 15 38.6346 39.2540 39.0498
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