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ABSTRACT

The Lovész theta number is a semidefinite programming bound on the clique number of (the complement of) a
given graph. Given a vertex-transitive graph, every vertex belongs to a maximal clique, and so one can instead
apply this semidefinite programming bound to the local graph. In the case of the Paley graph, the local graph is
circulant, and so this bound reduces to a linear programming bound, allowing for fast computations. Impressively,
the value of this program with Schrijver’s nonnegativity constraint rivals the state-of-the-art closed-form bound
recently proved by Hanson and Petridis. We conjecture that this linear programming bound improves on the
Hanson—Petridis bound infinitely often, and we derive the dual program to facilitate proving this conjecture.
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1. INTRODUCTION

The Paley graph G, is defined for every prime p =1 (mod4) with vertex set F,, = {0,1,...,p — 1}, the finite
field of p elements, and an edge between =,y € F,, if and only if 2 — y € @, where

Q, := {z € F, : there exists y € F,, such that x = y*}

is the multiplicative subgroup of quadratic residues modulo p. The Paley graphs provide a family of quasi-random
graphs (see Chung, Graham and Wilson!) with several nice properties (see §13.2 in Bollobas?). For instance, the
Paley graph G,, is a so-called strongly regular graph in which every vertex has (p — 1)/2 neighbors, every pair
of adjacent vertices share (p — 5)/4 common neighbors, and every pair of non-adjacent vertices share (p — 1)/4
common neighbors. The Paley graph of order p can be used to construct an optimal packing of lines through
the origin of R®*1/2 known as the corresponding Paley equiangular tight frame,®® and these packings have
received some attention in the context of compressed sensing.% 7

For a simple, undirected graph G = (V, E), we say C C V is a clique if every pair of vertices in C' is adjacent,
and we define the clique number of G, denoted by w(G), to be the size of the largest clique in G. It is a
famously difficult open problem to determine the order of magnitude of w(G,) as p — oco. The best known
closed-form bounds that are valid for all primes p =1 (mod4) are given by

log(p) < w(Gy) < \/2p—21+1.

(14 o) o]

(1)
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The lower bound in (1) is due to Cohen.® The same lower bound, with a weaker o(1) term, is actually valid
for any self-complementary graph. Recall that the Ramsey number R(s) is the least integer such that every
graph on at least R(s) vertices contains either a clique of size s or a set of s pairwise non-adjacent vertices. Then
for any self-complementary graph G on at least R(s) vertices, it holds that w(G) > s. Together with the classical
upper bound of R(s) < (258:12) by Erdés and Szekeres,” it is straightforward to establish the lower bound in (1).
The work of Graham and Ringrose'? on least quadratic non-residues shows that there exists ¢ > 0 such that
w(Gp) > clog(p) logloglog(p) for infinitely many primes p, and so the lower bound in (1) is not sharp in general.

The upper bound in (1) was proved very recently by Hanson and Petridis!! using a clever application of
Stepanov’s polynomial method. This improved upon the previously best known closed-form upper bounds of
w(Gp) < v/p—4, proved by Maistrelli and Penman,'? and w(G,) < \/p — 1, proved to hold for a majority of
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primes p = 1 (mod 4) by Bachoc, Matolcsi and Ruzsa.!® Numerical data for primes p < 10000 by Shearer'# and
Exo0'® suggests that there should be a polylogarithmic upper bound on w(G,), but it remains an open problem
to determine whether there exists € > 0 such that w(G)) < p'/2~¢ infinitely often.

This open problem bears some significance in the field of compressed sensing. In particular, Tao'® posed the
problem of finding an explicit family {®,} of m x n matrices with m = m(n) € [0.01n,0.99n] and n — oo for
which there exists a > 0.51 such that for every n, it holds that

0.5-[lz]l} < [[@nzll3 < 1.5- 3

for every x € R™ with at most n® nonzero entries. Such matrices are known as restricted isometries. Families
of restricted isometries are known to exist for every a < 1 by an application of the probabilistic method, and
yet to date, the best known explicit construction'” ¥ takes a < % + 10723, It is conjectured” that the Paley
equiangular tight frame behaves as a restricted isometry for a larger choice of «, but proving this is difficult, as
it would imply the existence of ¢ > 0 such that w(G,) < p'/?27¢ for all sufficiently large p. As partial progress
along these lines, the authors recently established that the singular values of random subensembles of the Paley
equiangular tight frame obey a Kesten-McKay law.'?

The goal of this paper is to describe a promising approach to find new upper bounds on the clique numbers of
Paley graphs. In Section 2, we recall a semidefinite programming approach of Lovasz?? that yields bounds on the
clique numbers of arbitrary graphs. By passing to an appropriate subgraph of G, we show that this produces
numerical bounds on w(G,) that usually coincide with the Hanson—Petridis bound and sometimes improve upon
it. In Section 3, we show how to compute these bounds by linear programming, extending the range in which we
are able to produce computational evidence. In Section 4, we derive the relevant dual program and summarize
how one might use weak duality to prove a new bound on w(G)) by constructing appropriate number-theoretic
functions; see Proposition 5. We then conclude with suggestions for future work in this direction.

2. SEMIDEFINITE PROGRAMMING BOUNDS

For a graph G = (V, E), its complement G is the graph on vertices V with edges (‘2/) \ E. An isomorphism
between graphs G = (V, E) and G’ = (V', E’) is a bijection ¢: V — V' such that F contains an edge between
v,w € E if and only if E’ contains an edge between ¢(v), (w) € V', and an automorphism is an isomorphism
between G and itself. When G is isomorphic to G, we say that G is self-complementary. We say G = (V, E) is
vertex-transitive if, for every pair of vertices v, w € V, there exists an automorphism ¢ of G with ¢(v) = p(w).

In the sequel, we label the vertices of every graph G on n vertices by Z,, = {0,1,...,n — 1} and similarly
index the rows and columns of matrices X € R"*™ by Z, with addition considered modulo n. The Lovasz
theta number for a graph G on n vertices is defined by the semidefinite program

n—1ln—1
IL(G) = max > Y Xy st TrX =1, X;, =0 V{jk} € E(G), X =0.
=0 k=0

Lovész?° proved the following.

Proposition 1. Let G be any graph on n vertices.

(i) w(G) < IL(G).
(ii) If G is vertez-transitive, then 91,(G)V1(G) = n.

Proof. For (i), suppose C C Zj, is a maximal clique in G, consider the indicator function 1¢: Z, — {0,1} as
a column vector in R"™ indexed by Z,, and put X := ﬁlclg. Then X is feasible in the program 9, (G).
Counting the nonzero entries of X then gives

n—1n—1

w(G) = Z ZXjk S ﬂL(é)

=0 k=0

The proof of (ii) is more involved; see Theorem 8 in Lovész.?’ O



As a consequence of Proposition 1, every self-complementary vertex-transitive graph G on n vertices satisfies
w(G) < UL(G) = y/n. This is enough to recover the well-known bound of w(G)) < /p. Indeed, to show that G,
is self-complementary, fix any nonzero quadratic non-residue s € Fj \ @, and consider the bijection u: F), — F,
defined by p(x) := sz. Then for all v,w € F,, we have v —w € Q,, if and only if p(v) — p(w) = s(v — w) € Q).
That is, p is an isomorphism between G, and ép. To show that G, is vertex-transitive, let a,b € F,, and consider
the map 7: F, — F, defined by 7(z) := x — a + b. Clearly 7(a) = b. To see that 7 is an automorphism of G,,
it suffices to observe that for any two vertices v,w € F,, 7(v) — 7(w) = v — w. Hence, w(G,) < 9.(Gp) = /P
follows from Proposition 1.

We can improve upon this bound by focusing our attention to the neighborhood of 0 in G, namely, the set
Qp of quadratic residues. Let L, denote the subgraph of G, induced by @Q,. Since G, is vertex-transitive, there
exists a maximal clique of G}, containing the vertex 0. In particular, w(L,) = w(G,) — 1. By Proposition 1(i),
we conclude that

w(Gp) <IL(Ly) + 1. (2)

For a graph G on n vertices, Schrijver?! proposed strengthening 91,(G) to

n—1n—1
Iis(G) == max Y > Xy st. TrX =1, Xp=0 V{jk} €EG), X=0, X>0,
7=0 k=0

where X > 0 denotes entrywise nonnegativity. Clearly ¥1,5(G) < 91,(G), and the proof of Proposition 1(i) further
establishes establishes w(G) < d1,5(G). This strengthening leads to the bound

w(Gp) < Vrs(Ly) + 1. (3)
To compare the bounds (2) and (3) to the Hanson—Petridis bound (1), we set

V2p—1+1
HP(p) = pfa

L(p) :=9L(L,) + 1, LS(p) :== drs(Ly) + 1,

and we compare these in the range p < 3000 in Figure 1 and Table 1. We observe |L(p)] = |LS(p)| = |HP(p)| for
most primes in this range, providing an equivalent upper bound on w(G,). Interestingly, |[LS(p)| = |[HP(p)] —1
for 17 values of p < 3000.

Gvozdenovié, Laurent and Vallentin?? used semidefinite programming to compute several values of L(p),
which in their notation is N4 (TH(P,)). For instance, they compute L(809) in 4.5 hours on a 3GHz processor
with 1GB of RAM. They further introduced the so-called block-diagonal hierarchy of semidefinite programs,
which allowed them to compute sharper bounds than L(p) somewhat more efficiently in the range p < 809. In
order to compute numerical values of L(p) and LS(p) efficiently, we leverage the symmetry of L, to reformulate
both 9J1,(L,) and 9ps(L,) as linear programs in the next section. Using this approach on a 3.4GHz processor
with 8GB of RAM, we compute L(809) in under 20 seconds.

3. REDUCTION TO LINEAR PROGRAMMING

Recall that a matrix X € R"*" is circulant if X1 11 = X, for all j,k € Z,,. A graph G is said to be circulant
if there exists a labeling of its vertices such that its adjacency matrix is circulant. We note that for every prime p,
the graph L, is circulant. Indeed, select a generator « of the mulitplicative subgroup @, and order the elements
of Qp as 1,a,...,a" 1. Then L, is circulant since o/ — ak e Q, if and only if o/t — aktl ¢ Qp. Since the
complement of a circulant graph is also circulant, it holds that L, is circulant as well.

Schrijver?! showed that the semidefinite programming formulations of both ¥, and ¥1,g can be reduced to
linear programs for certain classes of graphs. In order to state one such linear programming formulation, we take
the Fourier transform of f: Z,, — C to be the function f: Z, — C defined by

n—1

k) = f(j)e 2ok,

J=0
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Figure 1. Comparison of LS(p) and HP(p) for the 211 primes p = 1 (mod4) with p < 3000. For 60 such primes,
LS(p) < HP(p). For 17 such primes, LS(p) < |HP(p)]. (left) The blue points (p,LS(p)) appear to concentrate around
the red curve y = HP(p). (right) If a point (p, LS(p) — HP(p)) lies below the red curve y = |HP(p)| — HP(p), then
LS(p) < [HP(p)], in which case we plot the point as a circle.

Proposition 2. Let G be any circulant graph with vertex set Z,,. Then

IL(G) = max nif(k) s.t. f(O):%, f(k)=0 V{0,k} € E(G), [=>0. (4)

Proof. Let YLp(G) denote the right-hand side of (4). First, we show that Jppp(G) < U1,(G). Take any feasible
f in the program Jpp(G) and consider the circulant matrix X defined by Xox := f(k). Then Tr(X) = 1 follows
from f(0) = 1/n, the edge constraints on X follow from the edge constraints on f, and since the eigenvalues
of X are the Fourier coefficients {f(k:) : k€ Z,}, we see that X > 0 follows from f > 0. Furthermore,
> Xik =nd p, éf( ). Since every feasible point in Jrpp(G) can be mapped to a feasible point in
19L(G) Wlth the same value, we conclude that Jppp(G) < J(G).

For the other direction, fix any X that is feasible in I1(G), and for each ¢ € Z,, consider the matrix
X® € R™™™ defined by X(Z) = x Then X is also feasible in ¥p,(G) with the same value:

G kAL
n—1ln—1 n—1ln—1 n—1ln—1
0 (0) (0)
PIDIR D DY IR SEAWED DI ¢S
j=0 k=0 j=0 k=0 j=0 k=0
Averaging over this orbit produces a circulant matrix X := 1 Zz o L x® that, by convexity, is also feasible in
YL(G), and that, by linearity, has the same value. Take f: Z,, — R defined by f(k) := X to obtain a feasible
point in ﬂLLp(G) with the same value. This implies the reverse inequality V,(G) < dLLp(G). O

Arguing similarly establishes the following.

Proposition 3. Let G be any circulant graph with vertex set Z,,. Then

o~

, f(k)=0 Y{0,k} € E(G), f=0, f=0. (5

1
n

Ys(G) = max nif(k) s.t. f(0) =

We used the linear program formulations in Propositions 2 and 3 to compute the values of L(p) and LS(p)
reported in Figure 1 and Table 1.



4. DUAL CERTIFICATES

In this section, we derive the dual program of ¥1,5(G) for arbitrary circulant graphs G. Since every feasible point

of the dual program of ¥1s(L,) gives an upper bound on w(G,), this section might allow one to prove a new
closed-form upper bound on w(G)). Recall that for a closed convex cone K C R", its dual cone is given by

K*:={yeR":(z,y) >0forall z € K}.
Given closed convex cones K, M C R", the primal program
max {c,x) st. b—Are K, xeM (6)
has the corresponding dual program
min (b,y) st. ATy—ce M*, yecK*
We will use the above formulation to derive a relatively clean expression for the dual program of (5).

Proposition 4. Let G be any circulant graph with vertex set Z,,. Then

Js(G) = min f(0) st f(k)=0 V{0,k} € E(G), f>g+1, g=>0.

Proof. By strong duality, it suffices to show that the right-hand side is the dual program of (5). To this end, we
first write the linear program (5) in the form (6). We identify functions f: Z,, — R with column vectors in R™
indexed by Z,. Let P denote the projection operator defined by

[ 0 if{0,k} e E@G)
(Pf)(k) := { f(k) otherwise.

Then f(0) = L and f(k) = 0 for every {0,k} € E(G) if and only if Pf = 15,. Next, let R denote the reversal
operator defined by (Rf)(k) := f(—k), and let C' denote the cosine transform defined by

n—1

(CH(K) =" £(j) cos(2mjk/n).

=0

Then f € R™ satisfies > 0 if and only if Rf = f and C'f > 0. Overall, (5) is equivalent to

1
15, P
Yps(G) = max (nl,f) s.t. 0 || I-R |fe{oeR"}x{0eR"} xRL, feRL,
0 -C

where R>o denotes the set of nonnegative real numbers. Since ({0 € R"} x {0 € R"} xRZ)* = R" x R" x RY,,
the dual program is given by following, written in terms of dual variables y = (u,v,w) € (R™)3:

1
min  —u(0) st. Pu+(I—Rjv—Cw—nleRY, weRY,. (7)
n > >
Since G is a circulant graph, we see that {0,k} € E(G) precisely when {0, —k} € E(G), and so RP = PR. Also,
RC = CR. We apply these facts to observe that (u,v,w) is feasible in (7) if and only if (Ru, —v, Rw) is feasible

in (7), and with the same value. Indeed, R maps RY, to itself, and

P(Ru) + (I — R)(—v) — C(Rw) —nl = R(Pu+ (I — Rjv — Cw — n1), %(Ru)(o) - %U(O).

By averaging these two feasible points, we obtain the following equivalent program:

1
min  —u(0) s.t. Ru=wu, Rw=w, Pu>Cw+nl, w>0. (8)
n
At this point, we may relax the constraint Ru = u since Cw 4 nl is even. Also, w € R" satisfies Rw = w if and

only if Cw = w. Changing variables to f = %Pu and g = @ then gives the result. O



As such, given a circulant graph G, any (f,g) that is feasible in the corresponding linear program in Propo-
sition 4 yields an upper bound on J1,5(G). Recalling (3), we now specialize to the case of Paley graphs:

Proposition 5. Given a prime p = 1 (mod4), let o denote a generator of the multiplicative group @Q, of
quadratic residues modulo p, and set n = (p — 1)/2. Suppose that f,q: Z, — R together satisfy

(i) f(k) =0 for every k € Z,, with oF —1 € Q,,
(i) f>g+1, and

(iii) § > 0.

Then w(G,) < f(0) + 1.

Arguing similarly to Proposition 4 gives a comparable dual program for ¥,(G). In fact, the resulting program
corresponds to adding the constraint f = g+ 1 to the program in Proposition 4. Considering the numerical data
in Table 1, we expect these bounds to match frequently.

5. FUTURE WORK

In this paper, we used linear programming to find numerical upper bounds on w(G,) that usually match and
sometimes improve on the Hanson—Petridis bound |HP(p)]. Our experiments suggest the following.

Conjecture 6. For infinitely many primes p =1 (mod4), it holds that LS(p) < |HP(p)].

With appropriate number-theoretic functions, one might use Proposition 5 to prove Conjecture 6. This pursuit
of “magic functions” bears some resemblance to recent progress in sphere packing; see Cohn?? for a survey. We
note that Gvozdenovié, Laurent and Vallentin?? introduced a semidefinite programming hierarchy that gives
numerical bounds on w(G),) that are sharper than HP(p) in the range p < 809. However, these semidefinite
programs are still rather slow. For our linear programming computations, we used GLPK within SageMath.?*
We believe that our code could be sped up significantly by incorporating the fast Fourier transform,?® possibly
giving new bounds on w(G),) for significantly larger primes p.
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Table 1. Comparison of w(G,) with the upper bounds HP(p), L(p) and LS(p) for the 63 primes p = 1 (mod 4) with p < 3000
and [HP(p)] # |LS(p)]. For the 148 unlisted primes p = 1 (mod 4) with p < 3000, we observed |HP(p)| = |LS(p)].

p w(Gp)  HP(p) L(p) LS(p) p w(Gp)  HP(p) L(p) LS(p)

61 5  6.0000 5.9009 5.8886 1697 13 29.6247  30.1311  30.0687
109 6 7.8655  8.0070  8.0018 1709 13 29.7276  30.6383  30.5067
173 8 9.7871  10.3165  10.2339 1721 13 29.8300 302173  30.1523
281 7 12.3427 11.9023 11.8916 1801 14 30.5042  31.3490  31.2143
293 8 12.5934 13.1270  13.1145 1949 14 31.7130 32.1343  32.0719
353 9 13.7759  14.4454  14.3045 1973 13 31.9046  32.3272  32.1354
373 8  14.1473 13.7229 13.6952 2017 13 32.2530 31.9977 31.8802
421 9  15.0000 15.0253 14.9892 2029 14 32.3473  33.3049  33.0499
457 11 15.6079  16.3859  16.3503 2081 14 32.7529  33.5041  33.3159
541 11 16.9393  17.4222  17.3589 2089 14 32.8149  33.3957  33.1789
673 11 18.8371  19.0862  19.0251 2113 13 33.0000 32.9818 32.6315
733 11 19.6377  20.3389  20.1800 2129 13 33.1228 32.8782 32.7089
757 11 19.9487  20.1284  20.0668 2141 13 33.2147 32.7483 32.6685
761 11 20.0000  20.0297 19.9851 2213 15 33.7603  34.5759  34.3880
773 11 20.1532 19.8771 19.8033 2221 15 33.8204  34.5585  34.4287
797 9 204562 20.1191 19.9988 2281 17 34.2676  35.2916  35.1050
821 12 20.7546  21.3005  21.1115 2309 15 34.4743 352676  35.0910
829 11 20.8531  21.1864  21.0711 2333 14 34.6504 351840  35.0862
877 13 21.4344 222406  22.0372 2357 15 34.8256  35.2750  35.0886
997 13 22.8215  23.5064  23.4550 2477 15 35.6888  36.4402  36.2304
1009 11 22.9555 232465  23.0941 2549 15 36.1966  36.0154 35.9006
1013 11 23.0000 23.0713 22.8647 2609 15 36.6144  37.5661  37.2694
1033 11 232211  23.0159 22.9210 2617 15 36.6697  37.2249  37.0475
1093 12 23.8720 24.2033  24.1343 2657 15 36.9452  37.9459  37.7595
1181 12 24.7951 252438  25.1739 2677 15 37.0821  37.1579 36.9388
1289 15 25.8821  26.4445  26.4064 2789 15 37.8397  38.6001  38.3378
1373 14 26.6964 27.3171  27.1684 2797 15 37.8932  38.5759  38.4791
1481 15 27.7075 28.5703  28.3694 2837 15 381597  38.1846 37.9661
1489 13 27.7809  28.3456  28.1480 2861 16  38.3186 37.8309 37.6733
1597 13 28.7533  29.0803  29.0021 2897 15 38.5559  39.4579  39.1647
1613 14 28.8945 292067  29.1143 2909 15 38.6346  39.2540  39.0498

1621

[
w

28.9649  29.8909  29.7006
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