

“FINAL PREPRINT PRIOR TO PUBLICATION”

## Primed to Cue

André Lindsey\*<sup>1,2</sup>, Lisa Bunker<sup>3</sup>, Jennifer Mozeiko<sup>1,4</sup>,  
Carl Coelho<sup>1,4</sup>

Speech, Language, and Hearing Sciences Department<sup>1</sup>  
University of Connecticut  
Storrs, Connecticut

Department of Physical Medicine & Rehabilitation<sup>2</sup>  
Northwestern University, Chicago, IL, United States

Department of Neurology, Johns Hopkins University School of Medicine<sup>3</sup>, Baltimore, MD, United States

Connecticut Institute for Brain and Cognitive Sciences<sup>4</sup>  
University of Connecticut  
Storrs, Connecticut

Keywords: Priming, Cueing, Acquired Brain Injury, Cognitive-Communication, Aphasia

45 **Abstract**

46 The behavioral effects of lexical priming are well studied in the cognitive sciences.  
47 Clinical use of the term and widespread implementation of priming based behavioral  
48 interventions has remained limited. This is despite the fact that response-contingent cueing, a  
49 behavioral intervention technique used during many cognitive-linguistic interventions, is  
50 *grounded* in theories of priming research. The aim of this manuscript is to connect behavioral  
51 performance changes observed following priming with those noted following cueing, providing a  
52 theoretical rationale for the therapeutic use of both priming and cueing in language and cognitive  
53 interventions. In this review, we establish a conceptual basis for how both primes and cues serve  
54 to pre-engage the neural system by triggering the retrieval of linked conceptual knowledge,  
55 resulting in faster and more accurate responses. Differences between the two (primes and cues)  
56 have been linked to timing and conscious intentional engagement, though these distinctions are  
57 often task dependent. Additionally, this paper will provide evidence of the clinical utility of  
58 priming. Studies of priming in adults with acquired brain injuries are discussed and clinical  
59 interventions based on theories of priming are examined. Furthermore, the present work will  
60 briefly detail the inhibitory effects of priming to aid clinicians and researchers in deciding how to  
61 pair primes and cues with intended retrieval targets. In summation, the present work is intended  
62 to bridge two related fields providing both theoretical and clinical insight with respect to the use  
63 of primes and cues.

64

65

66

67

68 **Introduction**

69        Cognitive-linguistic interventions are intended to both re-engage and facilitate recovery  
70    of a damaged neural system. Interventions based on principles of experience-dependent plasticity  
71    use systematic amounts of focused stimulation paired with repetition and practice in differing  
72    contexts to aid individuals who have been hindered by neurological injury or disease (Kleim &  
73    Jones, 2008; Thompson, 2000). A primary component of many language and cognitive  
74    interventions is response-contingent cueing in which a clinician provides a tactile, visual, or  
75    verbal stimulus to enable a client to produce a target reply or behavior. Clinicians use cues as a  
76    means to activate targeted conceptual and phonological information, subsequently triggering the  
77    retrieval process. Cues are faded out as production of target behaviors and responses becomes  
78    routine. Investigations of the effectiveness of cueing have revealed that cues are beneficial,  
79    aiding linguistic processes such as word retrieval (Cameron, Wambaugh, Wright, & Nessler,  
80    2006; Macoir, Leroy, Routhier, Auclair-Ouellet, Houde, & Laforce, 2015; Wright, Marshall,  
81    Wilson, & Page, 2008). While cueing is a generally understood and accepted practice across a  
82    variety of disciplines, priming—a theoretically similar yet distinct concept—is not as well  
83    known or understood.

84        Priming is a complex term that refers to both a technique of facilitation and, relatedly, a  
85    form of implicit memory. As a facilitatory technique, priming can occur consciously or  
86    subconsciously when one stimulus is presented to engage or initiate cognitive processes prior to  
87    the presentation of a second stimulus, from which some type of response is elicited (e.g., lexical  
88    retrieval and subsequent naming of the object). The stimulus shown prior to the target is referred  
89    to as the prime (See Figure 1). Presentation of the prime is done to bring information necessary  
90    for completion of a target response to a point of heightened cognitive awareness or activation  
91    (Meyer & Schvaneveldt, 1971; Tulving & Schacter, 1990; Schacter, 1992). This heightened  
92    cognitive awareness/activation results in faster processing and/or accurate selection of the

93 desired response when the target stimulus is presented (Meyer & Schvaneveldt, 1971; Tulving &  
94 Schacter, 1990; Schacter, 1992). A primed lexical item or object, for example, is an entity that is  
95 readily available and active because it was previously retrieved or conceptually situated near a  
96 target that was recently accessed (Holocomb, 1993; Neely, 1977; Discussed in detail in the  
97 section: Theoretical Foundations for Priming). Similarly, in terms of implicit memory, priming  
98 refers to information that was recently acquired that alters behavioral performance without  
99 conscious retrieval (Schacter, 1992; Schacter, Chiu, & Oschsner; 1993).

100 {Insert Figure 1}

101

102 The goal of the present work is to examine priming in conjunction with, and in  
103 comparison to, cueing, with the intent of providing clinicians with a theoretical and functional  
104 understanding of these two related, yet distinct concepts. Clinical cueing mirrors experimental  
105 priming in many ways with the primary distinctions related to timing of presentation, type of  
106 response requested, and the facilitation of conscious cognitive engagement. In this review, we  
107 will examine the use of cues and primes and their influence on adults who have an acquired brain  
108 injury. We will review research of neurotypical adults as well as adults with acquired brain  
109 injury to understand how priming informs our understanding of retrieval processes. Lexical  
110 priming and word retrieval will be our primary areas of focus with other uses of priming  
111 reviewed succinctly as needed to support the current discussion. Though the focus of this paper  
112 is targeted toward adults with acquired neurogenic communication disorders, the techniques  
113 discussed are likely to be influential for multiple demographics. Our intent is to provide a  
114 theoretical basis for how cues and primes result in an enhanced behavioral response, while also  
115 discussing potential implications of using priming as a component in cognitive-linguistic  
116 interventions. Priming research can provide a template for structuring cues, providing clinicians

117 and researchers with increased insight regarding how to tailor cues to engage strategic processes  
118 supporting cognitive recovery post neurological injury.

119         This review is segmented into four main sections. The first provides a basic framework of  
120 priming including a brief discussion of two dominant theories of the underlying mechanisms  
121 governing how primes trigger conceptual activation influencing word retrieval. The second  
122 details cueing providing a theoretical motivation for the use of cueing in cognitive and linguistic  
123 interventions and linking cues with theories of priming. This section is intended to provide  
124 insight regarding cueing, while comparing and contrasting the use of cues during intervention to  
125 primes used in experimental research. The third section presents several language interventions  
126 that are directly linked to priming. The goal of this section is to provide insight into how priming  
127 has been incorporated into treatment protocols as a means to support word retrieval in  
128 neurologically impaired populations. The fourth section briefly details factors that can trigger  
129 inhibitory processes impeding response retrieval. The paper will conclude with a brief summary  
130 of findings before looking at future directions of research.

131

## 132 **Priming**

133         Priming is a form of implicit memory that is linked to semantic memory (Tulving &  
134 Schacter, 1990). Unlike explicit memory, which requires conscious retrieval of targeted  
135 information (Schacter, 1990), implicit memory is a change in performance resulting from newly  
136 acquired competence and can occur without conscious recollection of the enhancing experience  
137 (Schacter, 1992; Schacter, Chiu, & Oschsner; 1993). Research examining explicit and implicit  
138 processes require multiple assessments because of the distinct nature of each of these constructs.

139

## 140 **Implicit Responses.**

141 Tasks used to assess implicit memory examine changes in behavioral performance  
142 without necessitating conscious engagement of encoded information; whereas assessments of  
143 explicit (declarative) memory involve conscious recollection evidenced by an intentional  
144 (explicit) response (Roediger, 1990). Implicit memory is commonly examined using language  
145 processing tasks designed to elicit a priming effect (See Figure 1). Lexical decision, word-  
146 fragment, and word-stem completion tasks are among the most commonly used tools to assess a  
147 priming effect with faster and more accurate performances on these tasks taken as an indication  
148 of a strong connection between the prime and the word target (McNamara, 2005; Meyer &  
149 Schvaneveldt, 1971). During a lexical decision task, participants are asked to identify if test  
150 items (e.g., a string of letters or sounds) are words or non-words. The tests assess areas such as  
151 conceptual knowledge and lexical access. Response latencies are the primary dependent variable  
152 collected from these tasks and refer to the amount of time it takes to make a decision regarding  
153 the test stimuli. It is theorized that the amount of time taken to respond is directly related to the  
154 amount of time it takes to activate the targeted information to a threshold, indicating a decision  
155 has been made (Cree et al., 1999). As previously noted, response latencies are shorter and  
156 responses are more accurate when the presented prime and word target are associated or  
157 semantically related (Fischler, 1977; Meyer & Schvaneveldt, 1971).

158 As previously noted, word-stem and word fragment completion tasks are also widely  
159 used assessments of priming effectiveness. The general idea of each task is the same, though  
160 presentation is slightly different. Participants are shown a prime and then asked to complete a  
161 word when several of the letters have been provided to them. Prior exposure to a word is  
162 expected to result in an enhanced performance in completing that word or in producing a related  
163 word. This occurs spontaneously, without explicit intention to recall information that was  
164 presented earlier (McNamara, 2005; Roediger, 1990). Priming success is measured in the time

165 and accuracy with which participants complete each task. Both word-stem completion and word-  
166 fragment completion have been successful in identifying priming effects with direct comparison  
167 of the two indicating that both tasks similarly assess implicit memory processes (Roediger,  
168 Stadler, Weldon, & Riegler, 1992). A breakdown of implicit and explicit tasks is presented in  
169 Figure 2.

170 {Insert Figure 2}

171

172 Implicit effects are commonly assessed using a masked priming task to reduce the  
173 potential confounds that may occur due to participant awareness of the presence of a prime  
174 (McNamara, 2005). Masked priming is an experimental manipulation in which the prime is  
175 quickly presented prior to the presentation of the target, so that the prime does not register  
176 consciously (Forster & Davis, 1984). Though priming can occur visually or aurally, the former is  
177 more commonly deployed with tasks utilizing masking. In a visual masked priming task, the  
178 mask (frequently a set of hash marks) is presented, shielding the prime, so that study participants  
179 are unaware that a prime was presented. An example is detailed in Figure 3. Research has shown  
180 that awareness of a prime is not necessary for the prime to significantly influence behavioral  
181 performance (Draine & Greenwald, 1998; Naccache & Daheane; 2001; Van den Bussche, Van  
182 den Noortgate, & Reynvoet, 2009). The lack of dependence on conscious intentional awareness  
183 during retrieval is again a distinguishing feature of implicit memory. This is perhaps best  
184 demonstrated by research findings from individuals with amnesia for whom the effect of priming  
185 remains intact though explicit recall is impaired (e.g., word recognition for a previously  
186 presented list) (Cermak, Blackford, O'Connor, & Belch, 1988; Gabrieli et al., 1994; Graf,  
187 Squire, & Mandler, 1984). Priming can be linked with volitional engagement, particularly if  
188 individuals are intentionally trying to link paired stimuli to produce a response. This will be

189 examined later in the discussion of behavioral interventions that are based in theories of priming.  
190 For the moment, we will direct our attention towards various means of assessing behavioral  
191 responses.

192 {Insert Figure 3}

193

194 **Semantic and Repetition Priming.**

195 Primed responses can be elicited in several ways. We will focus on semantic and  
196 repetition priming because they most resemble methods used by clinicians when engaged in  
197 treatment to prompt a response from an individual with an acquired brain injury.

198 Semantic priming refers to the facilitation of a faster response to a target due to prior  
199 exposure to a stimulus that is related in meaning (Meyer & Schvaneveldt, 1971; Neely, 1977).  
200 Repetition priming consists of repeated exposure to a given target prior to acting on that target  
201 (Forster & Davis, 1984; Scarborough, Cortese, & Scarborough, 1977). Both types of priming  
202 result in faster more accurate responses when a participant is asked to identify or retrieve a target  
203 (Scarborough et al. 1977; See Figure 1). The more rapid response observed when an individual is  
204 presented with related concepts, such as during semantic priming, is considered an indication  
205 that there is a shared underlying conceptual representation supporting those concepts (Collins &  
206 Loftus, 1975; McNamara & Holbrook, 2003).

207 Items with similar meanings (e.g., fox, wolf, and coyote) are likely to have similar  
208 patterns of neural activation indicative of shared conceptual representation linked with their level  
209 of semantic similarity (Badre & Wagner 2002; McNamara, 2005; this is further detailed in our  
210 section on models of priming). It is important to note the level of conceptual activation (i.e., the  
211 extent of the heightened response) facilitated during semantic priming is not solely linked to  
212 meaning. The strength of the association between two items can influence the level of response

213 (Lucas, 2000). Closely linked concepts (e.g., dog and bone) result in a stronger facilitation of  
214 response, even if they do not share meaning. This indicates that association plays a major role in  
215 the underlying representation of conceptual knowledge (Lucas, 2000).

216 Repetition priming is theorized to engage the neural system in a manner similar to  
217 semantic priming. Presenting a stimulus several times reduces the cognitive resources needed to  
218 attend to it resulting in a faster response (Dobbins, Schiwyer, Verfaellie, & Schacter, 2004).  
219 Similar to semantic priming, repeated activation of the same concept likely allows that concept  
220 to stay at a heightened state of attunement. At the neural level, repeated exposure to a stimulus  
221 can result in the suppression of cells that are not necessary to analyze the target reducing cortical  
222 activation (Gotts, Chow, & Martin, 2012; Wiggs & Martin, 1998). Similar neural patterns have  
223 been reported following semantic priming (Rissman, Eliassen, & Blumstein, 2003). Decreased  
224 cortical activation has been viewed by many as support for cortical tuning in which neurons  
225 responsive to initial processing display a decreased response because they are no longer needed  
226 (Henson, 2003; Race, Shanker, & Wagner, 2009).

227 In summation, both semantic and repetition priming result in a better allocation of  
228 resources, aiding semantic processing. There are multiple theories of semantic processing and  
229 conceptual storage that provide insight into the underlying mechanism supporting priming. The  
230 next section will briefly introduce two: spreading activation theory and distributed processing.

231

## 232 **Theoretical Foundations for Priming**

### 233 **Spreading Activation Theory.**

234 Spreading activation models are commonly used as a means of representing semantic  
235 processing. They are intended to detail how underlying representations are activated as a result  
236 of exposure to content related to a given concept. Activation of this underlying information

237 triggers a neural cascade that spreads to related concepts (See Figure 4). The informational  
238 cascade is theorized as the reason why priming results in the faster identification of semantically  
239 related concepts. Multiple spreading activation models have been proposed with each based on  
240 the core idea that retrieval requires the activation of an internal representation that is connected  
241 to a related concept (McNamara, 2005; Plaut, 1995). We will discuss two of the more prominent  
242 models: a model by Collins and Loftus (1975), which helped establish spreading activation as a  
243 template for cognitive processing, and a model by Dell and colleagues (1997), which utilized  
244 spreading activation to account for production deficits in persons with aphasia.

245 Collins and Loftus (1975) developed one of the most prominent spreading activation  
246 models. In their model, concepts are represented by a network of nodes. Memory retrieval  
247 requires traveling across links that connect each of the various concepts. Concepts that are more  
248 semantically related have shorter links, with smaller subordinate concepts (e.g., rain, snow)  
249 connected to a larger overarching concept, the superordinate representation (e.g., weather). One  
250 of the driving factors of the model is that when a concept is activated, related concepts that are  
251 closely linked are also activated making them easier to retrieve. Activation of related concepts  
252 continues for a period diminishing in strength over time and distance. This model helped pave  
253 the way for later models that examined lexical retrieval in impaired populations.

254

255 {Insert Figure 4}

256

257 Dell and colleagues (1997) developed a model of lexical access. Using spreading  
258 activation theory, the model attempts to explain the error patterns produced by individuals with  
259 and without aphasia on a picture naming experiment. The model was parameterized utilizing data  
260 collected from 23 persons with aphasia and 60 neurotypical controls on the Philadelphia Naming

261 Test (Roach, Schwartz, Martin, & Grewal, 1996). The developed model is bidirectional and  
262 consists of three layers: semantic features, words, and phonemes. Five categories of naming  
263 errors were included in the model and were represented at the word level. The categories were as  
264 follows: semantic (e.g., 'van' for 'boat'), form (e.g., 'goat' or 'bone' for 'boat'), unrelated (e.g.,  
265 'leg' for 'boat'), a combination of semantic and form (e.g., 'float' for 'boat'), or a non-word (e.g.,  
266 'blut' for 'boat'). The bidirectional nature of the model links semantic features and phonemes  
267 enabling multiple routes to trigger activation of concepts.

268 At its core, Dell and colleagues' (1997) model of lexical access details how the  
269 conceptual representation of a word (referred to as a lemma) can be accessed and transformed  
270 into speech. All three layers of the model are active during production and the word that is most  
271 highly activated and grammatically appropriate is retrieved. Bidirectional spreading activation  
272 enables all three layers to be active simultaneously. Errors in the model occur when spreading  
273 activation triggers the wrong semantic or phonological representation. In order to enable the  
274 model to produce error patterns anticipated from persons with aphasia, activation levels were  
275 manipulated (i.e., reduced or decayed). The model was highly accurate in classifying persons  
276 with and without aphasia indicating that lexical access deficits may result from difficulty with  
277 the ability to produce and sustain the neural activation necessary to bring a word target from  
278 conceptual representation to phonological form.

279

280 **Distributed Network Model of Semantic Processing.**

281 In general, spreading activation models tend to group related concepts into a single  
282 locale, facilitating the spread of activation between linked concepts. Distributed network theories  
283 offer an alternative view in which conceptual information about a word (e.g., semantic features)  
284 is represented as occurring in a pattern of activation across processing units. In this way,

285 different, but related concepts make use of some of the same neural units (Plaut, 1995).  
286 Distributed models are, in principle, agnostic about what types of information can be represented  
287 in their units. This means that units could represent phonological, orthographic, or semantic  
288 information. An example of a distributed model is depicted in Figure 5.

289

290 {Insert Figure 5}

291

292 Regardless of which model best fits the underlying mechanisms involved, there is ample  
293 evidence that individuals produce responses more efficiently with less effort following priming  
294 (Lucas, 2000; Van den Bussche, Van den Noortgate, & Reynvoet, 2009). The improved  
295 behavioral performance observed following priming (both repetition and semantic) is akin to  
296 what is observed when clients improve following cueing during cognitive-linguistic  
297 interventions. This is not surprising given that the principles hypothesized to govern priming  
298 (i.e., spreading activation model or distributed model frameworks) provide theoretical support  
299 for the use of cues. In the next section, we will review several studies that have utilized priming  
300 as tool to examine cognitive-linguistic processing following acquired brain injury.

301 **Priming and Processing Following Acquired Brain Injury**

302 A number of studies have examined priming in special populations to better understand  
303 the contribution of different neural processes and regions to cognitive-linguistic function  
304 (Hagoort, 1997; Milberg & Blumstein, 1981; Ostrin & Tyler, 1993; Myers & Blumstein, 2005).  
305 Individuals with aphasia, particularly Broca's-type aphasia, are commonly recruited for  
306 investigations of semantic processing. Preference for Broca's-type aphasia is two-fold. First, the  
307 specific characteristics of this aphasia type (such as word retrieval difficulty despite relatively  
308 spared comprehension) are highly likely to provide insight regarding conceptual activation and

309 retrieval processes. Second, Broca's aphasia has a higher incidence in comparison to other types  
310 of non-fluent aphasia (NIDCD, 2015), making this population generally more accessible. Within  
311 studies such as these, the role of the inferior frontal gyrus (IFG) tends to be an area of focus as it  
312 is implicated in linguistic processing for speech production (Borovsky, Saygin, Bates, Dronkers,  
313 2007; Hickok & Poeppel, 2007; Nishitani, Schurmann, Amunts, & Hari, 2005). It should be  
314 noted, however, that IFG damage is not always the source of production impairment (Kassellimis,  
315 Simos, Peppas, Evdokimidis, & Potagas, 2017). In behavioral observations of persons with non-  
316 fluent aphasia on lexical decision tasks, successfully primed responses suggest that disruptions to  
317 speech production in regions suspected of supporting speech are not necessarily indicative of  
318 diminished conceptual representations underlying language (Hagoort, 1997; Milberg &  
319 Blumstein 1981; Ostrin & Tyler, 1993).

320 We will now discuss in detail a few studies exemplifying how priming has contributed to  
321 our understanding of cognitive-linguistic processing in individuals with acquired brain damage.  
322 These studies were included in this discussion as they are particularly well-suited to provide  
323 insight into how priming can be directly connected to cognitive-linguistic performance following  
324 an acquired brain injury. Myers and Blumstein (2005) utilized a series of semantic priming  
325 experiments to determine if syntactic deficits observed in the verbal output of individuals with  
326 Broca's aphasia were present at a lower level of lexical processing. Eight participants with  
327 aphasia and thirteen neurotypical control participants were given an auditory lexical decision  
328 task where they were asked to judge whether the second word of a verb-object pair was real or  
329 not. Real word verb-object pairs were divided across three conditions based on the selectional  
330 restrictions of the verb (i.e., semantic restrictions for appropriate/plausible verb-object pairings).  
331 For example, the first condition contained pairs that were semantically related and satisfied the  
332 verb's selectional restrictions (e.g., 'mail letter'). The second condition met selectional

333 restrictions but without a semantic relationship (e.g., 'find letter'). Finally, the third condition  
334 consisted of pairs that were not semantically related and did not meet the verb's selectional  
335 restrictions (e.g., 'persuade letter'). The authors found that, in both groups, response times for  
336 judgement of the second word (i.e., object) were significantly affected by whether it was  
337 congruent with the semantic relationship and selection restrictions of the verb prime. These  
338 results indicate that individuals with Broca's aphasia are responsive to semantic priming  
339 (participants displayed significantly faster reaction times to semantically related verb-object pairs  
340 in comparison to the other two conditions). Additionally, faster response times in the condition  
341 where verb-object pairs were not semantically related but plausible indicate that selectional  
342 constraint information (syntactic and grammatical restraints of a word) is available at the lexical  
343 level. In comparison to the control group, participants with aphasia were slower overall,  
344 indicating decreased processing speed even when task demands are low. These results provide  
345 further indication that semantic representations may not [all] be altered following injury, though  
346 access may be impaired.

347 Individuals with aphasia have also provided considerable insight with regards to  
348 automatic versus strategic processing. The presence of a priming effect coupled with longer  
349 latencies in response times (in comparison to peers) has been taken as evidence that automaticity  
350 is still present in this population, albeit part of a slowed or hindered cognitive system (Prather,  
351 Zurif, Love, Brownell, 1997; Prather, Zurif, Stern, Lowell, 1992). Toro (2000) utilized a  
352 shortened stimulus onset asynchrony (SOA- the amount of time between the presentation of the  
353 prime and the target) to examine whether priming effects for persons with Broca's aphasia were  
354 automatic or strategic (i.e., dependent on conscious engagement). Participants with Broca's  
355 aphasia were compared with both younger and age-matched neurotypical controls on a visual  
356 pairwise lexical decision task. The study utilized categorically high dominance exemplars (e.g.,

357 apple is highly typical categorical response for fruit) and categorically low dominance exemplars  
358 (e.g., avocado is an appropriate response, but less common) to identify patterns of facilitation  
359 and inhibition effects. Increased response time and decreased accuracy were observed among  
360 participants with Broca's aphasia. The results indicate that individuals with Broca's aphasia  
361 engage in strategic processing, as is evidenced by the reduction in inhibition, which is not  
362 adequately accounted for by automaticity (Toro, 2000). It is important to note that age match  
363 controls also exhibited difficulty with inhibition with the low dominance exemplars, indicating  
364 that both populations may be using retrieval strategies to support semantic processing.

365 To compare lexical-semantic activation in individuals with Broca's aphasia to individuals  
366 with Wernicke's aphasia, Yee, Blumstein, and Sedivy (2008) utilized eye tracking responses as  
367 an indicator of a semantic priming effect. Participants were engaged in a task intended to  
368 examine whether the groups displayed preference for a target object when a related word was  
369 presented aurally (e.g., would participants fixate on a picture of "bread" when they heard the  
370 word "butter"?). Both groups displayed a preference for the semantically related object,  
371 indicating access to lexical-semantic information.

372 Priming has also been pertinent to furthering our understanding of comprehension  
373 deficits present in Wernicke's aphasia. Individuals with Wernicke's aphasia are responsive to  
374 semantic priming as assessed by a lexical decision task, though they do display more errors than  
375 their neurotypical peers (Blumstein, Milberg, & Shrier; 1982; Milberg, Blumstein, & Dworetzky,  
376 1987). Blumstein and Milberg (1999) proposed that the language processing deficit observed in  
377 this population reflects either a lower threshold for lexical access or overactive activation (i.e.,  
378 many concepts are activated and subsequently accessed simultaneously). A lower threshold of  
379 activation means that poor exemplars of a category can still result in strong activation of that  
380 category (Blumstein & Milberg, 1999). This can result in reduced ability to inhibit related, but

381 irrelevant or off-topic content. Research has shown that individuals with Wernicke's aphasia  
382 have difficulty inhibiting responses when presented with related lexical competition (Janse,  
383 2006; Yee, Blumstein, & Sedivy, 2008). An overactive system would account for both  
384 production and comprehension deficits observed in Wernicke's type aphasia because it would  
385 suggest that many potential lexical candidates were accessed simultaneously. This would result  
386 in fluent, incoherent output and poor comprehension, as well as increased errors during a lexical  
387 decision task. Clinically, this indicates a need to limit the number of related lexical choices used  
388 to cue a response because a larger array of cues may overstimulate the system and prevent  
389 retrieval of the target response.

390 Collectively, priming studies of persons with aphasia have shown that lexical knowledge  
391 is not necessarily lost following injury, though access may be altered. For individuals with  
392 Wernicke's aphasia, the neural system may be overactive; whereas for individuals with Broca's  
393 aphasia the system may have decreased activation and reduced semantic processing leading to  
394 decreased verbal output. Collectively, research from both populations have provided sufficient  
395 evidence that the neural system is responsive to related content. In the next section, we will  
396 discuss priming and cueing with the goal of dissecting the similarities and differences between  
397 them providing a theoretical foundation for how cueing stimulates neurobehavioral responses.

398

### 399 **The Clinical Cue and the Experimental Prime**

400 Up to this point, we hoped to have established that in the cognitive sciences facilitation of  
401 a faster and more accurate response to a target stimulus is frequently achieved through priming,  
402 which occurs without need of conscious engagement of retrieval processes. Priming is not  
403 routinely discussed as a clinical tool, though it is frequently employed in research to facilitate  
404 retrieval, direct attention, and appraise conceptual storage (McNamara, 2005; Sohlberg &

405 Turkstra, 2001; Tulving & Schacter, 1990). In experimental psychology, it is common for  
406 information aiding an individual in completing a task to be described as a prime, whereas the  
407 term 'cue' may refer to a signal indicating when a task is to be completed (Sudevan & Taylor,  
408 1987; See Figure 6). This differentiation was not intended to distinguish the two (primes versus  
409 cues) clinically. Indeed, 'cues' in clinical settings are thought to engage cognitive processes in a  
410 similar manner as experimental primes.

411

412 {Insert Figure 6}

413

414 Experimental priming performed by cognitive scientists and cueing performed by  
415 clinicians during cognitive and linguistic interventions are intrinsically linked, yet remain two  
416 distinct concepts. We have discussed priming in some detail and will now delve into cueing, its  
417 clinical efficacy, and how creating a state of heightened awareness is connected with the  
418 enhanced behavioral responses attributed to primes. Notable similarities and differences will be  
419 detailed.

420 Cueing is a technique of facilitation used in cognitive-linguistic treatment to aid the  
421 retrieval, production, and/or comprehension of targeted information. Use of cues is dependent on  
422 a number of factors including: level of severity of the injury, types of deficits, targeted response,  
423 client stimulability, and the treatment protocol. Commonly, cues are response-contingent,  
424 meaning that the support given to facilitate retrieval is provided following a failed attempt to  
425 produce the target response. Semantic, phonological, and orthographic cues have all been  
426 effectively used to aid oral-verbal language production in special population such as persons  
427 with anomia (Nickels, 2002). Response-contingent cueing, unlike priming, is adapted to the  
428 client based on his/her ability to produce the expected response. That is, that cues are often

429 tailored to individual needs. When response contingent cueing is used during cognitive-linguistic  
430 intervention, it is common for clinicians to verbally or visually cue a client to produce a target  
431 response. Failure to produce the target may lead to the presentation of a cue to help facilitate the  
432 target response. Increased success with production results in a reduction in the amount or level of  
433 cueing.

434

435 Cues are not always response-contingent. They may also occur as a form of  
436 prestimulation, in which the target response is presented alongside other potential options before  
437 an individual is charged with independently producing the target response (Varholak &  
438 Linebaugh, 1995; Linebaugh, Baron, & Corcoran 1998; Wambaugh, Doyle, Martinez, Kalinyak-  
439 Fliszar, 2011; Stimley & Noll, 1991). Prestimulation cueing may be active or passive with the  
440 former consisting of the participant receiving a prompt containing the target response (e.g., a  
441 sentence or picture) and then choosing a response (frequently a picture) corresponding with the  
442 presented prompt before later being asked to independently produce (verbally) the target  
443 response (Varholak & Linebaugh, 1995). The passive condition requires that the participant only  
444 view or listen to a prompt containing the target response and the response options. They do not  
445 need to choose a response before being asked to produce the target response (Varholak &  
446 Linebaugh, 1995). Prestimulation cueing occurs in a manner similar to priming. The primary  
447 difference is prestimulation cueing is used as a precursor to an overt response (e.g., state the  
448 name of object) triggering retrieval of the target information. In contrast, primes are engaged  
449 passively, not necessarily requiring an explicit response as discussed earlier. Response-  
450 contingent cues tend to be used hierarchically, with cues ranging from lower level (i.e., minimal  
451 support) prompts to produce a given target (e.g., name these objects), to midlevel cues (i.e.,  
452 moderate support) such as sentence completions (e.g., 'He ate peanut butter and \_\_\_\_\_'), and

453 even to high-level cues (i.e., maximal support) such as the clinician producing the desired  
454 response and requesting a repetition of the target (Linebaugh, Shisler, & Lehner, 2005;  
455 Wambaugh, 2003). The level of the cueing hierarchy used is generally based on what Bollinger  
456 and Stout (1976) refer to as "stimulus power" or the level of facilitation needed from a clinician  
457 to trigger an accurate response.

458 It must be noted that use of cues is pertinent to many areas of language intervention.  
459 They may be used to facilitate a dialogue—a way to keep the conversation progressing, while not  
460 explicitly providing the word to a person with aphasia (Kagan, 1998). They may also be used as  
461 a vehicle to initiate successful information acquisition in treatments such as errorless learning. In  
462 treatments such as errorless learning, the goal is for the target to be produced correctly on the  
463 first trial and on all subsequent trials with the rationale that inaccurate responses may interfere  
464 with the learning process (Evans et., al., 2010; Schuchard & Middleton, 2018). Cues, in this case,  
465 are a training condition used to facilitate successful acquisition (Schuchard & Middleton, 2018).

466 As with priming, a specific type of content serves as the cue to facilitate retrieval, with  
467 semantic content commonly utilized to elicit a response. Semantic cues are used in language and  
468 cognitive rehabilitative treatments to enhance retrieval processes that have been damaged due to  
469 neurobiological disease or neurological trauma. Semantic cueing functions by activating related  
470 semantic representations underlying the target response. Semantic features are postulated to be  
471 pertinent to neural network organization and retrieval in both priming (Cree, McRae, &  
472 McNorgan, 1999; McNamara & Holbrook, 2003) and cueing (Linebaugh, Shisler, & Lehner,  
473 2005). Behavioral interventions that are successful in supporting neural changes and cognitive  
474 recovery do so by specifically targeting the behavioral deficit with repeated trials that are salient  
475 and can induce transference (Kleim & Jones, 2008).

476 As part of behavioral intervention, cueing likely helps enhance the neural mechanisms  
477 supporting cognitive-linguistic processes by either reengaging the network or by recruiting other  
478 areas to compensate for the areas in the network that are no longer functioning properly.

479 Multiple studies have shown semantic cues to be effective in aiding individuals with TBI and  
480 aphasia with word retrieval and production (e.g., Coelho, McHugh, & Boyle, 2000; Linebaugh,  
481 et al., 2005; Wambaugh et al., 2001; Wambaugh, 2003). For example, Cameron and colleagues  
482 (2006) used a hierarchical semantic and phonological cueing treatment, which consisted of  
483 providing individuals with aphasia with response-contingent cues to aid the lexical retrieval of  
484 content absent from elicited story narratives. The level of cueing provided was contingent upon  
485 the error produced by the individual. Positive responses were observed for four of five  
486 participants providing further efficacy for the systematic use of cueing in aphasia treatment.

487 Differences between primes and cues appear minimal at the surface level, particularly  
488 when the task involves displaying semantically related information and then requesting that an  
489 individual respond to a target word or image. In these instances, priming, which is typically  
490 thought of as an implicit unconscious or semi-aware phenomenon, is retooled as a cue, a  
491 mechanism used to aid improvement of conscious linguistic production and comprehension.

492 Distinctions between the two are restricted to the length of presentation (priming is commonly  
493 much shorter; see Automatic Activation vs. Strategic Processing), and to the type of response  
494 requested (e.g., implicit is more common for priming tasks and explicit for cueing) with both  
495 likely to influence the behavioral response following presentation.

496 Measures of success for cueing in cognitive-linguistic intervention differ substantially  
497 from those in a typical priming experiment because intervention is typically targeted towards  
498 improving volitional engagement of cognitive processes. Tasks such as free recall and word  
499 recognition are considered explicit because they require intentional conscious recollection of

500 previously encoded information (Roediger, 1990; Schacter, 1987; See Figure 2). Similarly,  
501 object naming and phrase completion exercises (e.g., "The dish ran away with the \_\_\_\_") are  
502 also explicit, typically requiring intentional cognitive engagement. Thus, cueing can occur in a  
503 manner similar to priming, but more commonly necessitates the need for an intentional-explicit  
504 response. Priming typically entails response that is not dependent on conscious recollection.

505

#### 506 **Automatic Activation vs Strategic Processing.**

507 Factors influencing behavioral responses are not limited to intentional cognitive  
508 engagement by the participant. For example, the length of stimulus presentation can significantly  
509 affect how information is processed. In cognitive-linguistic interventions, cues are frequently  
510 presented over the course of seconds and are used as deemed clinically necessary to facilitate a  
511 target response. In contrast, primes are presented for fixed amounts of time with the duration of  
512 presentation substantially altering the way in which the primes are processed. Primes presented  
513 with a short duration (i.e., < 250ms) are believed to trigger automatic, subconscious processes  
514 that attend to the target and encode it into the neural system without any purposeful intent or  
515 conscious awareness on the part of the individual viewing the stimulus (Neely 1977; Deacon,  
516 Uhm, Ritter, Hewitt, & Dynowskaa, 1999). This is referred to as automatic activation.

517 Automatic activation is frequently discussed with respect to spreading activation theory  
518 (Collins & Loftus 1975; Toro, 2000). The faster behavioral response to a presented target is the  
519 result of an encoded stimulus, the prime, triggering activation of the target and all related  
520 associates located near it in memory (Toro, 2000). Additionally, the shortened presentation of the  
521 prime can limit attentional demands and reduce the need to inhibit other stimuli (Posner &  
522 Snyder, 1975; Neely, 1977).

523 Strategic processing, on the other hand, occurs when an observer engages with a prime  
524 long enough for it to be brought into conscious awareness, resulting in the facilitation of  
525 additional cognitive processes that alter the manner in which the encoded stimulus is processed  
526 (McNamara, 2005; Neely & Keefe, 1989). “Semantic matching” is an example of strategic  
527 processing in which the meaning of the prime is examined in comparison to the meaning of the  
528 target (e.g., presentation of the prime word “bird” and the target word “chicken” will result in  
529 retrieval of shared qualities between the two words, such as “feathers”; Neely, 1977; Neely &  
530 Keefe 1989). An alternative strategy to semantic matching is “expectancy” in which a participant  
531 produces potentially related targets in response to the prime (e.g., presentation of the prime word  
532 “bird” is likely to result in retrieval of related words such as “chicken” “duck” “egg” in  
533 anticipation of the target word; Neely Keefe, & Ross, 1989; Posner & Snyder 1975). Both  
534 strategies can be triggered by prolonged exposure to a prime. Strategic processing in the context  
535 of prime exposure refers only to immediate interactions with the prime. It is not referring to  
536 metacognitive strategies, which may be triggered due a variety of reasons including, but not  
537 limited to insight into task expectations (e.g., monitoring for patterns on a lexical decision task in  
538 hopes of identifying when semantic pairs are shown), resources allocated to a task, effortful  
539 processing, or previous success with a learning strategy (Efklides, 2010; Pennequin, Sorel, &  
540 Mainguy, 2010; Phatiki, 2003). Presenting a prime may engage strategic response, but this is still  
541 likely to be influenced by the task and the participant.

542 The distinction between strategic and automatic processing is pertinent when comparing  
543 primes to cues because a clinician may present cues until a client attempts a response. This can  
544 be a substantially longer amount of time than the length of the presentation of primes, which are  
545 typically displayed for a set time period (e.g., 250 ms), not for an indefinite amount of time.

546 Therefore, cues presented during intervention are likely to engage strategic processes that may be  
547 aiding a client's response.

548

549 **Priming, Cueing, and Cognitive Reengagement**

550 At this point, we have established that both primes and cues can be used to facilitate  
551 responses using similar means. Fundamental differences between the two are linked to timing,  
552 engagement (explicit or implicit), and type of response requested (passive or active). Both  
553 priming and cueing trigger the retrieval of conceptual knowledge resulting in faster and more  
554 accurate responses. The requirement of an active response is the distinction of note because it is  
555 through frequent elicitation of the targeted response in contextually relevant exercises that  
556 substantial recovery occurs (Kleim & Jones, 2008; Langhorne, Bernhardt, & Kwakkel, 2011).  
557 Priming that occurs without activation of explicit retrieval processes is not likely to result in  
558 recovery, but may be a sufficient stepping-stone to begin the rehabilitative process.

559 One of the underlying goals of cognitive rehabilitation is to reengage processes damaged  
560 by injury. Priming activates the cognitive-linguistic system with minimal initial volitional  
561 cognitive engagement by the client. In theory, priming should tap into the neurological system  
562 prior to having a client participate in tasks that require an explicit response, aiding cognitive  
563 processing. Because the initial engagement of the system is accomplished by the prime,  
564 production and retrieval of explicit target information is made easier. Priming alone is likely to  
565 have minimal to no effect on performance of explicit tasks (Roediger & Challis, 1992). Priming  
566 would need to be included with exercises targeting intentional cognitive engagement for it to  
567 substantially aid the recovery of individuals who have sustained neurological impairment. By  
568 incorporating priming as part of an intervention that directly engages explicit memory  
569 neurobiological systems, it is expected that, over time, the system will become less dependent on

570 the primes in the same way persons affected by acquired brain injury may become less  
571 dependent on cues. Like cues, presentation of primes would gradually be reduced as behavioral  
572 performance improves indicative of a recovering cognitive-linguistic system. Priming could be  
573 used in conjunction with, or as a precursor to cognitive-linguistic interventions to help engage  
574 the neural system for the task at hand. In many cases, these are exercises targeting lexical access,  
575 though they may also be tasks of attentional control, memory, or metacognitive strategy use.

576

### 577 **Priming-Based Interventions**

578 Priming evidence and theory have been key factors influencing several different language  
579 interventions. Two of the most researched and frequently used interventions grounded in priming  
580 theory are Semantic Feature Analysis (SFA) and Verb Network Strengthening Treatment  
581 (VNeST). SFA and VNeST target improvement of functional communication through activation  
582 of related neural network information paired with frequent intentional explicit productions of  
583 target responses (See Figure 7). SFA, originally coined Feature Analysis (Ylvisaker, Massaro, &  
584 Cohen, 1987), was developed based on Anderson's (1983) theory of spreading activation with  
585 production of semantically related features theorized to facilitate more fluid retrieval of related  
586 information (Massaro & Tompkins, 1994). During intervention, participants are asked to produce  
587 semantic features of a target object (e.g., function, location, action, etc.) with the production of  
588 each feature theorized to help facilitate the engagement of related concepts (Boyle & Coelho  
589 1995; Massarro & Tompkins, 1994). The intervention has been shown to be successful in  
590 persons with aphasia and TBI, resulting in improved naming of trained objects with varying  
591 success for untrained objects and lexical retrieval during discourse tasks (e.g., Antonucci, 2009;  
592 Boyle & Coelho 1995; DeLong, Nessler, Wright, & Wambaugh, 2015; Kiran & Johnson 2008;  
593 Massarro & Tompkins, 1994).

594

595 {Insert Figure 7}

596

597 VNeST (Edmonds, Nadeau, & Kiran, 2009) was developed, in part, based on research  
598 identifying that priming of verbs results in enhanced production of nouns thematically related to  
599 the facilitatory verb (Ferretti, McRae, & Hatherell, 2001). The ability to prime thematically  
600 related targets is theorized to be indicative of thematic roles being linked to stored conceptual  
601 knowledge (Ferretti et al., 2001). Participants receiving VNeST are trained using transitive two-  
602 place verbs (i.e., the verb takes two arguments, an agent and object; e.g., 'The captain drives the  
603 boat'). Participants are presented with target verbs and asked to produce multiple sentences  
604 containing thematically related agents and objects corresponding to the verb. The intervention  
605 encourages expansion of the semantic network by having participants respond to Wh-questions  
606 related to one of their produced sentences and having them make semantic judgements about  
607 sentences using the identified verbs/nouns. VNeST results in changes in performance for trained  
608 targets and for *untrained*, but related items with gains attributed to targeting verbs and associated  
609 nouns theorized to be highly connected within the same neural network (Edmonds et al. 2009;  
610 Edmonds, Obermeyer, & Kernan, 2014). Studies have found VNeST to be effective in improving  
611 production at both sentence and discourse levels (e.g., Edmonds & Babb, 2011; Edmonds et al.,  
612 2014a; Edmonds, Mammino & Ojeda, 2014; Furnas & Edmonds 2014).

613 The success of SFA and VNeST has led to increased interest by treatment researchers to  
614 use linked content as a means of strengthening the neural system following injury. For example,  
615 Phonological Component Analysis (PCA; Leonard, Rochon, Laird, 2008) is a more recently  
616 developed language intervention using the same format and underlying theory established by  
617 SFA. Word retrieval is treated using phonological features (e.g., first sound, rhymes, last sound,

618 etc.), rather than semantic features, utilizing similar protocol steps. The phonological features are  
619 intended to bring the activation of the target lexical item to threshold. Studies examining the use  
620 of PCA have reported positive treatment effects for naming of treated items (Leonard et al.,  
621 2008; van Hees et al., 2013), suggesting that targeting linked phonological content can improve  
622 the underlying processes supporting lexical processing. Recent findings, however, suggest that  
623 although PCA was developed as a phonological equivalent for SFA, the underlying mechanism  
624 of may not be strengthening the phonological network in the same manner that SFA is believed  
625 to be strengthening the semantic network (Bunker, Mauszycki, Poss, Kallhoff, & Wambaugh,  
626 2019). Additional research is needed to better dissect the mechanisms underlying change in these  
627 interventions and to identify how type of naming error produced (e.g., semantic or phonological  
628 paraphasia) should influence treatment protocol.

629 Several studies have examined the facilitatory effects of priming in manner that may  
630 benefit intervention research. A study of naming facilitation in aphasia revealed that use of  
631 contextual priming (repeated exposure to target objects that are semantically or phonologically  
632 related to one another) resulted in improved naming, but only the semantically related stimuli  
633 displayed generalization beyond untrained items (Renvall, Laine, Laasko, & Martin, 2003).  
634 Martin and colleagues (2004) expanded on this work by examining how contextual priming  
635 influenced the verbal production of eleven individuals with varying types of aphasia. Participants  
636 were asked to produce names for a series of pictures that were related either semantically,  
637 phonologically, or had no relationship. Individual responsiveness to the procedure was highly  
638 variable, but overall the researchers found contextual priming resulted in immediate interference  
639 in naming, likely due to increased competition between neighboring stimuli. This was followed  
640 by a facilitatory effect in production when there was a brief time delay (i.e., the participant was  
641 asked to name items again after five minutes) for both phonological and semantic contexts. They

642 noted that priming of semantic contexts led to more immediate interference than phonological  
643 contexts, which may be due to the number of semantic representations that are triggered when  
644 presenting semantic information.

645 Concerning the facilitatory effect, a similar result was observed with the use of masked  
646 repetition priming in which the prime was not intended to be noticeable to the participant and  
647 shown quickly (e.g.,  $\leq 50$  ms). Masked repetition priming aided individuals with anomia in  
648 verbally producing target objects, though generalization was not strongly observed (Silkes,  
649 2015). Nonetheless, collectively, these studies provide some indication that priming is  
650 reengaging the semantic/phonologic networks and supporting enhanced production in  
651 populations with acquired language disorders.

652 Thus far, this review has primarily discussed priming at the word level. This is because  
653 lexical priming has a direct link with how cueing is often used in clinical practice. This is not the  
654 only area of priming which can improve our understanding of linguistic production. Syntactic  
655 priming (also referred to as structural priming), in which sentences displaying similar  
656 grammatical structures and forms are presented to a participant has also been successfully  
657 utilized as an intervention tool to facilitate retrieval. Thompson and colleagues (2003) used a  
658 sentence production priming-paradigm to examine the role of language complexity in language  
659 intervention. Participants in the study were individuals with agrammatic aphasia. The treatment  
660 consisted of having participants identify aurally presented target sentences corresponding with a  
661 visual stimulus. They were then engaged in a syntactic priming paradigm where the target  
662 syntactic structure was modeled for them by the examiner using a foil visual stimulus. Following  
663 the presentation of the model, the participant was asked to produce a sentence with similar  
664 syntactic structure for the target sentence. They found that treating complex sentential forms  
665 resulted in greater generalization to less complex sentence structures.

666

667 Priming and Inhibition

668 Up to this juncture, we have discussed priming solely with respect to its facilitatory  
669 properties. We will now provide a cursory overview of negative priming (also referred to as  
670 inhibitory priming) with the goal of further aiding clinical decisions regarding how best to tailor  
671 cues and primes. While enhancing the likelihood of retrieving a target response may be the  
672 desired effect of priming, stimulus presentation can also involve the inhibited retrieval of other  
673 responses. Depending on the target response, this can be an unwanted effect, hence the term  
674 ‘negative priming.’ For example, Tipper (1985) found that when participants were instructed to  
675 focus on only one of two superimposed objects (differentiated by color), subsequent naming of  
676 the attended-to object was facilitated, while subsequent naming of the ignored object reflected a  
677 prolonged response latency, reflecting inhibition of the selection of an internal [semantic]  
678 representation. The differences in response times suggest that when multiple items/objects are  
679 presented together, retrieval of every corresponding semantic representation may not occur,  
680 depending on the attentional foci of the individual processing the stimuli.

681 The focus of attentional resources seems to be of particular importance in the observance  
682 of negative priming. Research examining semantic priming and attention allocation revealed that  
683 simply providing participants with instructions guiding their attention to a prime was linked with  
684 facilitating a primed response; conversely, instruction directing participants to ignore primes was  
685 linked with negative priming (Ortells & Tudela, 1996). During stimulus processing, content  
686 identified as pertinent may become more [consciously] salient. Information deemed irrelevant  
687 may be discarded or potentially inhibited, so as to reduce distractions. Evidence of the  
688 differential effects of priming due to the allocation of attentional resources indicates that  
689 attentional processes play a key role in role in cognitive engagement and response retrieval. This

690 has implications for which stimuli should be used and how individuals are engaging with stimuli.  
691 Not only might a clinician or investigator inadvertently inhibit a target response by having a  
692 complex or dense stimulus, he/she may negate positive priming effects if the individual's  
693 attention is not directed at an appropriate target (whether spontaneously or cued). If not carefully  
694 considered, both primes and cues are likely to have a reduced benefit or even be inhibitory.

695

696 A second factor that may negatively influence priming is neighborhood density. A prime  
697 that shares a high number of orthographic or phonological neighbors with the target  
698 stimulus/response (i.e., have a number of related words with similar spellings or sounds) is more  
699 likely to impede the response to the target word rather than facilitate it (Davis & Lupker, 2006;  
700 Dufour & Peereman, 2003). Semantic relationships between primes and targets (i.e., the prime  
701 competes with the target) can also interfere with retrieval (Howard et al, 2006; Wheeldon &  
702 Monsell, 1994). In fact, semantic interference can even be observed when the semantically  
703 related prime occurred several trials previous (Howard et al, 2006; Wheeldon & Monsell, 1994).  
704 Collectively, these findings suggest that it is important to consider the semantic relationship  
705 and/or the orthographic/phonological overlap of cues and primes and their corresponding or  
706 subsequent target responses. Careful planning is important to reduce the likelihood of impeding  
707 retrieval processes. If multiple responses are trained in the same treatment session, as is often the  
708 case, primes/cues should be critically selected and targets should be distinct from one another, so  
709 as to limit possible interference from primes/cues for the other targets.

710

## 711 **Limitations**

712 Studies chosen for inclusion in the present review of priming and the relationship it has  
713 with cueing were chosen because they exemplified the use of priming as a tool to facilitate

714 production. These studies are not indicative of all work performed directly addressing priming  
715 and language intervention, though a literature search does currently reveal limited work in this  
716 area with the present work referencing a significant portion of published work. Additionally, the  
717 present review only minimally discussed the inhibitory effects of priming. There is ample  
718 research in this area making the subject matter too vast to thoroughly cover in the present review.

719

## 720 **Conclusion and Future Directions**

721 The goal of this paper was to detail the relationship between priming and cueing, while  
722 also providing a theoretical premise for how both likely facilitate improved behavioral  
723 performance in persons with neurological injury and disease. Cues serve as a means to access the  
724 neural system, bringing targeted conceptual information to a heightened state of awareness and  
725 subsequently making information easier to access and retrieve. Primes similarly create  
726 heightened awareness and are used as a means of triggering a targeted response. Prolonged  
727 exposure to either a prime or a cue is likely to trigger strategic retrieval processes that aid with  
728 facilitating a response. Cues more commonly entail the requirement of an overt response. This  
729 transforms initial implicit cognitive stimulation into a task engaging both implicit and explicit  
730 retrieval processes. The latter of which requires at least a low level of intentional volitional  
731 cognitive engagement. The priming literature has revealed that repeated exposure to the same  
732 content or related content can shift attention and reduce the number of resources needed to  
733 complete a task, while also engaging strategic processes that aid cognitive-linguistic functioning.  
734 Furthermore, theoretical work examining semantic processing has observed that related semantic  
735 features can facilitate retrieval of related concepts, which can be utilized to help facilitate  
736 linguistic processing. Engagement of these retrieval mechanisms during repeated production of  
737 the target and related targets may strengthen the neurological network leading to repair. Priming

738 intervention studies have shown success in aiding in behavioral performance with respect to  
739 language production. Cognitive-linguistic cueing performed during language interventions is  
740 intended to aid network restoration and repair, by in part, activating associated concepts in a  
741 manner resembling priming. Differences between primes and cues can be linked to timing and  
742 conscious intentional volitional engagement, but note that these differences are task dependent.  
743 Primes serve as a template for how to structure cues with adequate length, saliency, and  
744 associative strength pertinent to success.

745 Primes used in the cognitive science literature and cues used in the clinical literature are  
746 distinct, but are not far removed from one another. Distinctions in terminology tend to be related  
747 to researcher intent, presentation schedule (i.e., when the stimulus is presented within the larger  
748 experimental or intervention protocol), presentation duration, and subsequent conscious  
749 intentional engagement (e.g., implicit versus explicit tasks). Nonetheless, both primes and cues  
750 are believed to trigger retrieval of conceptual content related to target information. Continued  
751 research and discussion regarding priming and cueing will further our understanding of how to  
752 tailor cues to better engage related concepts and enhance the neural connections that underlie  
753 cognitive functioning.

754

### 755 **Acknowledgements**

756 We would like to thank Dr. Craig Linebaugh for providing insight regarding  
757 prestimulation cueing and cueing hierarchies and Dr. Eiling Yee for providing guidance  
758 regarding priming and semantic memory. Additionally, we would like to thank Nicholas Monto  
759 for his consultation on connectionist modeling. Research for this study was supported by  
760 National Science Foundation Integrative Graduate Education and Research Traineeship Program  
761 Grant DGE-1144399.

762

763

764

765

766

767

768

769

770

771

772

773

774

775 Anderson, J. R. (1983). A spreading activation theory of memory. *Journal of Verbal Learning and Verbal Behavior*, 22(3), 261–295. [https://doi.org/10.1016/s0022-5371\(83\)90201-3](https://doi.org/10.1016/s0022-5371(83)90201-3).

778 Antonucci, S. M. (2009). Use of semantic feature analysis in group aphasia treatment. *Aphasiology*, 23(7-8), 854–866. <https://doi.org/10.1080/02687030802634405>.

780 Badre, D., & Wagner, A. D. (2002). Semantic retrieval, mnemonic control, and prefrontal cortex. *Behavioral and Cognitive Neuroscience Reviews*, 1(3), 206–218. <https://doi.org/10.1177/1534582302001003002>.

783 Blumstein, S. E., & Milberg, W. P. (2000). Language deficits in Broca's and Wernicke's aphasia: A singular impairment. *Language and the brain*. Academic Press167–183. <https://doi.org/10.1016/B978-012304260-6/50011-6>.

786 Blumstein, S. E., Milberg, W., & Shrier, R. (1982). Semantic processing in aphasia: Evidence  
787 from an auditory lexical decision task. *Brain and Language*, 17(2), 301–315.

788 Bollinger, R. L., & Stout, C. E. (1976). Response-contingent small-step treatment: Performance-  
789 based communication intervention. *Journal of Speech and Hearing  
790 Disorders*, 41(1), 40–51.

791 Borovsky, A., Saygin, A. P., Bates, E., & Dronkers, N. (2007). Lesion correlates of  
792 conversational speech production deficits. *Neuropsychologia*, 45(11), 2525–2533.

793 Boyle, M., & Coelho, C. A. (1995). Application of semantic feature analysis as a treatment for  
794 aphasic dysnomia. *American Journal of Speech-language Pathology*, 4(4),  
795 94–98. <https://doi.org/10.1044/1058-0360.0404.94>.

796 Bunker, L., Mauszycki, S., Poss, E., Kallhoff, L., & Wambaugh, J. (2019). Naming improvement  
797 with phonological components analysis: Further examination. May  
798 Poster Presentation to Clinical Aphasiology Conference.

799 Cameron, R. M., Wambaugh, J. L., Wright, S. M., & Nessler, C. L. (2006). Effects of a  
800 combined semantic/phonologic cueing treatment on word retrieval in discourse.  
801 *Aphasiology*, 20(02-04), 269–285. <https://doi.org/10.1080/02687030500473387>.

802 Cermak, L. S., Blackford, S. P., O'Connor, M., & Bleich, R. P. (1988). The implicit memory  
803 ability of a patient with amnesia due to encephalitis. *Brain and Cognition*, 2,  
804 145–156. [https://doi.org/10.1016/0278-2626\(88\)90026-7](https://doi.org/10.1016/0278-2626(88)90026-7).

805 Coelho, C. A., McHugh, R. E., & Boyle, M. (2000). Semantic feature analysis as a treatment for  
806 aphasic dysnomia: A replication. *Aphasiology*, 14(2), 133–142. <https://doi.org/10.1080/026870300401513>.

808 Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing.  
809 *Psychological Review*, 82(6), 407.

810 Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual  
811 processing: Simulating semantic priming. *Cognitive Science*, 23(3), 371–414.  
812 [https://doi.org/10.1207/s15516709cog2303\\_4](https://doi.org/10.1207/s15516709cog2303_4).

813 Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for lexical  
814 inhibition. *Journal of Experimental Psychology Human Perception and*  
815 *Performance*, 32(3), 668–687. <https://doi.org/10.1037/0096-1523.32.3.668>.

816 Deacon, D., Uhm, T. J., Ritter, W., Hewitt, S., & Dynowska, A. (1999). The lifetime of  
817 automatic semantic priming effects may exceed two seconds. *Cognitive Brain*  
818 *Research*, 7(4), 465–472. [https://doi.org/10.1016/S0926-6410\(98\)00034-2](https://doi.org/10.1016/S0926-6410(98)00034-2).

819 Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access  
820 in aphasic and nonaphasic speakers. *Psychological Review*, 104(4), 801.

821 DeLong, C., Nessler, C., Wright, S., & Wambaugh, J. (2015). Semantic feature analysis: Further  
822 examination of outcomes. *American Journal of Speech-language*  
823 *Pathology*, 24(4), S864–S879. [https://doi.org/10.1044/2015\\_ajslp-14-0155](https://doi.org/10.1044/2015_ajslp-14-0155).

824 Dobbins, I. G., Schnyer, D. M., Verfaellie, M., & Schacter, D. L. (2004). Cortical activity  
825 reductions during repetition priming can result from rapid response learning.  
826 *Nature*, 428(6980), 316–319. <https://doi.org/10.1038/nature02400>.

827 Draine, S. C., & Greenwald, A. G. (1998). Replicable unconscious semantic priming. *Journal of*  
828 *Experimental Psychology General*, 127(3), 286.

829 Dufour, S., & Peereman, R. (2003). Inhibitory priming effects in auditory word recognition:  
830 When the target's competitors conflict with the prime word. *Cognition*,  
831 88(3), B33–B44.

832 Edmonds, L. A., & Babb, M. (2011). Effect of verb network strengthening treatment in  
833 moderate-to-severe aphasia. *American Journal of Speech-language Pathology*,

834 20(2), 131–145. [https://doi.org/10.1044/1058-0360\(2011/10-0036\)](https://doi.org/10.1044/1058-0360(2011/10-0036)).

835 Edmonds, L. A., Nadeau, S. E., & Kiran, S. (2009). Effect of verb network strengthening

836 treatment (VNeST) on lexical retrieval of content words in sentences in persons

837 with aphasia. *Aphasiology*, 23(3), 402–424. <https://doi.org/10.1080/02687030802291339>.

838 Edmonds, L. A., Mammino, K., & Ojeda, J. (2014). Effect of verb network strengthening

839 treatment (VNeST) in persons with aphasia: Extension and replication of

840 previous findings. *American Journal of Speech-language Pathology*, 23(2), S312–S329.

841 [https://doi.org/10.1044/2014\\_AJSLP-13-0098](https://doi.org/10.1044/2014_AJSLP-13-0098).

842 Edmonds, L. A., Obermeyer, J., & Kerman, B. (2014). Investigation of pretreatment sentence

843 production impairments in individuals with aphasia: Towards understanding

844 the linguistic variables that impact generalisation in verb network strengthening treatment.

845 *Aphasiology*, 29(11), 1312–1344. <https://doi.org/10.1080/02687038.2014.975180>.

846 Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to

847 self-regulation and co-regulation. *European Psychologist*, 13(4), 277–287.

848 Evans, J. J., Wilson, B. A., Schuri, U., Andrade, J., Baddeley, A., Bruna, O., ... Lorenzi, L.

849 (2000). A Comparison of "errorless" and "trial-and-error" learning methods for

850 teaching individuals with acquired memory deficits. *Neuropsychological Rehabilitation*, 10(1),

851 67–101. <https://doi.org/10.1080/096020100389309>.

852 Ferretti, T. R., McRae, K., & Hatherell, A. (2000). Integrating verbs, situation schemas, and

853 thematic role concepts. *Journal of Memory and Language*, 44(4), 516–547.

854 <https://doi.org/10.1006/jmla.2000.2728>.

855 Fischler, I. (1977). Semantic facilitation without association in a lexical decision task. *Memory*

856 & *Cognition*, 5(3), 335–339. <https://doi.org/10.3758/bf03197580>.

858 Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical  
859 access. *Journal of Experimental Psychology Learning, Memory, and Cognition*,  
860 10(4), 680. <https://doi.org/10.1037/0278-7393.10.4.680>.

861 Furnas, D. W., & Edmonds, L. A. (2013). The effect of computerised verb network strengthening  
862 treatment on lexical retrieval in aphasia. *Aphasiology*, 28(4), 401–420.  
863 <https://doi.org/10.1080/02687038.2013.869304>.

864 Gabrieli, J., Keane, M., Stanger, B., Kjelgaard, M., Corkin, S., & Growdon, J. (1994).  
865 Dissociations among structural-perceptual, lexical-semantic, and event-fact  
866 memory systems in Alzheimer, amnesic, and normal subjects. *Cortex*, 30(1), 75–103.

867 Gotts, S. J., Chow, C. C., & Martin, A. (2012). Repetition priming and repetition suppression: A  
868 case for enhanced efficiency through neural synchronization. *Cognitive  
869 Neuroscience*, 3(3-4), 227–237. <https://doi.org/10.1080/17588928.2012.670617>.

870 Graf, P., Squire, L. R., & Mandler, G. (1984). The information that amnesic patients do not  
871 forget. *Journal of Experimental Psychology: Learning, Memory, and Cognition*,  
872 10(1), 164–178. <https://doi.org/10.1037/0278-7393.10.1.164>.

873 Hagoort, P. (1997). Semantic priming in Broca's aphasics at a short SOA: No support for an  
874 automatic access deficit. *Brain and Language*, 56(2), 287–300.

875 Henson, R. N. A. (2003). Neuroimaging studies of priming. *Progress in Neurobiology*, 70(1),  
876 53–81. [https://doi.org/10.1016/S0301-0082\(03\)00086-8](https://doi.org/10.1016/S0301-0082(03)00086-8).

877 Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. *Nature  
878 Reviews Neuroscience*, 8(5), 393–402. <https://doi.org/10.1038/nrn2113>.

879 Holcomb, P. J. (1993). Semantic priming and stimulus degradation: Implications for the role of  
880 the N400 in language processing. *Psychophysiology*, 30(1), 47–61.

881 Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition  
882 in picture naming: Experimental and computational studies. *Cognition*,  
883 100(3), 464–482. <https://doi.org/10.1016/j.cognition.2005.02.006>.

884 Janse, E. (2006). Lexical competition effects in aphasia: Deactivation of lexical candidates in  
885 spoken word processing. *Brain and Language*, 97(1), 1–11. <https://doi.org/10.1016/j.bandl.2005.06.011>.

887 Kagan, A. (1998). Supported conversation for adults with aphasia: Methods and resources for  
888 training conversation partners. *Aphasiology*, 12(9), 816–830. <https://doi.org/10.1080/02687039808249575>.

890 Kassellimis, D. S., Simos, P. G., Peppas, C., Evdokimidis, I., & Potagas, C. (2017). The  
891 unbridged gap between clinical diagnosis and contemporary research on aphasia:  
892 A short discussion on the validity and clinical utility of taxonomic categories. *Brain and*  
893 *Language*, 164, 63–67. <https://doi.org/10.1016/j.bandl.2016.10.005>.

894 Kiran, S., & Johnson, L. (2008). Semantic complexity in treatment of naming deficits in aphasia:  
895 Evidence from well-defined categories. *American Journal of Speech-*  
896 *Language Pathology*, 17(4), 389–400. [https://doi.org/10.1044/1058-0360\(2008/06-0085\)](https://doi.org/10.1044/1058-0360(2008/06-0085)).

897 Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity:  
898 Implications for rehabilitation after brain damage. *Journal of Speech Language*  
899 *and Hearing Research*, 51(1), S225–S239. [https://doi.org/10.1044/1092-4388\(2008/018\)](https://doi.org/10.1044/1092-4388(2008/018)).

900 Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. *Lancet*, 377(9778),  
901 1693–1702. [https://doi.org/10.1016/s0140-6736\(11\)60325-5](https://doi.org/10.1016/s0140-6736(11)60325-5).

902 Leonard, C., Rochon, E., & Laird, L. (2008). Treating naming impairments in aphasia: Findings  
903 from a phonological components analysis treatment. *Aphasiology*, 22(9),  
904 923–947.

905 Linebaugh, C. W., Shisler, R. J., & Lehner, L. (2005). CAC classics: Cueing hierarchies and  
906 word retrieval: A therapy program. *Aphasiology*, 19(1), 77–92. <https://doi.org/10.1080/02687030444000363>.

907

908 Lucas, M. (2000). Semantic priming without association: A meta-analytic review. *Psychonomic  
909 Bulletin & Review*, 7(4), 618–630. <https://doi.org/10.3758/BF03212999>.

910 Macoir, J., Leroy, M., Routhier, S., Auclair-Ouellet, N., Houde, M., & Laforce, R., Jr. (2014).  
911 Improving verb anomia in the semantic variant of primary progressive  
912 aphasia: The effectiveness of a semantic-phonological cueing treatment. *Neurocase*, 21(4), 448–  
913 456. <https://doi.org/10.1080/13554794.2014.917683>.

914 Martin, N., Fink, R., Laine, M., & Ayala, J. (2004). Immediate and short-term effects of  
915 contextual priming on word retrieval in aphasia. *Aphasiology*, 18(10), 867–898.  
916 <https://doi.org/10.1080/02687030444000390>.

917 Massaro, M., & Tompkins, C. A. (1994). Feature analysis for treatment of communication  
918 disorders in traumatically brain-injured patients: An efficacy study. *Clinical  
919 Aphasiology*, 22, 245–256.

920 McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word recognition.  
921 New York, NY: Psychology Press<https://doi.org/10.4324/9780203338001>.

922 McNamara, T. P., & Holbrook, J. B. (2003). Semantic memory and priming. *Handbook of  
923 psychology: Experimental psychology*, 4, 447–474.

924 Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words:  
925 Evidence of a dependence between retrieval operations. *Journal of Experimental  
926 Psychology*, 90(2), 227. <https://doi.org/10.1037/h0031564>.

927 Milberg, W., & Blumstein, S. E. (1981). Lexical decision and aphasia: Evidence for semantic  
928 processing. *Brain and Language*, 14(2), 371–385.

929 Milberg, W., Blumstein, S. E., & Dworetzky, B. (1987). Processing of lexical ambiguities in  
930 aphasia. *Brain and Language*, 31(1), 138–150.

931 Myers, E., & Blumstein, S. (2005). Selectional restriction and semantic priming effects in  
932 normals and Broca's aphasics. *Journal of Neurolinguistics*, 18(3), 277–296.  
933 <https://doi.org/10.1016/j.jneuroling.2004.05.001>.

934 Naccache, L., & Dehaene, S. (2001). Unconscious semantic priming extends to novel unseen  
935 stimuli. *Cognition*, 80(3), 215–229.

936 National Institute on Deafness and Other Communication Disorders (2015). NIDCD fact sheet:  
937 Aphasia [PDF] [NIH Pub. No. 97-4257]. Retrieved from <https://www.nidcd.nih.gov/sites/default/files/Documents/health/voice/Aphasia.pdf>.

938 Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless  
939 spreading activation and limited-capacity attention. *Journal of  
940 Experimental Psychology General*, 106(3), 226. <https://doi.org/10.1037/0096-3445.106.3.226>.

941 Neely, J. H., & Keefe, D. E. (1989). Semantic context effects on visual word processing: A  
942 hybrid prospective-retrospective processing theory. *Psychology of learning and  
943 motivation* ({vol}, 207–248. [https://doi.org/10.1016/s0079-7421\(08\)60538-1](https://doi.org/10.1016/s0079-7421(08)60538-1).

944 Neely, J. H., Keefe, D. E., & Ross, K. L. (1989). Semantic priming in the lexical decision task:  
945 Roles of prospective prime-generated expectancies and retrospective  
946 semantic matching. *Journal of Experimental Psychology Learning, Memory, and Cognition*,  
947 15(6), 1003.

948 Nickels, L. (2002). Therapy for naming disorders: Revisiting, revising, and reviewing.  
949 *Aphasiology*, 16(10-11), 935–979. <https://doi.org/10.1080/02687030244000563>.

952 Nishitani, N., Schurmann, M., Amunts, K., & Hari, R. (2005). Broca's region: From action to  
953 language. *Physiology*, 20(1), 60–69. <https://doi.org/10.1152/physiol.00043.2004>.

954

955 Ortells, J. J., & Tudela, P. (1996). Positive and negative semantic priming of attended and  
956 unattended parafoveal words in a lexical decision task. *Acta Psychologica*,  
957 94(2), 209–226. [https://doi.org/10.1016/0001-6918\(95\)00045-3](https://doi.org/10.1016/0001-6918(95)00045-3).

958 Ostrin, R. K., & Tyler, L. K. (1993). Automatic access to lexical semantics in aphasia: Evidence  
959 from semantic and associative priming. *Brain and Language*, 45(5),  
960 147–159.

961 Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, executive functions and aging:  
962 The effect of training in the use of metacognitive skills to solve  
963 mathematical word problems. *Journal of Adult Development*, 17(3), 168–176.

964 Phatiki, A. (2003). A closer look at gender and strategy use in L2 reading. *Language learning*,  
965 53(4), 649–702.

966 Plaut, D. C. (1995). Semantic and associative priming in a distributed attractor network.  
967 Proceedings of the 17th annual conference of the cognitive science society, 17(2),  
968 37–42.

969 Posner, M. I., & Snyder, C. R. R. (1975). Facilitation and inhibition in the processing of signals.  
970 In P. M. A. Rabbitt, & S. Domic (Eds.). *Attention and performance {V}* (pp.  
971 669–682). New York, NY: Academic Press.

972 Prather, P. A., Zurif, E., Love, T., & Brownell, H. (1997). Speed of lexical activation in  
973 nonfluent Broca's aphasia and fluent Wernicke's aphasia. *Brain and Language*,  
974 59(3), 391–411. <https://doi.org/10.1006/brln.1997.1751>.

975 Prather, P., Zurif, E. B., & Love, T. (1992). The time course of lexical access in aphasia.

976 Academy of aphasia Toronto, Ontario.

977 Race, E. A., Shanker, S., & Wagner, A. D. (2009). Neural priming in human frontal cortex:

978 Multiple forms of learning reduce demands on the prefrontal executive

979 system. *Journal of Cognitive Neuroscience*, 21(9), 1766–1781.

980 <https://doi.org/10.1162/jocn.2009.21132>.

981 Renvall, K., Laine, M., Laakso, M., & Martin, N. (2003). Anomia treatment with contextual

982 priming: A case study. *Aphasiology*, 17(3), 305–328. <https://doi.org/10.1080/729255461>.

983

984 Rissman, J., Eliassen, J. C., & Blumstein, S. E. (2003). An event-related fMRI investigation of

985 implicit semantic priming. *Journal of Cognitive Neuroscience*, 15(8),

986 1160–1175.

987 Roach, A., Schwartz, M. F., Martin, N., Grewal, R. S., & Brecher, A. (1996). The Philadelphia

988 naming test: Scoring and rationale. *Clinical aphasiology*, 24, 121–133.

989 Roediger, H. L. (1990). Implicit memory: Retention without remembering. *The American*

990 *Psychologist*, 45(9), 1043–1056. <https://doi.org/10.1037/0003-066x.45.9.1043>.

991

992 Roediger, H. L., & Challis, B. H. (1992). Effects of exact repetition and conceptual repetition on

993 free recall and primed word-fragment completion. *Journal of*

994 *Experimental Psychology Learning, Memory, and Cognition*, 18(1), 3.

995 Roediger, H. L., Weldon, M. S., Stadler, M. L., & Riegler, G. L. (1992). Direct comparison of

996 two implicit memory tests: Word fragment and word stem completion.

997 *Journal of Experimental Psychology Learning, Memory, and Cognition*, 18(6), 1251.

998 <https://doi.org/10.1037/0278-7393.18.6.1251>.

999 Scarborough, D. L., Cortese, C., & Scarborough, H. S. (1977). Frequency and repetition effects  
1000 in lexical memory. *Journal of Experimental Psychology Human Perception  
1001 and Performance*, 3(1), 1. <https://doi.org/10.1037/0096-1523.3.1.1>.

1002 Schacter, D. L. (1987). Implicit memory: History and current status. *Journal of Experimental  
1003 Psychology Learning, Memory, and Cognition*, 13, 501–518. <https://doi.org/10.1037/0278-7393.13.3.501>.

1004 Schacter, D. L. (1990). Introduction to “Implicit memory: Multiple perspectives”. *Bulletin of the  
1005 Psychonomic Society*, 28(4), 338–340.

1006 Schacter, D. L. (1992). Priming and multiple memory systems: Perceptual mechanisms of  
1007 implicit memory. *Journal of Cognitive Neuroscience*, 4(3), 244–256.

1008 Schacter, D. L., Chiu, C. P., & Ochsner, K. N. (1993). Implicit memory: A selective review.  
1009 *Annual Review of Neuroscience*, 16(1), 159–182.

1010 Schuchard, J., & Middleton, E. L. (2018). The roles of retrieval practice versus errorless learning  
1011 in strengthening lexical access in aphasia. *Journal of Speech Language  
1012 and Hearing Research*, 61(7), 1700–1717. [https://doi.org/10.1044/2018\\_JSLHR-L-17-0352](https://doi.org/10.1044/2018_JSLHR-L-17-0352).

1013 Silkes, J. P. (2015). Masked repetition priming in treatment of anomia: A Phase 2 study.  
1014 *American Journal of Speech-language Pathology*, 24(4), S895–S912. [https://doi.org/10.1044/2015\\_ajslp-14-0138](https://doi.org/10.1044/2015_ajslp-14-0138).

1015 Sohlberg, M. M., & Mateer, C. A. (2001). Cognitive rehabilitation: An integrative  
1016 neuropsychological approach. New York: Guilford Press.

1017 Stimley, M. A., & Noll, J. D. (1991). The effects of semantic and phonemic prestimulation cues  
1018 on picture naming in aphasia. *Brain and Language*, 41(4), 496–509.

1019 [https://doi.org/10.1016/0093-934x\(91\)90170-6](https://doi.org/10.1016/0093-934x(91)90170-6).

1022 Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. *Journal of*  
1023 *Experimental Psychology Human Perception and Performance*, 13(1), 89.

1024 [https://doi.org/10.1044/2015\\_ajslp-14-0138](https://doi.org/10.1044/2015_ajslp-14-0138).

1025 Szekeres, S. F., Ylvisaker, M., & Cohen, S. B. (1987). A framework for cognitive rehabilitation  
1026 therapy. In M. Ylvisaker, & E. M. Gobble (Eds.). *Community re-entry for*  
1027 *head injured adults* (pp. 87–136). Boston, MA: Butterworth-Heinemann.

1028 Thompson, C. K. (2000). Neuroplasticity: Evidence from aphasia. *Journal of Communication*  
1029 *Disorders*, 33(4), 357–366. [https://doi.org/10.1016/s0021-9924\(00\)](https://doi.org/10.1016/s0021-9924(00)00031-9)  
1030 00031-9.

1031 Thompson, C. K., Shapiro, L. P., Kiran, S., & Sobecks, J. (2003). The role of syntactic  
1032 complexity in treatment of sentence deficits in agrammatic aphasia: The  
1033 complexity account of treatment efficacy (CATE). *Journal of Speech Language and Hearing*  
1034 *Research*, 46(3), 591–607. [https://doi.org/10.1044/1092-4388\(2003/047\)](https://doi.org/10.1044/1092-4388(2003/047)).

1036 Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. *The*  
1037 *Quarterly Journal of Experimental Psychology*, 37(4), 571–590.

1038 Toro, J. F. D. (2000). An examination of automatic versus strategic semantic priming effects in  
1039 *broca's aphasia*. *Aphasiology*, 14(9), 925–947. <https://doi.org/10.1080/02687030050127720>.

1041 Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. *Science*, 247(4940),  
1042 301–306. <https://doi.org/10.1126/science.2296719>.

1043 van den Bussche, E., Van den Noortgate, W., & Reynvoet, B. (2009). Mechanisms of masked  
1044 priming: A meta-analysis. *Psychological Bulletin*, 135(3), 452. <https://doi.org/10.1037/a0015329>.

1046 van Hees, S., Angwin, A., McMahon, K., & Copland, D. (2013). A comparison of semantic  
1047 feature analysis and phonological components analysis for the treatment of  
1048 naming impairments in aphasia. *Neuropsychological Rehabilitation*, 23(1), 102–132.

1049 Varholak, S. E., & Linebaugh, C. W. (1995). Comparison of active versus passive prestimulation  
1050 in the treatment of anomia. *Clinical Aphasiology*, 23, 253–266.

1051 Wambaugh, J. (2003). A comparison of the relative effects of phonologic and semantic cueing  
1052 treatments. *Aphasiology*, 17(5), 433–441.

1053 Wambaugh, J. L., Doyle, P. J., Martinez, A. L., & Kalinyak-Fliszar, M. (2002). Effects of two  
1054 lexical retrieval cueing treatments on action naming in aphasia. *Journal of  
1055 Rehabilitation Research and Development*, 39(4), 455–466.

1056 Wambaugh, J. L., Linebaugh, C. W., Doyle, P. J., Martinez, A. L., Kalinyak-Fliszar, M., &  
1057 Spencer, K. A. (2001). Effects of two cueing treatments on lexical retrieval in  
1058 aphasic speakers with different levels of deficit. *Aphasiology*, 15(10-11), 933–950.  
1059 <https://doi.org/10.1080/026870401430003>.

1060 Wheeldon, L. R., & Monsell, S. (1994). Inhibition of spoken word production by priming a  
1061 semantic competitor. *Journal of Memory and Language*, 33(3), 332–356.  
1062 <https://doi.org/10.1006/jmla.1994.1016>.

1063 Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. *Current  
1064 Opinion in Neurobiology*, 8(2), 227–233. <https://doi.org/10.1162/089892905775008689>.

1066 Wright, H. H., Marshall, R. C., Wilson, K. B., & Page, J. L. (2008). Using a written cueing  
1067 hierarchy to improve verbal naming in aphasia. *Aphasiology*, 22(5), 522–536.  
1068 <https://doi.org/10.1080/02687030701487905>.

1069 Yee, E., Blumstein, S. E., & Sedivy, J. C. (2008). Lexical-semantic activation in Broca's and  
1070 Wernicke's aphasia: Evidence from eye movements. *Journal of Cognitive  
1071 Neuroscience*, 20(4), 592–612. <https://doi.org/10.1162/jocn.2008.20056>.  
1072