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Abstract—The thermal profiles of integrated circuits (ICs)
have been leveraged as a side-channel in multiple circuit and
architectural scenarios. Applications range from identifying
hardware Trojans to estimating the per-core power consumption
of homogeneous multicore processors. Such scenarios leverage the
correlation between the on-chip location of the consumed power
with some target information of interest, such as correlating the
extra power consumption at a specific circuit position with the
presence of a hardware Trojan. While the spatial correlation
between the power consumption and thermal profiles applies
to all ICs, there is a fundamental difference in the context
of modern SoCs. The difference stems from the presence of
hardware accelerators, in which localized power consumption
corresponds to the system performing the specific task that a
given accelerator executes.

The work described in the paper demonstrates the implications
of correlating the thermal and power profiles of SoCs by
presenting two working case studies that determine, at runtime,
1) the activity factor of each accelerator and 2) whether or
not a system is infected by malware. This work relies on pre-
processing thermal images in order to obtain a spatial profile
of the estimated power density and uses a modified version
of a previously developed technique that is tailored for use
with accelerator-rich ICs. The resulting power estimates are
fed into machine learning models that predict the core activity
factor with mean average errors between 3% and 5% for the
highest performing core. The statistical models used for malware
detection result in an AuROC score of up to 1.0 and 0.9 when the
malware offsets the activity factor of a single core by 2.5% and
the 3-sigma width of the workload activity factor distribution is
2.5% and 5%, respectively.

I. INTRODUCTION

Side-channels are unintended sources of information leak-

age. Commonly used side-channels include electromagnetic

radiation (EM), timing, and power [1]–[4]. The information

extracted from any given side-channel varies significantly

depending on the scenario and can include information such

as a private encryption key, the dynamic instruction trace of

a program, or any other part of the state of the system that is

not part of the ICs designed I/O interface.

The thermal side-channel is often dismissed due to the

spatial and temporal low-pass filtering of information governed

by the heat diffusion equations. EM is often seen as a superior

replacement for the thermal side-channel, but is prone to

environmental noise and other techniques that mask the signal

including both passive and active shielding [5].

In spite of the challenges of extracting information from the

thermal channel, researchers have characterized the leaked in-

formation from a variety of ICs. One study was able to extract

the Hamming weight of repeatedly written data from a micro-

controller [6]. Other studies have focused on conventional

multicore processors, leveraging architectural properties such

as concurrency to enable the extraction or communication of

useful information. As a covert channel, arbitrary information

is sent between colluding cores on the same IC [7], [8]. As

a side-channel, hardware Trojans have been detected [9] and

per-core power consumption has been estimated [10], [11].

In contrast to such studies, the work presented in this paper

analyzes the effect of modern architectures on the thermal

side-channel. Concerns regarding high power density have

led companies like Intel, Apple, Qualcomm, and NVIDIA to

incorporate specialized logic into the IC in the form of acceler-

ators [12]. In contrast to general-purpose multicore processors,

the accelerator-rich architectures are heterogeneous, composed

of general-purpose cores and fixed-function accelerators that

perform tasks such as video encoding/decoding, encryption,

or digital signal processing (DSP) [13].

The work described in this paper aims to analyze how exist-

ing challenges in the field of security and side-channel analysis

are affected by the integration of hardware accelerators. The

following contributions are presented: (1) a thermal modeling

framework for accelerator-rich architectures, (2) a technique

to estimate the power-consumption profile of accelerator-rich

ICs, (3) a machine learning model using a Deep Neural Net-

work (DNN) that predicts the activity factor of each core in an

IC based on the thermal side-channel, and (4) a methodology

to produce statistical models that can detect malware using

either the activity factor estimates from the DNN or by using

the estimated power-consumption profile directly.

The rest of the paper is organized as follows: An overview

of the modeling infrastructure used in this work is provided in

Section II, which motivates the pre-processing step to estimate

power-profiles from thermal image data presented in Section

III. Two seperate case-studies are presented in Sections IV and

V, and closing remarks are provided in Section VI.

II. OVERVIEW

The objective of this work is to extract system information

by observing the thermal profile of an accelerator-rich IC. An
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Fig. 1. Overview of the methodology used to model and implement the
thermal side-channel.

overview of the methodology presented in this paper is shown

in Fig. 1. For the sake of brevity, the non-memory components

of a system—fixed function accelerators and general-purpose

cores—are collectively referred to as cores for the remainder

of this paper. Additionally, the term activity factor refers to

the ratio of clock cycles that the core is actively processing

data from the total number of completed clock cycles.

A. Thermal Image Pre-processing

As previously mentioned, heat transfer through thermal

diffusion is a low-pass filter both spatially and temporally

[14]. The filtering in time is due to the combination of the

thermal conductance and thermal capacitance of the IC and

the surrounding materials. The spatial filter is due to the non-

zero lateral thermal conductance of the IC. The result is a loss

of the high-frequency information of the power-consumption

across the IC. Specifically, the heat generated at a discrete

location in the circuit leads to increased temperatures across

the rest of the die.

Initial experiments that directly analyzed the thermal images

produced poor results. A trained Convolutional Neural Net-

work (CNN) was only able to predict whether a core was 100%

or 0% active with an average accuracy of less than 60%, with

many core types resulting in an accuracy of around 50%. This

motivated pre-processing of the thermal images to account for

spatial low-pass filtering due to thermal diffusion. Therefore,

in this work, all thermal images are first pre-processed by

solving the inverse of the heat transfer equations, as shown

in Fig. 1. The method used for pre-processing is described in

detail in Section III.

B. System Types

In order to evaluate the methods presented in this paper, a

variety of floorplans were generated with random assortments

of cores. The goal is to demonstrate that the developed

methods are not restricted to a given type of system or

floorplan. When designing an IC, care is taken to avoid thermal

hotspots and an unevenly distributed power density, which

causes timing errors and accelerates device wearout [15], [16].

To account for thermal hotspots, the power-density of the

core was factored in when selecting cores for a given IC. Each

core was first labeled as either high-power-density (high-pd)

or low-power-density (low-pd) using 10 W
cm2 as a threshold

when actively consuming power. Then, three types of systems

were developed; systems using only high-pd cores, systems

TABLE I
CORE POWER, AREA, AND TIMING CHARACTERISTICS USING

SAED32-RVT AT 1.16V , 25◦C . THE RATIO OF ACTIVE TO IDLE POWER IS

REFERRED TO AS POWER RATIO. SHADED ROWS INDICATE high-pd CORES

AND UNSHADED ROWS ARE low-pd CORES. ALL CORES WERE ACQUIRED

FROM OPENCORES [17], EXCEPT FFT128, WHICH IS FROM THE SPIRAL

FFT GENERATOR [18]

Power-Density (W/cm2)
Core Active Idle Ratio Area (μm2) Frequency
aes-128 28.40 2.04 13.94 17430 300MHz
aes-192 27.73 1.91 14.53 24064 300MHz
ECG add 3.90 1.88 2.08 230605 100MHz
ECG mult 2.97 1.84 1.62 229642 70MHz
fft128 22.62 1.51 14.94 1459551 100MHz
hpdmc 48.42 13.07 3.70 4248 700MHz
jpegencode 2.03 1.68 1.21 1186501 20MHz
neo430 2.44 1.32 1.84 370573 50MHz
RS dec 47.47 1.73 27.40 115013 185MHz
wf3d 4.62 3.71 1.25 40700 150MHz

using only low-pd cores, and systems using any core regardless

of power-density (any-pd). The three proposed configurations

model a variety of systems ranging from low-power SoCs to

high power server processors.

C. Modeling and Simulation Methodology

This work uses an end-to-end methodology developed to

accurately model and characterize the thermal side-channel

leakage of accelerator-rich ICs. Each core is modeled at the

RTL level and synthesized with Synopsys Design Compiler
using the SAED32 standard cell library. Power consumption

is determined using Synopsys Primetime with detailed activity

traces obtained from simulating a testbench for each core using

multiple test vectors. The characteristics of each of the cores

are shown in Table I when using the SAED32-rvt standard

cell library operating at 1.16V and 25◦C.

Floorplanning is completed using HotFloorplan and all

thermal simulations are done using a slightly modified version

of HotSpot 6.0 [19]. The modifications include adding access

to the temperature grids of all layers of the die as well as

enabling the modeling of bare-silicon ICs, such as those that

use wafer level chip scale packaging (WLCSP) [20], [21].

III. THERMAL INVERSE DIFFUSION

Solving the thermal inverse diffusion problem is a vital pre-

prossing step that occurs prior to the training and evaluation

of the models as shown in Fig. 1. The solution to the problem

provides an estimate of the power-density profile of an IC

based on a thermal image. The method to estimate the power-

density profile that produced a given thermal map is similar to

that of previous work [9]. The following section provides an

overview of the analytical equations used in the model and the

modifications required to adapt the model to accelerator-rich

architectures.

A. Base Model

Thermal simulators such as HotSpot apply a resistor net-

work that functions as a discretized version of the heat

equation equation given by:
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Rp + e = Δt. (1)

In (1), the matrix R is the resistive network that represents

the thermal resistances of the system, p is the 2-D array of

power densities, e is all sources of error in the system, and Δt
is a 2-D thermal image normalized to the ambient temperature.

If R and p are known, Δt is computed by performing a matrix

multiplication after assuming e is �0. The inverse problem—

computing p given Δt—is more difficult and requires that R
is either known or can be estimated.

Estimation of R is possible either experimentally or through

simulation. For this work, R is derived by simulation following

a methodology similar to that found in [9]. Deriving R in this

way leverages the linearity of the model and is achieved by

first partitioning the IC into a grid of n1 × n2 blocks. Next,

each block is activated one at a time by setting the power

within the target block to some constant value and the power

in the remaining blocks to 0. The thermal images produced

by the impulse responses are m1×m2 thermal pixels and are

used as the elements of R. The values in p correspond to

the power consumption within each block. In the case where

the IC is split into n1 × n2 blocks and each thermal image is

m1×m2 pixels, the dimensions of R are n1×n2×m1×m2. In

this work, the grid and thermal image dimensions are chosen

as: n1 and n2 are 128 blocks and m1 and m2 are 32 pixels.

Given t and R, p is estimated by solving the optimization

problem that minimizes the error term e and is given by

p̂ = argmin
p

||Rp−Δt||22. (2)

B. Regularization

While (2) can be solved without further modification, the

fact that R is an ill-conditioned matrix means that small errors

in t result in large errors in p̂ [22]. A method to minimize

the error in problems that are ill-conditioned is through the

addition of a regularization term, which serves many purposes,

including but not limited to reducing noise, preventing over-

fitting, encouraging model sparsity, or leveraging assumptions

that are made regarding the nature of the solution [23].

Regularization is essential in this work as the performance

of the models is directly affected by the quality of the power-

density estimates. This work proposes and demonstrates the

advantages of a novel regularization term that simultaneously

reduces noise and improves the accuracy of the estimated

power map p̂.

The regularization term was developed based on the ob-

servation that the power-density of ICs with multiple discrete

hardware accelerators tend to be piecewise-constant, which is

due to each accelerator being physically disjoint and func-

tionally independent from the others. Therefore, at any given

time, any subset of the accelerators may be active (within

thermal limits and other system limitations). The described

characteristics tend to result in systems that have instantaneous

power-densities that vary at the granularity of accelerators,

with an overall power-density profile that is the weighted sum

(a) Thermal Image (output of HotSpot)

(b) Input Power Densities (c) Estimated Power Densities

Fig. 2. An example circuit topology along with thermal simulation results
corresponding to the thermal inverse solution using the modified cost function
in (3). The optimization of the cost function successfully compensated for the
low-pass filtering of the heat diffusion equation that occurred between Fig. 2b
and 2a. Temperatures are displayed in K and power densities are in Watts

cm2 .

of the power consumption of each accelerator. A regularization

term is added that simultaneously reduces the effects of

random noise and accounts for the piecewise-constant nature

of the IC power profile. The minimization problem using the

modified cost function is given by

p̂ = argmin
p

||Rp−Δt||22 + λ||∇p||1. (3)

In (3), ∇p is the gradient of p. Since p is a 2-D grid of

values, ∇p is defined as the sum of the gradients in the x
and y directions. Using the definition of ∇p, ||∇p||1 is the

sum of the absolute values of the gradients of p. The λ is the

relative weight of the penalty that is tuned to produce the most

desirable results in each scenario. The effect of the penalty

term is that adjacent blocks with different power-densities

are penalized, which reduces noise and encourages piecewise-

constant values in p, both of which are well suited for

accelerator-rich ICs. The process of determining the optimal

value of λ is described in Section III-C.

To perform the minimization, prior work that solves a

mathematically similar problem from the field of magnetic

resonance imaging is applied [23]. The derivative of the

penalty term is approximated using the following smoothing
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(a) MAPE: low-pd systems (b) MAPE: high-pd systems (c) MAPE: any-pd systems

Fig. 3. Error of power-desnity estimate p̂ for the entire IC on systems with varied power-density (pd) as a function of μ and λ.

(a) MAPE: low-pd systems (b) MAPE: high-pd systems (c) MAPE: any-pd systems

Fig. 4. Error of power-density estimate p̂ for the entire IC and for individual cores as a function of λ with μ of 100, 000.

equation for each value pi ∈ p,

∇λ|pi| = λpi√
p2i + μ

, (4)

where μ is a smoothing parameter. In effect, μ sets a soft
threshold for values in ∇p. When a value in ∇p is below the

threshold, the penalty term is dominated by the contribution

of μ, which implies that changing pi has a small effect on the

value of the cost function. Conversely, when pi is greater than

the soft threshold, changes in pi result in significant changes

to the value of the cost function. Given that p is measured in
Watts
cm2 and that ∇p is the difference in p between adjacent

blocks, μ indirectly sets a limit for tolerable differences in

power density between adjacent blocks.

The result of using the modified cost function given by (3)

is shown in Fig. 2, where μ is set to 105 and λ is set to

10−4. As the figure indicates, the low-pass filtering of the heat

diffusion equation is compensated for by the optimization of

the cost function. The power-density estimate is noticeably less

accurate for smaller cores such as wf3d. The lower accuracy

is due to 1) the inability to compensate for all of the filtering

caused by the process of heat diffusion and 2) the edges of

the cores do not perfectly align with the grid of p̂. Both affect

smaller cores more than larger cores.

C. Choosing optimal values for μ and λ

Choosing values for the smoothing threshold μ and the

weight of the penalty term λ is dependant on a variety of

factors including, 1) the size and power density of the IC,

2) the size of each core, and 3) the target use of the power

estimates. In some cases, such as evalutating the overall power

profile of an IC, μ and λ are chosen such that the error of the

entire p array is minimized. In other cases, such as isolating

the power consumption of a specific core, optimization of the

error of the p values that correspond to the location of the

specific core is preferred.

This section explores the optimization of μ and λ by

performing a parameter sweep and evaluating the quality of

the power estimates in p. Each set of parameter settings are

evaluated on over 100 randomly selected core configurations.

For each simulation, a discretized version of p is compared

with p̂ using Mean Absolute Percent Error (MAPE). The

metric is computed for the entire power map as well as on

a per core basis, where only the pixels strictly inside a given

core are considered.

1) Effect on MAPE of the entire IC: The effects of μ and

λ on the overall MAPE of p̂ are shown in Fig. 3. Each

series within a given graph represents a different value for

λ. For low-pd systems (Fig. 3a) and when λ is less than or

equal to 10−5, the regularization term is not weighted heavily

and, therefore, the desired piecewise-constant behavior is not

achieved. When λ equals 0.01, the smoothing effect dominates

the cost function, resulting in a p̂ that filters useful information

instead of removing only noise as intended. Between the two

edge cases, for a λ of 0.001 for example, the optimization
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(a) high-pd systems (b) any-pd systems (c) low-pd systems

Fig. 5. Mean average error of the Deep Neural Networks that estimate the core activity factor within systems with different power-density (pd) constraints.

function performs well across all values of μ and produces

the lowest overall error. Similar trends are observed from the

results shown in Figs. 3b and 3c, where a choice for λ that is

either too low or too high results in increased error.

2) Effect on MAPE of individual cores: The effect of λ on

the MAPE of cores for low-pd, high-pd, and any-pd systems is

shown in Fig. 4. The plots indicate that there is no single value

of λ that works well for all cores in all types of systems. From

the results shown in Fig. 4a, a λ ∈ [10−3, 10−2] produces the

lowest errors for almost all cores and the IC as a whole. The

wf3d core is smaller, and therefore, more negatively affected

by smoothing, which results in an increase in MAPE when

λ is greater than 10−4. Similar trends are observed for other

small cores including aes-128 and hpdmc.

This work aims to extract per-core information from the

thermal side-channel by tuning μ and λ such that the per-

core MAPE is minimized. As previously described, there is

no single set of values for μ and λ that works optimally for

all system and core types. Therefore, μ and λ are chosen such

that the MAPE is minimized as much as possible across all

cores. For the remainder of this work, μ is set to 105 and λ is

set to 10−3, 10−4, and 10−3 for low-pd, high-pd, and any-pd
systems, respectively.

IV. CORE ACTIVITY ESTIMATION

In this section, the thermal channel is used to determine

the activity factor of each core. The approach is intentionally

generic and applies to a variety of attack scenarios, including

reverse engineering proprietary software, being used in a

timing attack, identifying if a vulnerable core is in use, and

being used as a covert-channel.

A. Attack Vector

For this case study, an IoT device is targeted and the attacker

is attempting to determine the activity factor of one of more of

the cores on the device. As with most IoT devices, the attacker

does not have direct software access to the device, but does

have physical access.

In order to develop learning models, the attacker will

perform characterization on device(s) on which arbitrary code

is executing that sets the desired activity-factor for each core.

The training data consists of a series of thermal images that

are labeled with the activity factor of the target core(s). The

number of thermal images used to develop the models is

limited to 75 since the images are manually collected by

the attacker. Additional examples are generated for model

evaluation only.

The attacker creates workload components that target each

of the accelerator cores present in the system, which is accom-

plished by repeatedly executing calls to the API of the device

that leverage accelerators, such as a call that encrypts data

using AES-encryption. From these components, the attacker

creates a workload that activates any combination of cores on

the system, thereby generating a wide range of data that is

used to develop thermal and power models.

B. Model Implementation

The machine learning models used in this case study are

Deep Neural Networks (DNNs), which are created using the

Keras [24] machine learning framework in python. As pre-

viously mentioned, Convolutional Neural Networks (CNNs)

were also evaluated and produced poor results due to the

tendency to generalize spatially.

The attacker must also construct R in order to estimate the

power profile of the IC. It is possible to construct ‘impulse

responses’ for each core by directly and individually activating

each core and collecting the corresponding thermal profiles.

This, however, may prove difficult for the attacker depending

on the software interface to the cores as well as any shared

hardware or interdependancies between cores. Therefore, for

this work, R is constructed through simulation of impulse

responses of each block within a grid, which requires only

basic knowledge of the IC (surface area and thickness) and

the general thermal properties of silicon.

C. Results

The performance of the DNN models is summarized

through the results shown in Fig. 5. The prediction quality of

each model is characterized using Mean Average Error (MAE).

The data is categorized based on the type of system being

evaluated and is aggregated across multiple floorplans for all

87

Authorized licensed use limited to: Drexel University. Downloaded on July 31,2020 at 13:17:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Distributions of core activity factor with and without added malware. Each row includes a different workload standard deviation, indicated by the
size of the three standard deviations, 3σw . Each column specifies the mean activity factor, μt, of the malware that is added to or subtracted from the activity
factors of a core. Workload mean is statically set to 50% for this example only, and is randomly chosen for each core in the case study.

of the threshold-voltages available in the SAED32 standard

cell library.

The two major factors that contribute to the error in activity-

factor prediction of any given core are the core size and

power density, which are summarized in Table I. The following

discussion will be limited to the results for high-pd (Fig. 5a)

and low-pd (Fig. 5c) systems at first. These results are then

compared with the results of any-pd systems in order to isolate

the effects of varied power-density on model accuracy.

In general, models for cores that are either large or have a

high active/idle power ratio have lower MAE. For example,

jpegencode and RS dec both have a MAE around 7% but

have very different characteristics; the jpegencode is very

large with an active/idle ratio of only 1.21, while RS dec
is 10× smaller but has a very high active/idle ratio of 27.4.

The best performing models are for the fft128 core, which is

slightly larger than the jpegencode core but has a much greater

active/idle ratio of 14.94.

Conversely, the models that perform poorly include those

that are small and have active/idle ratios close to 1. For

example, the hpdmc is approximately 300× smaller than the

largest core (fft128), but has a MAE of 25% despite having an

active/idle ratio of 3.7. While the wf3d core is approximately

10× larger than hpdmc, the active/idle ratio is only 1.25, which

results in a high MAE of 23%.

Small cores tend to have lower accuracy for the same

reason that they exhibit larger MAPE in p̂, namely that

heat diffusion and regularization both filter high frequency

information. Spatial low-pass filtering also contributes to the

reduced accuracy of the activity factor estimates for cores

with low active/idle power ratios; the temperature of the target

core is influenced more by the higher power consumption of

surrounding cores than any change in the activity factor. Such

cores are also more sensitive to error in p̂ as the signal strength

is weaker. If the error in p̂ is large relative to the change in

p when the core transitions from an active to an idle state,

the signal to noise ratio is lower, resulting in a decrease in

accuracy of the model.

A secondary factor that affects the error in the predicted

activity-factor of a core is the overall uniformity of the power-

densities of the IC. The accuracy of the models for any-
pd systems (Fig. 5b) is lower for the majority of cores

included in low-pd and high-pd systems only; all of the low-pd
cores include approximately 5% greater error and most of the

high-pd cores perform similarly or slightly worse. The two

exceptions are the aes cores, which perform slightly better

in any-pd systems. The likely reason is the relatively small

size of the aes cores. In the high-pd systems, the activity of

the aes cores is obfuscated by the much larger and higher

power fft128, whereas in the any-pd systems, the aes cores

are surrounded by cores with much lower power consumption,

making it easier to identify the thermal signature of aes.

V. MALWARE DETECTION

In this section, the thermal side-channel is used to detect

malware. Traditional malware detection schemes operate on

the same system that is being monitored, exposing the checker

to the malicious software intended to be detected. Using the

thermal side-channel for malware detection has the advantage

of operating in a manner that is completely independent from

the target system, removing any vulnerability.

A. Model Definitions

1) Workload: The case study is designed to model work-

loads that repeatedly execute on the target system. This is

common in many IoT devices that continually process data,

such as a security camera or a sensor node that locally

performs data processing. Even with the given definition of

a workload, the execution time of each core potentially varies

due to a variety of reasons including scheduling by the OS,

contention for shared resources such as caches, and execution

of highly variable operations like network communications.

Therefore, a workload is defined such that the activity factor
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(a) Highest performing core: fft128 (b) Average performing core: aes128 (c) Worst performing core: hpdmc

Fig. 7. Receiver Operating Characteristic (ROC) curves for select cores from a system with high-power density cores. The workload has a 3-sigma value of
20% and the malware mean is 10%. The p̂ models are 32 × 32 before being scaled to the specified size. All p̂ models use the sample covariance matrix,
ΣMLE , except those marked with diag, which use only the diagonal elements.

of each core is normally distributed around some nominal

value. While the activity factors of cores in a real system

are likely correlated due to contention for shared resources

or inter-accelerator data dependencies, this work makes the

conservative assumption that no such correlations exist, which

makes anomaly detection more difficult.

The width of the distribution of the activity factor, defined

as 3 standard deviations (3σ), also varies across systems.

Realtime sensor systems tend to have less variation while

more complex computing platforms like those found in servers

operate with more variation. In order to model the entire range

of possible systems, the 3σ value for each workload is varied

over the range of 2.5% to 20%.

2) Malware: While malware takes countless forms, this

work limits the scope to malicious activity that is repeatedly

executed in order to mimic the behavior of a system that is

unwittingly part of a bot-net or has been hijacked to steal

compute resources to perform an undesired distributed task.

Therefore, malware is also defined such that the effect on the

activity factor of a single core is normally distributed around

a nominal value given by μt. The magnitude of μt is varied

between 2.5% and 40% to model a variety of possible malware

types.

If malware is executing on a system, the impact is either to

add to (increase the amount of work allotted to a given core)

or subtract from (slow down a core that serves as a producer

in a producer-consumer relationship) the activity factor of a

core. In this work, malware is limited to affecting the activity

factor of a single core within the system.

The combined effect of 3σw and μt on the distribution of

the observed activity factor for a given core is shown in Fig.

6. In the absence of malware, the activity factor of a core is

normally distributed. When malware is added, the distribution

becomes multi-modal, with peaks above and below the original

mean.

B. Anomaly Detection Model

One approach to performing anomaly detection is using

parametric distributions [25]. In cases where each sample

is labeled as either normal or anomalous, the labeling of a

sample with an unknown class is accomplished by

Label normal if f(x|Ω) > τ else label anomaly, (5)

where f is the parametric model, Ω are the given parameters of

the model, x is the sample being labeled, and τ is a threshold

that is tuned to trade-off between the number of false positives

and false negatives.

One commonly used parametric model is the multivariate

Gaussian, which is given by

f(x|μ,Σ) = 1√
(2π)d|Σ| exp

[−1
2 (x− μ)TΣ−1(x− μ)

]
,

(6)

where x is the observation being considered, μ is a vector

containing the mean values for each feature in x, Σ is the

covariance matrix of the features in x, and d is the number

of features in x. The value commonly used for Σ is the

Maximum Likelihood Estimate (MLE), which is given by

ΣMLE =
1

N

N∑

i=1

(xi − μi)(xi − μi)
T . (7)

While the MLE estimate works well in some cases, there are

limitations. One such limitation is due to the fact that the pdf,
given by f(x|μ,Σ), contains Σ−1 in the definition, requiring

Σ to be invertible. In order for Σ to be invertible, the number

of samples N must be larger than the number of features n.

While N > n samples is sufficient to produce an invertible Σ,

in practice, the number of observations must be much greater

than the number of features (in the order of N > 10n) for the

resulting estimate of Σ to be accurate [26]. In many situations,

especially in fields such as IoT, it is impractical to have more

observations than features. In such cases, other techniques

must be applied to accurately estimate Σ. One simple method

is to use only the diagonal elements of the covariance matrix

Σ̂ = diag(ΣMLE), (8)

which has the advantage of working with any number of

samples so long as all of the variances are non-zero. However,

the model no longer accounts for any correlations between
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(a) 2.5% malware mean (b) 5% malware mean (c) 10% malware mean

Fig. 8. Area under ROC (AuROC) values for the best model for each core among any floorplan. The width of the distribution of the workload activity factor
is indicated by 3σw for malware strengths of 2.5%, 5%, and 10%.

different features. While more complicated techniques exist

[26], this work evaluates the use of ΣMLE and diag(ΣMLE).

C. Example ROC Curves for Malware Detection

The Receiver Operating Characteristic (ROC) curves for

three selected cores in a high-pd system are shown in Fig. 7.

The True Positive Rate (TPR) corresponds to the number of

times malware is correctly detected and the False Positive Rate

(FPR) corresponds to the number of times the model predicts

that malware is present when it is not. The sub-figures include

results that characterize all possible trade-offs between TPR

and FPR made by adjusting the threshold τ in (5). Each series

of each sub-figure represents a model that is constructed from

a different set of features; the p̂ models are resized versions

of the power-density estimates, and the Activity Factor models

are generated using the predicted activity factor of all cores

using the DNN models developed in Section IV. The models

that only include the diagonal components of the covariance

matrix are denoted as ‘diag’; otherwise, the fully populated

covariance matrix is used.

The ROC curves indicate large variation in results based on

the type of core affected by malware. Similar to the results

for activity factor estimation in Section IV, large cores with

a high active/idle power ratio such as fft128 (shown in Fig.

7a) produce the highest prediction accuracy, while small cores

such as hpdmc (shown in Fig. 7c), exhibit lower prediction

accuracy.

The model that produces the best ROC curve also varies

from core to core. For cores like the fft128 that more signif-

icantly impact the power consumption of the IC, p̂ produces

accurate models even when down-sampled to a very low

resolution of 4 × 4. In this case, using only the diagonal

components of the covariance matrix degrades performance

by filtering out important information regarding the state of

each core. Conversely, smaller cores like aes128 and hpdmc
are generally not affected by the resolution of p̂, as most

resolutions produced equally poor results. Instead, the biggest

factor in determining the performance of the model is whether

the dense covariance matrix is used or only the diagonal

components are used. In both cases, lowering the resolution of

p̂ results in the loss of information. However, a better model

accuracy is possible as the noise and error in the estimate of

ΣMLE decreases due to having less degrees of freedom for

the same number of samples.

For all three cores, the activity factor models perform

comparably to that of the most optimal p̂ model. In addition,

the performance of the activity factor model does not require

changes to the resolution of p̂, whereas the p̂ models do. If a

non-optimal resolution of p̂ is chosen, then the p̂ model per-

forms poorly relative to the activity factor model. In the case

of hpdmc, the activity factor model is the highest performing

at low FPR and only slightly outperformed by a p̂ model at

high FPR, where the model becomes unusable as it almost

always predicts that malware is present even when it is not.

The activity factor models also exhibit decreased model per-

formance when only the diagonal elements of the covariance

matrix are used, which is counter-intuitive given that the actual

activity factors of the cores in a system are not correlated,

but demonstrates that activity factor estimates from the DNN

models are. The correlation is due to the fact that p̂ errors in

one location likely result in an opposite compensatory error

at a nearby location, as dictated by the solution of the heat

diffusion equation. When such an error lies near the boundary

of two cores, the result is the under-estimation of the activity

factor of one core and the over-estimation of the other.

D. AuROC Summary of Malware Detection

The Area Under ROC (AuROC) is a metric that character-

izes the quality of the model that produced a given ROC curve.

The metric is calculated by computing the area under the

curve, which ranges from 0.0 to 1.0, with a value of 1.0 being

ideal. The interdependence between workload variation (3σw)

and the mean of the added malware distribution (μt) is shown

in Fig. 8, where the included values are the best AuROC scores

across all models for a given core. As expected, malware with

a higher mean (Fig. 8c) are easier to detect for all cores relative

to malware with a lower mean (Fig. 8a). Similarly, large values

of 3σw also result in poor model performance.

More interesting trends are seen when comparing between

cores. The cores that had the largest model errors in the
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estimates of activity factor, such as fft-128 and wf3d, only

begin to accurately detect the presence of malware when the

mean activity factor of the malware is 10%, even when the 3σw

is small. In contrast, for the cores that had the lowest error in

the estimate of activity factor, such as RS dec, neo430, and

aes192, malware that offsets the core activity factor by only

2.5% is still detected with a high degree of accuracy when the

3σw is small. As 3σw increases, the model is limited by the

overlap between the activity factor distributions, as shown in

Fig. 6. The trend poses a fundamental limit to the accuracy of

any model, even if the activity factor of each core is known

precisely. Therefore, the overall performance of the model is

a combination of the accuracy of the estimated activity factor

and the relative size of μt and 3σw.

VI. CONCLUSIONS

The work presented in this paper evaluated a novel approach

to solving the thermal inverse diffusion problem specifically in

the context of accelerator-rich ICs. The technique was shown

to increase the accuracy of power-density estimates and reduce

noise. The analysis of the optimal values for the hyperparame-

ters of the model, specifically μ and λ, demonstrated that there

is not a single optimal set of parameters, but rather, there is

a tradeoff between the accuracy of the estimates for different

cores and the IC as a whole.

Given the power density estimates, models were constructed

that extracted information from the thermal side-channel. A

DNN was trained to predict the activity factor of each core

without requiring any floorplan knowledge and achieved a

Mean Average Error ranging from 3% to 5% for the highest

performing core on a variety of system type. In addition,

the DNNs were also evaluated on a variety of other cores,

characterizing the factors that dictate the accuracy of the

estimated core activity factor when using the thermal side-

channel.

Lastly, a methodology for detecting malware through anal-

ysis of the thermal side-channel using a statistical model was

described. The model was evaluated using the power-density

estimates directly, as well as using the activity factor estimates

produced by the developed DNN model. The effects of using

diagonalization as a form of regularization were evaluated and

shown to improve the AuROC score of the model at times, but

not in all cases, motivating either model selection or the use

of more advanced regularization techniques.
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