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Abstract—The thermal profiles of integrated circuits (ICs)
have been leveraged as a side-channel in multiple circuit and
architectural scenarios. Applications range from identifying
hardware Trojans to estimating the per-core power consumption
of homogeneous multicore processors. Such scenarios leverage the
correlation between the on-chip location of the consumed power
with some target information of interest, such as correlating the
extra power consumption at a specific circuit position with the
presence of a hardware Trojan. While the spatial correlation
between the power consumption and thermal profiles applies
to all ICs, there is a fundamental difference in the context
of modern SoCs. The difference stems from the presence of
hardware accelerators, in which localized power consumption
corresponds to the system performing the specific task that a
given accelerator executes.

The work described in the paper demonstrates the implications
of correlating the thermal and power profiles of SoCs by
presenting two working case studies that determine, at runtime,
1) the activity factor of each accelerator and 2) whether or
not a system is infected by malware. This work relies on pre-
processing thermal images in order to obtain a spatial profile
of the estimated power density and uses a modified version
of a previously developed technique that is tailored for use
with accelerator-rich ICs. The resulting power estimates are
fed into machine learning models that predict the core activity
factor with mean average errors between 3% and 5% for the
highest performing core. The statistical models used for malware
detection result in an AuROC score of up to 1.0 and 0.9 when the
malware offsets the activity factor of a single core by 2.5% and
the 3-sigma width of the workload activity factor distribution is
2.5% and 5%, respectively.

I. INTRODUCTION

Side-channels are unintended sources of information leak-
age. Commonly used side-channels include electromagnetic
radiation (EM), timing, and power [1]-[4]. The information
extracted from any given side-channel varies significantly
depending on the scenario and can include information such
as a private encryption key, the dynamic instruction trace of
a program, or any other part of the state of the system that is
not part of the ICs designed 1/O interface.

The thermal side-channel is often dismissed due to the
spatial and temporal low-pass filtering of information governed
by the heat diffusion equations. EM is often seen as a superior
replacement for the thermal side-channel, but is prone to
environmental noise and other techniques that mask the signal
including both passive and active shielding [5].
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In spite of the challenges of extracting information from the
thermal channel, researchers have characterized the leaked in-
formation from a variety of ICs. One study was able to extract
the Hamming weight of repeatedly written data from a micro-
controller [6]. Other studies have focused on conventional
multicore processors, leveraging architectural properties such
as concurrency to enable the extraction or communication of
useful information. As a covert channel, arbitrary information
is sent between colluding cores on the same IC [7], [8]. As
a side-channel, hardware Trojans have been detected [9] and
per-core power consumption has been estimated [10], [11].

In contrast to such studies, the work presented in this paper
analyzes the effect of modern architectures on the thermal
side-channel. Concerns regarding high power density have
led companies like Intel, Apple, Qualcomm, and NVIDIA to
incorporate specialized logic into the IC in the form of acceler-
ators [12]. In contrast to general-purpose multicore processors,
the accelerator-rich architectures are heterogeneous, composed
of general-purpose cores and fixed-function accelerators that
perform tasks such as video encoding/decoding, encryption,
or digital signal processing (DSP) [13].

The work described in this paper aims to analyze how exist-
ing challenges in the field of security and side-channel analysis
are affected by the integration of hardware accelerators. The
following contributions are presented: (1) a thermal modeling
framework for accelerator-rich architectures, (2) a technique
to estimate the power-consumption profile of accelerator-rich
ICs, (3) a machine learning model using a Deep Neural Net-
work (DNN) that predicts the activity factor of each core in an
IC based on the thermal side-channel, and (4) a methodology
to produce statistical models that can detect malware using
either the activity factor estimates from the DNN or by using
the estimated power-consumption profile directly.

The rest of the paper is organized as follows: An overview
of the modeling infrastructure used in this work is provided in
Section II, which motivates the pre-processing step to estimate
power-profiles from thermal image data presented in Section
III. Two seperate case-studies are presented in Sections IV and
V, and closing remarks are provided in Section VI.

II. OVERVIEW

The objective of this work is to extract system information
by observing the thermal profile of an accelerator-rich IC. An
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Fig. 1. Overview of the methodology used to model and implement the
thermal side-channel.

overview of the methodology presented in this paper is shown
in Fig. 1. For the sake of brevity, the non-memory components
of a system—fixed function accelerators and general-purpose
cores—are collectively referred to as cores for the remainder
of this paper. Additionally, the term activity factor refers to
the ratio of clock cycles that the core is actively processing
data from the total number of completed clock cycles.

A. Thermal Image Pre-processing

As previously mentioned, heat transfer through thermal
diffusion is a low-pass filter both spatially and temporally
[14]. The filtering in time is due to the combination of the
thermal conductance and thermal capacitance of the IC and
the surrounding materials. The spatial filter is due to the non-
zero lateral thermal conductance of the IC. The result is a loss
of the high-frequency information of the power-consumption
across the IC. Specifically, the heat generated at a discrete
location in the circuit leads to increased temperatures across
the rest of the die.

Initial experiments that directly analyzed the thermal images
produced poor results. A trained Convolutional Neural Net-
work (CNN) was only able to predict whether a core was 100%
or 0% active with an average accuracy of less than 60%, with
many core types resulting in an accuracy of around 50%. This
motivated pre-processing of the thermal images to account for
spatial low-pass filtering due to thermal diffusion. Therefore,
in this work, all thermal images are first pre-processed by
solving the inverse of the heat transfer equations, as shown
in Fig. 1. The method used for pre-processing is described in
detail in Section III.

B. System Types

In order to evaluate the methods presented in this paper, a
variety of floorplans were generated with random assortments
of cores. The goal is to demonstrate that the developed
methods are not restricted to a given type of system or
floorplan. When designing an IC, care is taken to avoid thermal
hotspots and an unevenly distributed power density, which
causes timing errors and accelerates device wearout [15], [16].

To account for thermal hotspots, the power-density of the
core was factored in when selecting cores for a given IC. Each
core was first labeled as either high-power-density (high-pd)
or low-power-density (low-pd) using 106‘7’52 as a threshold
when actively consuming power. Then, three types of systems
were developed; systems using only high-pd cores, systems
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TABLE 1
CORE POWER, AREA, AND TIMING CHARACTERISTICS USING
SAED32-RVT AT 1.16V, 25°C. THE RATIO OF ACTIVE TO IDLE POWER IS
REFERRED TO AS POWER RATIO. SHADED ROWS INDICATE high-pd CORES
AND UNSHADED ROWS ARE low-pd CORES. ALL CORES WERE ACQUIRED
FROM OPENCORES [17], EXCEPT FFT128, WHICH IS FROM THE SPIRAL
FFT GENERATOR [18]

Power-Density (W /cm?)
Core Active Idle Ratio | Area (um?) | Frequency
aes-128 28.40 2.04 13.94 17430 300MHz
aes-192 27.73 1.91 14.53 24064 300MHz
ECG_add 3.90 1.88 2.08 230605 100MHz
ECG_mult 2.97 1.84 1.62 229642 70MHz
128 22.62 1.51 14.94 1459551 100MHz
hpdmc 48.42 | 13.07 3.70 4248 700MHz
Jjpegencode 2.03 1.68 1.21 1186501 20MHz
neo430 2.44 1.32 1.84 370573 50MHz
RS_dec 47.47 1.73 27.40 115013 185MHz
wf3d 4.62 371 1.25 40700 150MHz

using only low-pd cores, and systems using any core regardless
of power-density (any-pd). The three proposed configurations
model a variety of systems ranging from low-power SoCs to
high power server processors.

C. Modeling and Simulation Methodology

This work uses an end-to-end methodology developed to
accurately model and characterize the thermal side-channel
leakage of accelerator-rich ICs. Each core is modeled at the
RTL level and synthesized with Synopsys Design Compiler
using the SAED32 standard cell library. Power consumption
is determined using Synopsys Primetime with detailed activity
traces obtained from simulating a testbench for each core using
multiple test vectors. The characteristics of each of the cores
are shown in Table I when using the SAED32-rvt standard
cell library operating at 1.16V and 25°C.

Floorplanning is completed using HotFloorplan and all
thermal simulations are done using a slightly modified version
of HotSpot 6.0 [19]. The modifications include adding access
to the temperature grids of all layers of the die as well as
enabling the modeling of bare-silicon ICs, such as those that
use wafer level chip scale packaging (WLCSP) [20], [21].

III. THERMAL INVERSE DIFFUSION

Solving the thermal inverse diffusion problem is a vital pre-
prossing step that occurs prior to the training and evaluation
of the models as shown in Fig. 1. The solution to the problem
provides an estimate of the power-density profile of an IC
based on a thermal image. The method to estimate the power-
density profile that produced a given thermal map is similar to
that of previous work [9]. The following section provides an
overview of the analytical equations used in the model and the
modifications required to adapt the model to accelerator-rich
architectures.

A. Base Model

Thermal simulators such as HotSpot apply a resistor net-
work that functions as a discretized version of the heat
equation equation given by:
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Rp + e = At. )

In (1), the matrix R is the resistive network that represents
the thermal resistances of the system, p is the 2-D array of
power densities, e is all sources of error in the system, and At
is a 2-D thermal image normalized to the ambient temperature.
If R and p are known, At is computed by performing a matrix
multiplication after assuming e is 0. The inverse problem—
computing p given At—is more difficult and requires that R
is either known or can be estimated.

Estimation of R is possible either experimentally or through
simulation. For this work, R is derived by simulation following
a methodology similar to that found in [9]. Deriving R in this
way leverages the linearity of the model and is achieved by
first partitioning the IC into a grid of n; X ny blocks. Next,
each block is activated one at a time by setting the power
within the target block to some constant value and the power
in the remaining blocks to 0. The thermal images produced
by the impulse responses are mj X mso thermal pixels and are
used as the elements of R. The values in p correspond to
the power consumption within each block. In the case where
the IC is split into n; X ngy blocks and each thermal image is
mi X mg pixels, the dimensions of R are n; Xng Xxmj Xms. In
this work, the grid and thermal image dimensions are chosen
as: n; and ng are 128 blocks and m; and my are 32 pixels.

Given t and R, p is estimated by solving the optimization
problem that minimizes the error term e and is given by

p = arg min ||Rp — At|[3. ()
p

B. Regularization

While (2) can be solved without further modification, the
fact that R is an ill-conditioned matrix means that small errors
in t result in large errors in P [22]. A method to minimize
the error in problems that are ill-conditioned is through the
addition of a regularization term, which serves many purposes,
including but not limited to reducing noise, preventing over-
fitting, encouraging model sparsity, or leveraging assumptions
that are made regarding the nature of the solution [23].
Regularization is essential in this work as the performance
of the models is directly affected by the quality of the power-
density estimates. This work proposes and demonstrates the
advantages of a novel regularization term that simultaneously
reduces noise and improves the accuracy of the estimated
power map p.

The regularization term was developed based on the ob-
servation that the power-density of ICs with multiple discrete
hardware accelerators tend to be piecewise-constant, which is
due to each accelerator being physically disjoint and func-
tionally independent from the others. Therefore, at any given
time, any subset of the accelerators may be active (within
thermal limits and other system limitations). The described
characteristics tend to result in systems that have instantaneous
power-densities that vary at the granularity of accelerators,
with an overall power-density profile that is the weighted sum
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(b) Input Power Densities

(c) Estimated Power Densities

Fig. 2. An example circuit topology along with thermal simulation results
corresponding to the thermal inverse solution using the modified cost function
in (3). The optimization of the cost function successfully compensated for the
low-pass filtering of the heat diffusion equation that occurred between Fig. 2b
and 2a. Temperatures are displayed in K and power densities are in W.4ts

of the power consumption of each accelerator. A regularization
term is added that simultaneously reduces the effects of
random noise and accounts for the piecewise-constant nature
of the IC power profile. The minimization problem using the
modified cost function is given by

p = argmin |[Rp — At|[3 + A||Vp1. 3)
p

In (3), Vp is the gradient of p. Since p is a 2-D grid of
values, Vp is defined as the sum of the gradients in the =
and y directions. Using the definition of Vp, [|Vp||; is the
sum of the absolute values of the gradients of p. The A is the
relative weight of the penalty that is tuned to produce the most
desirable results in each scenario. The effect of the penalty
term is that adjacent blocks with different power-densities
are penalized, which reduces noise and encourages piecewise-
constant values in p, both of which are well suited for
accelerator-rich ICs. The process of determining the optimal
value of A is described in Section III-C.

To perform the minimization, prior work that solves a
mathematically similar problem from the field of magnetic
resonance imaging is applied [23]. The derivative of the
penalty term is approximated using the following smoothing
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Fig. 4. Error of power-density estimate p for the entire IC and for individual cores as a function of A with p of 100, 000.

equation for each value p; € p,

Api
Vol i

where 1 is a smoothing parameter. In effect, p sets a soft
threshold for values in Vp. When a value in Vp is below the
threshold, the penalty term is dominated by the contribution
of p, which implies that changing p; has a small effect on the
value of the cost function. Conversely, when p; is greater than
the soft threshold, changes in p; result in significant changes
to the value of the cost function. Given that p is measured in
% and that Vp is the difference in p between adjacent
blocks, p indirectly sets a limit for tolerable differences in
power density between adjacent blocks.

The result of using the modified cost function given by (3)
is shown in Fig. 2, where p is set to 10° and A is set to
10~%. As the figure indicates, the low-pass filtering of the heat
diffusion equation is compensated for by the optimization of
the cost function. The power-density estimate is noticeably less
accurate for smaller cores such as wf3d. The lower accuracy
is due to 1) the inability to compensate for all of the filtering
caused by the process of heat diffusion and 2) the edges of
the cores do not perfectly align with the grid of p. Both affect
smaller cores more than larger cores.

VAlpi| = “

C. Choosing optimal values for j and A

Choosing values for the smoothing threshold g and the
weight of the penalty term A is dependant on a variety of
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factors including, 1) the size and power density of the IC,
2) the size of each core, and 3) the target use of the power
estimates. In some cases, such as evalutating the overall power
profile of an IC, i and A are chosen such that the error of the
entire p array is minimized. In other cases, such as isolating
the power consumption of a specific core, optimization of the
error of the p values that correspond to the location of the
specific core is preferred.

This section explores the optimization of p and A by
performing a parameter sweep and evaluating the quality of
the power estimates in p. Each set of parameter settings are
evaluated on over 100 randomly selected core configurations.
For each simulation, a discretized version of p is compared
with p using Mean Absolute Percent Error (MAPE). The
metric is computed for the entire power map as well as on
a per core basis, where only the pixels strictly inside a given
core are considered.

1) Effect on MAPE of the entire IC: The effects of p and
A on the overall MAPE of p are shown in Fig. 3. Each
series within a given graph represents a different value for
A. For low-pd systems (Fig. 3a) and when A is less than or
equal to 1072, the regularization term is not weighted heavily
and, therefore, the desired piecewise-constant behavior is not
achieved. When X equals 0.01, the smoothing effect dominates
the cost function, resulting in a p that filters useful information
instead of removing only noise as intended. Between the two
edge cases, for a A of 0.001 for example, the optimization
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Fig. 5. Mean average error of the Deep Neural Networks that estimate the core activity factor within systems with different power-density (pd) constraints.

function performs well across all values of i and produces
the lowest overall error. Similar trends are observed from the
results shown in Figs. 3b and 3c, where a choice for A that is
either too low or too high results in increased error.

2) Effect on MAPE of individual cores: The effect of A on
the MAPE of cores for low-pd, high-pd, and any-pd systems is
shown in Fig. 4. The plots indicate that there is no single value
of A that works well for all cores in all types of systems. From
the results shown in Fig. 4a, a A € [1073,1072] produces the
lowest errors for almost all cores and the IC as a whole. The
wf3d core is smaller, and therefore, more negatively affected
by smoothing, which results in an increase in MAPE when
A is greater than 10~%. Similar trends are observed for other
small cores including aes-128 and hpdmec.

This work aims to extract per-core information from the
thermal side-channel by tuning g and A such that the per-
core MAPE is minimized. As previously described, there is
no single set of values for x4 and A that works optimally for
all system and core types. Therefore, px and A are chosen such
that the MAPE is minimized as much as possible across all
cores. For the remainder of this work, y is set to 10° and \ is
set to 1073, 1074, and 10~3 for low-pd, high-pd, and any-pd
systems, respectively.

IV. CORE ACTIVITY ESTIMATION

In this section, the thermal channel is used to determine
the activity factor of each core. The approach is intentionally
generic and applies to a variety of attack scenarios, including
reverse engineering proprietary software, being used in a
timing attack, identifying if a vulnerable core is in use, and
being used as a covert-channel.

A. Attack Vector

For this case study, an IoT device is targeted and the attacker
is attempting to determine the activity factor of one of more of
the cores on the device. As with most IoT devices, the attacker
does not have direct software access to the device, but does
have physical access.

In order to develop learning models, the attacker will
perform characterization on device(s) on which arbitrary code
is executing that sets the desired activity-factor for each core.
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The training data consists of a series of thermal images that
are labeled with the activity factor of the target core(s). The
number of thermal images used to develop the models is
limited to 75 since the images are manually collected by
the attacker. Additional examples are generated for model
evaluation only.

The attacker creates workload components that target each
of the accelerator cores present in the system, which is accom-
plished by repeatedly executing calls to the API of the device
that leverage accelerators, such as a call that encrypts data
using AES-encryption. From these components, the attacker
creates a workload that activates any combination of cores on
the system, thereby generating a wide range of data that is
used to develop thermal and power models.

B. Model Implementation

The machine learning models used in this case study are
Deep Neural Networks (DNNs), which are created using the
Keras [24] machine learning framework in python. As pre-
viously mentioned, Convolutional Neural Networks (CNNs)
were also evaluated and produced poor results due to the
tendency to generalize spatially.

The attacker must also construct R in order to estimate the
power profile of the IC. It is possible to construct ‘impulse
responses’ for each core by directly and individually activating
each core and collecting the corresponding thermal profiles.
This, however, may prove difficult for the attacker depending
on the software interface to the cores as well as any shared
hardware or interdependancies between cores. Therefore, for
this work, R is constructed through simulation of impulse
responses of each block within a grid, which requires only
basic knowledge of the IC (surface area and thickness) and
the general thermal properties of silicon.

C. Results

The performance of the DNN models is summarized
through the results shown in Fig. 5. The prediction quality of
each model is characterized using Mean Average Error (MAE).
The data is categorized based on the type of system being
evaluated and is aggregated across multiple floorplans for all
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of the threshold-voltages available in the SAED32 standard
cell library.

The two major factors that contribute to the error in activity-
factor prediction of any given core are the core size and
power density, which are summarized in Table I. The following
discussion will be limited to the results for high-pd (Fig. 5a)
and low-pd (Fig. 5c) systems at first. These results are then
compared with the results of any-pd systems in order to isolate
the effects of varied power-density on model accuracy.

In general, models for cores that are either large or have a
high active/idle power ratio have lower MAE. For example,
Jjpegencode and RS_dec both have a MAE around 7% but
have very different characteristics; the jpegencode is very
large with an active/idle ratio of only 1.21, while RS_dec
is 10x smaller but has a very high active/idle ratio of 27.4.
The best performing models are for the fft/28 core, which is
slightly larger than the jpegencode core but has a much greater
active/idle ratio of 14.94.

Conversely, the models that perform poorly include those
that are small and have active/idle ratios close to 1. For
example, the hApdmc is approximately 300x smaller than the
largest core (fft128), but has a MAE of 25% despite having an
active/idle ratio of 3.7. While the wf3d core is approximately
10x larger than hpdmc, the active/idle ratio is only 1.25, which
results in a high MAE of 23%.

Small cores tend to have lower accuracy for the same
reason that they exhibit larger MAPE in P, namely that
heat diffusion and regularization both filter high frequency
information. Spatial low-pass filtering also contributes to the
reduced accuracy of the activity factor estimates for cores
with low active/idle power ratios; the temperature of the target
core is influenced more by the higher power consumption of
surrounding cores than any change in the activity factor. Such
cores are also more sensitive to error in p as the signal strength
is weaker. If the error in p is large relative to the change in
p when the core transitions from an active to an idle state,
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the signal to noise ratio is lower, resulting in a decrease in
accuracy of the model.

A secondary factor that affects the error in the predicted
activity-factor of a core is the overall uniformity of the power-
densities of the IC. The accuracy of the models for any-
pd systems (Fig. 5b) is lower for the majority of cores
included in low-pd and high-pd systems only; all of the low-pd
cores include approximately 5% greater error and most of the
high-pd cores perform similarly or slightly worse. The two
exceptions are the aes cores, which perform slightly better
in any-pd systems. The likely reason is the relatively small
size of the aes cores. In the high-pd systems, the activity of
the aes cores is obfuscated by the much larger and higher
power fft128, whereas in the any-pd systems, the aes cores
are surrounded by cores with much lower power consumption,
making it easier to identify the thermal signature of aes.

V. MALWARE DETECTION

In this section, the thermal side-channel is used to detect
malware. Traditional malware detection schemes operate on
the same system that is being monitored, exposing the checker
to the malicious software intended to be detected. Using the
thermal side-channel for malware detection has the advantage
of operating in a manner that is completely independent from
the target system, removing any vulnerability.

A. Model Definitions

1) Workload: The case study is designed to model work-
loads that repeatedly execute on the target system. This is
common in many IoT devices that continually process data,
such as a security camera or a sensor node that locally
performs data processing. Even with the given definition of
a workload, the execution time of each core potentially varies
due to a variety of reasons including scheduling by the OS,
contention for shared resources such as caches, and execution
of highly variable operations like network communications.
Therefore, a workload is defined such that the activity factor
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Y m1E, except those marked with diag, which use only the diagonal elements.

of each core is normally distributed around some nominal
value. While the activity factors of cores in a real system
are likely correlated due to contention for shared resources
or inter-accelerator data dependencies, this work makes the
conservative assumption that no such correlations exist, which
makes anomaly detection more difficult.

The width of the distribution of the activity factor, defined
as 3 standard deviations (30), also varies across systems.
Realtime sensor systems tend to have less variation while
more complex computing platforms like those found in servers
operate with more variation. In order to model the entire range
of possible systems, the 30 value for each workload is varied
over the range of 2.5% to 20%.

2) Malware: While malware takes countless forms, this
work limits the scope to malicious activity that is repeatedly
executed in order to mimic the behavior of a system that is
unwittingly part of a bot-net or has been hijacked to steal
compute resources to perform an undesired distributed task.
Therefore, malware is also defined such that the effect on the
activity factor of a single core is normally distributed around
a nominal value given by ;. The magnitude of y; is varied
between 2.5% and 40% to model a variety of possible malware
types.

If malware is executing on a system, the impact is either to
add to (increase the amount of work allotted to a given core)
or subtract from (slow down a core that serves as a producer
in a producer-consumer relationship) the activity factor of a
core. In this work, malware is limited to affecting the activity
factor of a single core within the system.

The combined effect of 30, and p; on the distribution of
the observed activity factor for a given core is shown in Fig.
6. In the absence of malware, the activity factor of a core is
normally distributed. When malware is added, the distribution
becomes multi-modal, with peaks above and below the original
mean.

B. Anomaly Detection Model

One approach to performing anomaly detection is using
parametric distributions [25]. In cases where each sample
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is labeled as either normal or anomalous, the labeling of a
sample with an unknown class is accomplished by

&)

where f is the parametric model, € are the given parameters of
the model, x is the sample being labeled, and 7 is a threshold
that is tuned to trade-off between the number of false positives
and false negatives.

One commonly used parametric model is the multivariate
Gaussian, which is given by

fx|p, %) = exp [FHx— )27 (x = )],

1
Vv (2m)¢X| ©

where x is the observation being considered, p is a vector
containing the mean values for each feature in x, ¥ is the
covariance matrix of the features in x, and d is the number
of features in x. The value commonly used for X is the
Maximum Likelihood Estimate (MLE), which is given by

Label normal if f(x|Q) > 7 else label anomaly,

N
YMLE = % ;(CBZ — i) (i — pa) " (N
While the MLE estimate works well in some cases, there are
limitations. One such limitation is due to the fact that the pdf,
given by f(x|u,X), contains ¥ 7! in the definition, requiring
3 to be invertible. In order for ¥ to be invertible, the number
of samples /N must be larger than the number of features n.
While N > n samples is sufficient to produce an invertible 3,
in practice, the number of observations must be much greater
than the number of features (in the order of N > 10n) for the
resulting estimate of X to be accurate [26]. In many situations,
especially in fields such as IoT, it is impractical to have more
observations than features. In such cases, other techniques
must be applied to accurately estimate . One simple method
is to use only the diagonal elements of the covariance matrix

Y =diag(EmLE), (8

which has the advantage of working with any number of
samples so long as all of the variances are non-zero. However,
the model no longer accounts for any correlations between
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Fig. 8. Area under ROC (AuROC) values for the best model for each core among any floorplan. The width of the distribution of the workload activity factor

is indicated by 30, for malware strengths of 2.5%, 5%, and 10%.

different features. While more complicated techniques exist
[26], this work evaluates the use of Xy, g and diag(XyLE).

C. Example ROC Curves for Malware Detection

The Receiver Operating Characteristic (ROC) curves for
three selected cores in a high-pd system are shown in Fig. 7.
The True Positive Rate (TPR) corresponds to the number of
times malware is correctly detected and the False Positive Rate
(FPR) corresponds to the number of times the model predicts
that malware is present when it is not. The sub-figures include
results that characterize all possible trade-offs between TPR
and FPR made by adjusting the threshold 7 in (5). Each series
of each sub-figure represents a model that is constructed from
a different set of features; the p models are resized versions
of the power-density estimates, and the Activity Factor models
are generated using the predicted activity factor of all cores
using the DNN models developed in Section IV. The models
that only include the diagonal components of the covariance
matrix are denoted as ‘diag’; otherwise, the fully populated
covariance matrix is used.

The ROC curves indicate large variation in results based on
the type of core affected by malware. Similar to the results
for activity factor estimation in Section IV, large cores with
a high active/idle power ratio such as ff#/28 (shown in Fig.
7a) produce the highest prediction accuracy, while small cores
such as hpdmc (shown in Fig. 7c), exhibit lower prediction
accuracy.

The model that produces the best ROC curve also varies
from core to core. For cores like the fft/28 that more signif-
icantly impact the power consumption of the IC, p produces
accurate models even when down-sampled to a very low
resolution of 4 x 4. In this case, using only the diagonal
components of the covariance matrix degrades performance
by filtering out important information regarding the state of
each core. Conversely, smaller cores like aes/28 and hpdmc
are generally not affected by the resolution of P, as most
resolutions produced equally poor results. Instead, the biggest
factor in determining the performance of the model is whether
the dense covariance matrix is used or only the diagonal
components are used. In both cases, lowering the resolution of
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P results in the loss of information. However, a better model
accuracy is possible as the noise and error in the estimate of
Yy decreases due to having less degrees of freedom for
the same number of samples.

For all three cores, the activity factor models perform
comparably to that of the most optimal p model. In addition,
the performance of the activity factor model does not require
changes to the resolution of p, whereas the p models do. If a
non-optimal resolution of P is chosen, then the p model per-
forms poorly relative to the activity factor model. In the case
of hpdmc, the activity factor model is the highest performing
at low FPR and only slightly outperformed by a p model at
high FPR, where the model becomes unusable as it almost
always predicts that malware is present even when it is not.

The activity factor models also exhibit decreased model per-
formance when only the diagonal elements of the covariance
matrix are used, which is counter-intuitive given that the actual
activity factors of the cores in a system are not correlated,
but demonstrates that activity factor estimates from the DNN
models are. The correlation is due to the fact that p errors in
one location likely result in an opposite compensatory error
at a nearby location, as dictated by the solution of the heat
diffusion equation. When such an error lies near the boundary
of two cores, the result is the under-estimation of the activity
factor of one core and the over-estimation of the other.

D. AuROC Summary of Malware Detection

The Area Under ROC (AuROC) is a metric that character-
izes the quality of the model that produced a given ROC curve.
The metric is calculated by computing the area under the
curve, which ranges from 0.0 to 1.0, with a value of 1.0 being
ideal. The interdependence between workload variation (30,)
and the mean of the added malware distribution (1) is shown
in Fig. 8, where the included values are the best AuROC scores
across all models for a given core. As expected, malware with
a higher mean (Fig. 8c) are easier to detect for all cores relative
to malware with a lower mean (Fig. 8a). Similarly, large values
of 30, also result in poor model performance.

More interesting trends are seen when comparing between
cores. The cores that had the largest model errors in the
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estimates of activity factor, such as ff#-128 and wf3d, only
begin to accurately detect the presence of malware when the
mean activity factor of the malware is 10%, even when the 30,
is small. In contrast, for the cores that had the lowest error in
the estimate of activity factor, such as RS_dec, neo430, and
aes192, malware that offsets the core activity factor by only
2.5% is still detected with a high degree of accuracy when the
30y, is small. As 30,, increases, the model is limited by the
overlap between the activity factor distributions, as shown in
Fig. 6. The trend poses a fundamental limit to the accuracy of
any model, even if the activity factor of each core is known
precisely. Therefore, the overall performance of the model is
a combination of the accuracy of the estimated activity factor
and the relative size of p; and 30,,.

VI. CONCLUSIONS

The work presented in this paper evaluated a novel approach
to solving the thermal inverse diffusion problem specifically in
the context of accelerator-rich ICs. The technique was shown
to increase the accuracy of power-density estimates and reduce
noise. The analysis of the optimal values for the hyperparame-
ters of the model, specifically p and A\, demonstrated that there
is not a single optimal set of parameters, but rather, there is
a tradeoff between the accuracy of the estimates for different
cores and the IC as a whole.

Given the power density estimates, models were constructed
that extracted information from the thermal side-channel. A
DNN was trained to predict the activity factor of each core
without requiring any floorplan knowledge and achieved a
Mean Average Error ranging from 3% to 5% for the highest
performing core on a variety of system type. In addition,
the DNNs were also evaluated on a variety of other cores,
characterizing the factors that dictate the accuracy of the
estimated core activity factor when using the thermal side-
channel.

Lastly, a methodology for detecting malware through anal-
ysis of the thermal side-channel using a statistical model was
described. The model was evaluated using the power-density
estimates directly, as well as using the activity factor estimates
produced by the developed DNN model. The effects of using
diagonalization as a form of regularization were evaluated and
shown to improve the AuROC score of the model at times, but
not in all cases, motivating either model selection or the use
of more advanced regularization techniques.
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