
1130 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Kelly Cache Networks
Milad Mahdian, Armin Moharrer , Stratis Ioannidis , and Edmund Yeh

Abstract— We study networks of M/M/1 queues in which nodes
act as caches that store objects. Exogenous requests for objects
are routed towards nodes that store them; as a result, object
traffic in the network is determined not only by demand but,
crucially, by where objects are cached. We determine how to
place objects in caches to attain a certain design objective,
such as, e.g., minimizing network congestion or retrieval delays.
We show that for a broad class of objectives, including minimizing
both the expected network delay and the sum of network queue
lengths, this optimization problem can be cast as an NP-hard
submodular maximization problem. We show that so-called
continuous greedy algorithm attains a ratio arbitrarily close to
1 − 1/e ≈ 0.63 using a deterministic estimation via a power
series; this drastically reduces execution time over prior art,
which resorts to sampling. Finally, we show that our results
generalize, beyond M/M/1 queues, to networks of M/M/k and
symmetric M/D/1 queues.

Index Terms— Kelly networks, cache networks, ICN.

I. INTRODUCTION

KELLY networks [3] are multi-class networks of queues
capturing a broad array of queue service disciplines,

including FIFO, LIFO, and processor sharing. Both Kelly
networks and their generalizations (including networks of
quasi-reversible and symmetric queues) are well-studied, clas-
sic topics [3]–[6]. One of their most appealing properties is
that their steady-state distributions have a product-form: as a
result, steady state properties such as expected queue sizes,
packet delays, and server occupancy rates have closed-form
formulas as functions of, e.g., routing and scheduling policies.

In this paper, we consider Kelly networks in which nodes are
equipped with caches, i.e., storage devices of finite capacity,
which can be used to store objects. Exogenous requests
for objects are routed towards nodes that store them; upon
reaching a node that stores the requested object, a response
packet containing the object is routed towards the request
source. As a result, object traffic in the network is determined
not only by the demand but, crucially, by where objects are
cached. This abstract setting is motivated by–and can be used
to model–various networking applications involving the place-
ment and transmission of content. This includes information
centric networks (ICNs) [7]–[9], content delivery networks
(CDNs) [10], [11], web-caches [12]–[14], wireless/femtocell
networks [15]–[17], and peer-to-peer networks [18], [19],
to name a few.

Manuscript received April 16, 2019; revised January 3, 2020; accepted
February 23, 2020; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor C. Joo. Date of publication April 14, 2020; date of current version
June 18, 2020. This work was supported in part by the National Science
Foundation under Grant NeTS-1718355, in part by Intel Corporation, and
in part by Cisco Systems. This is an extended version of an article that
appeared in the IEEE International Conference on Computer Communications
(INFOCOM 2019). (Corresponding author: Armin Moharrer.)

The authors are with the Electrical and Computer Engineering, Northeast-
ern University, Boston, MA 02115 USA (e-mail: mmahdian@ece.neu.edu;
amoharrer@ece.neu.edu; ioannidis@ece.neu.edu; eyeh@ece.neu.edu).

Digital Object Identifier 10.1109/TNET.2020.2982863

In many of these applications, determining the object place-
ment, i.e., how to place objects in network caches, is a decision
that can be made by the network designer in response to
object popularity and demand. To that end, we are interested
in determining how to place objects in caches so that traffic
attains a design objective such as minimizing delay.

We make the following contributions. First, we study the
problem of optimizing the placement of objects in caches in
Kelly cache networks of M/M/1 queues, with the objective
of minimizing a cost function of the system state. We show
that, for a broad class of cost functions, including packet
delay, system size, and server occupancy rate, this optimization
amounts to a submodular maximization problem with matroid
constraints. This result applies to general Kelly networks with
fixed service rates; in particular, it holds for FIFO, LIFO, and
processor sharing disciplines at each queue.

The so-called continuous greedy algorithm [1] attains
a 1− 1/e approximation for this NP-hard problem. However,
it does so by computing an expectation over a random vari-
able with exponential support via randomized sampling. The
number of samples required to attain the 1− 1/e approxima-
tion guarantee can be prohibitively large in realistic settings.
Our second contribution is to show that, for Kelly networks
of M/M/1 queues, this randomization can be entirely avoided:
a closed-form solution can be computed using the Taylor
expansion of our problem’s objective. To the best of our
knowledge, we are the first to identify a submodular maxi-
mization problem that exhibits this structure, and to exploit it
to eschew sampling. Finally, we extend our results to networks
of M/M/k and symmetric M/D/1 queues, and prove a negative
result: submodularity does not arise in networks of M/M/1/k
queues. We extensively evaluate our proposed algorithms over
several synthetic and real-life topologies.

The remainder of our paper is organized as follows.
We review related work in Sec. II. We present our mathe-
matical model of a Kelly cache network in Sec. III, and our
results on submodularity and the continuous-greedy algorithm
in networks of M/M/1 queues in Sections IV and V, respec-
tively. Our extensions are described in Sec. VI; our numerical
evaluation is in Sec. VII. Finally, we conclude in Sec. VIII.

II. RELATED WORK

Our approach is closest to, and inspired by, recent work by
Shanmugam et al. [15] and Ioannidis and Yeh [9]. Ioannidis
and Yeh consider a setting very similar to ours but without
queuing: edges are assigned a fixed weight, and the objective
is a linear function of incoming traffic scaled by these weights.
This can be seen as a special case of our model, namely, one
where edge costs are linear (see also Eq. (15) in Sec. III-B).
Shanmugam et al. [15] study a similar optimization problem,
restricted to the context of femtocaching. The authors show
that this is an NP-hard, submodular maximization problem

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8374-7286
https://orcid.org/0000-0001-8355-4751
https://orcid.org/0000-0002-9544-1567

MAHDIAN et al.: KELLY CACHE NETWORKS 1131

with matroid constraints. They provide a 1−1/e approximation
algorithm based on a technique by Ageev and Sviridenko [20]:
this involves maximizing a concave relaxation of the original
objective, and rounding via pipage-rounding [20]. Ioannidis
and Yeh show that the same approximation technique applies
to more general cache networks with linear edge costs. They
also provide a distributed, adaptive algorithm that attains
an 1 − 1/e approximation. The same authors extend this
framework to jointly optimize both caching and routing deci-
sions [21].

Our work can be seen as an extension of [9], [15], in that
it incorporates queuing in the cache network. In contrast to
both [9] and [15] however, costs like delay or queue sizes
are highly non-linear in the presence of queuing. From a
technical standpoint, this departure from linearity requires us
to employ significantly different optimization methods than the
ones in [9], [15]. In particular, our objective does not admit a
concave relaxation and, consequently, the technique by Ageev
and Sviridenko [20] used in [9], [15] does not apply. Instead,
we must solve a non-convex optimization problem directly
(c.f. Eq. (23)) using the so-called continuous-greedy algorithm.

Several papers have studied the cache optimization problems
under restricted topologies [10], [22]–[25]. These works model
the network as a bipartite graph: nodes generating requests
connect directly to caches in a single hop. The resulting
algorithms do not readily generalize to arbitrary topologies.
In general, the approximation technique of Ageev and Sviri-
denko [20] applies to this bipartite setting, and additional
approximation algorithms have been devised for several vari-
ants [10], [22]–[24]. We differ by (a) considering a multi-hop
setting, and (b) introducing queuing, which none of the above
works considers.

Submodular function maximization subject to matroid con-
straints appears in many important problems in combinatorial
optimization; for a brief review of the topic and applica-
tions, see [26], respectively. Nemhauser et al. [27] show that
the greedy algorithm produces a solution within 1/2 of the
optimal. Vondrák [28] and Calinescu et al. [1] show that
the continuous-greedy algorithm produces a solution within
(1 − 1/e) of the optimal in polynomial time, which cannot
be further improved [29]. In the general case, the continuous-
greedy algorithm requires sampling to estimate the gradient
of the so-called multilinear relaxation of the objective (see
Sec. V). One of our main contributions is to show that
MAXCG, the optimization problem we study here, exhibits
additional structure: we use this to construct a sampling-free
estimator of the gradient via a power-series or Taylor expan-
sion. To the best of our knowledge, we are the first to use such
an expansion to eschew sampling; this technique may apply
to submodular maximization problems beyond MAXCG.

III. MODEL

Motivated by applications such as ICNs [7], CDNs [10],
[11], and peer-to-peer networks [18], we introduce Kelly cache
networks. In contrast to classic Kelly networks, each node is
associated with a cache of finite storage capacity. Exogenous
traffic consisting of requests is routed towards nodes that store
objects; upon reaching a node that stores the requested object,
a response packet containing the object is routed towards the
node that generated the request. As a result, content traffic in

Fig. 1. (a) Example of a Kelly network. Packets of class r enter the
network with rate λr , are routed through consecutive queues over path pr , and
subsequently exit the network. (b) Example of a Kelly cache network. Each
node v ∈ V is equipped with a cache of capacity cv. Exogenous requests of
type r for object ir enter the network and are routed over a predetermined path
pr towards the designated server storing ir . Upon reaching an intermediate
node u storing the requested object ir , a response packet containing the object
is generated. The response is then forwarded towards the request’s source
in the reverse direction on path pr . Request packets are of negligible size
compared to response messages; as a result, we ignore request traffic and
focus on queuing due to response traffic alone.

the network is determined not only by demand but, crucially,
by how contents are cached. An illustration highlighting the
differences between Kelly cache networks, introduced below,
and classic Kelly networks, can be found in Fig. 1.

Although we describe Kelly cache networks in terms of
FIFO M/M/1 queues, the product form distribution (c.f. (6))
arises for many different service principles beyond FIFO
(c.f. Section 3.1 of [3]) including Last-In First-Out (LIFO)
and processor sharing. All results we present extend to these
service disciplines; we discuss more extensions in Sec. VI.

A. Kelly Cache Networks

Graphs and Paths: We use the notation G(V, E) for a
directed graph G with nodes V and edges E ⊆ V × V .
A directed graph is called symmetric or bidirectional if
(u, v) ∈ E if and only if (v, u) ∈ E. A path p is a sequence of
adjacent nodes, i.e., p = p1, p2, . . . , pK where (pk, pk+1) ∈ E,
for all 1 ≤ k < K ≡ |p|. A path is simple if it contains
no loops (i.e., each node appears once). We use the notation
v ∈ p, where v ∈ V , to indicate that node v appears in
the path, and e ∈ p, where e = (u, v) ∈ E, to indicate
that nodes u,v are two consecutive (and, therefore, adjacent)
nodes in p. For v ∈ p, where p is simple, we denote by
kp(v) ∈ {1, . . . , |p|} the position of node v ∈ V in p,
i.e., kp(v) = k if pk = v.

Network Definition: Formally, we consider a Kelly network
of M/M/1 FIFO queues, represented by a symmetric directed
graph G(V, E). As in classic Kelly networks, each edge e ∈ E
is associated with an M/M/1 queue with service rate μe.1 In
addition, each node has a cache that stores objects of equal
size from a set C, the object catalog. Each node v ∈ V may
store at most cv ∈ N objects from C in its cache. Hence,
if xvi ∈ {0, 1} is a binary variable indicating whether node
v ∈ V is storing object i ∈ C, then

∑
i∈C xvi ≤ cv, for all

v ∈ V. We refer to x = [xvi]v∈V, i∈C ∈ {0, 1}|V ||C| as the
global placement or, simply, placement vector. We denote by

D =
{
x ∈ {0, 1}|V ||C| :

∑
i∈C xvi ≤ cv, ∀v ∈ V

}
, (1)

1We associate queues with edges for concreteness. Alternatively, queues can
be associated with nodes, or both nodes and edges; all such representations
lead to product form distributions (6), and all our results extend to these cases.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

1132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

the set of feasible placements that satisfy the storage capacity
constraints. We assume that for every object i ∈ C, there exists
a set of nodes Si ⊆ V that permanently store i. We refer to
nodes in Si as designated servers for i ∈ C. We assume that
designated servers store i in permanent storage outside their
cache. Put differently, the aggregate storage capacity of a node
is c′v = cv + |{i : v ∈ Si}|, but only the non-designated slots
cv are part of the system’s design.

Object Requests and Responses: Traffic in the cache net-
work consists of two types of packets: requests and responses,
as shown in Fig. 1(b). Requests for an object are always
routed towards one of its designated servers, ensuring that
every request is satisfied. However, requests may terminate
early: upon reaching any node that caches the requested
object, the latter generates a response carrying the object.
This is forwarded towards the request’s source, following
the same path as the request, in reverse. Consistent with
prior literature [9], [21], we treat request traffic as negligible
when compared to response traffic, which carries objects, and
henceforth focus only on queues bearing response traffic.

Formally, a request and its corresponding response are fully
characterized by (a) the object being requested, and (b) the
path that the request follows. That is, for the set of requestsR,
a request r ∈ R is determined by a pair (ir, pr), where ir ∈ C
is the object being requested and pr is the path the request
follows. Each request r is associated with a corresponding
Poisson arrival process with rate λr ≥ 0, independent of other
arrivals and service times. We denote the vector of arrival rates
by λ = [λr]r∈R ∈ R|R|

+ . For all r ∈ R, we assume that the
path pr is well-routed [9], that is: (a) path pr is simple, (b) the
terminal node of the path is a designated server, i.e., a node in
Sir , and (c) no other intermediate node in pr is a designated
server. As a result, requests are always served, and response
packets (carrying objects) always follow a sub-path of pr in
reverse towards the request source (namely, pr

1).
Steady State Distribution: Given an object placement x ∈
D, the resulting system is a multi-class Kelly network, with
packet classes determined by the request set R. This is a
Markov process over the state space determined by queue
contents. In particular, let nr

e be the number of packets of
class r ∈ R in queue e ∈ E, and

ne =
∑
r∈R

nr
e (2)

be the total queue size. The state of a queue ne ∈ Rne , e ∈ E,
is the vector of length ne representing the class of each packet
in each position of the queue. The system state is then given by
n = [ne]e∈E ; we denote by Ω the state space of this Markov
process.

In contrast to classic Kelly networks, network traffic and,
in particular, the load on each queue, depend on placement x.
Indeed, if (v, u) ∈ pr for r ∈ R, the arrival rate of responses
of class r ∈ R in queue (u, v) ∈ E is:

λr
(u,v)(x, λ) = λr

kpr (v)∏
k′=1

(1− xpr
k′ ir), for (v, u) ∈ pr, (3)

i.e., responses to requests of class r pass through edge
(u, v) ∈ E if and only if no node preceding u in the path
pr stores object ir–see also Fig. 1(b). Note that (3) presumes
queues on pr are stable. As μ(u,v) is the service rate of the

queue in (u, v) ∈ E, the load on edge (u, v) ∈ E is:

ρ(u,v)(x, λ) = λ(u,v)(x,λ)

μ(u,v)
, (4)

where

λ(u,v)(x, λ) =
∑

r∈R:(v,u)∈pr λr
(u,v)(x, λ) (5)

is the total arrival rate of responses in queue (u, v) ∈ E.
The Markov process {n(t); t ≥ 0} is positive recurrent when
ρ(u,v)(x, λ) < 1, for all (u, v) ∈ E [3], [30]. Then, the steady-
state distribution has a product form, i.e.:

π(n) =
∏

e∈E πe(ne), n ∈ Ω, (6)

where

πe(ne) = (1− ρe(x, λ))
∏

r∈R:e∈pr

(
λr

e(x,λ)
μe

)nr
e

, (7)

and λr
e(x, λ), ρe(x, λ) are given by (3), (4), respectively.

As a consequence, the queue sizes ne, e ∈ E, also have a
product form distribution in steady state, and their marginals
are given by:

P(ne = k) = (1 − ρe(x, λ))ρk
e (x, λ), k ∈ N. (8)

Stability Region: Given a placement x ∈ D, a vector
of arrival rates λ = [λr]r∈R yields a stable (i.e., positive
recurrent) system if and only if λ ∈ Λx, for

Λx := {λ : λ ≥ 0, ρe(x, λ) < 1, ∀e ∈ E} ⊂ R|R|
+ , (9)

where loads ρe, e ∈ E, are given by (4). Conversely, given a
vector λ ∈ R|R|

+ ,

Dλ = {x ∈ D : ρe(x, λ) < 1, ∀e ∈ E} ⊆ D (10)

is the set of feasible placements under which the system is
stable. It is easy to confirm that, by the monotonicity of ρe

w.r.t. x, if x ∈ Dλ and x′ ≥ x, then x′ ∈ Dλ, where the vector
inequality x′ ≥ x is component-wise. In particular, if 0 ∈ Dλ

(i.e., the system is stable without caching), then Dλ = D.

B. Cache Optimization

Given a Kelly cache network represented by graph G(V, E),
service rates μe, e ∈ E, storage capacities cv , v ∈ V , a set
of requests R, and arrival rates λr , for r ∈ R, we wish to
determine placements x ∈ D that optimize a certain design
objective. In particular, we seek placements that are solutions
to optimization problems of the following form: MINCOST

Minimize: C(x) =
∑

e∈E Ce(ρe(x, λ)), (11a)

subj. to: x ∈ Dλ, (11b)

where Ce : [0, 1) → R+, e ∈ E, are positive cost functions,
ρe : D × R|R|

+ → R+ is the load on edge e, given by (4),
and Dλ is the set of feasible placements that ensure stability,
given by (10). We make the following standing assumption on
the cost functions appearing in MINCOST:

Assumption 1: For all e ∈ E, functions Ce : [0, 1) → R+

are convex and non-decreasing on [0, 1).
Assumption 1 is natural; indeed it holds for many cost
functions that often arise in practice. We list several examples:

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

MAHDIAN et al.: KELLY CACHE NETWORKS 1133

Example 1 (Queue Size): Under steady-state distribution (6),
the expected number of packets in queue e ∈ E is given by

E[ne] = Ce(ρe) =
ρe

1− ρe
, (12)

which is indeed convex and non-decreasing for ρe ∈ [0, 1).
Note that, for Ce given by (12), objective (11a) captures the
expected total number of packets in the system in steady state.

Example 2 (Delay): From Little’s Theorem [30],
the expected delay experienced by a packet in the system is

E[T] =
1

λ
1

∑
e∈E

E[ne], (13)

where
λ
1 =
∑

r∈R λr is the total arrival rate, and E[ne] is
the expected size of each queue. Thus, the expected delay
can also be written as the sum of functions that satisfy
Assumption 1. We note that the same is true for the sum of
the expected delays per queue e ∈ E, as the latter are given
by

E[Te] =
1
λe

E[ne] =
1

μe(1− ρe)
, (14)

which are also convex and non-decreasing in ρe.
Example 3 (Queuing Probability/Load per Edge): In a FIFO

queue, the queuing probability is the probability of arriving in
a system where the server is busy; by (8), this is:

Ce(ρe) = ρe = λe/μe, (15)

which is again non-decreasing and convex. This is also,
of course, the load per edge. By treating 1/μe as the weight of
edge e ∈ E, this setting recovers the objectives of Shanmugam
et al. [15] and Ioannidis and Yeh [9] as a special case of our
model.

Example 4 (Monotone Separable Costs): More generally,
Assumption 1 holds for arbitrary monotone separable costs,
i.e., costs that (1) are summed across queues, (2) depend only
on queue sizes ne, and (3) are non-decreasing. Formally:

Lemma 1: Consider a state-dependent cost function c :
Ω→ R+ such that:

c(n) =
∑
e∈E

ce(ne),

where ce : N → R+, e ∈ E, are non-decreasing functions of
the queue sizes ne, e ∈ E. Then, the steady state cost under
distribution (6) takes the form (11a), i.e.,

E[c(n)] =
∑
e∈E

Ce(ρe)

where Ce : [0, 1)→ R+ satisfy Assumption 1.
Proof: As the cost at state n ∈ Ω can be written as c(n) =∑

e∈E ce(ne), we have that E[c(n)] =
∑

e∈E E[ce(ne)]. On
the other hand, as ce(ne) ≥ 0,

E[ce(ne)] =
∞∑

n=0

ce(n)P(ne = n)

= ce(0) +
∞∑

n=0

(ce(n + 1)− ce(n))P(ne > n)

(8)= ce(0) +
∞∑

n=0

(ce(n + 1)− ce(n))ρn
e (16)

TABLE I

NOTATION SUMMARY

As ce is non-decreasing, ce(n + 1) − ce(n) ≥ 0 for all
n ∈ N. On the other hand, for all n ∈ N, ρn is a convex
non-decreasing function of ρ in [0, 1), so E[ce(ne)] is a
convex function of ρe as a positively weighted sum of convex
non-decreasing functions. �

In summary, MINCOST captures many natural cost objec-
tives, while Assumption 1 holds for any non-decreasing cost
function that depends only on queue sizes.

C. Set Functions and Submodularity

Given a finite set X , a set function f : 2X → R is called
non-decreasing if f(S) ≤ f(S′) for all S ⊆ S′ ⊆ X , and
non-increasing if −f is non-decreasing. Function f is called
submodular if it satisfies the following diminishing returns
property: for all S ⊆ S′ ⊆ X , and all x ∈ X ,

f(S′ ∪ {x})− f(S′) ≤ f(S ∪ {x})− f(S), (17)

A function is called supermodular if −f is submodular (or,
equivalently, (17) holds with the inequality reversed).

IV. SUBMODULARITY AND THE GREEDY ALGORITHM

Problem MINCOST is NP-hard; this is true even when cost
functions ce are linear, and the objective is to minimize the
sum of the loads per edge [9], [15]. In what follows, we outline

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

1134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

our methodology for solving this problem; it relies on the fact
that the objective of MINCOST is a supermodular set function;
our first main contribution is to show that this property is a
direct consequence of Assumption 1.

Cost Supermodularity and Caching Gain. First, observe that
the cost function C in MINCOST can be naturally expressed
as a set function. Indeed, for S ⊂ V ×C, let xS ∈ {0, 1}|V ||C|

be the binary vector whose support is S (i.e., its non-zero
elements are indexed by S). As there is a 1-1 correspondence
between a binary vector x and its support supp(x), we can
interpret C : {0, 1}|V ||C| → R+ as a set function C : V ×C →
R+ via C(S) � C(xS). Then, the following theorem holds:

Theorem 1: Under Assumption 1, C(S) � C(xS) is
non-increasing and supermodular over {supp(x) : x ∈ Dλ}.

Proof: We use the following auxiliary lemma (see,
e.g., [26]); we prove this here for completeness.

Lemma 2: Let f : R→ R be a convex and non-decreasing
function. Also, let g : X → R be a non-increasing supermod-
ular set function. Then h � f ◦ g is also supermodular.

Proof: Since g is non-increasing, for any x,x′ ⊆ X we
have g(x∩ x′) ≥ g(x) ≥ g(x∪ x′), and g(x∩ x′) ≥ g(x′) ≥
g(x ∪ x′). Due to supermodularity of g, we can find α, α′ ∈
[0, 1], α+α′ ≥ 1 such that g(x) = (1−α)g(x∩x′)+αg(x∪
x′), and g(x′) = (1−α′)g(x∩x′)+α′g(x∪x′). Then, we have

f(g(x)) + f(g(x′))
≤ (1 − α)f(g(x ∩ x′)) + αf(g(x ∪ x′))

+ (1− α′)f(g(x ∩ x′)) + α′f(g(x ∪ x′))
= f(g(x ∩ x′)) + f(g(x ∪ x′))

+ (1− α− α′)(f(g(x ∩ x′))− f(g(x ∪ x′)))
≤ f(g(x ∩ x′)) + f(g(x ∪ x′)),

where the first inequality is due to convexity of f , and
the second one is because α + α′ ≥ 1 and f(g(.)) is non-
increasing. This proves h(x) � f(g(x)) is supermodular. �

To conclude the proof of Thm. 1, observe that it is easy to
verify that ρe, ∀e ∈ E, is supermodular and non-increasing
in S (see also [9]). Since, by Assumption 1, Ce is a
non-decreasing function, then, Ce(S) � Ce(ρu,v(S)) is non-
increasing. By Lemma 2, Ce(S) is also supermodular. Hence,
the cost function is non-increasing and supermodular as the
sum of non-increasing and supermodular functions. �

In light of Lemma 1, Thm. 1 implies that supermodularity
arises for a broad array of natural cost objectives, includ-
ing expected delay and system size; it also applies under
the full generality of Kelly networks under which a product
form arises, including FIFO, LIFO, and round robin service
disciplines. Armed with this theorem, we turn our attention to
converting MINCOST to a submodular maximization problem.
In doing so, we face the problem that the domain Dλ,
determined not only by storage capacity constraints, but also
by stability, may be difficult to characterize. Nevertheless,
we show that a problem that is amenable to approximation
can be constructed, provided that a placement x0 ∈ Dλ is
known.

In particular, suppose that we have access to a single
x0 ∈ Dλ. We define the caching gain F : Dλ → R+ as
F (x) = C(x0) − C(x). Note that, for x ≥ x0, F (x) is the
relative decrease in the cost compared to the cost under x0.

Fig. 2. Path graph, illustrating that the 1/2-approximation ratio of greedy is
tight. Greedy caches item 2 in node u, while the optimal decision is to cache
item 1 in u and item 2 in node w. For M large enough, the approximation
ratio can be made arbitrarily close to 1/2. In our experiments in Sec. VII,
we set δ = 0.5 and M = 200.

We consider the following optimization problem: MAXCG

Maximize: F (x) = C(x0)− C(x) (18a)

subj. to: x ∈ D,x ≥ x0 (18b)

Recall that, if 0 ∈ Dλ, then Dλ = D; in this case, taking x0 =
0 ensures that problems MINCOST and MaxCG are equivalent.
If x0 �= 0, the above formulation attempts to maximize the
gain restricted to placements x ∈ D that dominate x0: such
placements necessarily satisfy x ∈ Dλ, as x0 ∈ Dλ. Thm. 1
has the following immediate implication:

Corollary 1: The caching gain F (S) � F (xS) is
non-decreasing and submodular over {supp(x) : x ∈ Dλ}.

Greedy Algorithm: Constraints (18b) define a (partition)
matroid [1], [15]. This, along with the submodularity and
monotonicity of F imply that we can produce a solution
within 1

2 -approximation from the optimal via the greedy algo-
rithm [31]. The algorithm, summarized in Alg. 1, iteratively
allocates items to caches that yield the largest marginal gain.

Algorithm 1 Greedy
Input: F : D → R+,x0

1: x← x0

2: while A(x) := {(v, i) ∈ V × C : x + evi ∈ D} is not
empty do

3: (v∗, i∗)← arg max(v,i)∈A(x) (F (x + evi)− F (x))
4: x← x + ev∗i∗

5: end while
6: return x

The solution produced by Algorithm 1 is guaranteed to
be within a 1

2 -approximation ratio of the optimal solution of
MAXCG [27]. The approximation guarantee of 1

2 is tight:
Lemma 3: For any ε > 0, there exists a cache network

such that the greedy algorithm solution is within 1
2 + ε from

the optimal, when the objective is the sum of expected delays
per edge.

Proof: Consider the path topology illustrated in Fig. 2.
Assume that requests for files 1 and 2 are generated at node
u with rates λ1 = λ2 = δ, for some δ ∈ (0, 1). Files 1 and
2 are stored permanently at v and z, respectively. Caches exist
only on u and w, and have capacity cu = cw = 1. Edges
(u, v), (w, z) have bandwidth μ(u,v) = μ(w,z) = 1, while
edge (u, w) is a high bandwidth link, having capacity M � 1.
Let x0 = 0. The greedy algorithm starts from empty caches
and adds item 2 at cache u. This is because the caching gain
from this placement is c(u,w) + c(w,z) = 1

M−δ + 1
1−δ , while

the caching gain of all other decisions is at most 1
1−δ . Any

subsequent caching decisions do not change the caching gain.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

MAHDIAN et al.: KELLY CACHE NETWORKS 1135

The optimal solution is to cache item 1 at u and item 2 at
w, yielding a caching gain of 2/(1 − δ). Hence, the greedy
solution attains an approximation ratio 0.5 · (1 + 1−δ

M−δ). By
appropriately choosing M and δ, this can be made arbitrarily
close to 0.5. �

As we discuss in Sec. VII, the greedy algorithm performs
well in practice for some topologies; however, Lemma 3 moti-
vates us to seek alternative algorithms, that attain improved
approximation guarantees. We note that it is easy to extend
Lemma 3 to other objectives, including, e.g., expected delay,
queue size, etc. We note also that tight instances can be
constructed using caches with capacities larger than 1 (see,
e.g., Fig. 3).

V. CONTINUOUS-GREEDY ALGORITHM

The continuous-greedy algorithm by Calinescu et al. [1]
attains a tighter guarantee than the greedy algorithm, raising
the approximation ratio from 0.5 to 1 − 1/e ≈ 0.63. The
algorithm maximizes the so-called multilinear extension of
objective F , thereby obtaining a fractional solution Y in
the convex hull of the constraint space. The resulting solu-
tion is then rounded to produce an integral solution. The
algorithm requires estimating the gradient of the multilinear
extension via sampling; interestingly, we prove that MAXCG
exhibits additional structure, which can be used to construct
a polynomial-time estimator of this gradient that eschews
sampling altogether, by using a Taylor expansion.

A. Algorithm Overview

Formally, the multilinear extension of the caching gain F is
defined as follows. Define the convex hull of the set defined
by the constraints (18b) in MAXCG as:

D̃ = conv({x : x ∈ D,x ≥ x0}) ⊆ [0, 1]|V ||C| (19)

Intuitively, y ∈ D̃ is a fractional vector in R|V ||C| satisfying
the capacity constraints, and the bound y ≥ x0.

Given a y ∈ D̃, consider a random vector x in {0, 1}|V ||C|

generated as follows: for all v ∈ V and i ∈ C, the coordinates
xvi ∈ {0, 1} are independent Bernoulli variables such that
P(xvi = 1) = yvi. The multilinear extension G : D̃ → R+ of
F : Dλ → R+ is defined via expectation

G(y) = Ey[F (x)], (20)

parameterized by y ∈ D̃. That is:

G(y) =
∑

x∈{0,1}|V ||C|

F (x) ×
∏

(v,i)∈V ×C
yxvi

vi (1− yvi)1−xvi , (21)

The continuous-greedy algorithm, summarized in Alg. 2,
proceeds by first producing a fractional vector y ∈ D̃. Starting
from y0 = x0, the algorithm iterates over:

mk ∈ arg maxm∈D̃�m,∇G(yk)�, (22a)

yk+1 = yk + γkmk, (22b)

for an appropriately selected step size γk ∈ [0, 1]. Intuitively,
this yields an approximate solution to the non-convex problem:

Maximize: G(y) (23a)

subj. to: y ∈ D̃. (23b)

Algorithm 2 Continuous-Greedy

Input: G : D̃ → R+, x0, stepsize 0 < γ ≤ 1
1: t← 0, k← 0 y0 ← x0

2: while t < 1 do
3: mk ← argmaxm∈D̃�m,∇G(yk)�
4: γk ← min{γ, 1− t}
5: yk+1 ← yk + γkmk, t← t + γk, k ← k + 1
6: end while
7: return yk

Even though (23) is not convex, the output of Alg. 2 is within
a 1 − 1/e factor from the optimal solution y∗ ∈ D̃ of (23).
This fractional solution can be rounded to produce a solution
to MAXCG with the same approximation guarantee using
either the pipage rounding [20] or the swap rounding [1], [32]
schemes: for completeness, we review both in Appendix A.

Note that the maximization in (22a) is a Linear Pro-
gram (LP): it involves maximizing a linear objective subject
to a set of linear constraints, and can thus be computed
in polynomial time. However, this presumes access to the
gradient ∇G. On the other hand, the expectation G(y) =
Ey[F (x)] alone, given by (21), involves a summation over
2|V ||C| terms, and it may not be easily computed in polynomial
time. To address this, the customary approach is to first
generate random samples x and then use these to produce
an unbiased estimate of the gradient (see, e.g., [1]); this
estimate can be used in Alg. 2 instead of the gradient. Before
presenting our estimator tailored to MAXCG, we first describe
this sampling-based estimator.

A Sampling-Based Estimator: Function G is linear when
restricted to each coordinate yvi, for some v ∈ V , i ∈ C (i.e.,
when all inputs except yvi are fixed). As a result, the partial
derivative of G w.r.t. yvi can be written as:

∂G(y)
∂yvi

= Ey[F (x)|xvi = 1]− Ey[F (x)|xvi = 0] ≥ 0, (24)

where the last inequality is due to monotonicity of F . One
can thus estimate the gradient by (a) producing T random
samples x(�), 	 = 1, . . . , T of the random vector x, consisting
of independent Bernoulli coordinates, and (b) computing, for
each pair (v, i) ∈ V × C, the average

∂̂G(y)
∂yvi

= 1
T

∑T
�=1

(
F ([x�]+(v,i))− F ([x�]−(v,i))

)
, (25)

where [x]+(v,i),[x]−(v,i) are equal to vector x with the
(v, i)-th coordinate set to 1 and 0, respectively. Using this
estimate, Alg. 2 attains an approximation ratio arbitrarily
close to 1 − 1/e for appropriately chosen T . In particular,
the following theorem holds:

Theorem 2([Calinescu et al. [1]]): Consider Alg. 2, with
∇G(yk) replaced by the sampling-based estimate ∇̂G(yk),
given by (25). Set T = 10

δ2 (1 + ln(|C||V |)), and γ = δ, where
δ = 1

40|C||V |·(�v∈V cv)2 . Then, the algorithm terminates after
K = 1/γ = 1/δ steps and, with high probability,

G(yK) ≥ (1− (1 − δ)1/δ)G(y∗) ≥ (1− 1/e)G(y∗),

where y∗ is an optimal solution to (23).
The proof of the theorem can be found in Appendix A of

Calinescu et al. [1] for general submodular functions over

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

1136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

arbitrary matroid constraints; we state Thm. V-A here with
constants T and γ set specifically for our objective G and our
set of constraints D̃.

Complexity: Under this parametrization of T and γ, Alg. 2
runs in polynomial time. More specifically, note that 1/δ =
O(|C||V | ·(∑v∈V cv)2) is polynomial in the input size. More-
over, the algorithm runs for K = 1/δ iterations in total. Each
iteration requires T = O(1

δ2 (1 + ln(|C||V |) samples, each
involving a polynomial computation (as F can be evaluated
in polynomial time). LP (22a) can be solved in polynomial
time in the number of constraints and variables, which are
O(|V ||C|). Finally, the rounding schemes presented in Appen-
dix VIII are also poly-time, both requiring at most O(|V ||C|)
steps.

B. A Novel Estimator via Taylor Expansion

The classic approach to estimate the gradient via sampling
has certain drawbacks. The number of samples T required to
attain the 1 − 1/e ratio is quadratic in |V ||C|. In practice,
even for networks and catalogs of moderate size (say, |V | =
|C| = 100), the number of samples becomes prohibitive (of
the order of 108). Producing an estimate for ∇G via a closed
form computation that eschews sampling thus has significant
computational advantages. In this section, we show that the
multilinear relaxation of the caching gain F admits such a
closed-form characterization.

We say that a polynomial f : Rd → R is in Weighted
Disjunctive Normal Form (W-DNF) if it can be written as

f(x) =
∑

s∈S βs ·
∏

j∈I(s)(1− xj), (26)

for some index set S, positive coefficients βs > 0, and
index sets I(s) ⊆ {1, . . . , d}. Intuitively, treating binary
variables xj ∈ {0, 1} as boolean values, each W-DNF
polynomial can be seen as a weighted sum (disjunction)
among products (conjunctions) of negative literals. These
polynomials arise naturally in the context of our problem; in
particular:

Lemma 4: For all k ≥ 1, x ∈ D, and e ∈ E,
ρk

e(x, λ) is a W-DNF polynomial whose coefficients depend
on λ.

Proof (Sketch): The lemma holds for k = 1 by (3) and (4).
The lemma follows by induction, as W-DNF polynomials over
binary x ∈ D are closed under multiplication; this is because
(1− x)� = (1− x) for all 	 ≥ 1 when x ∈ {0, 1}. A detailed
proof can be found in Appendix B.1. �

Hence, all load powers are W-DNF polynomials.
Expectations of W-DNF polynomials have a remarkable
property:

Lemma 5: Let f : Dλ → R be a W-DNF polynomial,
and let x ∈ D be a random vector of independent Bernoulli
coordinates parameterized by y ∈ D̃. Then Ey[f(x)] =
f(y), where f(y) is the evaluation of the W-DNF polynomial
representing f over the real vector y.

Proof: As f is W-DNF, it can be written as

f(x) =
∑
s∈S

βs

∏
t∈I(s)

(1− xt)

for appropriate S, and appropriate βs, I(s), where s ∈ S.
Hence,

Ey[f(x)] =
∑
s∈S

βsEy

⎡
⎣ ∏

t∈I(s)

(1− xt)

⎤
⎦

=
∑
s∈S

βs

∏
t∈I(s)

(1− Ey[xt]), by independence

=
∑
s∈S

βs

∏
t∈I(s)

(1− yt).

�
Lemma 5 states that, to compute the expectation of a

W-DNF polynomial f over i.i.d. Bernoulli variables with
expectations y, it suffices to evaluate f over input y. Expec-
tations computed this way therefore do not require sampling.

We leverage this property to approximate ∇G(y) by taking
the Taylor expansion of the cost functions Ce at each edge
e ∈ E. This allows us to write Ce as a power series w.r.t. ρk

e ,
k ≥ 1; from Lemmas 4 and 5, we can compute the expectation
of this series in a closed form. In particular, by expanding the
series and rearranging terms it is easy to show the following
lemma:

Lemma 6: Consider a cost function Ce : [0, 1) → R+

which satisfies Assumption 1 and for which the Taylor expan-
sion exists at some ρ∗ ∈ [0, 1). Then, for x ∈ D a random
Bernoulli vector parameterized by y ∈ D̃,

∂G(y)
∂yvi

≈
∑
e∈E

L∑
k=1

α(k)
e

[
ρk

e

(
[y]−(v,i),λ

)−ρk
e

(
[y]+(v,i),λ

)]
(27)

where, α
(k)
e =

∑L
j=k

(−1)j−k(j
k)

j! C
(j)
e (ρ∗)(ρ∗)j−k, for

k = 0, 1, · · · , L, and the error of the approximation
is: 1

(L+1)!

∑
e∈E C

(L+1)
e (ρ′)

[
E[y]−(v,i)

[(ρe(x, λ)− ρ∗)L+1]−
E[y]+(v,i)

[(ρe(x, λ)− ρ∗)L+1]
]
, where ρ′ ∈ [ρ∗, ρ].

Proof: The Taylor expansion of Ce at ρ∗ is given by:

Ce(ρ) = Ce(ρ∗) +
L∑

k=1

1
k!

C(k)
e (ρ∗)(ρ− ρ∗)k +

+
1

(L + 1)!
C(L+1)

e (ρ′)(ρ− ρ∗)L+1,

where ρ′ ∈ [ρ∗, ρ] and C
(k)
e is the k-th order derivative of

Ce. By expanding this polynomial and reorganizing the terms,
we get

Ce(ρ) =
L∑

k=0

α(k)
e ρk +

1
(L + 1)!

C(L+1)
e (ρ′)(ρ− ρ∗)L+1,

where

α
(k)
e =

∑L
j=k

(−1)j−k(j
k)

j! C
(j)
e (ρ∗)(ρ∗)j−k,

for k = 0, 1, · · · , L. Consider now the L-th order Taylor
approximation of Ce, given by

Ĉe(ρ) =
L∑

k=0

α(k)
e ρk.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

MAHDIAN et al.: KELLY CACHE NETWORKS 1137

Clearly, this is an estimator of Ce, with an error of the order
|Ce(ρ)− Ĉe(ρ)| = o

(
(ρ− ρ∗)L

)
. Thus, for x ∈ D a random

Bernoulli vector parameterized by y ∈ D̃,

Ey[Ce(ρe(x, λ))] ≈ Ey[Ĉe(ρe(x, λ))]

=
L∑

k=0

α(k)
e Ey[ρk

e(x, λ)] (28)

On the other hand, for all v ∈ V and i ∈ C:

∂G(y)
∂yvi

(24)= Ey[F (x)|xvi = 1]− Ey[F (x)|xvi = 0]

(18a)= Ey[C(x)|xvi = 0]− Ey[C(x)|xvi = 1]

(11a),(28)≈
∑
e∈E

L∑
k=1

α(k)
e

(
Ey[ρk

e(x, λ)|xvi = 0]

−Ey[ρk
e(x, λ)|xvi = 1]

)
, (29)

where the error of the approximation is given by

1
(L + 1)!

∑
e∈E

C(L+1)
e (ρ′)

[
Ey[(ρe(x, λ)− ρ∗)L+1|xvi = 0]

−Ey[(ρe(x, λ)− ρ∗)L+1|xvi = 1]
]

The lemma thus follows from Lemmas 4 and 5. �
Estimator (27) is deterministic: no random sampling is

required. Moreover, Taylor’s theorem allows us to characterize
the error (i.e., the bias) of this estimate. We use this to
characterize the final fractional solution y produced by Alg. 2:

Theorem 2: Assume that all Ce, e ∈ E, satisfy Assump-
tion 1, are L + 1-differentiable, and that all their L + 1
derivatives are bounded by W ≥ 0. Then, consider Alg. 2,
in which ∇G(yk) is estimated via the Taylor estimator (27),
where each edge cost function is approximated at ρ∗e =
Eyk

[ρe(x, λ)] = ρe(yk, λ). Then,

G(yK) ≥ (1− 1
e)G(y∗)− 2DB − P

2K , (30)

where K = 1
γ is the number of iterations, y∗ is an optimal

solution to (23), D = maxy∈D̃
y
2 ≤ |V | · max
v∈V

cv, is the

diameter of D̃, B ≤ W |E|
(L+1)! is the bias of the estimator (27),

and P = 2C(x0)(|C||V |)2, is a Lipschitz constant of ∇G.
The proof can be found in Appendix VIII-B. The theorem
immediately implies that we can replace (27) as an estima-
tor in Alg. 2, and attain an approximation arbitrarily close
to 1− 1/e. Note that the computational complexity of the
estimator depends on the number of terms in the W-DNF
form; this, in turn, depends on L. In practice, as shown in
Section VII, this estimator significantly outperforms sampling
in both execution time and caching gain attained.

Estimation via Power Series: For arbitrary
L + 1-differentiable cost functions Ce, the estimator (27)
can be leveraged by replacing Ce with its Taylor expansion.
In the case of queue-dependent cost functions, as described in
Example 4 of Section III-B, the power-series (16) can be used
instead. For example, the expected queue size (Example 1,
Sec. III-B), is given by Ce(ρe) = ρe

1−ρe
=

∑∞
k=1 ρk

e . In
contrast to the Taylor expansion, this power series does
not depend on a point ρ∗e around which the function Ce is
approximated.

TABLE II

GRAPH TOPOLOGIES AND EXPERIMENT PARAMETERS

VI. BEYOND M/M/1 QUEUES

As discussed in Section III, the classes of M/M/1 queues
for which the supermodularity of the cost functions arises are
quite broad, and include FIFO, LIFO, and processor sharing
queues. In this section, we discuss how our results extend
to even broader families of queuing networks. Chapter 3 of
Kelly [3] provides a general framework for a set of queues
for which service times are exponentially distributed. A large
class of networks can be modeled by this framework, including
networks of M/M/k queues; all such networks maintain the
property that steady-state distributions have a product form.
This allows us to extend our results to M/M/k queues for two
cost functions Ce:

Lemma 7: For a network of M/M/k queues, both the
queuing probability2 and the expected queue size are
non-increasing and supermodular over sets {supp(x) :
x ∈ Dλ}.
The proof can be found in Appendix VIII-C. We note that,
as an immediate consequence of Lemma 7 and Little’s theo-
rem, both the sum of the expected delays per queue, but also
the expected delay of an arriving packet, are also supermodular
and non-decreasing.

Product-form steady-state distributions arise also in set-
tings where service times are not exponentially distributed.
A large class of quasi-reversible queues, named symmetric
queues exhibit this property (c.f. Section 3.3 of [3] and
Chapter 10 of [5]). In the following lemma, whose proof is in
Appendix VIII-D, we leverage the product form of symmetric
queues to extend our results to M/D/1 symmetric queues [30]:

Lemma 8: For a network of M/D/1 symmetric queues,
the expected queue size is non-increasing and supermodular
over sets {supp(x) : x ∈ Dλ}.
Again, Lemma 8 and Little’s theorem imply that this prop-
erty also extends to network delays. It is worth noting that
conclusions similar to these in Lemmas 7 and 8 are not
possible for all general queues with product form distributions.
In particular, we prove in Appendix VIII-E the following
negative result:

Lemma 9: There exists a network of M/M/1/k queues, con-
taining a queue e, for which no strictly monotone function Ce

of the load ρe at a queue e is non-increasing and supermodular
over sets {supp(x) : x ∈ Dλ}. In particular, the expected size
of queue e is neither monotone nor supermodular.

VII. NUMERICAL EVALUATION

Networks: We execute Algorithms 1 and 2 over 9 network
topologies, summarized in Table II. Graphs ER and ER-20Q

2This is given by the so-called Erlang C formula [30].

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

1138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 3. The abilene topology. We consider a catalog size of |C| = 4
and 4 requests (|R| = 4). Requests originate from |Q| = 2 nodes, b and i.
Three edges have a high service rate M � 1, and the rest have a low service
rate 2 + ε. Only nodes a, g, and h can cache items, and have capacities 2,
1, and 1, respectively. We set M = 200 and ε = 0.05 in our experiments.
Greedy is 0.5-approximate in this instance.

are the same 100-node Erdős-Rényi graph with parameter
p = 0.1. Graphs HC and HC-20Q are the same hypercube
graph with 128 nodes, and graph star is a star graph
with 100 nodes. The graph path is the topology shown
in Fig. 2. The last 3 topologies, namely, dtelekom, geant,
and abilene represent the Deutsche Telekom, GEANT, and
Abilene backbone networks, respectively. The latter is also
shown in Fig. 3.

Experimental Setup: For path and abilene, we set
demands, storage capacities, and service rates as illustrated
in Figures 2 and 3, respectively. Both of these settings induce
an approximation ratio close to 1/2 for greedy. For all remain-
ing topologies, we consider a catalog of size |C| objects; for
each object, we select 1 node uniformly at random (u.a.r.) from
V to serve as the designated server for this object. To induce
traffic overlaps, we also select |Q| nodes u.a.r. that serve as
sources for requests; all requests originate from these sources.
All caches are set to the same storage capacity, i.e., cv = c
for all v ∈ V .

We generate a set of |R| possible types of requests. For each
request type r ∈ R, λr = 1 request per second, and path pr is
generated by selecting a source among the |Q| sources u.a.r.,
and routing towards the designated server of object ir using
a shortest path algorithm. We consider two ways of selecting
objects ir ∈ C: in the uniform regime, ir is selected u.a.r. from
the catalog C; in the power-law regime, ir is selected from the
catalog C via a power law distribution with exponent 1.2. All
the parameter values, e.g., catalog size |C|, number of requests
|R|, number of query sources |Q|, and caching capacities cv

are presented in Table II. We evaluate the caching gain F (x)
with queue size as the cost function, as defined in (12).

We construct heterogeneous service rates as follows. Every
queue service rate is either set to a low value μe = μlow or a
high value μe = μhigh, for all e ∈ E. We select μlow and μhigh

as follows. Given the demands r ∈ R and the corresponding
arrival rates λr, we compute the highest load under no caching
(x = 0), i.e., we find λmax = maxe∈E

∑
r:e∈pr λr. We then

set μlow = λmax × 1.05 and μhigh = λmax × 200. We set
the service rate to μlow for all congested edges, i.e., edges e
s.t. λe = λmax. We set the service rate for each remaining edge
e ∈ E to μlow independently with probability 0.7, and to μhigh

otherwise. Note that, as a result 0 ∈ Dλ = D, i.e., the system
is stable even in the absence of caching and, on average,
30 percent of the edges have a high service rate.

Fig. 4. Caching gains for different topologies and different arrival distribu-
tions, normalized by the gains corresponding to RND, reported in Table. II.
Greedy performs comparatively well. However, it attains sub-optimal solutions
for path and abilene; these solutions are worse than RND. CG-RS500 has
a poor performance compared to other variations of the continuous-greedy
algorithm.

Fig. 5. Running time for different topologies and power-law arrival
distribution, in seconds. CG-RS500 is slower than power series estimation
CG-PS1 and CGT, sometimes exceeding CG-PS2 as well.

Placement Algorithms: We implement several placement
algorithms: (a) Greedy, i.e., the greedy algorithm (Alg. 1),
(b) Continuous-Greedy with Random Sampling (CG-RS),
i.e., Algorithm 2 with a gradient estimator based on sampling,
as described in Sec. V-A, (c) Continuous-Greedy with Taylor
approximation (CGT), i.e., Algorithm 2 with a gradient esti-
mator based on the Taylor expansion, as described in Sec. V-B,
and (d) Continuous-Greedy with Power Series approximation
(CG-PS), i.e., Algorithm 2 with a gradient estimator based on
the power series expansion, described also in Sec. V-B. In the
case of CG-RS, we collect 500 samples, i.e., T = 500. In the
case of CG-PS we tried the first and second order expansions
of the power series as CG-PS1 and CG-PS2, respectively.
In the case of CGT, we tried the first-order expansion (L = 1).
In both cases, subsequent to the execution of Alg. 2 we
produce an integral solution in D by rounding via the swap
rounding method [32]. All continuous-greedy algorithms use
γ = 0.001. We also implement a random selection algorithm
(RND), which caches cv items at each node v ∈ V , selected
uniformly at random, from the catalog C. We repeat RND
10 times, and report the average running time and caching
gain.

Caching Gain Across Different Topologies: The caching
gain F (x) for x generated by different placement algorithms,
is shown for power-law arrival distribution and uniform arrival
distribution in Figures 4a and 4b, respectively. The values
are normalized by the gains obtained by RND, reported
in Table II. Also, the running times of the algorithms for
power-law arrival distribution are reported in Fig. 5. As we

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

MAHDIAN et al.: KELLY CACHE NETWORKS 1139

Fig. 6. Caching gain vs. M . As the discrepancy between the service rate
of low-bandwidth and high-bandwidth links increases, the performance of
Greedy deteriorates.

see in Fig. 4, Greedy is comparable to other algorithms in
most topologies. However, for topologies path and abilene
Greedy obtains a sub-optimal solution, in comparison to the
continuous-greedy algorithm. In fact, for path and abilene
Greedy performs even worse than RND. This is precisely
because it comes with a worse guarantee (1/2) over these
topologies. Note that the 500 samples in CG-RS500 are sig-
nificantly lower than the value, stated in Theorem V-A, needed
to attain the theoretical guarantees of the continuous-greedy
algorithm. This is quadratic in |V ||C| (∼ 108 for, e.g., ER).
Because of this, in Fig. 4, we see that the continuous-greedy
algorithms with gradient estimators based on Taylor and
Power series expansion, i.e., CG-PS1, CG-PS2, and CGT
outperform CG-RS500 in most topologies. Despite this, from
Fig. 5, we see that CG-RS500 runs 100 times slower than
the continuous-greedy algorithms with first-order gradient
estimators, i.e., CG-PS1 and CGT.

Varying Service Rates: For topologies path and abilene,
the approximation ratio of Greedy is ≈ 0.5. This ratio is
a function of service rate of the high-bandwidth link M.
In this experiment, we explore the effect of varying M on
the performance of the algorithms in more detail. We plot
the caching gain obtained by different algorithms for path
and abilene topologies, using different values of M ∈
{Mmin, 10, 20, 200}, where Mmin is the value that puts the
system on the brink of instability, i.e., 1 and 2 + � for path
and abilene, respectively. Thus, we gradually increase the
discrepancy between the service rate of low-bandwidth and
high-bandwidth links. The corresponding caching gains are
plotted in Fig. 6, as a function of M . We see that as M
increases the gain attained by Greedy worsens in both topolo-
gies: when M = Mmin Greedy matches the performance of
the continuous-greedy algorithms, in both cases. However, for
higher values of M it is beaten not only by all variations of
the continuous-greedy algorithm, but by RND as well.

Effect of Congestion on Caching Gain: In this experiment,
we study the effect of varying arrival rates λr on caching
gain F . We report results only for the dtelekom and ER
topologies and power-law arrival distribution. We obtain the
cache placements x using the parameters presented in Table II
and different arrival rates: λr ∈ {0.65, 0.72, 0.81, 0.9, 1.0},
for r ∈ R. Fig. 7 shows the caching gain attained by the
placement algorithms as a function of arrival rates. We observe
that as we increase the arrival rates, the caching gain attained
by almost all algorithms, except RND, increases significantly.
Moreover, CG-PS1, CG-PS2, CGT, and Greedy have a similar
performance, while CG-RS500 achieves lower caching gains.

Fig. 7. Caching gain vs. arrival rate. As the arrival rate increases caching
gains get larger.

Fig. 8. Caching gain vs. cache capacity. As caching capacities increase,
caching gains rise.

Varying Caching Capacity: In this experiment, we study
the effect of increasing cache capacity cv on the acquired
caching gains. Again, we report the results only for the
dtelekom and ER topologies and power-law arrival distri-
bution. We evaluate the caching gain obtained by different
placement algorithms using the parameters of Table II and
different caching capacities: cv ∈ {1, 3, 10, 30} for v ∈ V. The
caching gain is plotted in Fig. 8. As we see, in all cases the
obtained gain increases, as we increase the caching capacities.
This is expected: caching more items reduces traffic and delay,
increasing the gain.

VIII. CONCLUSIONS

Our analysis suggests feasible object placements targeting
many design objectives of interest, including system size
and delay, can be determined using combinatorial techniques.
Our work leaves the exact characterization of approximable
objectives for certain classes of queues, including M/M/1/k
queues, open. Our work also leaves open problems relating
to stability. This includes the characterization of the stability
region of arrival rates Λ = ∪x∈DΛ(x). It is not clear whether
determining membership in this set (or, equivalently, given
λ, determining whether there exists a x ∈ D under which the
system is stable) is NP-hard or not, and whether this region can
be somehow approximated. Finally, all algorithms presented in
this paper are offline: identifying how to determine placements
in an online, distributed fashion, in a manner that attains a
design objective (as in [9], [21]), or even stabilizes the system
(as in [8]), remains an important open problem.

APPENDIX A
ROUNDING

Several poly-time algorithms can be used to round the
fractional solution that is produced by Alg. 2 to an
integral x ∈ D. We briefly review two such rounding algo-
rithms: pipage rounding [20], which is deterministic, and

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

1140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

swap-rounding [32], which is randomized. For a more rigorous
treatment, we refer the reader to [9], [20] for pipage rounding,
and [32] for swap rounding.

Pipage rounding uses the following property of G: given
a fractional solution y ∈ D̃, there are at least two fractional
variables yvi and yv′i′ , such that transferring mass from one
to the other, 1) makes at least one of them 0 or 1, 2) the
new ŷ remains feasible in D̃, and 3) G(ŷ) ≥ G(y(1)), that
is, the expected caching gain at ŷ is at least as good as y.
This process is repeated until ŷ does not have any fractional
element, at which point pipage rounding terminates and return
ŷ. This procedure has a run-time of O(|V ||C|) [9], and since
(a) the starting solution y is such that

G(y) ≥ (1− 1
e
)G(y∗),

where y∗ is an optimizer of G in D̃, and (b) each rounding step
can only increase G, it follows that the final integral ŷ ∈ D
must satisfy

F (ŷ) = G(ŷ) ≥ G(y) ≥ (1− 1
e
)G(y∗) ≥ (1− 1

e
)F (x∗),

where x∗ is an optimal solution to MAXCG. Here, the first
equality holds because F and G are equal when their argu-
ments are integral, while the last inequality holds because (23)
is a relaxation of MAXCG, maximizing the same objective
over a larger domain.

In swap rounding, given a fractional solution y ∈ D̃
produced by Alg. 2 observe that it can be written as a convex
combination of integral vectors in D, i.e., y =

∑K
k=1 γkmk,

where γk ∈ [0, 1],
∑K

k=1 γk = 1, and mk ∈ D. Moreover,
by construction, each such vector mk is maximal, in that all
capacity constraints are tight.

Swap rounding iteratively merges these constituent integral
vectors, producing an integral solution. At each iteration i,
the present integral vector ck is merged with mk+1 ∈ D
into a new integral solution ck+1 ∈ D as follows: if the
two solutions ck, mk+1 differ at a cache v ∈ V , items in
this cache are swapped to reduce the set difference: either an
item i in a cache in ck replaces an item j in mk+1, or an
item j in mk+1 replaces an item i in ck; the former occurs
with probability proportional to

∑k
�=1 γ�, and the latter with

probability proportional to γk+1. The swapping is repeated
until the two integer solutions become identical; this merged
solution becomes ck+1. This process terminates after K − 1
steps, after which all the points mk are merged into a single
integral vector cK ∈ D.

Observe that, in contrast to pipage rounding, swap rounding
does not require any evaluation of the objective F during
rounding. This makes swap rounding significantly faster to
implement; this comes at the expense of the approximation
ratio, however, as the resulting guarantee 1 − 1/e is in
expectation.

APPENDIX B
CONTINUOUS GREEDY WITH TAYLOR-EXPANSION

GRADIENT ESTIMATION

A. Proof of Lemma 4

We prove this by induction on k ≥ 1. Observe first that,
by (4), the load on each edge e = (u, v) ∈ E can be written

as a polynomial of the following form:

ρe(x, λ) =
∑

r∈Re

βr(λ) ·
∏

j∈Ie(r)

(1− xj), (31)

for appropriately defined

Re = R(u,v) = {r ∈ R : (v, u) ∈ pr},
Ie(r) = {(w, ir) ∈ V × C : w ∈ pr, kpr (w) ≤ kpr (v)}, and

βr(λ) = λr/μe.

In other words, ρe : Dλ → R is indeed a W-DNF polyno-
mial. For the induction step, observe that W-DNF polynomials,
seen as functions over the integral domain Dλ, are closed
under multiplication. In particular, the following lemma holds:

Lemma 10: Given two W-DNF polynomials f1 : Dλ → R
and f2 : Dλ → R, given by

f1(x) =
∑

r∈R1

βr

∏
t∈I1(r)

(1 − xt), and

f2(x) =
∑

r∈R2

βr

∏
t∈I2(r)

(1 − xt),

their product f1 · f2 is also a W-DNF polynomial over Dλ,
given by:

(f1 · f2)(x) =
∑

(r,r′)∈R1×R2

βrβ
′
r

∏
t∈I1(r)∪I2(r′)

(1− xt)

Proof: To see this, observe that

f1(x)f1(x)

=
∑

(r,r′)∈R1×R2

βrβ
′
r

∏
t∈I1(r)∩I2(r′)

(1− xt)2

×
∏

t∈I1(r)�I2(r′)

(1− xt)

where � is the symmetric set difference. On the other hand,
as (1 − xt) ∈ {0, 1}, we have that (1− xt)2 = (1 − xt), and
the lemma follows. �
Hence, if ρk

e(x, λ) is a W-DNF polynomial, by (31) and
Lemma 10, so is ρk+1

e (x, λ).�

B. Proof of Theorem 2

We begin by bounding the bias of estimator (29). Indeed,
given a set of continuous functions {C(u,v}(u,v)∈E where their
first L+1 derivatives within their operating regime, [0, 1), are
upperbounded by a finite constant, W , the bias of estimator
z ≡ [zvi]v∈V,i∈C, where zvi is defined by (27), is given by

B ≡ ||z − �G(y)||2
= ||

∑
e∈E

1
(L + 1)!

C(L+1)
e (ρ′e)(ρe − ρ∗e)

L+1||2, (32)

where ρ′e ∈ [ρ∗e, ρe]. To compute the bias, we note
that ρe, ρ

∗
e ∈ [0, 1]. Specifically, we assume ρe, ρ

∗
e ∈

[0, 1). Hence, |ρe − ρ∗e| ≤ 1, and C
(L+1)
e (ρ′e) ≤

max{C(L+1)
e (ρe), C

(L+1)
e (ρ∗e)} < ∞. In particular, let W =

maxe∈E C
(L+1)
e (ρ′e). Then, it is easy to compute the following

upper bound on the bias of z:

B ≤ W |E|
(L + 1)!

. (33)

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

MAHDIAN et al.: KELLY CACHE NETWORKS 1141

In addition, note that G is linear in yvi, and hence [1]:

∂G

∂yvi
= E[F (x)|xvi = 1]− E[F (x)|xvi = 0]

= E[C(x)|xvi = 0]− E[C(x)|xvi = 1] ≥ 0, (34)

which is ≥ 0 due to monotonicity of F (x). It is easy to
verify that ∂2 G

∂y2
vi

= 0. For (v1, i1) �= (v2, i2), we can compute
the second derivative of G [1] as given by

∂2 G

∂yv1i1∂yv2i2

= E[C(x)|xv1i1 = 1, xv2i2 = 0]

+ E[C(x)|xv1i1 = 0, xv2i2 = 1]
−E[C(x)|xv1i1 = 1, xv2i2 = 1]
−E[C(x)|xv1i1 = 0, xv2i2 = 0] ≤ 0,

which is ≤ 0 due to the supermodularity of C(x). Hence,
G(y) is component-wise concave [1].

In addition, it is easy to see that for y ∈ D̃,
|G(y)|, ||�G(y)||, and ||�2 G(y)|| are bounded by
C(x0), C(x0)|C||V |, and 2C(x0)(|C||V |)2, respectively. Con-
sequently, �G is P -Lipschitz continuous, with P =
2C(x0)(|C||V |)2.

In the kth iteration of the Continuous Greedy algorithm, let
m∗ = m∗(yk) := (y∗ ∨ (yk +y0))−yk = (y∗−yk)∨y0 ≥
y0, where x∨ y := (max{xi, yi})i. Since m∗ ≤ y∗ and D is
closed-down, m∗ ∈ D. Due to monotonicity of G, it follows

G(yk + m∗) ≥ G(y∗). (35)

We introduce univariate auxiliary function gy,m(ξ) :=
G(y+ξm), ξ ∈ [0, 1],m ∈ D̃. Since G(y) is component-wise
concave, then, gy,m(ξ) is concave in [0, 1]. In addition, since
gyk,m∗(ξ) = G(yk +ξm∗) is concave for ξ ∈ [0, 1], it follows

gyk,m∗(1)− gyk,m∗(0)
= G(yk + m∗)−G(yk)

≤ dgyk,m(0)
dξ

× 1 = �m∗, �G(yk)�. (36)

Now let mk be the vector chosen by Algorithm 2 in the
kth iteration. We have

�mk, z(yk)� ≥ �m∗, z(yk)�. (37)

For the LHS, we have

�mk, z� = �mk, �G(yk)�+ �mk, z− �G(yk)�
(i)

≤ �mk, �G(yk)�+ ||mk||2 · |z− �G(yk)||2
≤ �mk, �G(yk)�+ DB. (38)

where D = maxm∈D̃
m
2 ≤ |V | ·max
v∈V

cv , is the upperbound

on the diameter of D̃, B is as defined in (33), and (i) follows
from Cauchy-Schwarz inequality. Similarly, we have for the
RHS of that (37)

�m∗, z(yk)� ≥ �m∗, �G(yk)� −DB. (39)

It follows

�mk, �G(yk)�+ 2DB ≥ �m∗, �G(yk)�
(a)

≥ G(yk + m∗)−G(yk)
(b)

≥ G(y∗)−G(yk), (40)

where (a) follows from (36), and (b) follows from (35).

Using the P -Lipschitz continuity property of
dgyk,mk

(ξ)

dξ
(due to P -Lipschitz continuity of �G), it is straightforward
to see that

−Pγ2
k

2
≤ gyk,mk

(γk)− gyk,mk
(0)− γk · dgyk,mk

(0)
dξ

= G(yk + γkmk)−G(yk)−γk <mk, �G(yk) >,

(41)

hence,

G(yk+1)−G(yk)

≥ γk�mk, �G(yk)� − Pγ2
k

2

≥ γk�mk, �G(yk)� − Pγ2
k

2
(c)

≥ γk(G(y∗)−G(yk))− 2γkDB − Pγ2
k

2
, (42)

where (c) follows from (40), respectively. By rearranging the
terms and letting k = K − 1, we have

G(yK)−G(y∗)

≥
K−1∏
j=0

(1 − γj)(G(y0)−G(y∗))

− 2DB
K−1∑
j=0

γj−P

2

K−1∑
j=0

γ2
j

(e)

≥ (G(y0)−G(y∗)) exp{−
K−1∑
j=0

γj}−2DB

K−1∑
j=0

γj−P

2

K−1∑
j=0

γ2
j ,

where (e) is true since 1 − x ≤ e−x, ∀x ≥ 0, and
G(y0) ≤ G(y∗) holds due to the greedy nature of Algorithm 2
and monotonicity of G. In addition, Algorithm 2 ensures∑K−1

j=0 γj = 1. It follows

G(yK)− (1 − 1
e
)G(y∗) ≥ e−1G(y0)− 2DB − P

2

K−1∑
j=0

γ2
j .

(43)

This result holds for general stepsizes 0 < γj ≤ 1. The
RHS of (43) is indeed maximized when γj = 1

K , which is the
assumed case in Algorithm 2. In addition, we have y0 = 0,
and hence, G(y0) = 0. Therefore, we have

G(yK)− (1 − 1
e
)G(y∗) ≥ −2DB − P

2K
. (44)

APPENDIX C
BEYOND M/M/1 QUEUES

C. Proof of Lemma 7

For an arbitrary network of M/M/k queues, the traffic load
on queue (u, v) ∈ E is given as

a(u,v)(x) =

∑
r∈R:(v,u)∈pr

λr
kpr (v)∏
k′=1

(1− xpr
k′ ir)

kμ(u,v)
, (45)

which is similar to that of M/M/1 queues, but normalized by
the number of servers, k. Hence, a(u,v)(x) is submodular in x.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

1142 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 9. A simple network with finite-capacity queues.

TABLE III

RESULTS OF ρu,v(x)’S FOR DIFFERENT CACHING CONFIGURATIONS

For an M/M/k queue, the probability that an arriving packet
finds all servers busy and will be forced to wait in queue is
given by Erlang C formula [30], which follows

PQ
(u,v)(x) =

b(u,v)(x)(ka(u,v)(x))k

k!(1− a(u,v)(x))
, (46)

where

b(u,v)(x)=

[
k−1∑
n=0

(ka(u,v)(x))n

n!
+

(ka(u,v)(x))k

k!(1−a(u,v)(x))

]−1

, (47)

is the normalizing factor. In addition, the expected number of
packets waiting for or under transmission is given by

E[n(u,v)(x)] = ka(u,v)(x) +
a(u,v)(x)PQ

(u,v)(x)

1− a(u,v)(x)
. (48)

Lee and Cohen [33] show that PQ
(u,v)(x) and E[n(u,v)(x)]

are strictly increasing and convex in a(u,v)(x), for a(u,v)(x) ∈
[0, 1). In addition, a more direct proof of convex-
ity of E[n(u,v)(x)] was shown by Grassmann in [34].
Hence, Both P (x) :=

∑
(u,v)∈E PQ

(u,v)(x) and N(x) :=∑
(u,v)∈E E[n(u,v)(x)] are increasing and convex. Due to

Theorem 1, we note that both functions are non-increasing
and supermodular in x, and the proof is complete.

D. Proof of Lemma 8

Let ρ(u,v)(x) be the traffic load on queue (u, v) ∈ E,
as defined by (4). It can be shown that the average number of
packets in queue (u, v) ∈ E is of form [30]

E[n(u,v)(x)] = ρ(u,v)(x) +
ρ2
(u,v)(x)

2(1− ρ(u,v)(x))
. (49)

It is easy to see that this function is strictly increasing and
convex in ρ(u,v)(x) for ρ(u,v)(x) ∈ [0, 1). Due to Theorem 1,
N(x) :=

∑
(u,v)∈E E[n(u,v)(x)] is non-increasing and super-

modular in x, and the proof is complete.

E. Proof of Lemma 9

Consider the network of M/M/1/k queues in Fig. 9, where
node 1 is requesting content 1 from node 3, according to a
Poisson process with rate λ. For simplicity, we only consider
the traffic for content 1. For queues (2, 1) and (3, 2), it is
easy to verify that the probability of packet drop at queues
(u, v) ∈ {(2, 1), (3, 2)} is given by

pL
(u,v)(ρ(u,v)) =

ρu,v(x)k(1− ρ(u,v)(x))
1− ρ(u,v)(x)k+1

, (50)

where ρ(u,v)(x) is the traffic load on queue (u, v), and it can
be computed for(2, 1) and (3, 2) as follows:

ρ(2,1)(x11, x21) =
λ(1 − x11)(1− pL

(3,2))

μ(2,1)
, (51)

ρ(3,2)(x11, x21) =
λ(1 − x11)(1− x21)

μ(3,2)
. (52)

Using the results reported in Table III, it is easy to
verify that ρ’s are not monotone in x. Hence, no strictly
monotone function of ρ’s are monotone in x. In addition,
it can be verified that ρ’s are neither submodular, nor super-
modular in x. To show this, let sets A = ∅, and B =
{(1, 1)}, correspond to caching configurations [0, 0] and [1, 0],
respectively. Note that A ⊂ B, and (2, 1) /∈ B. Since
ρ(3,2)(A ∪ {(2, 1)})− ρ(3,2)(A) = − λ

μ(3,2)
� 0 = ρ(3,2)(B ∪

{(2, 1)}) − ρ(3,2)(B), then ρ(3,2) is not submodular. Conse-
quently, no strictly monotone function of ρ(3,2) is submodular.

Similarly, as ρ(2,1)(A∪ {(2, 1)})− ρ(2,1)(A) =
λpL

(3,2)

μ(2,1)
� 0 =

ρ(2,1)(B ∪ {(2, 1)}) − ρ(2,1)(B), ρ(2,1) is not supermodular.
Thus, no strictly monotone function of ρ(2,1) is supermodular.

REFERENCES

[1] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
J. Comput., vol. 40, no. 6, pp. 1740–1766, Jan. 2011.

[2] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache
networks,” in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun.,
Apr. 2019, pp. 217–225.

[3] F. P. Kelly, Reversibility and Stochastic Networks. Cambridge, U.K.:
Cambridge Univ. Press, 2011.

[4] R. G. Gallager, Stochastic Processes: Theory for Applications.
Cambridge, U.K.: Cambridge Univ. Press, 2013.

[5] R. Nelson, Probability, Stochastic Processes, and Queueing Theory:
The Mathematics of Computer Performance Modeling, 1st ed. Berlin,
Germany: Springer, 2010.

[6] H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Perfor-
mance, Asymptotics, and Optimization, vol. 46. New York, NY, USA:
Springer, 2013.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), 2009, pp. 1–12.

[8] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP:
A framework for joint dynamic forwarding and caching in named
data networks,” in Proc. 1st Int. Conf. Inf.-Centric Netw. (INC), 2014,
pp. 117–126.

[9] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” ACM SIGMETRICS Perform. Eval. Rev., vol. 44, no. 1,
pp. 113–124, Jun. 2016.

[10] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[11] M. Dehghan et al., “On the complexity of optimal routing and content
caching in heterogeneous networks,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 936–944.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

MAHDIAN et al.: KELLY CACHE NETWORKS 1143

[12] N. Laoutaiis, S. Syntila, and L. Stavrakakis, “Meta algorithms for
hierarchical Web caches,” in Proc. IEEE Int. Conf. Perform., Comput.,
Commun., Apr. 2004, pp. 445–452.

[13] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
Modeling, design and experimental results,” IEEE J. Sel. Areas Com-
mun., vol. 20, no. 7, pp. 1305–1314, Sep. 2002.

[14] Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache manage-
ment,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6, pp. 505–519,
Jun. 2004.

[15] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distrib-
uted caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[16] K. P. Naveen, L. Massoulie, E. Baccelli, A. C. Viana, and D. Towsley,
“On the interaction between content caching and request assignment in
cellular cache networks,” in Proc. 5th Workshop All Things Cellular,
Oper., Appl. Challenges (AllThingsCellular), 2015, pp. 37–42.

[17] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation caching
and routing algorithms for massive mobile data delivery,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3534–3539.

[18] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proc. ICS, 2002, pp. 84–95.

[19] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, p. 177, Oct. 2002.

[20] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new
method of constructing algorithms with proven performance guarantee,”
J. Combinat. Optim., vol. 8, no. 3, pp. 307–328, Sep. 2004.

[21] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1258–1275, Jun. 2018.

[22] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms
for data placement problems,” SIAM J. Comput., vol. 38, no. 4,
pp. 1411–1429, Jan. 2008.

[23] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algorithms for distributed
data management,” J. Comput. Syst. Sci., vol. 51, no. 3, pp. 341–358,
Dec. 1995.

[24] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in Proc. 17th Annu. ACM-SIAM Symp. Discrete Algorithm (SODA),
2006, pp. 611–620.

[25] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and
K. K. Ramakrishnan, “Optimal content placement for a large-scale VoD
system,” in Proc. CoNEXT, 2010, pp. 1–12.

[26] A. Krause and D. Golovin, “Submodular function maximization,” in
Tractability: Practical Approaches to Hard Problems. Cambridge, U.K.:
Cambridge Univ. Press, Feb. 2014.

[27] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Math.
Program., vol. 14, no. 1, pp. 265–294, Dec. 1978.

[28] J. Vondrak, “Optimal approximation for the submodular welfare problem
in the value oracle model,” in Proc. 14th Annu. ACM Symp. Theory
Comput. (STOC), 2008, pp. 67–74.

[29] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Math. Oper. Res., vol. 3,
no. 3, pp. 177–188, Aug. 1978.

[30] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2.
Upper Saddle River, NJ, USA: Prentice-Hall, 1992,

[31] G. Calinescu, R. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
submodular set function subject to a matroid constraint,” in Proc. IPCO,
2007, pp. 182–196.

[32] C. Chekuri, J. Vondrak, and R. Zenklusen, “Dependent randomized
rounding via exchange properties of combinatorial structures,” in Proc.
IEEE 51st Annu. Symp. Found. Comput. Sci., Oct. 2010, pp. 575–584.

[33] H. L. Lee and M. A. Cohen, “A note on the convexity of performance
measures of M/M/C queueing systems,” J. Appl. Probab., vol. 20, no. 4,
pp. 920–923, Dec. 1983.

[34] W. Grassmann, “The convexity of the mean queue size of the M/M/C
queue with respect to the traffic intensity,” J. Appl. Probab., vol. 20,
no. 4, pp. 916–919, Dec. 1983.

Milad Mahdian received the B.S. degree in elec-
trical engineering from the Sharif University of
Technology, Tehran, Iran, in 2012, and the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from Northeastern University, Boston, MA,
USA, in 2014 and 2017, respectively. He is cur-
rently the Vice President in Technology at Goldman
Sachs Group, Inc., New York, NY, USA, developing
the new low-latency electronic trading platform for
Goldman Sachs. His main research interests are on
non-linear and stochastic optimization techniques,

computer networking, and adaptive algorithm development of low-latency
caching systems.

Armin Moharrer received the B.Sc. degree in
electrical engineering from the Amirkabir University
of Technology (Tehran Polytechnic), Tehran, Iran,
in 2015, and the M.Sc. degree in electrical and
computer engineering from Northeastern University,
Boston, MA, USA, in 2018. He is currently pur-
suing the Ph.D. degree in electrical and computer
engineering with Northeastern University, under the
supervision of Prof. Stratis Ioannidis. His research
focuses on distributed algorithms and data mining.

Stratis Ioannidis received the B.Sc. degree in elec-
trical and computer engineering from the National
Technical University of Athens, Greece, in 2002,
and the M.Sc. and Ph.D. degrees in computer
science from the University of Toronto, Canada,
in 2004 and 2009, respectively. Prior to joining
Northeastern University, he was a Research Scientist
at the Technicolor research centers, Paris, France,
and Palo Alto, CA, USA, as well as at Yahoo Labs,
Sunnyvale, CA. He is currently an Assistant Profes-
sor with the Electrical and Computer Engineering

Department, Northeastern University, Boston, MA, USA, where he also holds
a courtesy appointment with the Khoury College of Computer Sciences. He is
a recipient of the NSF CAREER Award, a Google Faculty Research Award,
and the Best Paper Award at the 2017 ACM Conference on Information-centric
Networking (ICN) and the 2019 IEEE DySPAN Conference.

Edmund Yeh received the B.S. degree (Hons.) in
electrical engineering and Phi Beta Kappa from
Stanford University, in 1994, the M.Phil. degree
in engineering from Cambridge University on the
Winston Churchill Scholarship in 1995, and the
Ph.D. degree in electrical engineering and computer
science from MIT, under Prof. R. Gallager, in 2001.
He was previously an Assistant and Associate Pro-
fessor of electrical engineering, computer science,
and statistics at Yale University. He is currently
a Professor of electrical and computer engineering

at Northeastern University, Boston, MA, USA. He is a recipient of the
Alexander von Humboldt Research Fellowship, the Army Research Office
Young Investigator Award, and the Best Paper Award at the 2017 ACM
Conference on Information-centric Networking (ICN) and the 2015 IEEE
International Conference on Communications (ICC) Communication Theory
Symposium.

Authorized licensed use limited to: Northeastern University. Downloaded on July 31,2020 at 13:10:30 UTC from IEEE Xplore. Restrictions apply.

