

1 **Article title:**

2 **An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in**
3 *Arabidopsis*

4

5 **Running title:**

6 An aaRS OKI1 is required for proper meristem size

7

8 **Corresponding author:**

9 Dr. D. Jackson

10 Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, New York, 11724

11 Phone: +1-516-367-8467

12 Fax: +1-516-367-8369

13 E-mail: jacksond@cshl.edu

14

15 **Subject area:**

16 Growth and development

17

18 **Black and white figures:** 0

19 **Color figures:** 5

20 **Tables:** 0

21 **Supplemental materials:** 7

22 **Title and running head:**

23 **An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in**
24 ***Arabidopsis***

25 An aaRS OKI1 is required for proper meristem size

26

27 **Author names:**

28 Munenori Kitagawa^{1†}, Rachappa Balkunde^{1,2†}, Huyen Bui^{1,3} and David Jackson^{1*},

29 [†]These authors contributed equally to this work.

30

31 **Author addresses:**

32 ¹ Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, New York, 11724,
33 USA

34 ² Washington University in St.Louis, 1 Brookings Drive, St. Louis, Missouri, 63130, USA

35 ³ School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah,
36 84112, USA

37

38 **Corresponding author:**

39 Dr. David Jackson

40 Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, New York, 11724

41 Phone: +1-516-367-8467

42 Fax: +1-516-367-8369

43 E-mail: jacksond@cshl.edu

44

45 **Abbreviations:**

46	aaRS	Aminoacyl tRNA synthtase
47	ABPH2	ABERRANT PHYLLOTAXY2
48	AS1	ASYMMETRIC LEAVES1
49	AsnRS	Asparaginyl-tRNA synthetase
50	AspRS	Aspartyl tRNA synthetase
51	BABA	β -aminobutyric acid
52	BAM	BARELY ANY MERISTEM
53	BEN1	BRI 1-5 ENHANCED 1
54	CAPS	cleavable amplified polymorphic sequence
55	CLV	CLAVATA
56	CRN	CORYNE
57	CZ	central zone
58	DAB	3,3'-diaminobenzidine
59	DAP	days after planting
60	dCAPS	derived cleavable amplified polymorphic sequence
61	DCL	DEFECTIVE CHLOROPLASTS AND LEAVES
62	EDD1	EMBRYO DEFECTIVE DEVELOPMENT1
63	EMS	ethyl methane sulfonate
64	FEA4	FASCIATED EAR4
65	GAT1	GFP ABERRANT TRAFFICKING1
66	GFP	green fluorescent protein
67	GUS	β -glucuronidase

68	HAM	HAIRY MERISTEM
69	IBI1	IMPAIRED IN BABA-INDUCED IMMUNITY1
70	LRR-RLK	leucine-rich repeat receptor like protein kinase
71	LysRS	Lysyl-tRNA synthetase
72	NBT	nitroblue tetrazolium
73	MS	Murashige and Skoog
74	MSCA1	MALE STERILE CONVERTED ANTER1
75	mTOR	mammalian target of rapamycin
76	OB	oligonucleotide-binding
77	OC	organizing center
78	OKI1	OKINA KUKI
79	PFA	paraformaldehyde
80	PGY	PIGGYBACK
81	PI	propidium iodide
82	PHB	prohibitin
83	PZ	peripheral zone
84	RML1	RICE MINUTE-LIKE1
85	ROS	reactive oxygen species
86	SAM	shoot apical meristem
87	SerRS	Seryl-tRNA synthetase
88	SNP	single nucleotide polymorphism
89	TAC	transformation-competent artificial chromosome
90	WT	wild type

91 WUS WUSCHEL

92

93 **Abstract**

94 In plants, the stem cells that form the shoot system reside within the shoot apical meristem
95 (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox
96 protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be
97 modulated by various endogenous or exogenous factors such as chromatin state, hormone
98 signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of
99 SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of
100 genes that control SAM size is still limited, and in particular the regulation by ROS signaling is
101 only beginning to be comprehended. Here, we report a new gene that functions in SAM size
102 maintenance, *OKINA KUKI (OKII)*, which is expressed in the SAM and encodes a
103 mitochondrial aspartyl tRNA synthetase (AspRS). *okiI* mutants display enlarged SAMs with
104 abnormal expression of WUS and CLV3, and overaccumulation of ROS in the meristem. Our
105 findings support the importance of normal AspRS function in the maintenance of the WUS-
106 CLV3 feedback loop and SAM size.

107

108 **Keywords:**

109 Aminoacyl tRNA synthetase

110 *Arabidopsis thaliana*

111 Fasciation

112 Mitochondria

113 Redox

114 Shoot meristem

115

116 **Introduction**

117 Stem cells are responsible for the generation of new tissues and organs in multicellular
118 organisms, while maintaining themselves as pluripotent initials. In plants, stem cells reside in
119 meristems, and the shoot apical meristem (SAM) can generate all shoot organs, such as leaves
120 and flowers. Semi-permanent stem cells are found at the apical region of the SAM, in the central
121 zone (CZ), and the organizing center (OC) below is a group of niche cells that provides cues to
122 the CZ for stem cell maintenance. The daughter cells produced by stem cell divisions are
123 displaced to the peripheral zone (PZ), where they form organ primordia, and in turn differentiate
124 into lateral organs. Thus, stem cell fate and differentiation are precisely regulated depending on
125 position within the SAM, allowing maintenance of the stem cell population and meristem size.

126 For such position dependent maintenance of the stem cell niche, plants have developed a
127 negative feedback signaling pathway. The homeodomain transcription factor WUSCHEL (WUS)
128 is expressed in the OC, and moves through plasmodesmata into the CZ to activate the expression
129 of its negative regulator CLAVATA3 (CLV3) (Daum et al. 2014; Fletcher et al. 1999; Mayer et
130 al. 1998; Perales et al. 2016; Yadav et al. 2011). CLV3 is a secreted peptide perceived by the
131 leucine-rich repeat receptor like protein kinases (LRR-RLKs) CLAVATA 1 (CLV1) and the
132 related BARELY ANY MERISTEM (BAMs) as well as by the LRR receptor like protein
133 CLAVATA2 (CLV2) in a complex with the CORYNE (CRN) pseudokinase, which together
134 repress the expression of WUS in the OC (Clark et al. 1997; DeYoung et al. 2006; DeYoung and
135 Clark 2008; Hu et al. 2018; Kayes and Clark 1998; Miwa et al. 2008; Muller et al. 2008;
136 Nimchuk et al. 2011; Nimchuk et al. 2015; Ogawa et al. 2008; Shinohara and Matsubayashi
137 2015). This WUS-CLV3 negative feedback loop establishes a self-correcting mechanism that

138 maintains proper size of the stem cell pool and the meristem (Brand et al. 2000; Schoof et al.
139 2000; Somssich et al. 2016).

140 The WUS-CLV negative feedback loop is also regulated by various endogenous and
141 exogenous signals. For example, precise WUS expression patterns require chromatin regulators,
142 and mutants of these factors display bigger and disorganized meristems (Graf et al. 2010; Kaya
143 et al. 2001). In addition, cytokinin promotes WUS expression and in turn facilitates the
144 proliferation of stem cells, leading to an increase in SAM size (Chickarmane et al. 2012; Gordon
145 et al. 2009; Gruel et al. 2016; Landrein et al. 2014). Cytokinin signaling also controls SAM size
146 depending on the availability of nutrients in a WUS-dependent manner, allowing plants to
147 optimize shoot organogenesis according to resource availability (Landrein et al. 2018). By
148 contrast, auxin signaling negatively regulates the stem cell population by modulating WUS-
149 CLV3 feedback loop through interaction with cytokinin signaling (Shi et al. 2018; Zhao et al.
150 2010). ROS signaling is also an important regulator of the stem cell population and SAM size.
151 Mutants of a mitochondrial protease and plastid ion channels display abnormal accumulation of
152 ROS at the shoot apices under abiotic stresses, leading to premature termination of the SAM and
153 abnormal growth of calluses at the shoot apices, respectively (Dolzblasz et al. 2016; Wilson et al.
154 2016). Furthermore, Zeng et al. (2017) reported that superoxide anions are enriched in the stem
155 cells of the SAM and promote WUS expression, whereas hydrogen peroxide accumulates in the
156 PZ to promote differentiation. These findings suggest that the proper accumulation and precise
157 distribution of ROS are crucial for the maintenance of stem cell niches and SAM size. The same
158 applies for regulating the root apical meristem (Jiang et al. 2003; Kong et al. 2018; Tsukagoshi et
159 al. 2010; Yang et al. 2014; Yu et al. 2016; Yu et al. 2013). For example, a recent study revealed
160 that prohibitin (PHB3) regulates ROS homeostasis in roots, and in turn maintains root meristem

161 size and stem cell niches through the functions of its downstream ROS-responsible factors; *phb3*
162 mutants show overaccumulation of ROS in roots, reduced root meristem size and defective
163 quiescent center (Kong et al. 2018).

164 Despite these insights, the knowledge of genes affecting SAM size is limited, and how
165 ROS is regulated in the SAM is only beginning to be understood. In this study, we identify the
166 *OKINA KUKI* (*OKII*, Japanese for big stem) gene as a new factor in SAM size maintenance.
167 *oki1* mutant seedlings have enlarged SAMs and abnormal expansion of WUS and CLV3
168 expression. *OKII* encodes a mitochondrial aspartyl-tRNA synthetase (AspRS) that is
169 expressed in the SAM. In general, aminoacyl-tRNA synthetases (aaRSs) catalyze the addition of
170 amino acid to their cognate tRNAs to prepare substrates for protein translation, and
171 mitochondrial aaRSs are key components of the mitochondrial translation apparatus (Sissler et al.
172 2017; Vargas-Rodriguez et al. 2018). Therefore *oki1* mutation could affect mitochondrial
173 translation and consequently mitochondrial functions (Robles and Quesada 2017). Mitochondria
174 act as a powerhouse to produce energy for cells, and also produce ROS signals affecting various
175 cellular functions, such as stress responses, hormone signaling and development (Huang et al.
176 2016). For example, in the meristem, mitochondria function in generation of ROS signals that
177 affect meristem size and cell cycle (Schippers et al. 2016). Indeed, mutants in a rice
178 mitochondrial and cytoplasmic aaRS display abnormal accumulation of ROS in meristematic
179 tissues of the early anther, resulting in overproliferation and disorganization of cells (Yang et al.
180 2018). Our data also showed that ROS accumulates in the SAM of *oki1*, suggesting a possible
181 mechanism for abnormal meristem development. Collectively, our discoveries suggest that
182 normal function of the AspRS OKI1 is required to maintain the WUS-CLV3 feedback loop
183 and SAM size.

184

185 **Results**

186 In an ethyl methyl sulfonate (EMS) screen for new mutants affecting shoot development
187 in *Arabidopsis*, we identified a mutant with small seedlings and the first 4-5 leaves were narrow
188 and strap shaped (Fig. 1A, B). Later in development, the plants recovered their growth somewhat,
189 and made inflorescence shoots that were often highly fasciated (54%, n= 20/37, Fig. 1D-F) with
190 asymmetrically lobed rosette leaves. As the fasciation phenotype is usually associated with
191 enlargement in meristem size (Fig. 1C), we measured shoot meristems from the mutants and
192 their normal siblings (Fig. 1G-J). The mutant meristems were normal at 8 days after planting
193 (DAP), but were significantly wider and taller than their siblings at 12 DAP (N = 10-15; P < 0.01,
194 Tukey HSD test). To understand the cellular basis of this phenotype, we fixed and sectioned both
195 shoot and root apices for imaging in the confocal microscope. Normal shoot meristems have
196 cells arranged in two regular outer layers, the L1 and L2, with an inner group of L3 cells (Fig.
197 1K, L). In contrast, the mutant shoot meristems had highly disorganized cell arrangement, and
198 the regular L1 and L2 layer structure was less evident (Fig. 1M, N). Similar phenotypes were
199 found in root meristems, where cells are again normally arranged in regular radial layers (Fig.
200 1O, P). In the mutants, we again saw evidence of irregular layers, with cells expanding into the
201 space of the adjacent layers, and irregular planes of cell division (Fig. 1Q, R). Because of the
202 prominent fasciated stem phenotype, we named this mutant *okina kuki* (*oki1*, Japanese for big
203 stem).

204 The *oki1* mutant was identified in Columbia-0 (Col-0), so to identify the underlying gene
205 we crossed it to the *Landsberg erecta* (Ler) ecotype, and made a bulk mutant pool from the F2
206 mapping population. We next used whole genome sequencing, followed by analysis using the
207 SHOREmap pipeline (Schneeberger et al. 2009) to map the mutation to chromosome 4, between

208 ~ 15-17 Mb. Further fine mapping, combined with analysis of gene sequences within the
209 mapping interval revealed a candidate mutation in AT4G33760, a gene encoding an aspartyl
210 tRNA synthetase. A single base pair change, G347A, in the first exon of this gene led to a single
211 predicted amino acid change, G116D, in the anti-codon binding domain of this protein (Fig. 2A
212 and B). This 116th Glycine is fully conserved in plants and animals (Fig. 2C). To confirm this
213 was the correct mutation underlying the phenotype, we obtained a putative null allele,
214 SAIL_358_B08, with a T-DNA insertion in the 10th exon of AT4G33760 (Fig. 2A), and when
215 plants heterozygous for this insertion were crossed to *oki1* plants, the T-DNA insertion allele
216 failed to complement the *oki1* phenotype, as the progeny segregated ~ half with *oki1* phenotype
217 (Fig. 2D and Fig. S1A), and these plants were confirmed as being heterozygous for the *oki1*
218 EMS allele and the T-DNA mutations. Furthermore, we were able to complement the *oki1*
219 mutation using a TAC clone, JAtY59F05, containing AT4G33760 (Fig. S1B), but not when
220 AT4G33760 in this TAC was mutated by creating a frameshift by inserting a mCherry-Amp^R
221 cassette in the fourth exon, together indicating that the gene underlying the *oki1* mutation was
222 correctly identified.

223 Aminoacyl tRNA synthetases play a critical role in cellular metabolism by charging
224 tRNAs with their cognate amino acid for protein synthesis. *Arabidopsis* encodes three aspartyl
225 tRNA synthetases (Fig. 2E), and the one encoded by AT4G33760 is expressed ubiquitously, with
226 strongest expression in seedling leaves and vegetative shoot meristems (Fig. S2). The product of
227 AT4G33760 is predicted to localize to mitochondria and/or chloroplasts (Duchêne et al. 2005),
228 while the two other aspartyl tRNA synthetases, At4G26870 and At4G31180 are predicted to
229 encode cytoplasmic proteins (Fig. 2E) (Luna et al. 2014). To ask where the OKI1 protein
230 localized, we made a triple YPet fluorescent protein fusion tagged at the C terminus of the

231 predicted coding sequence, in the context of its native regulatory sequences in the TAC clone.
232 This construct was able to fully complement the mutant phenotype, and in the protoplasts
233 prepared from mature leaf tissues, we observed OKI1-YPet localization in a punctate pattern that
234 overlapped with a mitochondrial stain, MitoTracker Red (Fig. S3A-D). In shoot meristems, we
235 also saw punctate staining (Fig. 3A, B), that again co-localized with MitoTracker Red, and not
236 with plastids, visualized by autofluorescence (Fig. 3C-G). In summary, we identified *oki1* as a
237 point mutation in an aspartyl tRNA synthetase that localizes to mitochondria in the leaf and
238 shoot meristem, and is a weak allele, since a putative null allele SAIL_358_B08 was lethal.

239 We next ask how the *oki1* mutant interacted with the canonical CLV-WUS feedback
240 pathway that maintains the stem cell population in the shoot meristem. We crossed the *oki1*
241 mutant to a line carrying a GFP reporter for CLV3, as well as a RFP reporter for WUS
242 expression. In wild type (WT) siblings, these reported the expected expression, with CLV3
243 expressed in 2 to 3 cell layers of stem cells in an arc at the top of the meristem, and WUS in a
244 cluster of organizing center cells below in red (Fig. 4B, F). In the mutants, the separation of the
245 CLV and WUS domains was maintained, however the meristems were enlarged and irregular, as
246 already described, and the CLV3 and WUS expression domains were expanded (Fig. 4D, H and
247 Fig. S4). We also asked how these mutations interact in double mutant combinations. *wus*
248 mutants make irregular shoots that terminate prematurely, and even after bolting make few,
249 irregular flowers (Fig. 4K, L). In double *wus* *oki1* mutants, *wus* behaved epistatically, as the
250 double mutants were indistinguishable from *wus* (Fig. 4K-N). *clv3* *oki1* double mutants similarly
251 resembled the *clv3* single mutants (Fig. 4O, P), and quantification of phenotypes by
252 measurements of stem thickness indicated that there was no significant difference in stem
253 thickness between *oki1* or *clv3* single mutants and *oki1* *clv3* double mutants (Fig.S5). Together

254 these double mutant analyses indicate that *wus* and *clv3* are epistatic to *oki1* in meristem size
255 control.

256 Finally, to address the possible mechanism by which *oki1* mutants cause meristem
257 disruption, we reasoned that a block in mitochondrial function by partial loss of an essential
258 translation factor might lead to redox imbalance, which is known to impact meristem size (Zeng
259 et al. 2017). We therefore stained meristems with redox dyes, and indeed found that superoxide
260 and peroxide were upregulated in *oki1* meristems (Fig. 5), suggesting that redox imbalance may
261 cause the increases in meristem size in *oki1*. Additionally, an OKI1 homolog in *Arabidopsis*, the
262 AspRS IMPAIRED IN BABA-INDUCED IMMUNITY 1 (IBI1; AT4G31180, Fig. 2E) acts as a
263 receptor of β -aminobutyric acid (BABA) in addition to its housekeeping function. BABA is a
264 nonprotein amino acid that protects plants against broad-spectrum diseases (Luna et al., 2014).
265 To ask if OKI1 is also involved in BABA signaling, we investigated the BABA sensitivity of
266 *oki1* mutants (Fig. S6). However, *oki1* growth was normal in the presence of BABA
267 concentrations that severely inhibit *ibi1* growth (Fig. S6B, C), suggesting that *oki1* does not
268 function in BABA signaling.

269

270

271 **Discussion.**

272 Meristems are highly ordered structures that initiate new organs throughout the lifecycle,
273 to enable plant survival. Several mutants with disorganized meristems has been described, and
274 among the ones with larger meristems the best understood are the CLV pathway genes, *CLV1*,
275 *CLV2* and *CLV3*, which repress *WUS* to balance the loss of cells from the meristem due to organ
276 initiation with the production of cells by stem cell divisions. This balance is crucial to maintain
277 meristem size, and other genes acting in the peripheral zone of the meristem, either providing
278 feedback to the stem cell niche or promoting the transition of cells into organ primordia, also
279 lead to bigger meristems when mutated (Chuck et al. 2014; Pautler et al. 2015). Hormonal
280 feedback signaling, most notably by cytokinins, and chromatin level regulation of *WUS*
281 expression are also important in meristem size control, and can lead to bigger meristems when
282 disrupted (Chickarmane et al. 2012; Gordon et al. 2009; Gruel et al. 2016; Kaya et al. 2001;
283 Landrein et al. 2014). Here we report a new mutant with large meristems, *oki1*, that encodes an
284 aspartyl tRNA synthetase. *Arabidopsis* encodes three aspartyl tRNA synthetase homologs, with
285 two predicted to encode cytoplasmic proteins, and *OKI1* is the only to encode a protein that is
286 predicted to be localized to organelles. We found using a functional YPet fusion that the *OKI1*
287 protein product localizes predominantly to mitochondria. Not surprisingly, a putative *oki1* null
288 mutant SAIL_358_B08 was lethal, however we identified a viable, and therefore weak, allele
289 uncovering a function of the *OKI1* aspartyl tRNA synthetase in meristem maintenance that could
290 not be elucidated from null alleles.

291

292 Analysis of meristem structure in the *oki1* weak allele provided important insights into
293 development. First, the organization of cells into regular clonal cell layers was disrupted in both

294 shoot and root, however the meistems were able to function and complete the plant lifecycle,
295 including production of viable flowers and seeds. This supports the idea that plant development
296 is controled by positional information, and even where clonal divisions are observed, such as in
297 meristems, such regular divisions are not essential for maintaining stem cell niches (Smith et al.
298 1996). Moreover, we found that expression of both CLV3 and WUS genes were maintained as
299 correctly positioned separate domains, further supporting the idea that these domains are
300 established using positional cues rather than a dependency on cell lineage. In addition to the
301 meristems, leaf development was also severely disrupted in *oki1* mutants; the first leaves
302 produced were narrow and strap shaped, and later leaves were asymmetrically lobed. Therefore
303 full *OKII* function appears necessary for many aspects of *Arabidopsis* development.

304

305 What is the mechanism of *OKII* function? AaRSs perform housekeeping roles in protein
306 translation, by catalyzing the ligation of amino acids and their cognate transfer tRNAs to prepare
307 substrates for protein translation (Vargas-Rodriguez et al. 2018). In plants, translation occurs in
308 three different cellular compartments, the chloroplasts, mitochondria and cytosol (Berg et al.
309 2005). Translation in each of these compartments is necessary, as elimination of some
310 chloroplast, mitochondria or cytosol aaRSs in *Arabidopsis* leads to embryo lethality, ovule
311 abortion or gametophytic lethality (Berg et al. 2005). A putative null mutant in *OKII* is also
312 lethal, but the weak *oki1* allele is viable, with severe effects on meristem and organ growth. The
313 *oki1* weak mutant phenotype differed from most meristem mutations, in that the cellular
314 organization was highly irregular, and suggest that it may function through a different
315 mechanism compared to the canonical meristem pathways. This weak allele has a single amino
316 acid substitution in the conserved oligonucleotide-binding (OB) fold domain, which is involved

317 in recognition of the anti-codon in the mRNA by the charged tRNA (Mirande 2017). Therefore
318 this mutation is predicted to disrupt translation, presumably in mitochondria. Therefore it may
319 affect the energy balance of cells, and it is not surprising that the phenotype is evident in
320 meristems and developing primordia, where energy demand for growth is high. However, it is
321 surprising that the mutation leads to meristem enlargement, since most similar mutations do not.
322 One other developmental mutant in an organellar targeted tRNA synthetase gene, a glycyl tRNA
323 synthetase, is a weak allele of *EMBRYO DEFECTIVE DEVELOPMENT1 (EDD1)*, that is lethal
324 in null alleles (Moschopoulos et al. 2012). Weak *edd1* mutants enhance *asymmetric leaves1*
325 (*asl1*) phenotypes, and affect genes involved in leaf dorsiventral polarity, though again the
326 mechanism is unknown, and no meristem phenotype was reported or is evident in *edd1* mutants.
327 Leaf development is also abnormal in *defective chloroplasts and leaves (dcl)* mutants in
328 *Arabidopsis* and tomato; *DCL* encodes a plastid targeted protein that functions in ribosomal
329 RNA processing, but again no effect on meristem size was reported (Bellaoui and Gruissem
330 2004; Bellaoui et al. 2003). Other mutations with developmental phenotypes affect the
331 cytoplasmic translational machinery, including ones in the *PIGGYBACK (PGY)* genes in
332 *Arabidopsis*; *pgy* mutants were first identified in a screen for leaf polarity mutants in
333 *Arabidopsis*, and encode ribosomal large subunit proteins (Pinon et al. 2008). Mutants in a
334 related gene also affects leaf development in rice, for example *rice minute-like1 (rml1)* mutants
335 are smaller with defective vascular patterning and narrow leaf blades, and may have auxin
336 related defects, however again no effect on meristem size or organization were reported (Zheng
337 et al. 2016). *rml1* mutants also have small panicles, suggesting that shoot meristem size is
338 reduced, which may reflect defects in cell growth or proliferation expected when ribosomes are
339 compromised. Alternatively, it is possible that the specific developmental phenotypes of

340 ribosomal mutants reflects a true regulatory role in development (Byrne 2009). However all of
341 the plant mutants affecting ribosomes or translational machinery have abnormal leaf
342 development with no obvious defect in meristems, and no reported example of meristem
343 enlargement or fasciation, suggesting the *oki1* phenotype is unique. One possible mechanism to
344 explain *oki1* phenotypes is that the OKI1 protein has an additional function, distinct from its role
345 in translation. In mammals, aaRSs have alternative functions, such as in transcriptional control,
346 extracellular receptor-mediated signaling or in mammalian target of rapamycin (mTOR)
347 signaling (Schimmel 2018). In *Arabidopsis*, an *OKII* homolog, the AspRS IBI1 functions in a
348 noncanonical way in plant defense to perceive BABA (Luna et al. 2014). BABA binds to IBI1
349 and blocks its L-Asparate binding site, switching the AspRS canonical activity of IBI1 to the
350 noncanonical defense activity upon pathogen infection. However this is unlikely to be the case
351 for *OKII*, because unlike *ibi1* mutants, *oki1* mutants were not hypersensitive to BABA (Fig. S6).
352 Another hypothesis is that disruption in mitochondrial translation could create a redox unbalance,
353 common in mutations that affect mitochondrial function (Mignolet-Spruyt et al. 2016). Recently,
354 roles for redox signaling in shoot and root meristem size control have been discovered. For
355 example, histological staining found different types of reactive oxygen species (ROS) enriched
356 in different shoot meristem domains; superoxide is enriched in the stem cells and promotes WUS
357 expression, and differentiation is promoted in the peripheral zone by hydrogen peroxide. The
358 function of these ROS species is illustrated by different mutants affecting ROS status, which
359 have shoot meristem size defects (Zeng et al. 2017). Similar findings have been reported in rice,
360 where a glutamyl-tRNA synthetase expressed in meristematic cell layers during anther
361 development maintains cellular organization and regulates the population of male germ cells
362 through the control of protein synthesis, metabolic homeostasis and redox status (Yang et al.

363 2018). The size of root meristems is also controlled by a redox mechanism, for example the
364 UPBEAT1 transcription factor controls the balance between cell proliferation and differentiation,
365 by controlling expression of peroxidase gene targets (Tsukagoshi et al. 2010). Redox control of
366 meristem size in maize is also evident, as the glutaredoxin enzyme MALE STERILE
367 CONVERTED ANther1 (MSCA1) controls activity of the FASCIATED EAR4 (FEA4)
368 transcription factor (Yang et al. 2015). The *Aberrant phyllotaxy2* (*Abph2*) mutant has bigger
369 meristems and is caused by dominant mutations in *MSCA1*, and *msca1* loss of function mutants
370 have smaller shoot meristems (Yang et al. 2015). Redox signaling can also control shoot
371 meristem size by modulation of plasmodesmata, for example severe changes in redox state in the
372 *Arabidopsis gfp aberrant trafficking1* (*gat1*) mutant of *Arabidopsis* lead to a reduction in root
373 meristem size and premature shoot meristem termination, presumably because of excessive
374 callose deposition, potentially impacting the flow of nutrients and developmental signals
375 (Benitez-Alfonso et al. 2009). As described above, *oki1* has a mutation in a domain of AspRS
376 that recognizes the anti-codon in the mRNA by charged tRNA (Mirande 2017). Therefore
377 mitochondrial translation may be affected by the *oki1* mutation, leading to dysfunction of
378 mitochondria (Robles and Quesada 2017; Sissler et al. 2017; Vargas-Rodriguez et al. 2018). As
379 one of their functions, mitochondria produce ROS through oxidative phosphorylation, and in turn,
380 those ROS signals affect transcription factors that affect meristem size and the cell cycle
381 (Schippers et al. 2016). Thus, OKI1 may be required for the normal mitochondrial translation
382 and functions, which allows the proper ROS metabolism in the meristem, resulting in its normal
383 development. We note, however, that the causal relationship between ROS overaccumulation
384 and the enlarged SAM phenotype in *oki1* is still unclear. Since we observed accumulation of
385 ROS in *oki1* mutants that already established an enlarged SAM (Fig. 5), it is possible that the

386 disturbed SAM organization in *oki1* causes ROS overaccumulation indirectly. A time-course
387 study of ROS levels in the *oki1* SAM may help better understand any causal relationship.
388 Additionally, as an alternative possibility of OKI1 mechanism, OKI1 may interact with other
389 proteins to function in regulating SAM size. As described above, aaRSs are involved in various
390 essential cellular processes, and are thought to act as hub proteins that have a wide impact on
391 cellular mechanisms beyond translation (Guo et al. 2010). In many cases, these non-canonical
392 functions derive from the interactions of aaRSs with partner proteins (Hausmann and Ibba 2008;
393 Havrylenko and Mirande 2015; Kekez et al. 2019; Kim et al. 2014; Laporte et al. 2014). For
394 example, recent work indicated that *Arabidopsis* cytoplasmic seryl-tRNA synthetase (SerRS)
395 interacts with BRI 1-5 ENHANCED 1 (BEN1) that is involved in metabolism of brassinosteroid
396 hormones (Kekez et al. 2019). Thus, OKI1 may also interact with proteins that catalyze the
397 metabolism of hormones to control SAM size. Further study should elucidate the precise
398 mechanism of OKI1 in redox imbalance or interaction with meristem regulators and their roles in
399 meristem size control.

400

401 **Materials and Methods**

402 **Plant materials and growth conditions**

403 Mutagenesis in *Arabidopsis* Col-0 was performed as described previously (Xu et al. 2011). The
404 M1 progeny were allowed to self-fertilize, and mutants screened in the M2 population. The
405 following lines were obtained from the Arabidopsis Biological Resource Center: *clv3-2* (Ler
406 ecotype) (Fletcher et al. 1999), SAIL_358_B08 and the double transgenic line
407 expressing *CLV3::mGFP5-ER* and *WUS::dsRED-N7* (Ler ecotype) (Gordon et al. 2007). *wus*
408 mutant line (Ler ecotype) was kindly provided from Dr. Yuval Eshed (Weizmann Institute of
409 Science, Israel). This allele in which a T-DNA is inserted into *wus* was found as part of an
410 enhancer trap population screen (Eshed et al. 1999). *ibi1-1* mutant line (Col-0 ecotype) was
411 kindly provided from Dr. Jurriaan Ton (The University of Sheffield, UK). *WUS::GUS* line was
412 kindly provided by Dr. Damianos Skopelitis (Cold Spring Harbor Laboratory, USA) (Skopelitis
413 et al. 2018).

414 For all experiments except Fig. 4A-H, Col-0 ecotype was used as a control line or WT.
415 All plants were grown on soil or Murashige and Skoog (MS) agar plates (Weigel and Glazebrook
416 2002) at 23°C under long-day (LD, 16 h light/8 h dark) conditions. *Arabidopsis* seeds were
417 stratified on soil or MS plates in the dark at 4°C for 48-72 h before transferring them to growth
418 conditions. Transgenic *Arabidopsis* was obtained by *Agrobacterium*-mediated floral dip (Alonso
419 and Stepanova 2014; Weigel and Glazebrook 2002). *wus*; *oki1* and *clv3-2*; *oki1* double mutants,
420 and *CLV3::mGFP5-ER*; *WUS::dsRED-N7* in *oki1* lines were generated through genetic crosses,
421 and identified in the F2 segregating populations. *oki1/SAIL_358_B08* mutants were generated
422 through genetic crosses and identified in the F1. SAIL_358_B08 is listed as having T-DNA
423 insertions in two gene loci, AT4G33760 and AT4G22860 (<https://arabidopsis.org>). We selected

424 plants that had T-DNA insertion only within AT4G33760 by PCR genotyping, and used them for
425 the genetic crosses. *oki1* and *clv3-2* were validated based on PCR genotyping. *wus* was
426 identified by Basta screening and PCR genotyping, and *CLV3::mGFP5-ER WUS::dsRED-*
427 *N7* were validated by GFP or dsRED detection by fluorescence microscopy. Primers used for
428 genotyping are listed in Table S1. *wus*, *clv3-2* and *CLV3::mGFP5-ER WUS::dsRED-N7* lines
429 were from the Ler background, and *oki1* from Col-0, and double mutants were analyzed in the F3
430 generation. We analyzed a large number to double mutants to avoid the possibility that
431 modifiers segregating in the mixed genetic background would affect the results.

432

433 **Gene mapping**

434 The *oki1* mutant (Col-0 ecotype) was crossed to the Ler ecotype. The F1 progeny were allowed
435 to self-fertilize, and in the F2 population *oki1* phenotype (Fig. 1B) segregated 3:1. DNA was
436 collected from pooled *oki1*- and WT-like plants. Library preparation was carried out according to
437 manufacturers instructions (NEB Next Ultra DNA Library Prep Kit for Illumina, New England
438 BioLabs Inc) and paired end sequencing was performed on the Illumina platform at the Cold
439 Spring Harbor laboratory (New York, USA). Sequencing data was analyzed with the short read
440 analysis pipeline SHOREmap (Schneeberger et al. 2009). Reads were aligned to
441 the *Arabidopsis* Col-0 reference genome (TAIR 10). SNPs detected by sequencing were
442 converted to CAPS or dCAPS markers, and a final mapping interval supported by several
443 recombinants on each side was defined by markers at 15.65 Mb and 16.34 Mb in the Col-0
444 reference genome.

445

446

447

448 **Molecular biology**

449 Recombineering lines containing OKI1 fused to three copies of YPet (a YFP variant) (Nguyen
450 and Daugherty 2005) at the C terminus (OKI1-3xYPet) or mutated OKI1 were generated using
451 bacterial homologous recombination as described (Alonso and Stepanova 2014; Zhou et al.
452 2011). TAC clone JAtY59F05 and the plasmids containing recombineering cassettes with
453 3xYPet (3xAraYPet-FRT-Amp^R-FRT) or mCherry (mCherry-FRT-Amp^R-FRT) were kindly
454 provided by Dr. Jose Alonso (North Carolina State University, USA). The *Escherichia coli* (*E.*
455 *coli*) recombineering strain SW105 was from the National Cancer Institute (Maryland, USA).
456 For generating 3xYPet fused OKI1, 3xAraYPet-FRT-Amp^R-FRT cassette was PCR amplified
457 using primers 1 and 2 (Table S1) and inserted in front of stop codon in *OKII* gene in the TAC.
458 *E.coli* cells harboring the recombinant TAC clone was then cultured on medium containing L-
459 arabinose, which induces FRT recombinase thus deleting the *Amp^R* gene leaving *OKII-3xYPet* in
460 the recombinant TAC. For generating mutated *OKII* gene, mCherry-FRT-Amp^R-FRT cassette
461 was PCR amplified using primers 3 and 4 (Table S1) and was inserted in a short region (26-bp;
462 AATGTGGTGAAGCTGATTAGGAGATA) in the fourth exon of the *OKII* gene. These clones
463 were confirmed by sequencing using primers 5 and 6 (OKI-3xYPet) and 7 and 8 (mutated OKI1)
464 and in turn were transformed into *Agrobacterium tumefaciens* (GV3101). Transgenic plants were
465 screened by Basta selection.

466

467 **Shoot apical meristem (SAM) measurement**

468 SAM measurement was performed as described previously (Balkunde et al. 2017). Briefly,
469 *Arabidopsis* seedlings were harvested at 8 or 12 DAP under LD conditions and then fixed

470 overnight in ice-cold FAA (10% formalin, 45% ethanol and 5% acetic acid) followed by
471 dehydration through an ethanol series, and cleared with methyl salicylate (Sigma-Aldrich).
472 Meristems were observed using Nomarski optics. The width and height of the meristems were
473 measured and quantified using ImageJ-Fiji (Schindelin et al. 2012).

474

475 **Chemical staining**

476 For Eosin Y staining of cells in the SAM, 10 DAP seedlings of WT and *oki1* were fixed in FAA
477 (5% formalin, 5% glacial acetic acid, 45% ethanol) overnight at 4°C followed by dehydration
478 through a 50-100% ethanol series. During the dehydration step, tissues were stained with 0.1%
479 Eosin Y (Sigma-Aldrich) in 100% ethanol, and embedded into paraffin (PARAPLAST X-TRA;
480 McCormick SCIENTIFIC). Sections (10 μ m) were prepared using a microtome. For propidium
481 iodide (PI) staining of cell wall in the root, the roots of WT and *oki1* were stained in 10 μ g/ml PI
482 for 5 minutes, rinsed and mounted in water.

483 For mitochondrial staining, protoplasts were isolated from rosette leaves of 2-week old
484 transformants that expressed OKI1::3xYPet driven under *OKII* native promoter in *oki1*
485 background using an enzyme solution (400 mM mannitol, 20 mM MES, 20 mM KCl, 10 mM
486 CaCl₂, 10 μ g/ml BSA, 15 mg/ml cellulase [PhytoTechnology Laboratories], 3 mg/ml pectolyase
487 [Sigma-Aldrich]). Isolated protoplasts were suspended in buffer (400 mM mannitol, 20 mM
488 MES, 20 mM KCl, 10 mM CaCl₂, 10 μ g/ml BSA) containing 100 nM MitoTracker Red
489 CMXRos (Molecular Probes) for mitochondrial staining. For staining in the SAM, shoot apices
490 were embedded in 6% agar blocks, and sections were obtained with a vibratome and stained with
491 MitoTracker Red CMXRos in PBS for 30 min.

492 For staining of ROS, superoxide anions and hydrogen peroxide, nitroblue tetrazolium
493 (NBT) (Sigma-Aldrich) and 3,3'-diaminobenzidine (DAB) (Sigma-Aldrich) were used as
494 described previously (Zeng et al. 2017). Briefly, 12 DAP seedlings were infiltrated with 1/2
495 liquid MS and either 1 mg/ml NBT and 50 mM potassium dihydrogen phosphate (pH 7.6) (for
496 superoxide anion detection) or 1 mg/ml DAB and 10 mM disodium hydrogen phosphate (pH 6.5)
497 (for hydrogen peroxide detection), and incubated in the dark for 10-20 h at room temperature.
498 Stained plants were transferred into boiling ethanol/glycerin/glacial acetic acid solution (3:1:1) to
499 terminate the staining, then fixed with paraformaldehyde (PFA) solution (2% paraformaldehyde,
500 0.1% DMSO in PBS) and embedded into 6% agar blocks for sectioning with a vibratome.

501

502 **Microscopy**

503 Seedling images were taken with Nikon SMZ1500 (Nikon Instrument Inc) microscope to
504 manually capture Z series, which were then merged using NIS elements to create focused images.
505 Confocal images were obtained on a ZEISS LSM710 or LSM 780. For Eosin Y, 514 nm laser
506 excitation and 538–680 nm emission spectra, for PI, 514 nm excitation and 566-718 nm emission
507 spectra, for MitoTracker Red, 561 nm excitation and 572-621 nm emission spectra, for YPet, 514
508 nm excitation and 519-588 nm emission spectra, for GFP, 488 nm excitation and 493-541 nm
509 emission spectra, for dsRED, 594 nm excitation and 599-641 nm emission spectra, for
510 chloroplast autofluorescence, 633 nm excitation and 647-721 nm emission spectra were used.
511 LSM files from the confocal were processed using ImageJ-Fiji (Schindelin et al. 2012).

512

513

514

515 **Multiple sequence alignment and construction of phylogenetic tree**

516 For multiple alignment of amino acid sequences of AspRSs from eukaryotes (Fig. 2C), amino
517 acid sequences that possess high similarity with OKI1 were obtained from National Center for
518 Biotechnology Information (NCBI) database (<https://www.ncbi.nlm.nih.gov>) by BLAST search.
519 AspRS amino acid sequences from *Arabidopsis thaliana* (OKI1, TAIR ID: AT4G33760),
520 *Medicago truncatula* (NCBI accession number: XP_003609716), *Populus trichocarpa* (NCBI
521 accession number: XP_024463857), *Oryza sativa* (NCBI accession number: XP_015622473),
522 *Brachypodium distachyon* (NCBI accession number: XP_003568687), *Physcomitrella patens*
523 (NCBI accession number: XP_02435843), *Homo sapiens* (NCBI accession number: 4AH6_A),
524 *Drosophila melanogaster* (NCBI accession number: NP_724018), *Saccharomyces cerevisiae*
525 (NCBI accession number: PTN17328), *Chlamydomonas reinhardtii* (NCBI accession number:
526 XP_001694949) were used. Multiple sequence alignment was performed by CLUSTAL
527 OMEGA (<https://www.ebi.ac.uk/Tools/msa/clustalo/>) (Sievers et al. 2011). For constructing a
528 phylogenetic tree for *Arabidopsis* aaRSs (Fig. 2E), seven complete amino acid sequences that
529 possess high similarity with OKI1 (AT5g56680, AT1G70980, AT4G17300, AT4G26870,
530 AT4G31180, AT3G13490 and AT3G11710) were obtained from Phytozome v12.1 database
531 (<https://phytozome.jgi.doe.gov/pz/portal.html>) by BLAST search. Multiple sequence alignment
532 was performed by CLUSTALW (<https://www.genome.jp/tools-bin/clustalw>) (Larkin et al. 2007).
533 Neighbor-joining (NJ) tree was constructed by MEGA 7 (Kumar et al. 2016) with 1000 bootstrap.
534

535 **GUS staining**

536 Seedlings were transferred to tissue culture plates containing GUS staining solution (50 mM Na-
537 phosphate at pH 7.0, 10 mM EDTA, 0.1% triton X-100, 1 mg/ml of X-Gluc [5-bromo-4-chloro-

538 3-indolyl-beta-D-glucuronic acid, BIOSYNTH], 5mM potassium ferricyanide and 5mM
539 potassium ferrocyanide), placed under vacuum for 5 min, and then incubated in the dark at 37 °C
540 overnight. Staining solution was removed, and tissues were cleared in 70% ethanol.

541

542 **Chemical treatment**

543 Control line, *ibi1-1* and *oki1* seedlings were grown on MS medium plates for four days, and then
544 transferred onto MS medium plates containing 0, 150, 500 or 1500 µM S/R-β-aminobutyric acid
545 (Sigma-Aldrich). After ten days, the fresh weight of seedlings in each condition was measured.

546

547 **Statistical analysis**

548 Data for multiple groups were analyzed by one-way analysis of variance with a post hoc multiple
549 comparison test (Turkey's HSD procedure) using R software (<https://www.r-project.org>).

550

551

552 **Funding**

553 This work was supported by National Science Foundation grant number [IOS-1457187] and
554 “Next-Generation BioGreen 21 Program (System & Synthetic Agro-biotech Center, Project No.
555 [PJ01184302])” Rural Development Administration, Republic of Korea.

556

557 **Disclosures**

558 Conflicts of interest: No conflicts of interest declared.

559

560 **Acknowledgements**

561 The authors thank Dr. Jose Alonso (North Carolina State University, USA), Dr. Yuval Eshed
562 (Weizmann Institute of Science, Israel), Dr. Jurriaan Ton (The University of Sheffield, UK) and
563 Dr. Damianos Skopelitis (Cold Spring Harbor Laboratory, USA) for kindly providing reagents,
564 and Dr. Molly Hammell (Cold Spring Harbor Laboratory, USA) for assistance with sequence
565 data analysis. The authors are also grateful to Ms. Irene Liao for assistance with genomic DNA
566 library preparation for whole genome sequencing.

567

568 **References**

569 Alonso, J.M. and Stepanova, A.N. (2014) Arabidopsis transformation with large bacterial
570 artificial chromosomes. In *Arabidopsis Protocols*. Edited by Sanchez-Serrano, J.J. and Salinas, J.
571 pp. 271-283. Springer, New York.

572

573 Balkunde, R., Kitagawa, M., Xu, X.M., Wang, J. and Jackson, D. (2017) SHOOT
574 MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ
575 boundaries in *Arabidopsis*. *Plant J.* 90: 435-446.

576

577 Bellaoui, M. and Gruissem, W. (2004) Altered expression of the *Arabidopsis* ortholog of *DCL*
578 affects normal plant development. *Planta* 219: 819-826.

579

580 Bellaoui, M., Keddie, J.S. and Gruissem, W. (2003) *DCL* is a plant-specific protein required for
581 plastid ribosomal RNA processing and embryo development. *Plant Mol. Biol.* 53: 531-543.

582

583 Benitez-Alfonso, Y., Cilia, M., San Roman, A., Thomas, C., Maule, A., Hearn, S., et al. (2009)
584 Control of *Arabidopsis* meristem development by thioredoxin-dependent regulation of
585 intercellular transport. *Proc. Natl. Acad. Sci. USA* 106: 3615-3620.

586

587 Berg, M., Rogers, R., Muralla, R. and Meinke, D. (2005) Requirement of aminoacyl-tRNA
588 synthetases for gametogenesis and embryo development in *Arabidopsis*. *Plant J.* 44: 866-878.

589

590 Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. (2000) Dependence of
591 stem cell fate in *Arabidopsis* on a feedback loop regulated by CLV3 activity. *Science* 289: 617-
592 619.

593

594 Byrne, M.E. (2009) A role for the ribosome in development. *Trends Plant Sci.* 14: 512-519.

595

596 Chickarmane, V.S., Gordon, S.P., Tarr, P.T., Heisler, M.G. and Meyerowitz, E.M. (2012)

597 Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing

598 *Arabidopsis* shoot meristem. *Proc. Natl. Acad. Sci. USA* 109: 4002-4007.

599

600 Chuck, G.S., Brown, P.J., Meeley, R. and Hake, S. (2014) Maize *SBP-box* transcription factors

601 *unbranched2* and *unbranched3* affect yield traits by regulating the rate of lateral primordia

602 initiation. *Proc. Natl. Acad. Sci. USA* 111: 18775-18780.

603

604 Clark, S.E., Williams, R.W. and Meyerowitz, E.M. (1997) The *CLAVATA1* gene encodes a

605 putative receptor kinase that controls shoot and floral meristem size in *Arabidopsis*. *Cell* 89: 575-

606 585.

607

608 Daum, G., Medzihradzky, A., Suzuki, T. and Lohmann, J.U. (2014) A mechanistic framework

609 for noncell autonomous stem cell induction in *Arabidopsis*. *Proc. Natl. Acad. Sci. USA* 111:

610 14619-14624.

611

612 DeYoung, B.J., Bickle, K.L., Schrage, K.J., Muskett, P., Patel, K. and Clark, S.E. (2006) The

613 CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for

614 meristem function in *Arabidopsis*. *Plant J.* 45: 1-16.

615

616 DeYoung, B.J. and Clark, S.E. (2008) BAM Receptors Regulate Stem Cell Specification and

617 Organ Development Through Complex Interactions With CLAVATA Signaling. *Genetics* 180:

618 895-904.

619

620 Dolzblasz, A., Smakowska, E., Gola, E.M., Sokolowska, K., Kicia, M. and Janska, H. (2016)

621 The mitochondrial protease AtFTSH4 safeguards *Arabidopsis* shoot apical meristem function.

622 *Sci. Rep.* 6: 28315.

623

624 Duchêne, A.-M., Giritch, A., Hoffmann, B., Cognat, V., Lancelin, D., Peeters, N.M., et al.

625 (2005) Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in *Arabidopsis*

626 *thaliana*. *Proc. Natl. Acad. Sci. USA* 102: 16484-16489.

627

628 Eshed, Y., Baum, S.F. and Bowman, J.L. (1999) Distinct mechanisms promote polarity

629 establishment in carpels of *Arabidopsis*. *Cell* 99: 199-209.

630

631 Fletcher, J.C., Brand, U., Running, M.P., Simon, R. and Meyerowitz, E.M. (1999) Signaling of

632 cell fate decisions by *CLAVATA3* in *Arabidopsis* shoot meristems. *Science* 283: 1911-1914.

633

634 Gordon, S.P., Chickarmane, V.S., Ohno, C. and Meyerowitz, E.M. (2009) Multiple feedback

635 loops through cytokinin signaling control stem cell number within the *Arabidopsis* shoot

636 meristem. *Proc. Natl. Acad. Sci. USA* 106: 16529-16534.

637

638 Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P. and Meyerowitz, E.M. (2007)

639 Pattern formation during de novo assembly of the *Arabidopsis* shoot meristem. *Development*

640 134: 3539-3548.

641

642 Graf, P., Dolzblasz, A., Würschum, T., Lenhard, M., Pfreundt, U. and Laux, T. (2010) *MGOUNI*
643 encodes an *Arabidopsis* type IB DNA topoisomerase required in stem cell regulation and to
644 maintain developmentally regulated gene silencing. *Plant Cell* 22: 716-728.

645

646 Gruel, J., Landrein, B., Tarr, P., Schuster, C., Refahi, Y., Sampathkumar, A., et al. (2016) An
647 epidermis-driven mechanism positions and scales stem cell niches in plants. *Sci. Adv.* 2:
648 e1500989.

649

650 Guo, M., Yang, X.L. and Schimmel, P. (2010) New functions of aminoacyl-tRNA synthetases
651 beyond translation. *Nat. Rev. Mol. Cell Biol.* 11: 668-674.

652

653 Hausmann, C.D. and Ibba, M. (2008) Aminoacyl-tRNA synthetase complexes: molecular
654 multitasking revealed. *Fems Microbiol. Rev.* 32: 705-721.

655

656 Havrylenko, S. and Mirande, M. (2015) Aminoacyl-tRNA synthetase complexes in evolution. *Int.*
657 *J. Mol. Sci.* 16: 6571-6594.

658

659 Hu, C., Zhu, Y., Cui, Y., Cheng, K., Liang, W., Wei, Z., et al. (2018) A group of receptor kinases
660 are essential for CLAVATA signalling to maintain stem cell homeostasis. *Nat. Plants* 4: 205.

661

662 Huang, S.B., Van Aken, O., Schwarzlander, M., Belt, K. and Millar, A.H. (2016) The roles of
663 mitochondrial reactive oxygen species in cellular signaling and stress response in plants. *Plant*
664 *Physiol.* 171: 1551-1559.

665

666 Jiang, K., Meng, Y.L. and Feldman, L.J. (2003) Quiescent center formation in maize roots is
667 associated with an auxin-regulated oxidizing environment. *Development* 130: 1429-1438.

668

669 Kaya, H., Shibahara, K.-i., Taoka, K.-i., Iwabuchi, M., Stillman, B. and Araki, T. (2001)
670 *FASCIATA* genes for chromatin assembly factor-1 in *Arabidopsis* maintain the cellular
671 organization of apical meristems. *Cell* 104: 131-142.

672

673 Kayes, J.M. and Clark, S.E. (1998) *CLAVATA2*, a regulator of meristem and organ development
674 in *Arabidopsis*. *Development* 125: 3843-3851.

675

676 Kekez, M., Zanki, V., Kekez, I., Baranasic, J., Hodnik, V., Duchene, A.M., et al. (2019)
677 *Arabidopsis* seryl-tRNA synthetase: the first crystal structure and novel protein interactor of
678 plant aminoacyl-tRNA synthetase. *Febs J.* 286: 536-554.

679

680 Kim, J.H., Han, J.M. and Kim, S. (2014) Protein-protein interactions and multi-component
681 complexes of aminoacyl-tRNA synthetases. In *Aminoacyl-Trna Synthetases in Biology and*
682 *Medicine*. Edited by Kim, S. pp. 119-144. Springer-Verlag Berlin, Berlin.

683

684 Kong, X.P., Tian, H.Y., Yu, Q.Q., Zhang, F., Wang, R., Gao, S., et al. (2018) PHB3 maintains
685 root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in
686 *Arabidopsis*. *Cell Rep.* 22: 1350-1363.

687

688 Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics
689 analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33: 1870-1874.

690

691 Landrein, B., Formosa-Jordan, P., Malivert, A., Schuster, C., Melnyk, C.W., Yang, W., et al.
692 (2018) Nitrate modulates stem cell dynamics in *Arabidopsis* shoot meristems through cytokinins.
693 *Proc. Natl. Acad. Sci. USA* 115: 1382-1387.

694

695 Landrein, B., Refahi, Y., Besnard, F., Hervieux, N., Mirabet, V., Boudaoud, A., et al. (2014)
696 Meristem size contributes to the robustness of phyllotaxis in *Arabidopsis*. *J. Exp. Bot.* 66: 1317-
697 1324.

698

699 Laporte, D., Huot, J.L., Bader, G., Enkler, L., Senger, B. and Becker, H.D. (2014) Exploring the
700 evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes:
701 Lessons from unicellular organisms. *FEBS Lett.* 588: 4268-4278.

702

703 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et
704 al. (2007) Clustal W and clustal X version 2.0. *Bioinformatics* 23: 2947-2948.

705

706 Luna, E., Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., et al. (2014) Plant
707 perception of β -aminobutyric acid is mediated by an aspartyl-tRNA synthetase. *Nat. Chem. Biol.*
708 10: 450-456.

709

710 Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G. and Laux, T. (1998) Role of
711 *WUSCHEL* in regulating stem cell fate in the *Arabidopsis* shoot meristem. *Cell* 95: 805-815.

712

713 Mignolet-Spruyt, L., Xu, E.J., Idanheimo, N., Hoeberichts, F.A., Muhlenbock, P., Brosche, M.,
714 et al. (2016) Spreading the news: subcellular and organellar reactive oxygen species production
715 and signalling. *J. Exp. Bot.* 67: 3831-3844.

716

717 Mirande, M. (2017) The aminoacyl-tRNA synthetase complex. In *Macromolecular Protein
718 Complexes*. Edited by Harris, J.R. and Marles-Wright, J. pp. 505-522. Springer, New York.

719

720 Miwa, H., Betsuyaku, S., Iwamoto, K., Kinoshita, A., Fukuda, H. and Sawa, S. (2008) The
721 Receptor-Like Kinase SOL2 Mediates CLE Signaling in *Arabidopsis*. *Plant Cell Physiol.* 49:
722 1752-1757.

723

724 Moschopoulos, A., Derbyshire, P. and Byrne, M.E. (2012) The *Arabidopsis* organelle-localized
725 glycyl-tRNA synthetase encoded by *EMBRYO DEFECTIVE DEVELOPMENT1* is required for
726 organ patterning. *J. Exp. Bot.* 63: 5233-5243.

727

728 Muller, R., Bleckmann, A. and Simon, R. (2008) The receptor kinase CORYNE of *Arabidopsis*
729 transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. *Plant Cell*
730 20: 934-946.

731

732 Nimchuk, Z.L., Tarr, P.T. and Meyerowitz, E.M. (2011) An evolutionarily conserved
733 pseudokinase mediates stem cell production in plants. *Plant Cell* 23: 851-854.

734

735 Nimchuk, Z.L., Zhou, Y., Tarr, P.T., Peterson, B.A. and Meyerowitz, E.M. (2015) Plant stem
736 cell maintenance by transcriptional cross-regulation of related receptor kinases. *Development*
737 142: 1043-1049.

738

739 Ogawa, M., Shinohara, H., Sakagami, Y. and Matsubayashi, Y. (2008) *Arabidopsis* CLV3
740 peptide directly binds CLV1 ectodomain. *Science* 319: 294-294.

741

742 Pautler, M., Eveland, A.L., LaRue, T., Yang, F., Weeks, R., Je, B.I., et al. (2015) *FASCIATED*
743 *EAR4* encodes a bZIP transcription factor that regulates shoot meristem size in maize. *Plant Cell*
744 27: 104-120.

745

746 Perales, M., Rodriguez, K., Snipes, S., Yadav, R.K., Diaz-Mendoza, M. and Reddy, G.V. (2016)
747 Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. *Proc. Natl.*
748 *Acad. Sci. USA* 113: E6298-E6306.

749

750 Pinon, V., Etchells, J.P., Rossignol, P., Collier, S.A., Arroyo, J.M., Martienssen, R.A., et al.
751 (2008) Three *PIGGYBACK* genes that specifically influence leaf patterning encode ribosomal
752 proteins. *Development* 135: 1315-1324.

753

754 Robles, P. and Quesada, V. (2017) Emerging roles of mitochondrial ribosomal proteins in plant
755 Development. *Int. J. Mol. Sci.* 18: 2595.

756

757 Schimmel, P. (2018) The emerging complexity of the tRNA world: Mammalian tRNAs beyond
758 protein synthesis. *Nat. Rev. Mol. Cell Biol.* 19: 45-58.

759

760 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012)
761 Fiji: an open-source platform for biological-image analysis. *Nat. Methods* 9: 676-682.

762

763 Schippers, J.H.M., Foyer, C.H. and van Dongen, J.T. (2016) Redox regulation in shoot growth,
764 SAM maintenance and flowering. *Curr. Opin. Plant Biol.* 29: 121-128.

765

766 Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A.H., Nielsen, K.L., et al. (2009)
767 SHOREmap: simultaneous mapping and mutation identification by deep sequencing. *Nat.*
768 *Methods* 6: 550.

769

770 Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jürgens, G. and Laux, T. (2000) The stem
771 cell population of *Arabidopsis* shoot meristems is maintained by a regulatory loop between the
772 *CLAVATA* and *WUSCHEL* genes. *Cell* 100: 635-644.

773

774 Shi, B., Guo, X., Wang, Y., Xiong, Y., Wang, J., Hayashi, K.-i., et al. (2018) Feedback from
775 lateral organs controls shoot apical meristem growth by modulating auxin transport. *Dev. cell* 44:
776 204-216.

777

778 Shinohara, H. and Matsubayashi, Y. (2015) Reevaluation of the CLV3-receptor interaction in the
779 shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding
780 point of view. *Plant J.* 82: 328-336.

781

782 Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W.Z., et al. (2011) Fast, scalable
783 generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst.*
784 *Biol.* 7: 539.

785

786 Sissler, M., Gonzalez-Serrano, L.E. and Westhof, E. (2017) Recent advances in mitochondrial
787 aminoacyl-tRNA synthetases and disease. *Trends Mol. Med.* 23: 693-708.

788

789 Skopelitis, D.S., Hill, K., Klesen, S., Marcos, C.F., von Born, P., Chitwood, D.H., et al. (2018)
790 Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional
791 signals. *Nat. Commun.* 9: 3107.

792

793 Smith, L.G., Hake, S. and Sylvester, A.W. (1996) The *tangled-1* mutation alters cell division
794 orientations throughout maize leaf development without altering leaf shape. *Development* 122:
795 481-489.

796

797 Somssich, M., Je, B.I., Simon, R. and Jackson, D. (2016) CLAVATA-WUSCHEL signaling in
798 the shoot meristem. *Development* 143: 3238-3248.

799

800 Tsukagoshi, H., Busch, W. and Benfey, P.N. (2010) Transcriptional regulation of ROS controls
801 transition from proliferation to differentiation in the root. *Cell* 143: 606-616.

802

803 Vargas-Rodriguez, O., Sevostyanova, A., Söll, D. and Crnković, A. (2018) Upgrading
804 aminoacyl-tRNA synthetases for genetic code expansion. *Curr. Opin. Chem. Biol.* 46: 115-122.

805

806 Weigel, D. and Glazebrook, J. (2002) *Arabidopsis*: a laboratory manual. CSHL Press.

807

808 Wilson, M.E., Mixdorf, M., Berg, R.H. and Haswell, E.S. (2016) Plastid osmotic stress
809 influences cell differentiation at the plant shoot apex. *Development* 143: 3382-3393.

810

811 Xu, X.M., Wang, J., Xuan, Z.Y., Goldshmidt, A., Borrill, P.G.M., Hariharan, N., et al. (2011)
812 Chaperonins Facilitate KNOTTED1 Cell-to-Cell Trafficking and Stem Cell Function. *Science*
813 333: 1141-1144.

814

815 Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jönsson, H. and Reddy, G.V. (2011) WUSCHEL
816 protein movement mediates stem cell homeostasis in the *Arabidopsis* shoot apex. *Genes Dev.* 25:
817 2025-2030.

818

819 Yang, F., Bui, H.T., Pautler, M., Llaca, V., Johnston, R., Lee, B.-h., et al. (2015) A maize
820 glutaredoxin gene, *Abphy12*, regulates shoot meristem size and phyllotaxy. *Plant Cell* 27: 121-
821 131.

822

823 Yang, L., Zhang, J., He, J.N., Qin, Y.Y., Hua, D.P., Duan, Y., et al. (2014) ABA-mediated ROS
824 in mitochondria regulate root meristem activity by controlling *PLETHORA* expression in
825 *Arabidopsis*. *PLoS Genet.* 10: e1004791.

826

827 Yang, X., Li, G., Tian, Y., Song, Y., Liang, W. and Zhang, D. (2018) A rice glutamyl-tRNA
828 synthetase modulates early anther cell division and patterning. *Plant Physiol.* 177: 728-744.

829

830 Yu, Q.Q., Tian, H.Y., Yue, K., Liu, J.J., Zhang, B., Li, X.G., et al. (2016) A P-Loop NTPase
831 regulates quiescent center cell division and distal stem cell identity through the regulation of
832 ROS homeostasis in *Arabidopsis* root. *PLoS Genet.* 12: e1006175.

833

834 Yu, X., Pasternak, T., Eiblmeier, M., Ditengou, F., Kochersperger, P., Sun, J.Q., et al. (2013)
835 Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for
836 *Arabidopsis* root apical meristem maintenance. *Plant Cell* 25: 4451-4468.

837

838 Zeng, J., Dong, Z., Wu, H., Tian, Z. and Zhao, Z. (2017) Redox regulation of plant stem cell fate.
839 *EMBO J.* 36: 2844-2855.

840

841 Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., et al. (2010)
842 Hormonal control of the shoot stem-cell niche. *Nature* 465: 1089-1092.

843

844 Zheng, M., Wang, Y., Liu, X., Sun, J., Wang, Y., Xu, Y., et al. (2016) The *RICE MINUTE-*
845 *LIKE1 (RML1)* gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology
846 and plant architecture in rice. *J. Exp. Bot.* 67: 3457-3469.

847

848 Zhou, R.R., Benavente, L.M., Stepanova, A.N. and Alonso, J.M. (2011) A recombineering-based
849 gene tagging system for *Arabidopsis*. *Plant J.* 66: 712-723.

850

851

852 **Legends of figures**

853

854 **Figure 1. Shoot and root meristems are affected in *oki1* mutants.**

855 (A, B) *oki1* displayed narrower true leaves (B, arrowhead) in seedlings compared with control
856 line (Col-0, A). Scale bars = 5 mm. (C) *oki1* mutants have enlarged SAM (dashed circle). Scale
857 bar = 500 μ m. (D-F) The inflorescence stems of control line (D) and *oki1* (E, F); *oki1* was often
858 fasciated (E and F). Scale bars = 2 cm (D) and 1 cm (E, F). (G, H) Cleared SAM from the control
859 line (G) and *oki1* (H) at 12 DAP. Solid and dashed double-headed lines display the SAM height
860 and diameter, respectively. Scale bar = 100 μ m. (I, J) The SAM of *oki1* was significantly larger
861 at 12 DAP. N = 10-15. Bars topped by different letters are significantly different at P < 0.01
862 (Tukey HSD test). (K-R) Cell arrangements were disorganized in the *oki1* SAM and root tips.
863 Confocal images of Eosin Y-stained SAM sections of control line (K) and *oki1* (M), and PI-
864 stained root tips of control line (O) and *oki1* (Q). L, N, P, R show magnified images of the boxed
865 regions in K, M, O and Q, respectively. Scale bar = 50 μ m (K, M, O, Q), 20 μ m (L, N) and 10
866 μ m (P, R).

867

868

869 **Figure 2. The causal gene of *oki1* encodes a mitochondrial aspartyl tRNA synthetase**

870 **(AspRS).** (A) Diagram of the intron-exon structure of *OKII* gene (*At4g33760*). UTRs are
871 indicated by white boxes, coding regions of exons by grey boxes. Solid lines indicate the
872 intergenic regions and introns. The nucleotide substitution in *oki1* (G347A) is shown in red
873 arrowhead. T-DNA insertion site for SAIL_358_B08 is shown in black arrowhead. (B)
874 Schematic diagram of the domain structure of OKI1 protein. Predicted anti-codon binding

875 domain (91-176 aa) and the catalytic domain of AspRS (199-638 aa) are shown in yellow and
876 pink boxes, respectively. Glycine 116 within the anti-codon binding domain was changed to
877 aspartic acid in *oki1* mutants (red arrowhead). (C) Alignment of amino acid sequence of AspRS
878 from *Arabidopsis thaliana*, *Medicago truncatula*, *Populus trichocarpa*, *Oryza sativa*,
879 *Brachypodium distachyon*, *Physcomitrella patens*, *Chlamydomonas reinhardtii*, *Saccharomyces*
880 *cerevisiae*, *Drosophila melanogaster* and *Homo sapiens*. The Gly 116 that was replaced to
881 Aspartic acid in *oki1* mutant is fully conserved in plants and animals (arrowhead). (D) F1 plants
882 from crosses between *oki1* and *SAIL_358_B08* showed enhanced *oki1* narrow leaf phenotype
883 (also see Fig. S1A). (E) A phylogenetic tree of 8 aminoacyl-tRNA synthetases from *Arabidopsis*
884 conducted by MEGA7 software with the neighbor-joining (NJ) method for 1000 replicates
885 bootstrap. In *Arabidopsis*, there are three AspRSs, AT4G33760 (OKI1), AT4G26870 and
886 AT4G31180 (IBI1; Luna et al., 2014). AsnRS: Asparaginyl-tRNA synthetase, LysRS: Lysyl-
887 tRNA synthetase.

888

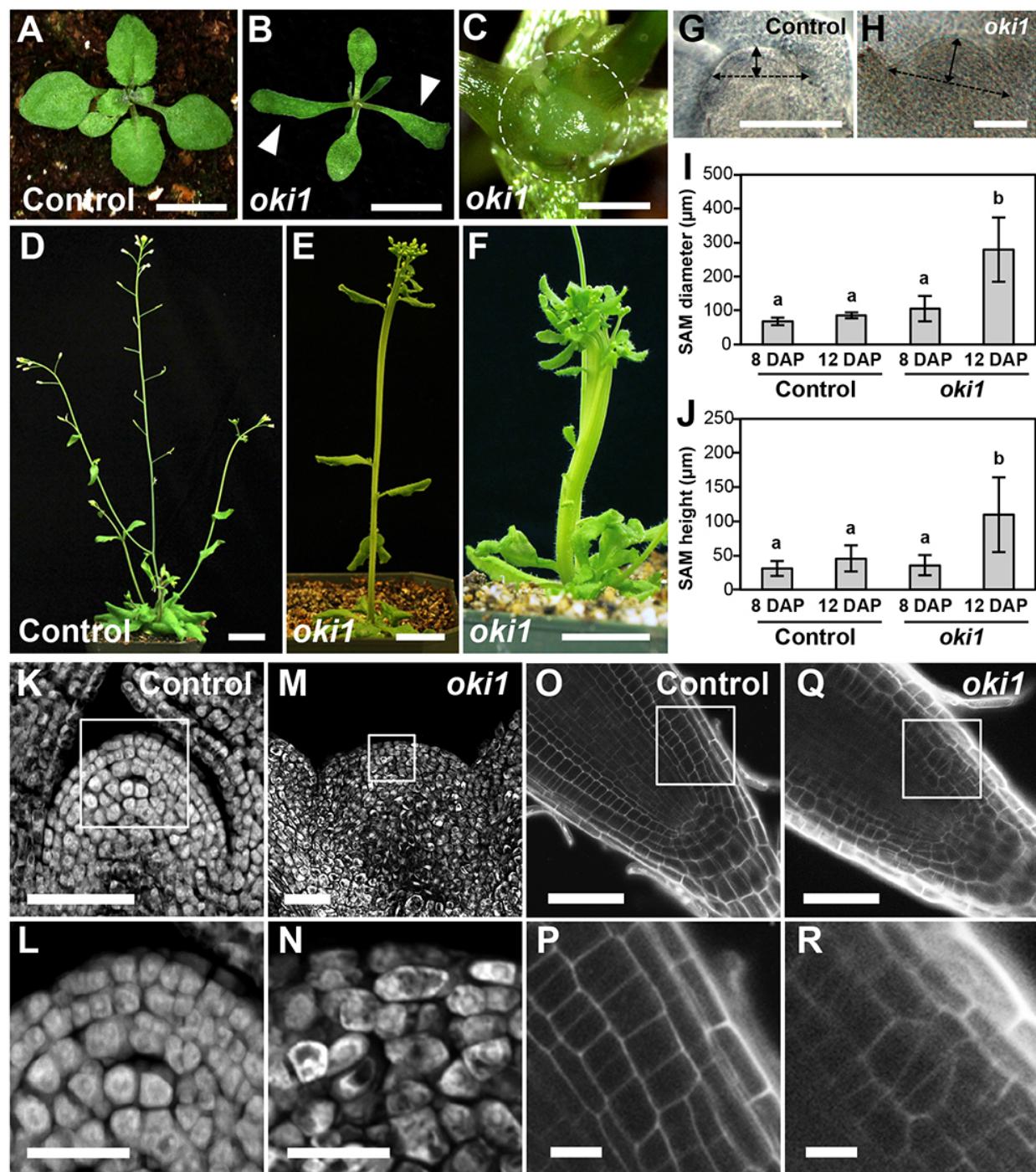
889 **Figure 3. OKI1 locates at mitochondria in the SAM.** (A, B) Bright field and fluorescence
890 images of the inflorescence SAM showing OKI1::3xYPet driven under its native promoter in
891 *oki1* background. pOKI1-OKI1::3xYPet is expressed in the meristem and shoot apex. Scale bar
892 = 50 μ m. (C-E) Subcellular localization of OKI1::3xYPet (C), mitochondria stained with
893 MitoTracker Red (D), autofluorescence of plastids (blue) (E) in the cells of the SAM. Merged
894 images of C with D (F) and C with E (G) are shown. OKI1::3xYPet localized to mitochondria
895 (overlap shown by white arrows), but not plastids (blue) in the meristem. Scale bar = 10 μ m.

896

897 **Figure 4. Relationship of *OKI1* with known meristem signals.** (A-H) Confocal images of
898 pCLV3::mGFP5-ER (green) and pWUS::dsRED-N7 (red) in the SAM from 8 DAP (A-D) and
899 12 DAP (E-H) seedlings of control line (A, B, E, F) and *oki1* (C, D, G, H). Dashed lines display
900 the outlines of the SAM. WUS and CLV3 promoter activities were enlarged in the SAM of *oki1*
901 at 12 DAP. Scale bar = 100 μ m. (I-P) *wus* and *clv3* are epistatic to *oki1*. Shoot apices of 35
902 DAP plants of control line (I), *oki1* (J), *wus* (K, L), *wus* *oki1* (M, N), *clv3-2* (O) and *clv3-2* *oki1*
903 (P). Scale bars = 5 mm (I, J, L, N, O, P), 1 cm (K, M).

904

905 **Figure 5. *oki1* overaccumulates superoxide and hydrogen peroxide in the SAM.** (A, B)
906 Nitroblue tetrazolium (NBT) staining showed that superoxide is higher in the SAM of *oki1* (B,
907 dark blue stained region within dashed circle) compared with control line (A, blue region shown
908 by arrowhead). (C, D) 3,3'-diaminobenzidine (DAB) staining indicated that hydrogen peroxide
909 levels were higher in the SAM of *oki1* (D, brown and black regions within dashed circle)
910 compared with control line (C, brown regions indicated by arrowheads). Dashed lines in A and C
911 show the outlines of the SAM of the control line. Scale bars = 100 μ m.

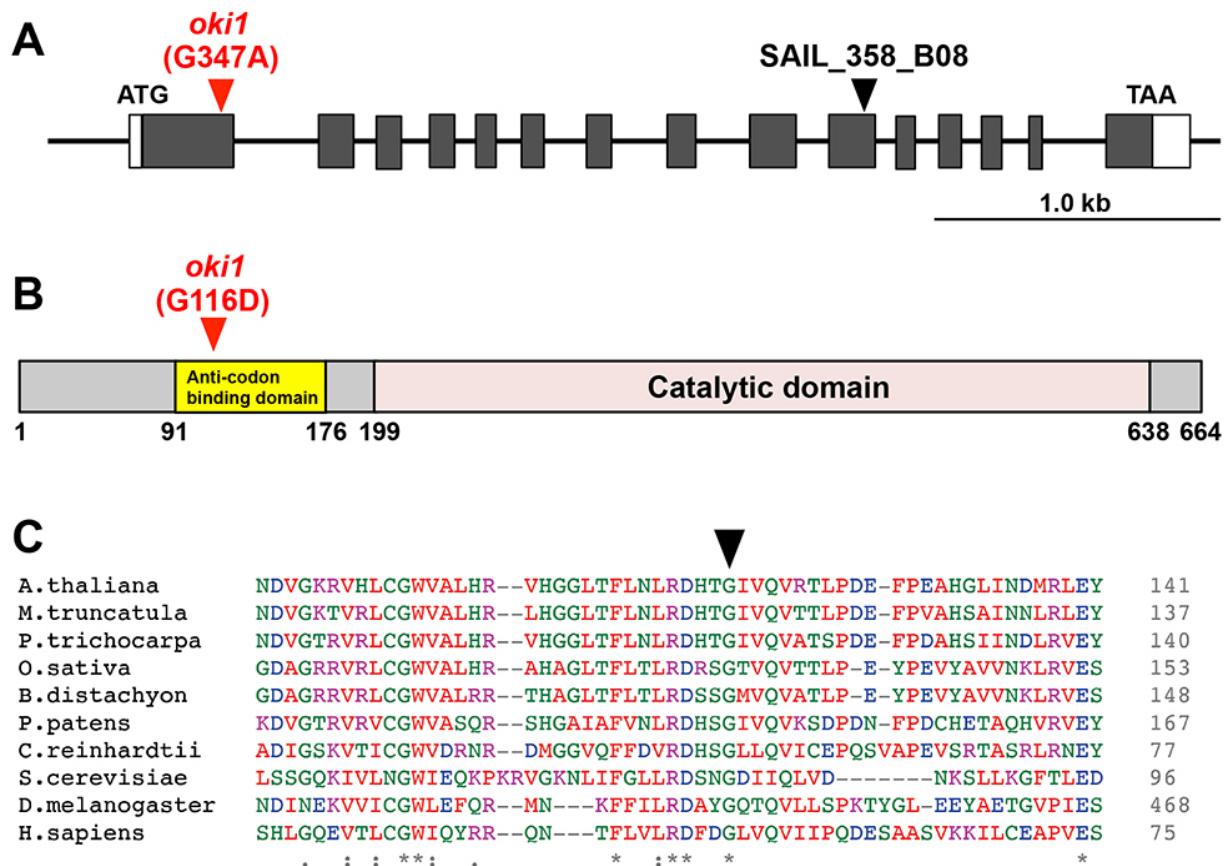

912

913

914

915

916

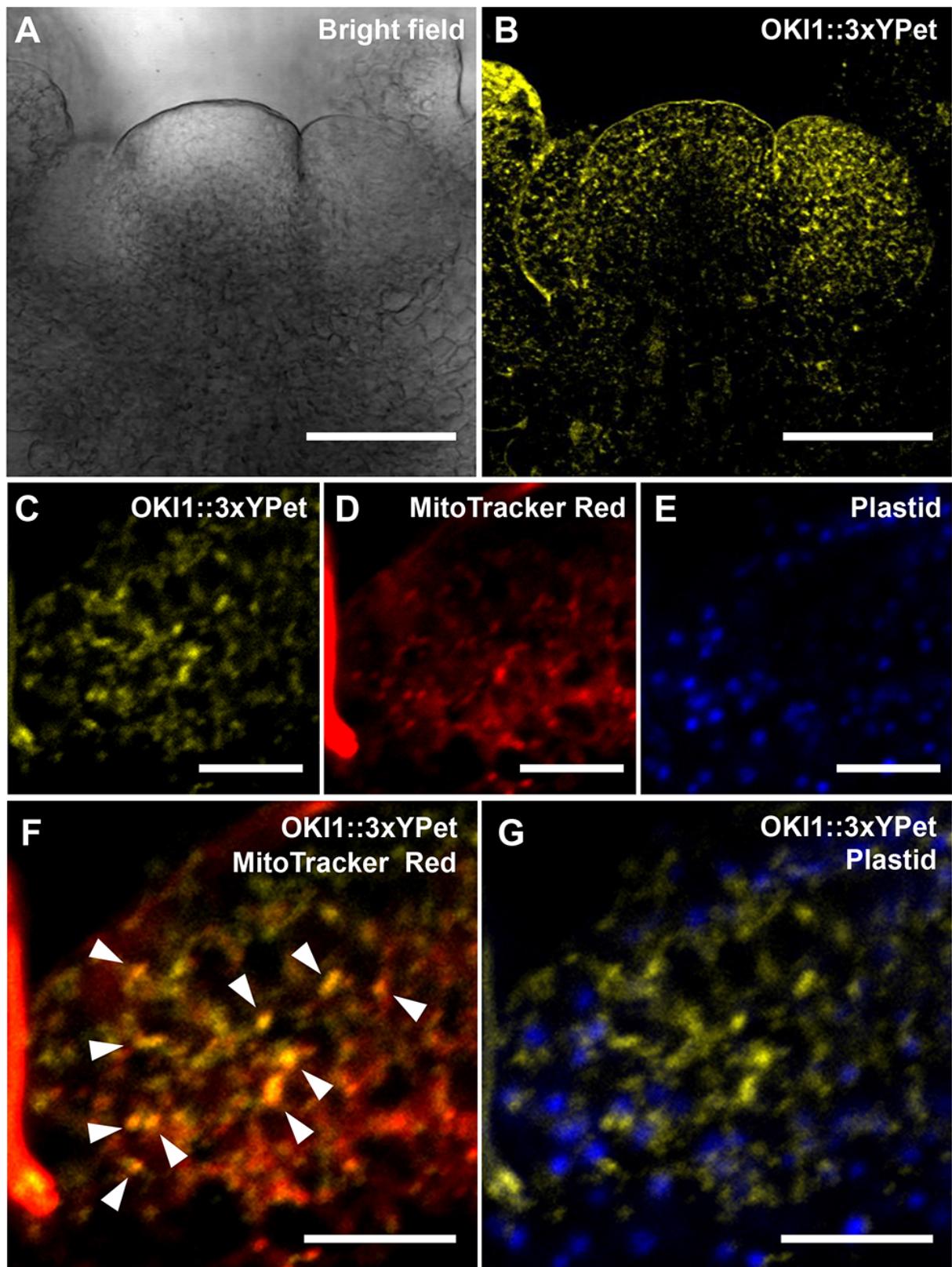

917

918

919

Figure 1

920



921

922

923

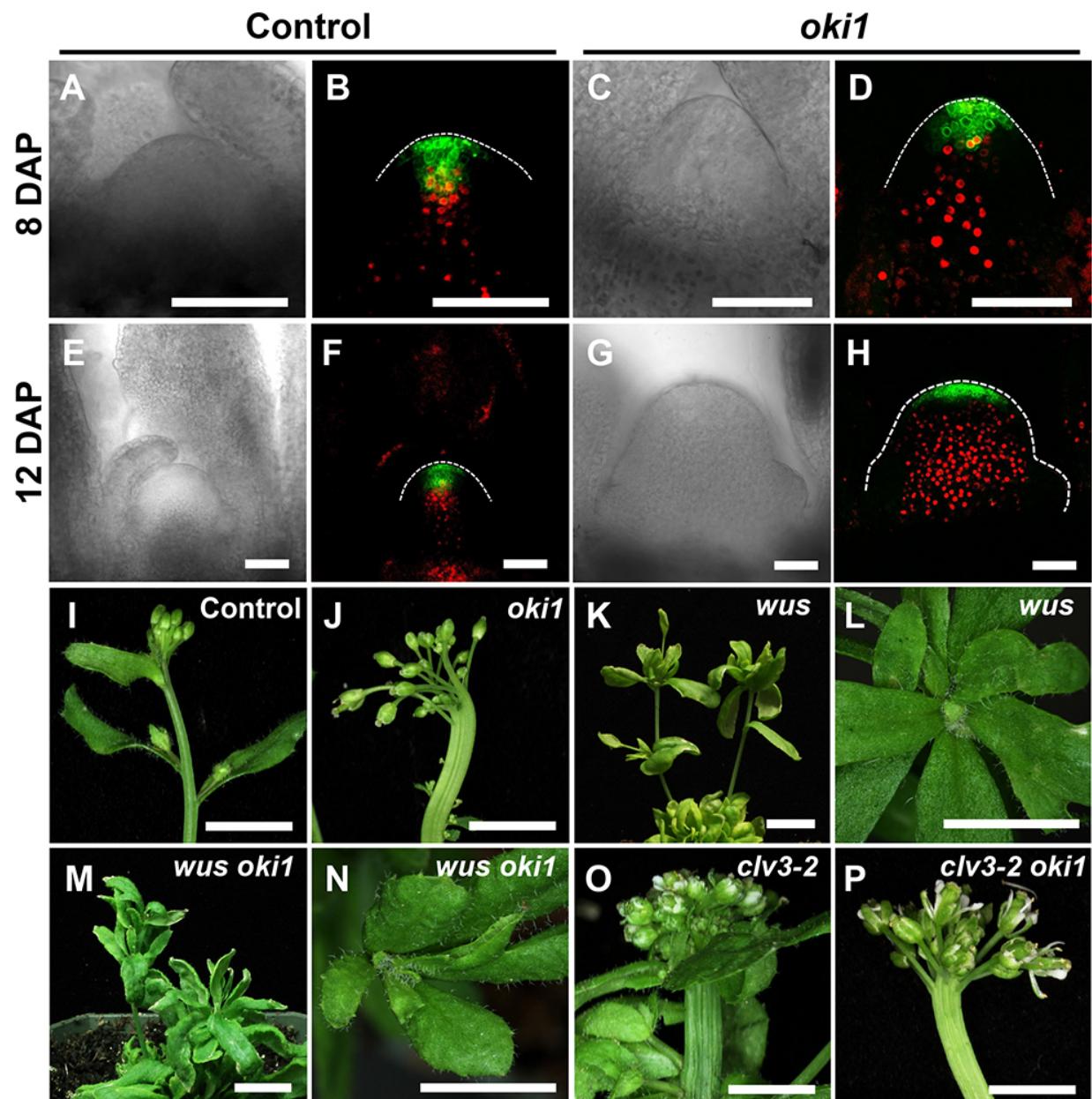
Figure 2

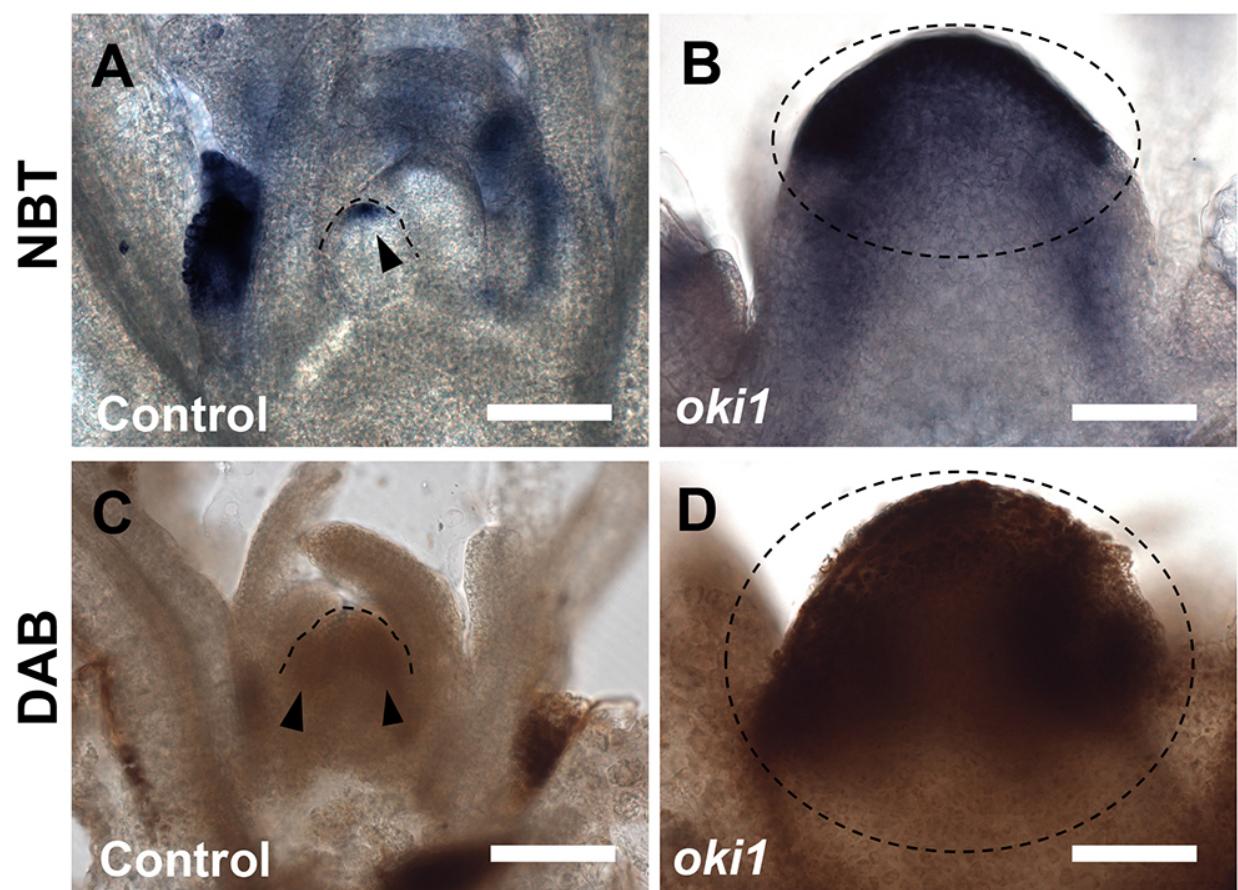
924

925

Figure 3

926



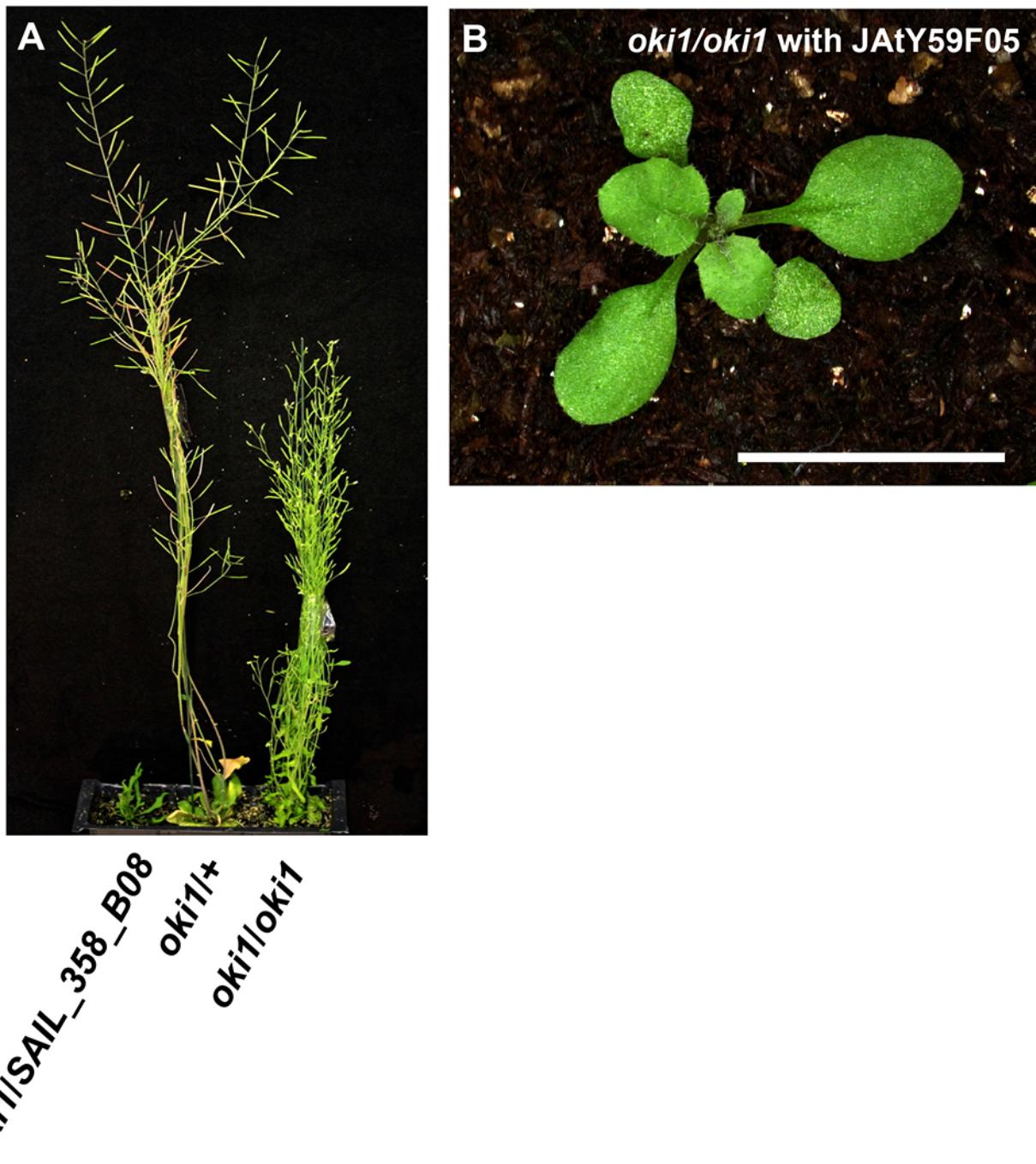

Figure 4

930

931

932

933



934

935

936

Figure 5


940 **Figure S1. Genetic complementation of *oki1*.** (A) *oki1/SAIL_358_B08* (weak allele / null)
 941 plants failed to complement *oki1*, and displayed enhanced growth defect phenotype of *oki1*. (B)
 942 Developmental phenotype of *oki1* (Fig. 1B) was complemented by introduction of TAC clone
 943 JAtY59F05 containing the *At4g33760* gene. Scale bar = 1 cm.

944

945

946

947

eFP Browser by B. Vinegar, drawn by J. Alis and N. Provart. Data from Gene Expression Map of Arabidopsis Development: Schmid et al., 2005, Nat. Gen. 37:501, and the Nambara lab for the imbibed and dry seed stages. Data are normalized by the GCOS method, TGT value of 100. Most tissues were sampled in triplicate.

948


949

950

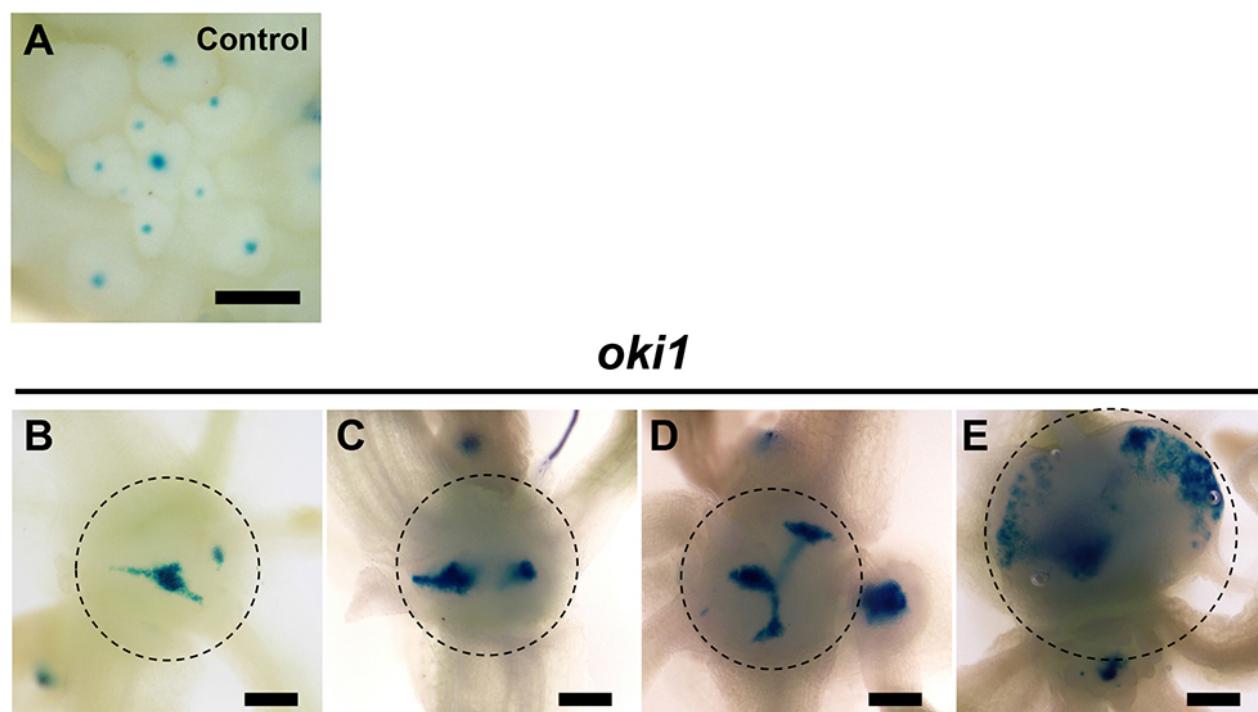
951

952 **Figure S2. *OKII* expression in *Arabidopsis* development.** *OKII* is expressed ubiquitously
953 during *Arabidopsis* development. Figures were generated online using the eFP browser
954 (<http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi>). Relative expression levels of *OKII* in
955 various organs are shown via color scale, with red color indicating higher expression and yellow
956 color indicating lower expression.

957
958
959
960
961
962
963
964
965
966

967
968
969

970 **Figure S3. Mitochondrial localization of OKI1 in protoplasts derived from leaf mesophyll**
971 **cells.** (A) Bright field image of a protoplast derived from leaf mesophyll cells of the
972 OKI1::3xYPet line driven by the native promoter in *oki1* background. (B) OKI1::3xYPet. (C)
973 MitoTracker Red. (D) Merged image of B with C showed co-localization. Scale bar = 10 μ m.

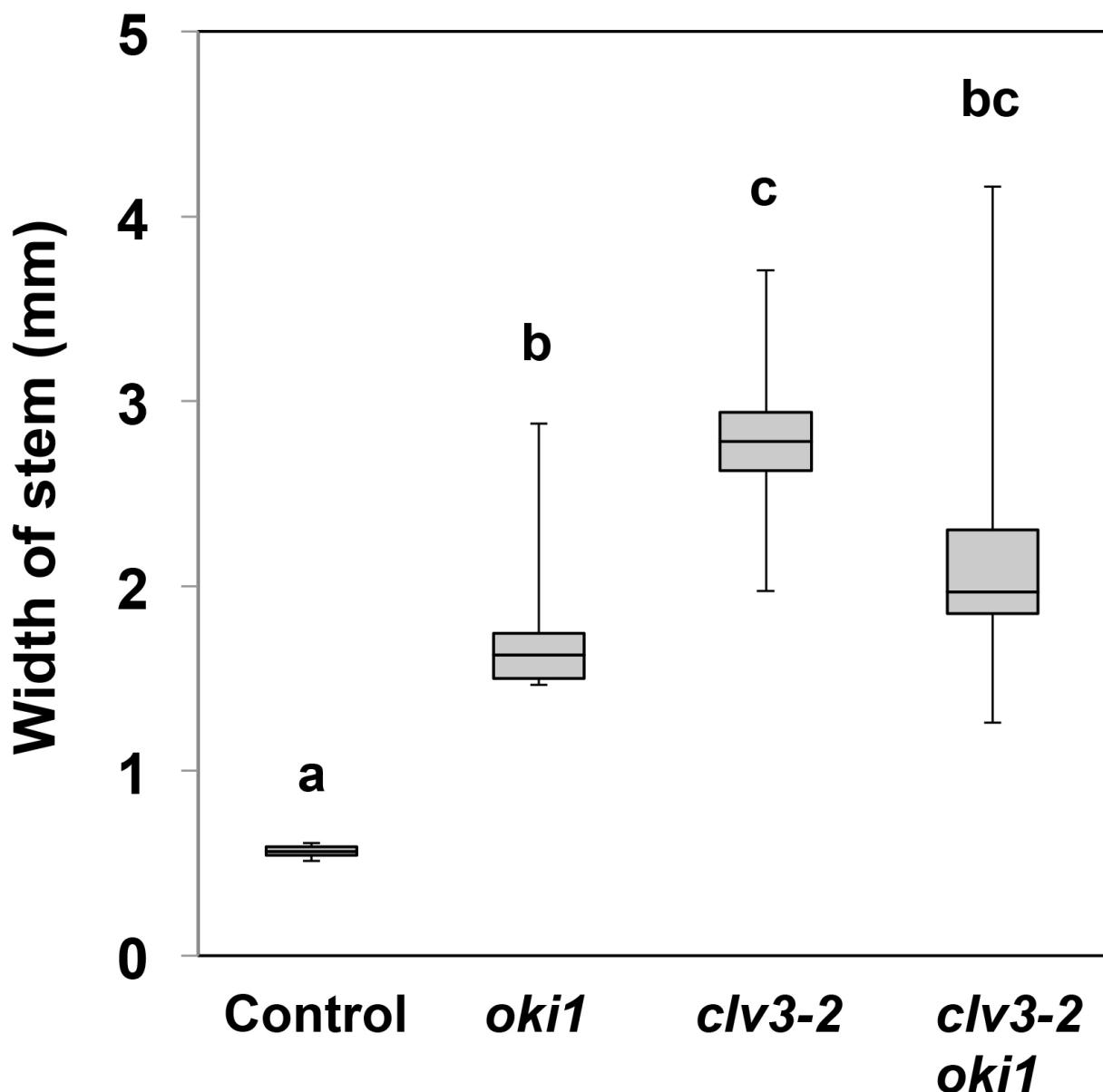

974

975

976

977

978

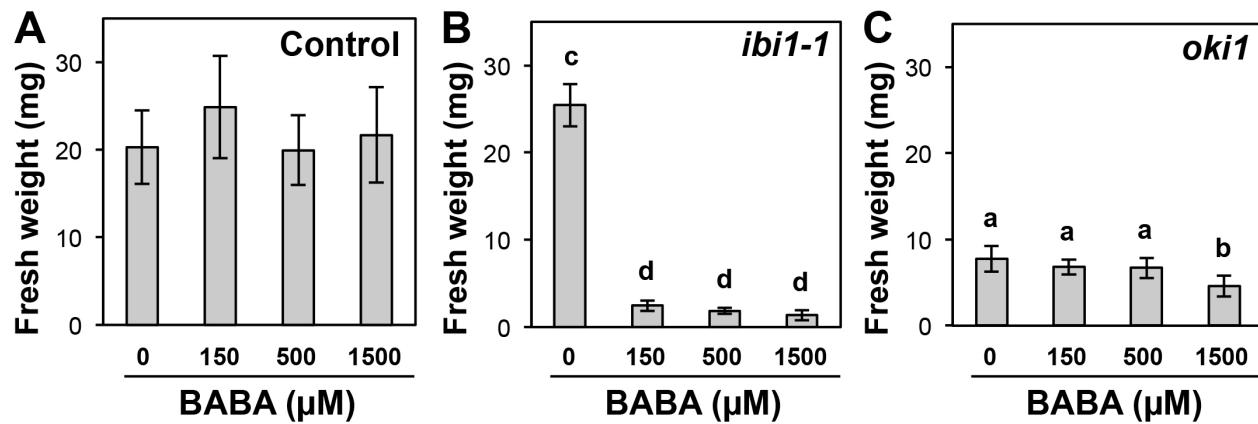


979

980

981 **Figure S4. Abnormal WUS expression in the SAM of *oki1* mutants.** (A-E) The expression
982 patterns of promoter WUS fused GUS in control line (A) and *oki1* mutants (B-E). WUS
983 expression site (blue region) was enlarged and/or split in the SAM of *oki1* mutants (blue regions
984 in dashed circles). Scale bar = 200 μ m.

985



986

987

988 **Figure S5. *clv3* is epistatic to *oki1* in stem thickness control.** There was no significant
989 difference in stem thickness between *oki1* or *clv3-2* single mutants and *clv3-2* *oki1* double
990 mutants, suggesting that *clv3-2* are epistatic to *oki1* in regulation of stem thickness. N = 7-10.
991 Bars topped by different letters are significantly different at P < 0.01 (Tukey HSD test).

992
993
994
995
996
997

998
999

1000 **Figure S6. *oki1* mutants are not hypersensitive to BABA.** (A, B) 150-1500 μM BABA did not
1001 affect to the growth of control line (A), but significantly inhibited the growth of *ibi1-1* mutants
1002 (B), as expected. (C) 150-500 μM BABA did not affect to the growth of *oki1* mutants, although
1003 it was decreased in presence of 1500 μM BABA. N = 8-10. Bars topped by different letters are
1004 significantly different at P < 0.01 (Tukey HSD test).

Table S1. Oligonucleotides used as primers in this study.

Primer sets for genotyping.			
Mutants	Forward	Reverse	Note
<i>oki1</i>	GAGCTATCGGGCGAGTTATC	GAAAGTTCATTGCTGAGACGAA	PCR product was digested with HpaII. WT: 116bp / 113 bp, <i>oki1</i> : 229 bp.
<i>wus</i>	GGTCTTGCAGAGGATAGTGG	TTGCCCATCCTCCACCTACG	
<i>clv3-2</i>	CTCACTCAAGCTCATGCTCACG	GGGAGCTGAAAGTTGTTCTTGG	Muller et al., 2008
SAIL_358_B08	CCTTATGATGCAGGCGAGAT	GCTGGCACTCTGAACAAACAA	PCRs were performed with LBb1.3 primer (http://signal.salk.edu/tdnaprimers.2.html)

Primers for construction.	
Primer #	Sequence
1	CCTCGGAAGTCGATCCAAGCAGCTTCAGATCTCTCCATCCGCACCAAGGGAGGTGGAGGTGGAGCT
2	TGATGTTAAGAGTAAACAGAAAGATACAATTGTTGTGAGAGCTATTAGGCCAGCGGCCGCAGCAGCACC
3	GTCTTGATCTGCCGTCAAGCAAATGAAGAATAATATAGTTCTCGCCATGGAGGTGGAGGTGGAGCT
4	TTCAAATAGAGTAGGAACACACCTCAATAAAACCATGTCTGTCTTAGGGGCCAGCGGCCGCAGCAGCACC
5	AAGATTGGTCAAGCATGGTG
6	TGTCAAAAGTGGGAATTTC
7	GGTAGTTGCAGAGCATGGT
8	CCTGAATTCTGACGGAACCAG