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Abstract

In plants, the stem cells that form the shoot system reside within the shoot apical meristem
(SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox
protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be
modulated by various endogenous or exogenous factors such as chromatin state, hormone
signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of
SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of
genes that control SAM size is still limited, and in particular the regulation by ROS signaling is
only beginning to be comprehended. Here, we report a new gene that functions in SAM size
maintenance, OKINA KUKI (OKI1), which is expressed in the SAM and encodes a
mitochondrial aspartyl tRNA synthetase (AspRS). oki/ mutants display enlarged SAMs with
abnormal expression of WUS and CLV3, and overaccumulation of ROS in the meristem. Our
findings support the importance of normal AspRS function in the maintenance of the WUS-

CLV3 feedback loop and SAM size.

Keywords:

Aminoacyl tRNA synthetase
Arabidopsis thaliana
Fasciation

Mitochondria

Redox

Shoot meristem
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Introduction

Stem cells are responsible for the generation of new tissues and organs in multicellular
organisms, while maintaining themselves as pluripotent initials. In plants, stem cells reside in
meristems, and the shoot apical meristem (SAM) can generate all shoot organs, such as leaves
and flowers. Semi-permanent stem cells are found at the apical region of the SAM, in the central
zone (CZ), and the organizing center (OC) below is a group of niche cells that provides cues to
the CZ for stem cell maintenance. The daughter cells produced by stem cell divisions are
displaced to the peripheral zone (PZ), where they form organ primordia, and in turn differentiate
into lateral organs. Thus, stem cell fate and differentiation are precisely regulated depending on
position within the SAM, allowing maintenance of the stem cell population and meristem size.

For such position dependent maintenance of the stem cell niche, plants have developed a
negative feedback signaling pathway. The homeodomain transcription factor WUSCHEL (WUS)
is expressed in the OC, and moves through plasmodesmata into the CZ to activate the expression
of its negative regulator CLAVATA3 (CLV3) (Daum et al. 2014; Fletcher et al. 1999; Mayer et
al. 1998; Perales et al. 2016; Yadav et al. 2011). CLV3 is a secreted peptide perceived by the
leucine-rich repeat receptor like protein kinases (LRR-RLKs) CLAVATA 1 (CLV1) and the
related BARELY ANY MERISTEM (BAMs) as well as by the LRR receptor like protein
CLAVATA2 (CLV2) in a complex with the CORYNE (CRN) pseudokinase, which together
repress the expression of WUS in the OC (Clark et al. 1997; DeYoung et al. 2006; DeY oung and
Clark 2008; Hu et al. 2018; Kayes and Clark 1998; Miwa et al. 2008; Muller et al. 2008;
Nimchuk et al. 2011; Nimchuk et al. 2015; Ogawa et al. 2008; Shinohara and Matsubayashi

2015). This WUS-CLV3 negative feedback loop establishes a self-correcting mechanism that
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maintains proper size of the stem cell pool and the meristem (Brand et al. 2000; Schoof et al.
2000; Somssich et al. 2016).

The WUS-CLV negative feedback loop is also regulated by various endogenous and
exogenous signals. For example, precise WUS expression patterns require chromatin regulators,
and mutants of these factors display bigger and disorganized meristems (Graf et al. 2010; Kaya
et al. 2001). In addition, cytokinin promotes WUS expression and in turn facilitates the
proliferation of stem cells, leading to an increase in SAM size (Chickarmane et al. 2012; Gordon
et al. 2009; Gruel et al. 2016; Landrein et al. 2014). Cytokinin signaling also controls SAM size
depending on the availability of nutrients in a WUS-dependent manner, allowing plants to
optimize shoot organogenesis according to resource availability (Landrein et al. 2018). By
contrast, auxin signaling negatively regulates the stem cell population by modulating WUS-
CLV3 feedback loop through interaction with cytokinin signaling (Shi et al. 2018; Zhao et al.
2010). ROS signaling is also an important regulator of the stem cell population and SAM size.
Mutants of a mitochondrial protease and plastid ion channels display abnormal accumulation of
ROS at the shoot apices under abiotic stresses, leading to premature termination of the SAM and
abnormal growth of calluses at the shoot apices, respectively (Dolzblasz et al. 2016; Wilson et al.
2016). Furthermore, Zeng et al. (2017) reported that superoxide anions are enriched in the stem
cells of the SAM and promote WUS expression, whereas hydrogen peroxide accumulates in the
PZ to promote differentiation. These findings suggest that the proper accumulation and precise
distribution of ROS are crucial for the maintenance of stem cell niches and SAM size. The same
applies for regulating the root apical meristem (Jiang et al. 2003; Kong et al. 2018; Tsukagoshi et
al. 2010; Yang et al. 2014; Yu et al. 2016; Yu et al. 2013). For example, a recent study revealed

that prohibitin (PHB3) regulates ROS homeostasis in roots, and in turn maintains root meristem
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size and stem cell niches through the functions of its downstream ROS-responsible factors; phb3
mutants show overaccumulation of ROS in roots, reduced root meristem size and defective
quiescent center (Kong et al. 2018).

Despite these insights, the knowledge of genes affecting SAM size is limited, and how
ROS is regulated in the SAM is only beginning to be understood. In this study, we identify the
OKINA KUKI (OKI1, Japanese for big stem) gene as a new factor in SAM size maintenance.
okil mutant seedlings have enlarged SAMs and abnormal expansion of WUS and CLV3
expression. OK/I encodes a mitochondrial aspartyl-tRNA synthetase (AspRS) that is
expressed in the SAM. In general, aminoacyl-tRNA synthetases (aaRSs) catalyze the addition of
amino acid to their cognate tRNAs to prepare substrates for protein translation, and
mitochondrial aaRSs are key components of the mitochondrial translation apparatus (Sissler et al.
2017; Vargas-Rodriguez et al. 2018). Therefore oki/ mutation could affect mitochondrial
translation and consequently mitochondrial functions (Robles and Quesada 2017). Mitochondria
act as a powerhouse to produce energy for cells, and also produce ROS signals affecting various
cellular functions, such as stress responses, hormone signaling and development (Huang et al.
2016). For example, in the meristem, mitochondria function in generation of ROS signals that
affect meristem size and cell cycle (Schippers et al. 2016). Indeed, mutants in a rice
mitochondrial and cytoplasmic aaRS display abnormal accumulation of ROS in meristematic
tissues of the early anther, resulting in overproliferation and disorganization of cells (Yang et al.
2018). Our data also showed that ROS accumulates in the SAM of okil, suggesting a possible
mechanism for abnormal meristem development. Collectively, our discoveries suggest that
normal function of the AspRS OKII is required to maintain the WUS-CLV3 feedback loop

and SAM size.
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Results

In an ethyl methyl sulfonate (EMS) screen for new mutants affecting shoot development
in Arabidopsis, we identified a mutant with small seedlings and the first 4-5 leaves were narrow
and strap shaped (Fig. 1A, B). Later in development, the plants recovered their growth somewhat,
and made inflorescence shoots that were often highly fasciated (54%, n= 20/37, Fig. 1D-F) with
asymmetrically lobed rosette leaves. As the fasciation phenotype is usually associated with
enlargement in meristem size (Fig. 1C), we measured shoot meristems from the mutants and
their normal siblings (Fig. 1G-J). The mutant meristems were normal at 8 days after planting
(DAP), but were significantly wider and taller than their siblings at 12 DAP (N = 10-15; P <0.01,
Tukey HSD test). To understand the cellular basis of this phenotype, we fixed and sectioned both
shoot and root apices for imaging in the confocal microscope. Normal shoot meristems have
cells arranged in two regular outer layers, the L1 and L2, with an inner group of L3 cells (Fig.
1K, L). In contrast, the mutant shoot meristems had highly disorganized cell arrangement, and
the regular L1 and L2 layer structure was less evident (Fig. 1M, N). Similar phenotypes were
found in root meristems, where cells are again normally arranged in regular radial layers (Fig.
10, P). In the mutants, we again saw evidence of irregular layers, with cells expanding into the
space of the adjacent layers, and irregular planes of cell division (Fig. 1Q, R). Because of the
prominent fasciated stem phenotype, we named this mutant okina kuki (okil, Japanese for big
stem).

The okil mutant was identified in Columbia-0 (Col-0), so to identify the underlying gene
we crossed it to the Landsberg erecta (Ler) ecotype, and made a bulk mutant pool from the F2
mapping population. We next used whole genome sequencing, followed by analysis using the

SHOREmap pipeline (Schneeberger et al. 2009) to map the mutation to chromosome 4, between
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~ 15-17 Mb. Further fine mapping, combined with analysis of gene sequences within the
mapping interval revealed a candidate mutation in AT4G33760, a gene encoding an aspartyl
tRNA synthetase. A single base pair change, G347A, in the first exon of this gene led to a single
predicted amino acid change, G116D, in the anti-codon binding domain of this protein (Fig. 2A
and B). This 116™ Glycine is fully conserved in plants and animals (Fig. 2C). To confirm this
was the correct mutation underlying the phenotype, we obtained a putative null allele,
SAIL 358 BOS8, with a T-DNA insertion in the 10™ exon of AT4G33760 (Fig. 2A), and when
plants heterozygous for this insertion were crossed to okil plants, the T-DNA insertion allele
failed to complement the oki/ phenotype, as the progeny segregated ~ half with oki/ phenotype
(Fig. 2D and Fig. S1A), and these plants were confirmed as being heterozygous for the okil
EMS allele and the T-DNA mutations. Furthermore, we were able to complement the okil
mutation using a TAC clone, JAtY59F05, containing AT4G33760 (Fig. SI1B), but not when
AT4G33760 in this TAC was mutated by creating a frameshift by inserting a mCherry-Amp"®
cassette in the fourth exon, together indicating that the gene underlying the oki/ mutation was
correctly identified.

Aminoacyl tRNA synthetases play a critical role in cellular metabolism by charging
tRNAs with their cognate amino acid for protein synthesis. Arabidopsis encodes three aspartyl
tRNA synthetases (Fig. 2E), and the one encoded by AT4G33760 is expressed ubiquitously, with
strongest expression in seedling leaves and vegetative shoot meristems (Fig. S2). The product of
AT4G33760 is predicted to localize to mitochondria and/or chloroplasts (Duchéne et al. 2005),
while the two other aspartyl tRNA synthetases, At4G26870 and At4G31180 are predicted to
encode cytoplasmic proteins (Fig. 2E) (Luna et al. 2014). To ask where the OKI1 protein

localized, we made a triple YPet fluorescent protein fusion tagged at the C terminus of the
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predicted coding sequence, in the context of its native regulatory sequences in the TAC clone.
This construct was able to fully complement the mutant phenotype, and in the protoplasts
prepared from mature leaf tissues, we observed OKI1-YPet localization in a punctate pattern that
overlapped with a mitochondrial stain, MitoTracker Red (Fig. S3A-D). In shoot meristems, we
also saw punctate staining (Fig. 3A, B), that again co-localized with MitoTracker Red, and not
with plastids, visualized by autofluorescence (Fig. 3C-G). In summary, we identified oki/ as a
point mutation in an aspartyl tRNA synthetase that localizes to mitochondria in the leaf and
shoot meristem, and is a weak allele, since a putative null allele SAIL 358 B08 was lethal.

We next ask how the oki/ mutant interacted with the canonical CLV-WUS feedback
pathway that maintains the stem cell population in the shoot meristem. We crossed the okil/
mutant to a line carrying a GFP reporter for CLV3, as well as a RFP reporter for WUS
expression. In wild type (WT) siblings, these reported the expected expression, with CLV3
expressed in 2 to 3 cell layers of stem cells in an arc at the top of the meristem, and WUS in a
cluster of organizing center cells below in red (Fig. 4B, F). In the mutants, the separation of the
CLV and WUS domains was maintained, however the meristems were enlarged and irregular, as
already described, and the CLV3 and WUS expression domains were expanded (Fig. 4D, H and
Fig. S4). We also asked how these mutations interact in double mutant combinations. wus
mutants make irregular shoots that terminate prematurely, and even after bolting make few,
irregular flowers (Fig. 4K, L). In double wus okil mutants, wus behaved epistatically, as the
double mutants were indistinguishable from wus (Fig. 4K-N). c/v3 okil double mutants similarly
resembled the c/v3 single mutants (Fig. 40, P), and quantification of phenotypes by
measurements of stem thickness indicated that there was no significant difference in stem

thickness between okil or clv3 single mutants and okil clv3 double mutants (Fig.S5). Together
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these double mutant analyses indicate that wus and c/v3 are epistatic to oki/ in meristem size
control.

Finally, to address the possible mechanism by which oki/ mutants cause meristem
disruption, we reasoned that a block in mitochondrial function by partial loss of an essential
translation factor might lead to redox inbalance, which is known to impact meristem size (Zeng
et al. 2017). We therefore stained meristems with redox dyes, and indeed found that superoxide
and peroxide were upregulated in oki/ meristems (Fig. 5), suggesting that redox imbalance may
cause the increases in meristem size in oki/. Additionally, an OKI1 homolog in Arabidopsis, the
AspRS IMPAIRED IN BABA-INDUCED IMMUNITY 1 (IBI1; AT4G31180, Fig. 2E) acts as a
receptor of B-aminobutyric acid (BABA) in addition to its housekeeping function. BABA is a
nonprotein amino acid that protects plants against broad-spectrum diseases (Luna et al., 2014).
To ask if OKI1 is also involved in BABA signaling, we investigated the BABA sensitivity of
okil mutants (Fig. S6). However, okil growth was normal in the presence of BABA
concentrations that severely inhibit ibi/ growth (Fig. S6B, C), suggesting that oki/ does not

function in BABA signaling.
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Discussion.

Meristems are highly ordered structures that initiate new organs throughout the lifecycle,
to enable plant survival. Several mutants with disorganized meristems has been described, and
among the ones with larger meristems the best understood are the CLV pathway genes, CLV1,
CLV2 and CLV3, which repress WUS to balance the loss of cells from the meristem due to organ
initiation with the production of cells by stem cell divisions. This balance is crucial to maintain
meristem size, and other genes acting in the peripheral zone of the meristem, either providing
feedback to the stem cell niche or promoting the transition of cells into organ primordia, also
lead to bigger meristems when mutated (Chuck et al. 2014; Pautler et al. 2015). Hormonal
feedback signaling, most notably by cytokinins, and chromatin level regulation of WUS
expression are also important in meristem size control, and can lead to bigger meristems when
disrupted (Chickarmane et al. 2012; Gordon et al. 2009; Gruel et al. 2016; Kaya et al. 2001;
Landrein et al. 2014). Here we report a new mutant with large meristems, okil, that encodes an
aspartyl tRNA synthetase. Arabidopsis encodes three aspartyl tRNA synthetase homologs, with
two predicted to encode cytoplasmic proteins, and OKI1 is the only to encode a protein that is
predicted to be localized to organelles. We found using a functional YPet fusion that the OKII
protein product localizes predominantly to mitochondria. Not surprisingly, a putative oki/ null
mutant SAIL 358 BO08 was lethal, however we identified a viable, and therefore weak, allele
uncovering a function of the OKI! aspartyl tRNA synthetase in meristem maintenance that could

not be elucidated from null alleles.

Analysis of meristem structure in the oki/ weak allele provided important insights into

development. First, the organization of cells into regular clonal cell layers was disrupted in both

14



294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

shoot and root, however the meistems were able to function and complete the plant lifecycle,
including production of viable flowers and seeds. This supports the idea that plant development
is controled by positional information, and even where clonal divisions are observed, such as in
meristems, such regular divisions are not essential for maintaining stem cell niches (Smith et al.
1996). Moreover, we found that expression of both CLV3 and WUS genes were maintained as
correctly positioned separate domains, further supporting the idea that these domains are
established using positional cues rather than a dependency on cell lineage. In addition to the
meristems, leaf development was also severely disrupted in oki/ mutants; the first leaves
produced were narrow and strap shaped, and later leaves were asymmetrically lobed. Therefore

full OKII function appears necessary for many aspects of Arabidopsis development.

What is the mechanism of OK/! function? AaRSs perform housekeeping roles in protein
translation, by catalyzing the ligation of amino acids and their cognate transfer tRNAs to prepare
substrates for protein translation (Vargas-Rodriguez et al. 2018). In plants, translation occurs in
three different cellular compartments, the chloroplasts, mitochondria and cytosol (Berg et al.
2005). Translation in each of these compartments is necessary, as elimination of some
chloroplast, mitochondria or cytosol aaRSs in Arabidopsis leads to embryo lethality, ovule
abortion or gametophytic lethality (Berg et al. 2005). A putative null mutant in OK// is also
lethal, but the weak oki/ allele is viable, with severe effects on meristem and organ growth. The
okil weak mutant phenotype differed from most meristem mutations, in that the cellular
organization was highly irregular, and suggest that it may function through a different
mechanism compared to the canonical meristem pathways. This weak allele has a single amino

acid substitution in the conserved oligonucleotide-binding (OB) fold domain, which is involved
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in recognition of the anti-codon in the mRNA by the charged tRNA (Mirande 2017). Therefore
this mutation is predicted to disrupt translation, presumably in mitochondria. Therefore it may
affect the energy balance of cells, and it is not surprising that the phenotype is evident in
meristems and developing primordia, where energy demand for growth is high. However, it is
surprising that the mutation leads to meristem enlargement, since most similar mutations do not.
One other developmental mutant in an organellar targeted tRNA synthetase gene, a glycyl tRNA
synthetase, is a weak allele of EMBRYO DEFECTIVE DEVELOPMENTI (EDDI), that is lethal
in null alleles (Moschopoulos et al. 2012). Weak edd! mutants enhance asymmetric leavesl
(as1) phenotypes, and affect genes involved in leaf dorsiventral polarity, though again the
mechanism is unknown, and no meristem phenotype was reported or is evident in edd/ mutants.
Leaf development is also abnormal in defective chloroplasts and leaves (dcl) mutants in
Arabidopsis and tomato; DCL encodes a plastid targeted protein that functions in ribosomal
RNA processing, but again no effect on meristem size was reported (Bellaoui and Gruissem
2004; Bellaoui et al. 2003). Other mutations with developmental phenotypes affect the
cytoplasmic translational machinery, including ones in the PIGGYBACK (PGY) genes in
Arabidopsis; pgy mutants were first identified in a screen for leaf polarity mutants in
Arabidopsis, and encode ribosomal large subunit proteins (Pinon et al. 2008). Mutants in a
related gene also affects leaf development in rice, for example rice minute-likel (rmll) mutants
are smaller with defective vascular patterning and narrow leaf blades, and may have auxin
related defects, however again no effect on meristem size or organization were reported (Zheng
et al. 2016). rm/] mutants also have small panicles, suggesting that shoot meristem size is
reduced, which may reflect defects in cell growth or proliferation expected when ribosomes are

compromised. Alternatively, it is possible that the specific developmental phenotypes of
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ribosomal mutants reflects a true regulatory role in development (Byrne 2009). However all of
the plant mutants affecting ribosomes or translational machinery have abmormal leaf
development with no obvious defect in meristems, and no reported example of meristem
enlargement or fasciation, suggesting the okil phenotype is unique. One possible mechanism to
explain okil phenotypes is that the OKII protein has an additional function, distinct from its role
in translation. In mammals, aaRSs have alternative functions, such as in transcriptional control,
extracellular receptor-mediated signaling or in mammalian target of rapamycin (mTOR)
signaling (Schimmel 2018). In Arabidopsis, an OKII homolog, the AspRS IBI1 functions in a
noncanonical way in plant defense to perceive BABA (Luna et al. 2014). BABA binds to IBI1
and blocks its L-Asparate binding site, switching the AspRS canonical activity of IBI1 to the
noncanonical defense activity upon pathogen infection. However this is unlikely to be the case
for OKI1, because unlike ibil mutants, okil/ mutants were not hypersensitive to BABA (Fig. S6).
Another hypothesis is that disruption in mitochondrial translation could create a redox unbalance,
common in mutations that affect mitochondrial function (Mignolet-Spruyt et al. 2016). Recently,
roles for redox signaling in shoot and root meristem size control have been discovered. For
example, histological staining found different types of reactive oxygen species (ROS) enriched
in different shoot meristem domains; superoxide is enriched in the stem cells and promotes WUS
expression, and differentiation is promoted in the peripheral zone by hydrogen peroxide. The
function of these ROS species is illustrated by different mutants affecting ROS status, which
have shoot meristem size defects (Zeng et al. 2017). Similar findings have been reported in rice,
where a glutamyl-tRNA synthetase expressed in meristematic cell layers during anther
development maintains cellular organization and regulates the population of male germ cells

through the control of protein synthesis, metabolic homeostasis and redox status (Yang et al.
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2018). The size of root meristems is also controlled by a redox mechanism, for example the
UPBEAT]1 transcription factor controls the balance between cell proliferation and differentiation,
by controlling expression of peroxidase gene targets (Tsukagoshi et al. 2010). Redox control of
meristem size in maize is also evident, as the glutaredoxin enzyme MALE STERILE
CONVERTED ANTHERI1 (MSCAJ1) controls activity of the FASCIATED EAR4 (FEA4)
transcription factor (Yang et al. 2015). The Aberrant phyllotaxy2 (Abph2) mutant has bigger
meristems and is caused by dominant mutations in MSCA 1, and mscal loss of function mutants
have smaller shoot meristems (Yang et al. 2015). Redox signaling can also control shoot
meristem size by modulation of plasmodesmata, for example severe changes in redox state in the
Arabidopsis gfp aberrant traffickingl (gatl) mutant of Arabidopsis lead to a reduction in root
meristem size and premature shoot meristem termination, presumably because of excessive
callose deposition, potentially impacting the flow of nutrients and developmental signals
(Benitez-Alfonso et al. 2009). As described above, okil has a mutation in a domain of AspRS
that recognizes the anti-codon in the mRNA by charged tRNA (Mirande 2017). Therefore
mitochondrial translation may be affected by the oki/ mutation, leading to dysfunction of
mitochondria (Robles and Quesada 2017; Sissler et al. 2017; Vargas-Rodriguez et al. 2018). As
one of their functions, mitochondria produce ROS through oxidative phosphorylation, and in turn,
those ROS signals affect transcription factors that affect meristem size and the cell cycle
(Schippers et al. 2016). Thus, OKI1 may be required for the normal mitochondrial translation
and functions, which allows the proper ROS metabolism in the meristem, resulting in its normal
development. We note, however, that the causal relationship between ROS overaccumulation
and the enlarged SAM phenotype in oki! is still unclear. Since we observed accumulation of

ROS in okil mutants that already established an enlarged SAM (Fig. 5), it is possible that the
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399
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disturbed SAM organization in okil causes ROS overaccumulation indirectly. A time-course
study of ROS levels in the oki/ SAM may help better understand any causal relationship.
Additionally, as an alternative possibility of OKI1 mechanism, OKI1 may interact with other
proteins to function in regulating SAM size. As described above, aaRSs are involved in various
essential cellular processes, and are thought to act as hub proteins that have a wide impact on
cellular mechanisms beyond translation (Guo et al. 2010). In many cases, these non-canonical
functions derive from the interactions of aaRSs with partner proteins (Hausmann and Ibba 2008;
Havrylenko and Mirande 2015; Kekez et al. 2019; Kim et al. 2014; Laporte et al. 2014). For
example, recent work indicated that Arabidopsis cytoplasmic seryl-tRNA synthetase (SerRS)
interacts with BRI 1-5 ENHANCED 1 (BEN1) that is involved in metabolism of brassinosteroid
hormones (Kekez et al. 2019). Thus, OKI1 may also interact with proteins that catalyze the
metabolism of hormones to control SAM size. Further study should elucidate the precise
mechanism of OKI1 in redox imbalance or interaction with meristem regulators and their roles in

meristem size control.
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401  Materials and Methods

402 Plant materials and growth conditions

403  Mutagenesis in Arabidopsis Col-0 was performed as described previously (Xu et al. 2011). The
404 M1 progeny were allowed to self-fertilize, and mutants screened in the M2 population. The

405  following lines were obtained from the Arabidopsis Biological Resource Center: c/v3-2 (Ler
406  ecotype) (Fletcher et al. 1999), SAIL 358 BO08 and the double transgenic line

407  expressing CLV3::mGFP5-ER and WUS::dsRED-N7 (Ler ecotype) (Gordon et al. 2007). wus
408  mutant line (Ler ecotype) was kindly provided from Dr. Yuval Eshed (Weizmann Institute of
409  Science, Israel). This allele in which a T-DNA is inserted into wus was found as part of an

410  enhancer trap population screen (Eshed et al. 1999). ibi/-1 mutant line (Col-0 ecotype) was

411 kindly provided from Dr. Jurriaan Ton (The University of Sheffield, UK). WUS::GUS line was
412 kindly provided by Dr. Damianos Skopelitis (Cold Spring Harbor Laboratory, USA) (Skopelitis
413 etal. 2018).

414 For all experiments except Fig. 4A-H, Col-0 ecotype was used as a control line or WT.
415 All plants were grown on soil or Murashige and Skoog (MS) agar plates (Weigel and Glazebrook
416  2002) at 23°C under long-day (LD, 16 h light/8 h dark) conditions. Arabidopsis seeds were

417  stratified on soil or MS plates in the dark at 4°C for 48-72 h before transferring them to growth
418  conditions. Transgenic Arabidopsis was obtained by Agrobacterium-mediated floral dip (Alonso
419 and Stepanova 2014; Weigel and Glazebrook 2002). wus, okil and clv3-2; okil double mutants,
420 and CLV3::mGFP5-ER; WUS::dsRED-N7 in okil lines were generated through genetic crosses,
421  and identified in the F2 segregating populations. okil/SAIL 358 B0S mutants were generated
422 through genetic crosses and identified in the F1. SAIL 358 BOS is listed as having T-DNA

423 insertions in two gene loci, AT4G33760 and AT4G22860 (https://arabidopsis.org). We selected
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plants that had T-DNA insertion only within AT4G33760 by PCR genotyping, and used them for
the genetic crosses. okil and c/v3-2 were validated based on PCR genotyping. wus was
identified by Basta screening and PCR genotyping, and CLV3::mGFP5-ER WUS::dsRED-

N7 were validated by GFP or dsRED detection by fluorescence microscopy. Primers used for
genotyping are listed in Table S1. wus, c/v3-2 and CLV3::mGFP5-ER WUS::dsRED-N7 lines
were from the Ler background, and oki/ from Col-0, and double mutants were analyzed in the F3
generation. We analyzed a large number to double mutants to avoid the possibility that

modifiers segregating in the mixed genetic background would affect the results.

Gene mapping

The okil mutant (Col-0 ecotype) was crossed to the Ler ecotype. The F1 progeny were allowed
to self-fertilize, and in the F2 population oki/ phenotype (Fig. 1B) segregated 3:1. DNA was
collected from pooled okil- and WT-like plants. Library preparation was carried out according to
manufacturers instructions (NEB Next Ultra DNA Library Prep Kit for Illumina, New England
BioLabs Inc) and paired end sequencing was performed on the Illumina platform at the Cold
Spring Harbor laboratory (New York, USA). Sequencing data was analyzed with the short read
analysis pipeline SHOREmap (Schneeberger et al. 2009). Reads were aligned to

the Arabidopsis Col-0 reference genome (TAIR 10). SNPs detected by sequencing were
converted to CAPS or dCAPS markers, and a final mapping interval supported by several
recombinants on each side was defined by markers at 15.65 Mb and 16.34 Mb in the Col-0

reference genome.
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Molecular biology

Recombineering lines containing OKI1 fused to three copies of YPet (a YFP variant) (Nguyen
and Daugherty 2005) at the C terminus (OKI1-3xYPet) or mutated OKI1 were generated using
bacterial homologous recombination as described (Alonso and Stepanova 2014; Zhou et al.
2011). TAC clone JAtY59F05 and the plasmids containing recombineering cassettes with
3xYPet (3xAraYPet-FRT-Amp*-FRT) or mCherry (mCherry-FRT-Amp"-FRT) were kindly
provided by Dr. Jose Alonso (North Carolina State University, USA). The Escherichia coli (E.
coli) recombineering strain SW105 was from the National Cancer Institute (Maryland, USA).
For generating 3xYPet fused OKI1, 3xAraYPet-FRT-Amp"-FRT cassette was PCR amplified
using primers 1 and 2 (Table S1) and inserted in front of stop codon in OK// gene in the TAC.
E.coli cells harboring the recombinant TAC clone was then cultured on medium containing L-
arabinose, which induces FRT recombinase thus deleting the Amp" gene leaving OKII-3xYPet in
the recombinant TAC. For generating mutated OKII gene, mCherry-FRT-Amp®-FRT cassette
was PCR amplified using primers 3 and 4 (Table S1) and was inserted in a short region (26-bp;
AATGTGGTGAAGCTGATTAGGAGATA) in the fourth exon of the OK/I/ gene. These clones
were confirmed by sequencing using primers 5 and 6 (OKI-3xYPet) and 7 and 8 (mutated OKI1)
and in turn were transformed into Agrobacterium tumefaciens (GV3101). Transgenic plants were

screened by Basta selection.

Shoot apical meristem (SAM) measurement

SAM measurement was performed as described previously (Balkunde et al. 2017). Briefly,

Arabidopsis seedlings were harvested at 8 or 12 DAP under LD conditions and then fixed
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overnight in ice-cold FAA (10% formalin, 45% ethanol and 5% acetic acid) followed by
dehydration through an ethanol series, and cleared with methyl salicylate (Sigma-Aldrich).
Meristems were observed using Nomarski optics. The width and height of the meristems were

measured and quantified using ImageJ-Fiji (Schindelin et al. 2012).

Chemical staining

For Eosin Y staining of cells in the SAM, 10 DAP seedlings of WT and okil were fixed in FAA
(5% formalin, 5% glacial acetic acid, 45% ethanol) overnight at 4°C followed by dehydration
through a 50-100% ethanol series. During the dehydration step, tissues were stained with 0.1%
Eosin Y (Sigma-Aldrich) in 100% ethanol, and embedded into paraffin (PARAPLAST X-TRA;
McCormick SCIENTIFIC). Sections (10 um) were prepared using a microtome. For propidium
iodide (PI) staining of cell wall in the root, the roots of WT and oki/ were stained in 10 pg/ml PI
for 5 minutes, rinsed and mounted in water.

For mitochondrial staining, protoplasts were isolated from rosette leaves of 2-week old
transformants that expressed OKI1::3xYPet driven under OK// native promoter in okil
background using an enzyme solution (400 mM mannitol, 20 mM MES, 20 mM KCI, 10 mM
CaCly, 10 pg/ml BSA, 15 mg/ml cellulase [PhytoTechnology Laboratories], 3 mg/ml pectolyase
[Sigma-Aldrich]). Isolated protoplasts were suspended in buffer (400 mM mannitol, 20 mM
MES, 20 mM KCIl, 10 mM CaCl,, 10 ng/ml BSA) containing 100 nM MitoTracker Red
CMXRos (Molecular Probes) for mitochondrial staining. For staining in the SAM, shoot apices
were embedded in 6% agar blocks, and sections were obtained with a vibratome and stained with

MitoTracker Red CMXRos in PBS for 30 min.
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For staining of ROS, superoxide anions and hydrogen peroxide, nitroblue tetrazolium
(NBT) (Sigma-Aldrich) and 3,3’-diaminobenzidine (DAB) (Sigma-Aldrich) were used as
described previously (Zeng et al. 2017). Briefly, 12 DAP seedlings were infiltrated with 1/2
liquid MS and either 1 mg/ml NBT and 50 mM potassium dihydrogen phosphate (pH 7.6) (for
superoxide anion detection) or 1 mg/ml DAB and 10 mM disodium hydrogen phosphate (pH 6.5)
(for hydrogen peroxide detection), and incubated in the dark for 10-20 h at room temperature.
Stained plants were transferred into boiling ethanol/glycerin/glacial acetic acid solution (3:1:1) to
terminate the staining, then fixed with paraformaldehyde (PFA) solution (2% paraformaldehyde,

0.1% DMSO in PBS) and embedded into 6% agar blocks for sectioning with a vibratome.

Microscopy

Seedling images were taken with Nikon SMZ1500 (Nikon Instrument Inc) microscope to
manually capture Z series, which were then merged using NIS elements to create focused images.
Confocal images were obtained on a ZEISS LSM710 or LSM 780. For Eosin Y, 514 nm laser
excitation and 538—680 nm emission spectra, for PI, 514 nm excitation and 566-718 nm emission
spectra, for MitoTracker Red, 561 nm excitation and 572-621 nm emission spectra, for YPet, 514
nm excitation and 519-588 nm emission spectra, for GFP, 488 nm excitation and 493-541 nm
emission spectra, for dSRED, 594 nm excitation and 599-641 nm emission spectra, for
chloroplast autofluorescence, 633 nm excitation and 647-721 nm emission spectra were used.

LSM files from the confocal were processed using ImagelJ-Fiji (Schindelin et al. 2012).
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515 Multiple sequence alignment and construction of phylogenetic tree

516  For multiple alignment of amino acid sequences of AspRSs from eukaryotes (Fig. 2C), amino
517  acid sequences that possess high similarity with OKI1 were obtained from National Center for
518  Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov) by BLAST search.
519  AspRS amino acid sequences from Arabidopsis thaliana (OKI1, TAIR ID: AT4G33760),

520  Medicago truncatula (NCBI accession number: XP 003609716), Populus trichocarpa (NCBI
521  accession number: XP 024463857), Oryza sativa (NCBI accession number: XP_015622473),
522 Brachypodium distachyon (NCBI accession number: XP_003568687), Physcomitrella patens
523 (NCBI accession number: XP_02435843), Homo sapiens (NCBI accession number: 4AH6_A),
524 Drosophila melanogaster (NCBI accession number: NP_724018), Saccharomyces cerevisiae
525 (NCBI accession number: PTN17328), Chlamydomonas reinhardtii (NCBI accession number:
526  XP_001694949) were used. Multiple sequence alignment was performed by CLUSTAL

527  OMEGA (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al. 2011). For constructing a
528  phylogenetic tree for Arabidopsis aaRSs (Fig. 2E), seven complete amino acid sequences that
529  possess high similarity with OKI1 (AT5g56680, AT1G70980, AT4G17300, AT4G26870,

530  AT4G31180, AT3G13490 and AT3G11710) were obtained from Phytozome v12.1 database

531  (https://phytozome.jgi.doe.gov/pz/portal.html) by BLAST search. Multiple sequence alignment

532 was performed by CLUSTALW (https://www.genome.jp/tools-bin/clustalw) (Larkin et al. 2007).
533 Neighbor-joining (NJ) tree was constructed by MEGA 7 (Kumar et al. 2016) with 1000 bootstrap.
534

535 GUS staining

536 Seedlings were transferred to tissue culture plates containing GUS staining solution (50 mM Na-

537  phosphate at pH 7.0, 10 mM EDTA, 0.1% triton X-100, 1 mg/ml of X-Gluc [5-bromo-4-chloro-
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3-indolyl-beta-D-glucuronic acid, BIOSYNTH], SmM potassium ferricyanide and SmM

potassium ferrocyanide), placed under vacuum for 5 min, and then incubated in the dark at 37 °C

overnight. Staining solution was removed, and tissues were cleared in 70% ethanol.

Chemical treatment
Control line, ibil-1 and okil seedlings were grown on MS medium plates for four days, and then
transferred onto MS medium plates containing 0, 150, 500 or 1500 uM S/R-B-aminobutyric acid

(Sigma-Aldrich). After ten days, the fresh weight of seedlings in each condition was measured.

Statistical analysis

Data for multiple groups were analyzed by one-way analysis of variance with a post hoc multiple

comparison test (Turkey’s HSD procedure) using R software (https://www.r-project.org).
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Legends of figures

Figure 1. Shoot and root meristems are affected in okil mutants.

(A, B) okil displayed narrower true leaves (B, arrowhead) in seedlings compared with control
line (Col-0, A). Scale bars = 5 mm. (C) okil mutants have enlarged SAM (dashed circle). Scale
bar = 500 um. (D-F) The inflorescence stems of control line (D) and okil (E, F); okil was often
fasciated (E and F). Scale bars =2 ¢m (D) and 1 cm (E, F). (G, H) Cleared SAM from the control
line (G) and okil (H) at 12 DAP. Solid and dashed double-headed lines display the SAM height
and diameter, respectively. Scale bar = 100 um. (I, J) The SAM of okil was significantly larger
at 12 DAP. N = 10-15. Bars topped by different letters are significantly different at P < 0.01
(Tukey HSD test). (K-R) Cell arrangements were disorganized in the oki/ SAM and root tips.
Confocal images of Eosin Y-stained SAM sections of control line (K) and oki/ (M), and PI-
stained root tips of control line (O) and okil (Q). L, N, P, R show magnified images of the boxed
regions in K, M, O and Q, respectively. Scale bar = 50 pm (K, M, O, Q), 20 um (L, N) and 10

um (P, R).

Figure 2. The causal gene of okil encodes a mitochondrial aspartyl tRNA synthetase
(AspRS). (A) Diagram of the intron-exon structure of OKII gene (At4g33760). UTRs are
indicated by white boxes, coding regions of exons by grey boxes. Solid lines indicate the
intergenic regions and introns. The nucleotide substitution in okil (G347A) is shown in red
arrowhead. T-DNA insertion site for SAIL 358 BO08 is shown in black arrowhead. (B)

Schematic diagram of the domain structure of OKI1 protein. Predicted anti-codon binding
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domain (91-176 aa) and the catalytic domain of AspRS (199-638 aa) are shown in yellow and
pink boxes, respectively. Glycine 116 within the anti-codon binding domain was changed to
aspartic acid in oki/ mutants (red arrowhead). (C) Alignment of amino acid sequence of AspRS
from Arabidopsis thaliana, Medicago truncatula, Populus trichocarpa, Oryza sativa,
Brachypodium distachyon, Physcomitrella patens, Chlamydomonas reinhardtii, Saccharomyces
cerevisiae, Drosophila melanogaster and Homo sapiens. The Gly 116 that was replaced to
Aspartic acid in okil mutant is fully conserved in plants and animals (arrowhead). (D) F1 plants
from crosses between okil and SAIL 358 B0S8 showed enhanced okil narrow leaf phenotype
(also see Fig. S1A). (E) A phylogenetic tree of 8 aminoacyl-tRNA synthetases from Arabidopsis
conducted by MEGA?7 software with the neighbor-joining (NJ) method for 1000 replicates
bootstrap. In Arabidopsis, there are three AspRSs, AT4G33760 (OKI1), AT4G26870 and
AT4G31180 (IBI1; Luna et al., 2014). AsnRS: Asparaginyl-tRNA synthtase, LysRS: Lysyl-

tRNA synthetase.

Figure 3. OKI1 locates at mitochondria in the SAM. (A, B) Bright field and fluorescence
images of the inflorescence SAM showing OKI1::3xYPet driven under its native promoter in
okil background. pOKII-OKII::3xYPet is expressed in the meristem and shoot apex. Scale bar
=50 pm. (C-E) Subcellular localization of OKI1::3xYPet (C), mitochondria stained with
MitoTracker Red (D), autofluorescence of plastids (blue) (E) in the cells of the SAM. Merged
images of C with D (F) and C with E (G) are shown. OKI1::3xYPet localized to mitochondria

(overlap shown by white arrows), but not plastids (blue) in the meristem. Scale bar = 10 um.
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Figure 4. Relationship of OKII with known meristem signals. (A-H) Confocal images of
pCLV3::mGFP5-ER (green) and pWUS::dsRED-N7 (red) in the SAM from 8 DAP (A-D) and
12 DAP (E-H) seedlings of control line (A, B, E, F) and okil (C, D, G, H). Dashed lines display
the outlines of the SAM. WUS and CLV3 promoter activities were enlarged in the SAM of okil
at 12 DAP. Scale bar = 100 um. (I-P) wus and c/v3 are epistatic to okil. Shoot apices of 35
DAP plants of control line (I), okil (J), wus (K, L), wus okil (M, N), c/v3-2 (O) and clv3-2 okil

(P). Scale bars =5mm (I, J, L, N, O, P), 1 cm (K, M).

Figure 5. okil overaccumulates superoxide and hydrogen peroxide in the SAM. (A, B)
Nitroblue tetrazolium (NBT) staining showed that superoxide is higher in the SAM of okil (B,
dark blue stained region within dashed circle) compared with control line (A, blue region shown
by arrowhead). (C, D) 3,3’-diaminobenzidine (DAB) staining indicated that hydrogen peroxide
levels were higher in the SAM of okil (D, brown and black regions within dashed circle)
compared with control line (C, brown regions indicated by arrowheads). Dashed lines in A and C

show the outlines of the SAM of the control line. Scale bars = 100 pm.
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937
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940  Figure S1. Genetic complementation of okil. (A) okil/SAIL 358 BO0S (weak allele / null)
941  plants failed to complement oki/, and displayed enhanced growth defect phenotype of oki/. (B)
942 Developmental phenotype of okil (Fig. 1B) was complemented by introduction of TAC clone

943  JAtY59FO0S5 containing the At4g33760 gene. Scale bar = 1 cm.
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eFP Browser by B. Vinegar, drawn by J. Alls and N. Provart. Data from Gene Expression Map of Arabidopsis Development: Schmid et al., 2005, Nat. Gen. 37:501,

\
and the Nambara lab for the imbibed and dry seed stages. Data are normalized by the GCOS method, TGT value of 100. Most tissues were sampled in triplicate

Figure S2. OKII expression in Arabidopsis development. OK// is expressed ubiquitously
during Arabidopsis development. Figures were generated online using the eFP browser
(http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Relative expression levels of OKI/ in
various organs are shown via color scale, with red color indicating higher expression and yellow
color indicating lower expression.
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Figure S3. Mitochondrial localization of OKI1 in protoplasts derived from leaf mesophyll
cells. (A) Bright field image of a protoplast derived from leaf mesophyll cells of the
OKI1::3xYPet line driven by the native promoter in oki/ background. (B) OKI1::3xYPet. (C)

MitoTracker Red. (D) Merged image of B with C showed co-localization. Scale bar = 10 um.
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981  Figure S4. Abnormal WUS expression in the SAM of okil mutants. (A-E) The expression
982  patterns of promoter WUS fused GUS in control line (A) and oki/ mutants (B-E). WUS
983  expression site (blue region) was enlarged and/or split in the SAM of okil mutants (blue regions

984  in dashed circles). Scale bar =200 um.
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988  Figure S5. clv3 is epistatic to okil in stem thickness control. There was no significant
989  difference in stem thickness between okil or c/v3-2 single mutants and c/v3-2 okil double
990  mutants, suggesting that c/v3-2 are epistatic to okil in regulation of stem thickness. N = 7-10.

991  Bars topped by different letters are significantly different at P < 0.01 (Tukey HSD test).
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Figure S6. okil mutants are not hypersensitive to BABA. (A, B) 150-1500 uM BABA did not
affect to the growth of control line (A), but significantly inhibited the growth of ibi/-1 mutants
(B), as expected. (C) 150-500 uM BABA did not affect to the growth of 0ki/ mutants, although
it was decreased in presence of 1500 uM BABA. N = 8-10. Bars topped by different letters are

significantly different at P < 0.01 (Tukey HSD test).
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Table S1. Oligonucleotides used as primers in this study.

Primer sets for genotyping.

Mutants Forward Reverse Note

okil GAGCTATGCGGCGAGTTATC GAAAGTTCATTGCTGAGACGAA  PCR product was digested with Hpall. WT: 116bp / 113 bp, okil: 229 bp.

wus GGTCTTGCGAAGGATAGTGG TTGCCCATCCTCCACCTACG

clv3-2 CTCACTCAAGCTCATGCTCACG GGGAGCTGAAAGTTGTTTCTTGG Muller et al., 2008

SAIL_358 B08 CCTTATGATGCAGGCGAGAT  GCTGGCACTCTGAACAACAA PCRs were performed with LBb1.3 primer (http://signal.salk.edu/tdnaprimers.2.html)

Primers for construction.

Primer # Sequence

CCTCGGAAGTCGATCCAAAGCAGCTTCAAGATCTCTCCATCCGCACCAAAGGAGGTGGAGGTGGAGCT
TGATGTTAAGAGTAAACAGAAGATACAATTGTTTGTGTTGAGAGCTATTAGGCCCCAGCGGCCGCAGCAGCACC
GTCTTGATCTGCGCCGTCAGCAAATGAAGAATAATATAGTTCTTCGCCATGGAGGTGGAGGTGGAGCT
TTCAAATAGAGTAGGAACACACCTCAATAAAACCATGTCTGTCTTCTAGGGGCCCCAGCGGCCGCAGCAGCACC
AAGATTGGTCAAGCATGGTTG

TGTCAAAAGTGGGAATTTTGC

GGTAGTTGCAGAGCATGTTG

CCTGAATTCTTGACGGAACCAG

e BEN He NV R N S
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