
CPL-Sync: Efficient and Guaranteed Planar Pose Graph Optimization
Using the Complex Number Representation

Taosha Fan Hanlin Wang Michael Rubenstein Todd Murphey

Abstract— In this paper, we present CPL-Sync, a certifiably
correct algorithm to solve planar pose graph optimization
(PGO) using the complex number representation. We formulate
planar PGO as the maximum likelihood estimation (MLE)
on the product of unit complex numbers, and relax this
nonconvex quadratic complex optimization problem to complex
semidefinite programming (SDP). Furthermore, we simplify
the corresponding semidefinite programming to Riemannian
staircase optimization (RSO) on complex oblique manifolds
that can be solved with the Riemannian trust region (RTR)
method. In addition, we prove that the SDP relaxation and
RSO simplification are tight as long as the noise magnitude
is below a certain threshold. The efficacy of this work is
validated through comparisons with existing methods as well as
applications on planar PGO in simultaneous localization and
mapping (SLAM), which indicates that the proposed algorithm
is more efficient and capable of solving planar PGO certifiably.
The C++ code for CPL-Sync is available at https://github.
com/fantaosha/CPL-Sync.

I. INTRODUCTION

Pose graph optimization (PGO) estimates poses from their
relative noisy measurements, in which each unknown pose is
associated with a vertex and each measurement is associated
with an edge of the graph. In robotics, PGO has signifi-
cant applications in simultaneous localization and mapping
(SLAM) and has been extensively studied [1]–[3]. In the last
decades, a number of methods have been developed to solve
PGO [4]–[9] and verify the optimality of solutions to PGO
[9]–[11].

In this paper, we consider the problem of planar PGO
using the complex number representation. Our work is an
extension of [9] that uses Riemannian staircase optimization
to solve PGO efficiently and certifiably. In [9], PGO is
formulated on SE(d) , (Rd,+) o SO(d) using the matrix
representation and further simplified to quadratic program-
ming on SO(d), then it is relaxed to semidefinite program-
ming and solved with the Riemannian staircase optimization
(RSO) [12]. For planar PGO, we need to estimate poses on
SE(2) , (R2,+) o SO(2). In [9], the authors use a 2 × 2
real matrix to represent SO(2), even though a unit 2×1 real
vector or a unit complex number is sufficient. Therefore, it
is redundant to use the matrix representation of SE(2) to
formulate planar PGO. Moreover, as shown in Section VII,

Taosha Fan and Todd Murphey are with the Department of
Mechanical Engineering, Northwestern University, Evanston, IL
60201, USA. E-mail: taosha.fan@u.northwestern.edu,
t-murphey@northwestern.edu

Hanlin Wang and Michael Rubenstein are with the Department of Electri-
cal Engineering and Computer Science, Northwestern Univerity, Evanston,
IL 60201, USA. E-mail: hanlinwang@u.northwestern.edu,
rubenstein@northwestern.edu

the redundancy of representation induces extra computation
to planar PGO, which greatly affects the overall efficiency.

In applied mathematics, it is common to use unit complex
numbers to represent SO(2) [13], and the complex number
representation has been to used to formulate phase synchro-
nization problems on SO(2) [14], [15]. In particular, we
want to mention that in [11], the authors have used complex
numbers to represent SO(2) and SE(2) for optimality
verification of planar PGO, in which the complex number
representation makes the analysis much easier and clearer,
whereas in this paper, in addition to optimality verification,
we have also worked on how to solve planar PGO efficiently
and certifiably using the complex number representation.

In this paper, we present, CPL-Sync, a certifiably correct
algorithm to solve planar PGO using the complex number
representation. Similar to SE-Sync in [9], CPL-Sync uses
Riemannian staircase optimization [12] and provides an exact
globally optimal solution to planar PGO as long as the noise
magnitude is below a certain threshold. In contrast to SE-
Sync, CPL-Sync has a relatively simple formulation and
planar PGO is relaxed to complex oblique manifolds [16].
Most importantly, since the complex number representation
reduces amounts of computation, CPL-Sync is several times
faster than SE-Sync on all the tested 2D SLAM benchmark
datasets in Section VII.

The rest of this paper is organized as follows. Section II
introduces notations that are used throughout this paper.
Section III reviews the complex number representation of
SO(2) and SE(2). Section IV formulates planar PGO using
the complex representation and Section V relaxes planar
PGO to complex semidefinite programming. Section VI
presents the CLP-Sync algorithm to solve planar PGO.
Section VII presents and discusses comparisons of CPL-
Sync with existing methods [7]–[9] on a suite of large 2D
SLAM benchmark datasets. The conclusions are made in
Section VIII.

II. NOTATION

R and C denote the sets of real and complex numbers,
respectively; Rm×n and Cm×n denote the sets of m × n
real and complex matrices, respectively; Rn and Cn denote
the sets of n× 1 real and complex vectors, respectively. C1

and Cn1 denote the sets of unit complex numbers and n× 1
vectors over unit complex numbers, respectively. Q denotes
the group of (C,+)o(C1, ·) and “o” denotes the semidirect
product of groups [17]. Sn and Hn denote the sets of n× n
real symmetric matrices and complex Hermitian matrices,

https://github.com/fantaosha/CPL-Sync
https://github.com/fantaosha/CPL-Sync

respectively. The notation “i” is reserved for the imagi-
nary unit of complex numbers. The notation | · | denotes
the absolute value of real and complex numbers, and the
notation (·) denote the conjugate of complex numbers. The
superscripts (·)T and (·)H denote the transpose and conjugate
transpose of a matrix, respectively. For a complex matrix W ,
[W]ij denotes its (i, j)-th entry; the notations <(W) and
=(W) denote real matrices such that W = <(W) +=(W)i;
W < 0 means that W is Hermitian and positive semidefinite;
trace(W) denotes the trace of W ; diag(W) extracts the
diagonal of W into a vector and ddiag(W) sets all off-
diagonal entries of W to zero; the notations ‖W‖F and
‖W‖2 denote the Frobenius norm and the induced-2 norm,
respectively. The notation 〈·, ·〉 denotes the real inner product
of matrices. For a vector v, the notation [v]i denotes its i-th
entry; ‖v‖2 = ‖v‖22 =

√∑
i |[v]i|2 =

√
vHv; the notation

diag(v) denotes the diagonal matrix with
[
diag(v)

]
ii

= vi.
The notation 1 ∈ Cn denotes the vector of all-ones. The
notation I ∈ Cn×n denotes the identity matrix. For a hidden
parameter x whose value we wish to infer, the notations x,
x̃ and x̂ denote the true value of x, a noisy observation of
x and an estimate of x, respectively.

III. THE COMPLEX NUMBER REPRESENTATION OF
SO(2) AND SE(2)

In this section, we give a brief review of SO(2) and
SE(2), and show that SO(2) and SE(2) can be represented
using complex numbers.

It is known that the set of unit complex numbers

C1 , {a1 + a2i ∈ C|a2
1 + a2

2 = 1}

forms a group under complex number multiplication “·” for
which the identity is 1 and the inverse is the conjugate, i.e.,
for x, x′ ∈ C1, we obtain [13]

x · x′ ∈ C1, 1 · x = x · 1 = x, x · x = x · x = 1.

In addition, the group of unit complex numbers (C1, ·)
is diffeomorphic and isomorphic to the matrix Lie group
SO(2):

SO(2) , {
[
a1 −a2

a2 a1

]
∈ R2×2|a2

1 + a2
2 = 1}

, {R ∈ R2×2|RTR = I, det(R) = 1}

under matrix multiplication. As a result, SO(2) can be
represented using unit complex numbers C1. More explicitly,
if R ∈ SO(2) is

R =

[
a1 −a2

a2 a1

]
=

[
cos θ − sin θ
sin θ cos θ

]
, (1)

the corresponding unit complex number representation x ∈
C1 is

x = a1 + a2i = eiθ = cos θ + sin θi (2)

in which eiθ = cos θ + sin θi. Furthermore, if b′ =[
b′1 b′2

]T ∈ R2 is rotated by R ∈ SO(2) in Eq. (1) from
b =

[
b1 b2

]T ∈ R2, i.e.,

b′1 = a1b1 − a2b2 = b1 cos θ − b2 sin θ,

b′2 = a1b2 + a2b1 = b2 cos θ + b1 sin θ,

we obtain

β′ = x · β = a1b1 − a2b2︸ ︷︷ ︸
b′1

+(a1b2 + a2b1︸ ︷︷ ︸
b′2

)i, (3a)

or equivalently,

β′ = x · β = eiθ · β
= b1 cos θ − b2 sin θ︸ ︷︷ ︸

b′1

+(b2 cos θ + b1 sin θ︸ ︷︷ ︸
b′2

)i, (3b)

in which x is a unit complex number as that given in Eq. (2),
and

β = b1 + b2i and β′ = b′1 + b′2i (4)

are the complex number representation of b and b′, respec-
tively. As a result, rotating a vector can also be described
using the complex number representation.

In general, the special Euclidean group SE(2) is the
matrix Lie group

SE(2) , {
[
R p
0 1

]
∈ R3×3|R ∈ SO(2), p ∈ R2}, (5)

whose group multiplication is matrix multiplication. In terms
of group theory, SE(2) is also represented as the semidirect
product of (R2,+) and SO(2):

SE(2) , (R2,+) o SO(2),

in which “o” denotes the semidirect product of groups
[17]. If “◦” is the group multiplication of SE(2) using the
matrix representation as Eq. (5), then for g = (p,R), g′ =
(p′, R′) ∈ SE(2), we obtain

g ◦ g′ = (Rp′ + p,RR′) (6)

Following the complex number representation of SO(2) and
R2, the representation of SE(2) as Eq. (5) is diffeomorphic
and isomorphic to the semidirect product of (C,+) and
(C1, ·):

Q , (C,+) o (C1, ·).

If “�” denotes the group multiplication of Q, from Eqs. (2)
and (3), the multiplication of g ◦ g′ in Eq. (6) is equivalent
to

q � q′ = (x · ρ′ + ρ, x · x′) ∈ Q, (7)

in which q = (ρ, x), q′ = (ρ′, x′) ∈ Q. In Eq. (7), x, x′ ∈ C1

and ρ, ρ′ ∈ C are the complex number representation of
R, R′ ∈ SO(2) and p, p′ ∈ R2, respectively, which follow
the same representation as that in Eqs. (2) and (4). In
addition, the identity of Q is (0, 1) ∈ Q and the inverse
of q = (ρ, x) ∈ Q is

q−1 = (−x · ρ, x) ∈ Q. (8)

As a result, instead of using the matrix representation,
we represent SE(2) with a 2-tuple of complex numbers.
Furthermore, if b′ ∈ R2 is transformed by g ∈ SE(2) from
b ∈ R2, we obtain

β′ = x · β + ρ,

in which q = (ρ, x) ∈ Q is the complex number represen-
tation of g ∈ SE(2), and β and β′ are the complex number
representation of b and b′, respectively.

For notational convenience, in the rest of paper, we will
omit the complex number multiplication “·” if there is no
ambiguity.

In terms of the computation of group multiplication and
transformation only, the complex number representation of
SO(2) and SE(2) has the same complexity as the matrix
representation. In spite of this, as shown in the following
sections, the complex number representation greatly sim-
plifies the analysis for planar PGO, and most importantly,
the semidefinite relaxation and Riemannian optimization of
planar PGO using the complex number representation is
tighter, more simple and requires less computationa than that
using the matrix representation in [9].

In the following sections, we will use the complex number
representation of SO(2) and SE(2) to formulate and solve
planar PGO.

IV. PROBLEM FORMULATION AND SIMPLIFICATION

In this section, we formulate planar PGO as maximum
likelihood estimation, and further simplify it to complex
quadratic programming on the product of unit complex
numbers.

A. Problem Formulation

Planar PGO consists of estimating n unknown poses g1,
g2, · · · , gn ∈ SE(2) with m noisy relative measurements
gij , g−1

i gj ∈ SE(2). Following the matrix representation
of SE(2), we assume that each g(·) ∈ SE(2) is described
as g(·) = (p(·), R(·)), in which p(·) ∈ R2 and R(·) ∈
SO(2). According to Section III, the problem is equivalent
to estimating n 2-tuples of complex numbers q1, q2, · · · ,
qn ∈ Q with m relative measurements qij , q−1

i � qj ∈ Q,
in which q(·) = (ρ(·), x(·)) ∈ Q, and ρ(·) ∈ C and x(·) ∈ C1

are the complex number representation of p(·) ∈ R2 and
R(·) ∈ SO(2), respectively. The n unknown poses and m
relative measurements can be described with a directed graph−→
G = (V,

−→
E) in which i ∈ V , {1, · · · , n} is associated

with gi or qi, and (i, j) ∈
−→
E ⊂ V × V if and only if the

relative measurement gij or qij exists. If the orientation of
edges in

−→
E is ignored, we obtain the undirected graph of

−→
G

that is denoted as G = (V, E). In the rest of this paper, we
assume that

−→
G is weakly connected and G is (equivalently)

connected. In addition, we assume that the m noisy relative
measurements qij = (ρij , xij) are random variables that
satisfy

ρ̃ij = ρij + ρεij ρεij ∼ N(0, τ−1
ij), (9a)

x̃ij = xijx
ε
ij x̃εij ∼ vMF(1, κij), (9b)

for all (i, j) ∈
−→
E . In Eq. (9), qij = (ρij , xij) is the true

(latent) value of qij , N(µ,Σ) denotes the complex normal
distribution with mean µ ∈ C and covariance Σ < 0, and
vMF(x0, κ) denotes the von Mises-Fisher distribution on C1

with mode x0 ∈ C1, concentration number κ ≥ 0 and the
probability density function of vMF(x0, κ) is [18]

f(x;x0, κ) =
1

cd(κ)
exp (κ(x0x+ x0x)) ,

in which cd(κ) is a function of κ.
If ρ̃ij and x̃ij are independent, from Eqs. (3), (7) and (8),

a straightforward algebraic manipulation indicates that the
maximum likelihood estimation (MLE) is a least square
problem as follows

min
xi∈C1,
ρi∈C

∑
(i,j)∈

−→
E

[
κij |xix̃ij − xj |2+

τij |ρj − ρi − xiρ̃ij |2
]

(MLE)

in which κij and τij are as given in Eqs. (9a) and (9b).
Furthermore, as Proposition 1 states, (MLE) is equivalent to
the formulation using the matrix representation in [9].

Proposition 1. The maximum likelihood estimation (MLE)
is equivalent to

min
Ri∈SO(2),

pi∈R2

∑
(i,j)∈

−→
E

[κij
2
‖RiR̃ij −Rj‖2F+

τij‖pj − pi −Rip̃ij‖2F
]
.

In the next subsection, we will simplify (MLE) to
quadratic programming on the product of unit complex
numbers Cn1 .

B. Problem Simplification

The simplification of (MLE) is similar to that of [9,
Appendix B], the difference of which is that we use the
complex number representation while Rosen et. al in [9] use
the matrix representation to formulate planar PGO.

For notational convenience, we define xji = xij , κji =
κij and τji = τij , and (MLE) can be reformulated as

min
q∈Cn×Cn

1

qH

[
L(W ρ) Ṽ

Ṽ H L(G̃x) + Σ̃

]
q (P)

in which q ,
[
ρ1 · · · ρn x1 · · · xn

]T ∈ Cn×Cn1 . In
(P), we define L(W ρ) ∈ Rn×n, Ṽ ∈ Cn×n, L(G̃x) ∈ Cn×n
and Σ̃ ∈ Rn×n to be

[L(W ρ)]ij ,


∑

(i,k)∈E
τik, i = j,

−τij , (i, j) ∈ E ,
0 otherwise,

[Ṽ]ij ,


∑

(i,k)∈
−→
E
τikρ̃ik, i = j,

−τij ρ̃ji, (j, i) ∈
−→
E ,

0 otherwise,

[L(G̃x)]ij ,


∑

(i,k)∈E
κik, i = j,

−κij x̃ji, (i, j) ∈ E ,
0 otherwise,

and Σ̃ , diag{Σ̃1, · · · , Σ̃n} with Σ̃i =
∑

(i,k)∈
−→
E
τik|ρ̃ik|2,

respectively.
If rotational states x ,

[
x1 · · · xn

]T ∈ Cn1 are known,
(P) is reduced to unconstrained complex quadratic program-
ming on translational states ρ ,

[
ρ1 · · · ρn

]T ∈ Cn:

min
ρ∈Cn

ρHL(W ρ)ρ+2〈ρ, Ṽ x〉+xHL(G̃x)x+ xHΣ̃x︸ ︷︷ ︸
constant

. (10)

By definition, L(W ρ) � 0, and according to [19, Proposition
4.2] 1, the solution to Eq. (10) is

ρ = −L(W ρ)†Ṽ x. (11)

Substituting Eq. (11) into (P) and simplifying the resulting
equation, we obtain complex quadratic programming on the
product of unit complex numbers Cn1 as follows

min
x∈Cn

1

xHQ̃x, (12)

in which Q̃ = L(G̃x) + Σ̃− Ṽ HL(W ρ)†Ṽ � 0.
Furthermore, if we define Ω = diag{τe1 , · · · , τem} ∈

Rm×m to be the diagonal matrix whose diagonal elements
are indexed by the directed edges e ∈

−→
E and in which τe ∈

R is the precision of translational observations as given in
Eq. (9a), and T̃ ∈ Cm×n to be the matrix indexed by e ∈

−→
E

and k ∈ V whose (e, k)-element is given by

[
T̃
]
ek

,

{
−t̃ik, e = (i, k) ∈

−→
E ,

0, otherwise,
(13)

and A(
−→
G) ∈ Rn×m to be the matrix indexed by k ∈ V and

e ∈
−→
E whose (k, e)-element is given by

[
A(
−→
G)
]
ke

=


1, e = (i, k) ∈

−→
E ,

−1, e = (k, j) ∈
−→
E ,

0, otherwise,

(14)

then Q̃ = L(G̃x) + Σ̃− Ṽ HL(W ρ)†Ṽ can be rewritten as

Q̃ = L(G̃x) + T̃HΩ
1
2 ΠΩ

1
2 T̃ (15)

in which Π ∈ Rm×m is the matrix of the orthogonal
projection operator π : Cm → ker(A(

−→
G)Ω

1
2) onto the kernel

of A(
−→
G)Ω

1
2 . As a result, Eq. (12) is equivalent to

min
x∈Cn

1

trace(Q̃xxH),

Q̃ = L(G̃x) + T̃HΩ
1
2 ΠΩ

1
2 T̃ .

(QP)

For the detailed derivation of (QP), interested readers can
refer to the full paper [20].

In the next section, we will relax (QP) to complex semidef-
inite programming and show that the semidefinite relaxation
is tight as long as the noise magnitude is below a certain
threshold.

1It should be noted that [19, Proposition 4.2] was originally derived for
real matrices, however, the results can be generalized to complex matrices
as well.

V. THE SEMIDEFINITE RELAXATION

In a similar way to [11], [14], [15], it is straightforward
to relax (QP) to

min
X∈Hn

〈Q̃,X〉

s.t. X � 0, diag(X) = 1.
(SDP)

It should be noted that if X̂ ∈ Hn has rank one and solves
(SDP), then a solution x̂ ∈ Cn1 to (QP) can be exactly
recovered from X̂ through singular value decomposition with
which X̂ = x̂x̂H .

In the rest of section, we will analyze and derive the con-
ditions for the optimality of (QP) and (SDP), and conditions
for the tight relaxation of (SDP), all the proofs of which can
be found in [20].

From [21], the necessary conditions for the local opti-
mality of (QP) can be well characterized in terms of the
Riemannian gradients and Hessians.

Lemma 1. If x̂ ∈ Cn1 is a local optimum of (QP), then
there exists a real diagonal matrix Λ̂ , <{ddiag(Q̃x̂x̂H)} ∈
Rn×n such that Ŝ , Q̃ − Λ̂ ∈ Hn satisfies the following
conditions:
(1) Ŝx̂ = 0;
(2) 〈ẋ, Ŝẋ〉 ≥ 0 for all ẋ ∈ Tx̂Cn1 .

If x̂ satisfies (1), it is a first-order critical point, and if x̂
satisfies (1) and (2), it is a second-order critical point.

Proof. See [20].

Since (SDP) is convex and the identity matrix I ∈ Cn×n
is strictly feasible, the sufficient and necessary conditions for
the global optimality of (SDP) can be derived in terms of the
Karush-Kuhn-Tucker (KKT) conditions.

Lemma 2. A Hermitian matrix X̂ ∈ Hn is a global optimum
of (SDP) if and only if there exists Ŝ ∈ Hn such that the
following conditions hold:
(1) diag(X̂) = 1;
(2) X̂ � 0;
(3) ŜX̂ = 0;
(4) Q̃− Ŝ is real diagonal;
(5) Ŝ � 0.

Furthermore, if rank(Ŝ) = n− 1, then X̂ has rank one and
is the unique global optimum of (SDP).

Proof. See [20].

As a result of Lemmas 1 and 2, we obtain the sufficient
conditions for the exact recovery of (QP) from (SDP).

Lemma 3. If x̂ ∈ Cn1 is a first-order critical point of (QP)
and Ŝ = Q̃− Λ̂ � 0 in which Λ̂ = <{ddiag(Q̃x̂x̂H)}, then
x̂ is a global optimum of (QP) and X̂ = x̂x̂H is a global
optimum of (SDP). Moreover, if rank(Ŝ) = n − 1, then X̂
is the unique optimum of (SDP).

Proof. See [20].

Lemma 3 gives conditions that (SDP) is a tight relaxation
of (QP). As a matter of fact, if the noises of measurements

are not too large, it is guaranteed that (SDP) is always a tight
relaxation of (QP) as the following proposition states.

Proposition 2. Let Q ∈ Hn be the data matrix of the form
Eq. (15) that is constructed with the true (latent) relative
measurements qij = (ρij , xij), then there exists a constant
γ = γ(Q) > 0 such that if ‖Q̃ − Q‖2 < γ, then (SDP)
has the unique global optimum X̂ = x̂x̂H ∈ Hn, in which
x̂ ∈ Cn1 is a global optimum of (QP).

Proof. See [20].

VI. THE CPL-SYNC ALGORITHM

In general, interior point methods to solve (SDP) take
polynomial time, which is intractable if n is large. Instead of
solving (SDP) directly, Boumal et. al found that (SDP) can be
relaxed to a series of rank-restricted semidefinite programing
[12]:

min
Y ∈OB(r,n)

trace(Q̃Y Y H) (r-SDP)

in which

OB(r, n) , {Y ∈ Cn×r|diag(Y Y H) = 1}

is the complex oblique manifold [16]. Furthermore, (r-SDP)
can be a tight relaxation of (SDP) if some conditions are
satisfied as stated in Propositions 3 and 4, whose proofs are
immediate from [12, Theorem 2].

Proposition 3. If Ŷ ∈ OB(p, n) is rank-deficient and
second-order critical for (r-SDP), then it is globally optimal
for (r-SDP) and X̂ = Ŷ Ŷ H ∈ Hn is globally optimal for
(SDP).

Proposition 4. If p ≥ d
√
n e, then for almost all Q̃ ∈ Cn×n,

every first-order critical Ŷ ∈ OB(p, n) for (r-SDP) is rank-
deficient.

From Propositions 3 and 4, (SDP) is equivalent to suc-
cessively solving (r-SDP) with the Riemannian trust region
(RTR) method [22] for 2 ≤ r1 < r2 < · · · < rk ≤ n+1 until
a rank-deficient second-order critical point is found, and such
a method is referred as the Riemannian staircase optimization
(Algorithm 1) [12], [23]. In addition, it is known that the
RTR method solves (r-SDP) locally in polynomial time [12,
Proposition 3]. In contrast to interior point methods to solve
(SDP), the Riemannian staircase optimization is empirically
orders of magnitude faster in solving large-scale semidefinite
programming, and has been successfully implemented in [9],
[14], [23] to solve semidefinite relaxations of synchronization
problems.

As shown in Algorithm 2, the solution rounding of an
optimum of Y ∗ ∈ OB(r, n) of (r-SDP) is simply to assign
x̂ =

[
x̂1 · · · x̂n

]
∈ Cn to be the left-singular vector of

Y ∗ that is associated with the greatest singular value, and
then normalize each xi to get x̂ ∈ Cn1 . Moreover, it should
be noted that the solution rounding algorithm can recover the
global optimum x̂ ∈ Cn1 from Y ∗ as long as the exactness
of (SDP) holds.

From algorithms of Riemannian staircase optimization
(Algorithm 1) and solution rounding (Algorithm 2), the
proposed CPL-Sync algorithm for planar PGO is as shown
in Algorithm 3.

Algorithm 1 The Riemannian staircase optimization (RSO)

1: Input: Integers 2 ≤ r0 < r1 < · · · < rk ≤ n + 1; an
initial iterate x0 ∈ Cn1

2: Y0 =
[
x̂0 0

]
∈ OB(r0, n)

3: for i = 1→ k do
4: Implement the Riemannian optimization to solve

Y ∗i = arg min
Y ∈OB(ri,n)

trace(Q̃Y Y H)

locally with Yi as an initial guess
5: if rank(Y ∗i) < pi then
6: return Y ∗i ∈ OB(ri, n)
7: else
8: Yi+1 =

[
Ŷi 0

]
∈ OB(ri+1, n)

9: end if
10: end for
11: return Y ∗i ∈ OB(rk, n)

Algorithm 2 The rounding procedure for solutions of
(r-SDP)

1: Input: An optimum Y ∗ ∈ OB(r, n) to (r-SDP)

2: Assign x̂ =
[
x̂1 · · · x̂n

]T ∈ Cn to be the left-
singular vector of Y ∗ that is associated with the greatest
singular value

3: for i = 1→ n do
4: x̂i =

x̂i
|x̂i|

5: end for
6: return x̂ ∈ Cn1

Algorithm 3 The CPL-Sync algorithm

1: Input: Integers 2 ≤ r0 < r1 < · · · < rk ≤ n + 1; an
initial iterate x0 ∈ Cn1

2: Implement Algorithm 1 to compute an optimum Y ∗ ∈
OB(r, n)

3: Implement Algorithm 2 to compute rotational states x̂ ∈
Cn1

4: Implement Eq. (11) to compute translational states ρ̂ ∈
Cn

5: return x̂ ∈ Cn1 and ρ̂ ∈ Cn

In particular, we remind the reader that our work is
different from [9], [11], [14]. It should be noted that the
n× n complex positive semidefinite matrix X ∈ Hn in our
semidefinite relaxation can be parameterized with n2−n real
numbers, whereas the semidefinite relaxation in [9] using
the matrix representation needs 2n2 − 3n real numbers to
parameterize the 2n × 2n real positive semidefinite matrix,

TABLE I: Results of the 2D SLAM datasets

Dataset n m f∗ PDL-GN [7], [8] SE-Sync [9] CPL-Sync [ours]
Total time (s) RTR time (s) Total time (s) RTR time (s) Total time (s)

ais2klinik 15115 16727 1.885× 102 10.20 2.60 2.71 1.01 1.15

city10000 10000 20687 6.386× 102 2.0 0.86 1.17 0.515 0.538

CSAIL 1045 1172 3.170× 101 0.08 0.005 0.014 0.001 0.005

M3500 3500 5453 1.939× 102 0.32 0.152 0.216 0.074 0.098

M3500-a 3500 5453 1.598× 103 0.506 0.16 0.228 0.08 0.103

M3500-b 3500 5453 3.676× 103 2.85 0.527 0.59 0.26 0.28

M3500-c 3500 5453 4.574× 103 3.2 0.75 0.82 0.37 0.40

manhattan 3500 5453 6.432× 103 1.88 0.044 0.108 0.019 0.042

intel 1728 2512 5.236× 101 0.14 0.038 0.061 0.017 0.026

KITTI 00 4541 4677 1.257× 102 0.41 0.076 0.11 0.027 0.038

KITTI 02 4661 4703 1.084× 102 0.29 0.053 0.085 0.018 0.029

KITTI 05 2761 2826 2.765× 102 0.21 0.023 0.032 0.008 0.015

KITTI 06 1101 1150 3.533× 101 0.076 0.005 0.013 0.001 0.004

KITTI 07 1101 1106 2.393× 101 0.039 0.006 0.014 0.002 0.005

KITTI 09 1591 1592 6.131× 101 0.059 0.018 0.029 0.006 0.01

which indicates that our formulation using the complex
number representation results in semidefinite relaxations
of smaller size. For the semidefinite relaxation using the
matrix representation, the authors in [9] actually relax the
constraint of the special orthogonal group SO(2) = {R ∈
R2×2|RTR = I, det(R) = 1} to that of the orthogonal
group O(2) = {A ∈ R2×2|ATA = I}, which might induce
ambiguities (gauge symmetry) to recover a solution from
the semidefinite relaxation even if a rank-two solution is
obtained, whereas our method always recovers a solution
in Cn1 from a rank-one solution to (SDP). As a result, our
semidefinite relaxation using the complex number represen-
tation should be a tighter relaxation of planar PGO than that
of [9] using the matrix representation. Moreover, in contrast
to the matrix representation in [9], the complex number
representation significantly reduces the computational cost,
about which a detailed discussion is made in Section VII.
Even though the semidefinite relaxation in [11] also uses the
complex number representation, our semidefinite relaxation
is more simple, which uses n×n complex matrices and only
depends on rotational states x ∈ Cn1 , whereas [11] uses 2n×
2n complex matrices and depends on both translational and
rotational states ρ ∈ Cn and x ∈ Cn1 . Moreover, [11] mainly
focuses on the optimality verification of planar PGO, in
comparison, we not only work on optimality verification, but
also present algorithms to solve planar PGO. As mentioned
before, the problem solved in [14] is phase synchronization
on SO(2), whereas ours is pose synchronization on SE(2).

VII. THE RESULTS OF EXPERIMENTS

In this section, we implement CPL-Sync on a suite of
large 2D SLAM benchmark datasets [9], [11], [24] and make
comparisons with the popular methods Powells Dog-Leg
method (PDL-GN) [7], [8] and SE-Sync [9]. The chordal
initialization [25] is used to generate an initial guess for all
the three methods. The C++ code of CPL-Sync is available
at https://github.com/fantaosha/CPL-Sync.

All the experiments have been performed on a laptop with
an Intel i7-8750H CPU and 32GB of RAM running Ubuntu
18.04 and using g++ 7.8 as C++ compiler. We have done
the computation on a single core of CPU. For all the datasets,
we have used a fixed rank rSE = 3 and rCPL = 2 for SE-
Sync and CPL-Sync, respectively, since we find that rSE =
3 and rCPL = 2 are good enough for SE-Sync and CPL-
Sync to solve planar PGO given the noises in robotics and
computer vision applications.

All the three methods converge to the same globally
optimal solution for all the datasets. The computational time
is as shown in Table I, in which n is the number of unknown
poses, m is the number of noisy measurements, f∗ is the
globally optimal objective value, the total time accounts for
all the time taken to solve PGO, and the RTR time only
accounts for the time taken by the RTR method to solve
Riemannian staircase optimization. The comparisons of SE-
Sync and CPL-Sync are as shown in Fig. 1, in which the
performance improvement factor of CPL-Sync over SE-Sync
is the computational time of SE-Sync divided by that of
CPL-Sync. From Table I and Fig. 1, it can be seen that
CLP-Sync is faster than both Powell’s Dog-Leg and SE-Sync
for all datasets. In addition, CPL-Sync outperforms SE-Sync
by a factor of 2.78 on average for the computation of the
RTR method, and by a factor 2.51 on average for the overall
computation of planar PGO.

The improvements of CPL-Sync over SE-Sync [9] in
planar PGO can be explained from three perspectives. First,
CPL-Sync is more efficient for the objective and gradient
evaluation, e.g., if the rank is rSE = 3 and rCPL = 2, CPL-
Sync only needs 1

2 ∼
2
3 and 1

4 ∼
2
3 operations of SE-Sync

to evaluate the objective and gradient, respectively. Second,
CPL-Sync is more efficient for the projection or retraction
onto the manifold – the projection map of CPL-Sync is just to
normalize n vectors, whereas that of SE-Sync has to compute
n singular value decompositions, which is much more time

https://github.com/fantaosha/CPL-Sync

(a) (b)

Fig. 1: The comparison of SE-Sync and CPL-Sync. The results are (a) performance improvement factor of RTR time of
CP-Sync over SE-Sync and (b) performance improvement factor of total time of CPL-Sync over SE-Sync. The performance
improvement factor of CPL-Sync over SE-Sync is the computational time of SE-Sync divided by that of CPL-Sync.

(a) city10000 (b) intel (c) M3500

(d) M3500-a (e) M3500-b (f) M3500-c

Fig. 2: The globally optimal results of CPL-Sync on some 2D SLAM benchmark datasets. It should be noted that CPL-Sync
still obtains global optima on M3500-a, M3500-b and M3500-c, which has large extra noises added to the rotational
measurements of M3500.

consuming. Third, CPL-Sync is more efficient for chordal
initialization and solution rounding. As a result, CPL-Sync
should be theoretically more efficient than SE-Sync, which
is further confirmed by the results of the experiments.

The globally optimal results of CPL-Sync on some 2D
SLAM benchmark datasets are as shown in Fig. 2. It should
be noted that M3500-a, M3500-b and M3500-c respec-
tively have extra Gaussian noises with standard deviation
0.1rad, 0.2rad and 0.3rad added to the rotational measure-
ments of M3500 [11], which indicates that CPL-Sync can

tolerate noisy measurements that are orders of magnitude
greater than real-world SLAM applications.

VIII. CONCLUSION

In this paper, we present CPL-Sync for planar PGO
using the complex number representation, and prove that
CPL-Sync exactly solves planar PGO as long as the noise
magnitude is below a certain threshold. The proposed CPL-
Sync is compared against Powell’s Dog-Leg [7], [8] and SE-
Sync [9] on 2D SLAM benchmark datasets, and the results

of experiments indicate that CPL-Sync works reliably and is
several times faster than the other two methods.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under award DCSD-1662233.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press,
2005.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, 2016.

[3] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Systems
Magazine, 2010.

[4] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation.

[5] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona, “A fast
and accurate approximation for planar pose graph optimization,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 965–
987, 2014.

[6] L. Carlone and A. Censi, “From angular manifolds to the integer
lattice: Guaranteed orientation estimation with application to pose
graph optimization,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 475–492, 2014.

[7] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[8] D. M. Rosen, M. Kaess, and J. J. Leonard, “Rise: An incremental
trust-region method for robust online sparse least-squares estimation,”
IEEE Transactions on Robotics, 2014.

[9] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “SE-Sync:
A certifiably correct algorithm for synchronization over the special
Euclidean group,” arXiv preprint arXiv:1612.07386, 2016.

[10] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert,
“Lagrangian duality in 3D SLAM: Verification techniques and optimal
solutions,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015.

[11] L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Dellaert, “Planar
pose graph optimization: Duality, optimal solutions, and verification,”
IEEE Transactions on Robotics, 2016.

[12] N. Boumal, V. Voroninski, and A. Bandeira, “The non-convex Burer-
Monteiro approach works on smooth semidefinite programs,” in Ad-
vances in Neural Information Processing Systems, 2016.

[13] J. M. Selig, Geometric fundamentals of robotics. Springer Science
& Business Media, 2004.

[14] A. S. Bandeira, N. Boumal, and A. Singer, “Tightness of the maxi-
mum likelihood semidefinite relaxation for angular synchronization,”
Mathematical Programming, vol. 163, no. 1-2, pp. 145–167, 2017.

[15] N. Boumal, “Nonconvex phase synchronization,” SIAM Journal on
Optimization, vol. 26, no. 4, pp. 2355–2377, 2016.

[16] P.-A. Absil and K. A. Gallivan, “Joint diagonalization on the oblique
manifold for independent component analysis,” in IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings,
2006.

[17] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Springer Science & Business Media, 2011, vol. 2.

[18] C. Khatri and K. Mardia, “The von Mises-Fisher matrix distribution in
orientation statistics,” Journal of the Royal Statistical Society. Series
B (Methodological), pp. 95–106, 1977.

[19] J. Gallier, “The schur complement and symmetric positive semidefinite
(and definite) matrices,” 2010.

[20] T. Fan, H. Wang, M. Rubenstein, and T. Murphey, “CPL-Sync:
Efficient and guaranteed planar pose graph optimization using
the complex number representation,” 2019. [Online]. Available:
https://northwestern.box.com/s/eb7w389ajypdx7p60bdjugcx8alg4i7h

[21] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[22] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods on
riemannian manifolds,” Foundations of Computational Mathematics,
vol. 7, no. 3, pp. 303–330, 2007.

[23] N. Boumal, “A Riemannian low-rank method for optimization over
semidefinite matrices with block-diagonal constraints,” arXiv preprint
arXiv:1506.00575, 2015.

[24] Y. Latif, C. Cadena, and J. Neira, “Robust graph slam back-ends: A
comparative analysis.”

[25] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization
techniques for 3D SLAM: a survey on rotation estimation and its
use in pose graph optimization,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015.

[26] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM,
2000, vol. 71.

[27] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, “Complementar-
ity and nondegeneracy in semidefinite programming,” Mathematical
programming, 1997.

APPENDIX A. THE DERIVATION OF (QP)

In this section, we derive (QP) following a similar proce-
dure of [9, Appendix B] even though ours uses the complex
number representation.

It is straightforward to rewrite (MLE) as

min
x∈Cn

1 , ρ∈C
n

∥∥∥∥B [ρx
]∥∥∥∥2

2

(16)

in which

B ,

[
B1 B2

0 B3

]
∈ C2m×2n.

Here B1 ∈ Rm×n, B2 ∈ Cm×n and B3 ∈ Cm×n are
respectively given by

[B1]ek =


−√τkj , e = (k, j) ∈

−→
E ,

√
τik, e = (i, k) ∈

−→
E ,

0, otherwise,

(17a)

[B2]ek =

{
−√τkj ρ̃kj , e = (k, j) ∈

−→
E ,

0, otherwise,
(17b)

and

[B3]ek =


−√κkj x̃kj , e = (k, j) ∈

−→
E ,

√
κik, e = (i, k) ∈

−→
E ,

0, otherwise.

(17c)

Since (P) is also equivalent to (MLE), it can be concluded
that

BH1 B1 = L(W ρ), (18a)

BH1 B2 = Ṽ , (18b)

BH2 B2 = Σ̃, (18c)

BH3 B3 = L(G̃x) (18d)

in which L(W ρ), Ṽ , Σ̃ and L(G̃x) are as defined in (P).
If we let Q̃σ , Σ̃ − Ṽ HL(W ρ)†Ṽ , then from Eqs. (18a)

https://northwestern.box.com/s/eb7w389ajypdx7p60bdjugcx8alg4i7h

to (18d), we obtain

Q̃σ = BH2 B2 −BH2 B1(BH1 B1)†BH1 B2

= BH2
(
I−B1(BH1 B1)†BH1

)
B2,

(19)

in which B1, B2 and B3 are defined as Eqs. (17a) to (17c).
It should be noted that we might rewrite B1 and B2 as

B1 = Ω
1
2AT , B2 = Ω

1
2 T̃ , (20)

in which A , A(
−→
G) and T̃ are given by Eq. (14) and

Eq. (13), respectively. Substituting Eq. (20) into Eq. (19),
we obtain

Q̃σ = BH2
(
I−B1(BH1 B1)†BH1

)
B2

= T̃HΩ
1
2 ΠΩ

1
2 T̃ ,

(21)

in which Π = I−Ω
1
2AT

(
AΩAT

)†
AΩ

1
2 ∈ Rm×m. It should

be noted that XT (XXT)† = X† for any matrix X , then we
further obtain

Π = I− Ω
1
2AT

(
AΩAT

)†
AΩ

1
2

= I−
(
AΩ

1
2

)†
AΩ

1
2 ,

(22)

which according to [26, Chapter 5.13] is the matrix of
orthogonal projection operator π : Cm → ker(A(

−→
G)Ω

1
2)

onto the kernel space of AΩ
1
2 . Moreover, it is possible to

decompose Π in terms of sparse matrices and their inverse for
efficient computation, which is similar to that in [9, Appendix
B.4].

APPENDIX B. PROOFS OF THE LEMMAS AND
PROPOSITIONS IN SECTION V

In this section, we present proofs of the lemmas and
propositions in Section V. These proofs draw heavily on [21]
and are similar to that of [9, Appendix C] and [14, Section
4.3].

B.1. Proof of Lemma 1

It is known that the unconstrained Euclidean gradient of
F , xHQ̃x is ∇F (x) = 2Q̃x, and thus, if we let S(x) ,
Q−<{ddiag(QxxH)}, the Riemannian gradient is

gradF (x) = projx(∇F (x))

= 2(Q−<{ddiag(QxxH)})x
= 2S(x)x.

In addition, the Riemannian Hessian is

HessF (x)[ẋ] = projxD gradF (x)[ẋ] = projx2S(x)ẋ,

from which we obtain

〈HessF (x)[ẋ], ẋ〉 = 2〈S(x)ẋ, ẋ〉.

Moreover, according to [21, Chapter 5], if expx : TxCn1 →
Cn1 is the exponential map at x ∈ Cn1 , we obtain

d
dt
F ◦ expx(tẋ)

∣∣∣∣
t=0

= 〈gradF (x), ẋ〉

and

d2

dt2
F ◦ expx(tẋ)

∣∣∣∣
t=0

= 〈HessF (x)[ẋ], ẋ〉.

Therefore, if x̂ ∈ Cn1 is a local optimum for Eq. (QP) and
Ŝ = S(x̂), it is required that Ŝx̂ = 0 and 〈ẋ, Ŝẋ〉 ≥ 0 for
all ẋ ∈ TxCn1 , which completes the proof.

B.2. Proof of Lemma 2

It should be noted that (1) to (5) in Lemma 2 are KKT
conditions of (SDP), which proves the necessity. Since the
identity matrix I ∈ Cn×n is strictly feasible to Lemma 2, the
Slater’s condition is satisfied, which proves the sufficiency.
In addition, it should be noted that the Slater’s condition also
holds for the dual of (SDP). If rank(Ŝ) = n− 1, according
to [27, Theorem 6], Ŝ is dual nondegenerate. Moreover, by
complementary slackness, Ŝ is also optimal for the dual of
(SDP), which, as a result of [27, Theorem 10], implies that
X̂ is unique. Since ŜX̂ = 0, it can be concluded that X̂ has
rank one.

B.3. Proof of Lemma 3

Since x̂ ∈ Cn1 is a first-order critical point and Ŝ � 0,
we conclude that x̂ is a second-order critical point from
Lemma 1. Also it can be checked that X̂ = x̂H x̂ ∈ Hn
satisfies (1) to (5) in Lemma 2, thus, x̂ solves (QP), and X̂
solves (SDP) and is the unique global optimum for (SDP) if
rank(Ŝ) = n− 1.

B.4. Proof of Proposition 2

In order to prove Proposition 2, we need Propositions 5
and 6 as follows.

Proposition 5. If Q ∈ Hn is data matrix of the form
Eq. (15) that is constructed with the true (latent) relative
measurements, and x ∈ Cn1 is the true (latent) value of
rotational states x, then Qx = 0 and λ2(Q) > 0.

Proof. For consistency, we assume that (P) and (QP) are
formulated with the true (latent) relative measurements. Let
ρ ∈ Cn be the true (latent) value of translational states ρ,
then q =

[
ρT xT

]T ∈ Cn×Cn1 solves (P), and the optimal
objective value is 0. Since (QP) is equivalent to (P), it can be
concluded that x ∈ Cn1 solves (QP), and the optimal objective
value of (QP) is 0 as well. Furthermore, since Q � 0, we
obtain Qx = 0. Let Θ , diag{x1, · · · , xn} ∈ Cn×n and
L(W x) ∈ Rn×n be the Laplacian such that

[L(W x)]ij ,


∑

(i,k)∈E
κik, i = j,

−κij , (i, j) ∈ E ,
0 otherwise,

we obtain L(Gx) = ΘL(W x)ΘH . It should be noted that
G is assumed to be connected, as a result, λ2(L(Gx)) > 0
and L(Gx)x = 0. In addition, by definition, we have Q =

L(Gx) +Qσ , in which Qσ = Σ− V HL(W ρ)†V , and from
Eqs. (18a) to (18c), it can be concluded that Qσ � 0. As a
result, we obtain λ2(Q) ≥ λ2(L(Gx)) > 0.

Proposition 6. If x ∈ Cn1 is the true (latent) value of x ∈ Cn1 ,
and x̂ solves (QP), and d(x, x̂) , min

θ∈R
‖x̂− eiθx‖, then we

obtain

d(x, x̂) ≤ 2

√√√√n‖Q̃−Q‖2
λ2(Q)

(23)

Proof. If we define ∆Q , Q̃−Q ∈ Hn to be the perturbation
matrix, then

xHQ̃x = xHQx+ xH∆Qx = xH∆Qx ≤ n‖∆Q‖2, (24)

in which, according to Proposition 5, xHQx = 0. In addition,
it should be noted that

xHQ̃x ≥ x̂HQ̃x̂ (25)

and

x̂HQ̃x̂ = x̂HQx̂+ x̂H∆Qx̂ ≥ x̂HQx̂− n‖∆Q‖2. (26)

From Eqs. (24) to (26), we obtain

2n‖∆Q‖2 ≥ x̂HQx̂ (27)

As a result of Proposition 5, we obtain Qx = 0 and λ2(Q) >
0, and furthermore,

x̂HQx̂ ≥ (x̂− 1

n
xH x̂x)HQ(x̂− 1

n
xH x̂x)

≥ 1

n
λ2(Q)(n2 − |xHx|2)

≥ λ2(Q)(n− |xHx|)

(28)

Substituting Eq. (28) into Eq. (27) and simplifying the
resulting equation, we obtain

n− |xHx| ≤ 2n‖∆Q‖2
λ2(Q)

. (29)

In addition, it is straightforward to show d(x, x̂) =√
2n− 2|x̂Hx|, and then from Eq. (29), we complete the

proof.

To prove Proposition 2, we first decompose Ŝ = Q̃ −
<(ddiag(Q̃x̂H x̂)) as follows.

Ŝ =Q̃−<(ddiag(Q̃x̂H x̂))

=Q+ ∆Q−
<
{

ddiag
(
(Q+ ∆Q)(x+ ∆x)(x+ ∆x)H

)}
=Q+ ∆Q−<

{
ddiag(Q∆xxH + ddiag(Q∆x∆xH+

∆Q(x+ ∆x)(x+ ∆x)H)
}︸ ︷︷ ︸

∆S

,

in which x ∈ Cn1 is the true (latent) value of x ∈ Cn1 , x̂
solves (QP), and ∆x =, x̂ − x. In addition, we assume
‖x̂ − x‖ = d(x̂, x) , min

θ∈R
‖x̂ − eiθx‖. It is obvious that

‖∆S‖2 → 0 as long as ‖∆Q‖2 → 0 and ‖∆x‖ → 0, and
by Proposition 6, ‖∆x‖ → 0 as long as ‖∆Q‖2 → 0. As
a result, from continuity, there exists some γ > 0 such that
‖∆S‖2 ≤ λ2(Q) as long as ‖∆Q‖2 < γ. Then we obtain

λi(Ŝ) ≥ λi(Q)− ‖∆S‖2 > λi(Q)− λ2(Q) ≥ 0,

which implies that Ŝ has n − 1 positive eigenvalues. In
addition, by Lemma 1, we obtain Ŝx̂ = 0, from which it can
be concluded that Ŝ � 0 and rank(Ŝ) = n−1. Furthermore,
Lemma 3 guarantees that X̂ = x̂x̂H ∈ Hn is the optimum
of (SDP).

	Introduction
	Notation
	The Complex Number Representation of SO(2) and SE(2)
	Problem Formulation and Simplification
	Problem Formulation
	Problem Simplification

	The Semidefinite Relaxation
	The CPL-Sync Algorithm
	The Results of Experiments
	Conclusion
	References

