Journal of Computational Physics 409 (2020) 109295

Contents lists available at ScienceDirect

Computational
Physics

Journal of Computational Physics

www.elsevier.com/locate/jcp

A semi-Lagrangian discontinuous Galerkin (DG) - local DG n
method for solving convection-diffusion equations S

Mingchang Ding?, Xiaofeng Cai?, Wei Guo !, Jing-Mei Qju®*-2

a Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, United States of America
b Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 70409, United States of America

ARTICLE INFO ABSTRACT
ArtiC{e history: In this paper, we propose an efficient high order semi-Lagrangian (SL) discontinuous
Received 12 July 2019 Galerkin (DG) method for solving linear convection-diffusion equations. The method

Received in revised form 22 January 2020
Accepted 26 January 2020
Available online 7 February 2020

generalizes our previous work on developing the SLDG method for transport equations
[5], making it capable of handling additional diffusion and source terms. Within the DG
framework, the solution is evolved along the characteristics; while the diffusion term is
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Semi-Lagrangian ‘SLDG-LDG’ method and enjoys many attractive features of the DG and SL methods. These
Discontinuous Galerkin (DG) method include the uniformly high order accuracy (e.g. third order) in space and in time, compact,
Local DG method mass conservative, and stability under large time stepping size. An L? stability analysis is
Implicit Runge-Kutta method provided when the method is coupled with the first order backward Euler discretization.

Stability analysis Effectiveness of the method are demonstrated by a group of numerical tests in one and

two dimensions.
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1. Introduction
In this paper, we are concerned with solving the time dependent convection-diffusion problems in the form of

ur+ Vx - @, Hu)y =€eAu+g, xeQ, t=>0,

(1.1)
ux,0)=up(x), xe
with € > 0. For the scope of our current research, we assume the velocity field a(x,t) to be continuous with respect to x
and t.

A popular computational method for finding approximate solutions to transport dominant problems in the form (1.1) is
the semi-Lagrangian (SL) method, which has a long history in computational fluid dynamics, e.g. for convection-diffusion
problems [21,16], climate modeling [15,18,9], plasma simulations [17], as well as linear and Hamilton-Jacobi equations [10].
For transport dominant problems, the method is designed via tracking the characteristics forward or backward in time, thus
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avoiding the time step restriction, and can be coupled with various spatial discretization, such as the finite element method
[16], the finite difference method with polynomial and spline interpolations [17], the spectral element method [11], the
discontinuous Galerkin (DG) method [5]. In the presence of diffusion and source terms, usually time integration should be
performed along characteristics, e.g. see [12] for the BGK model, and [7,2,21] for linear and nonlinear convection-diffusion
models.

The objective of this paper is to develop an efficient high order SL method for (1.1) under the DG framework. The DG
discretization approach is a class of finite element methods that use piecewise continuous approximations and enjoy many
attractive computational advantages for transport dominant problems. In this paper, we propose to evolve the convection
term by the SLDG method recently proposed in [5], and treat the diffusion term by the local DG (LDG) method coupled
with a diagonally implicit (DI) Runge-Kutta (RK) method along dynamic characteristics elements. The proposed method
is termed as the SLDG-LDG method. In the scheme formulation, we introduce the adjoint problem for the test function
in the same spirit of ELLAM [16], and project the DG solution and LDG approximation to second derivative terms onto
a set of time-dependent characteristics elements, based on the procedure developed in our earlier work [5]. There are a
few key novelties of this work, compared with existing methods in the literature. First, thanks to the DG framework to-
gether with the backward characteristics tracing mechanism, our proposed scheme is inherently locally mass conservative.
In particular, when compared with the SL finite difference framework in which a high order interpolation is employed,
the DG finite element and the finite volume schemes are known to be a more natural framework for mass conserva-
tion; the authors in [3] propose an SLDG method with forward characteristics tracing. In their work the global mass
conservation is enforced by an extra step of constrained optimization, i.e., a mass fixer, and hence the local mass con-
servation as well as the original order accuracy are not guaranteed. We note that the SLDG work [5] is an extension of
the CSLAM [14] from the finite volume setting to the DG setting by introducing an adjoint problem for the test func-
tion; and it shares the same local mass conservation property with the CSLAM. Second, we inherit advantages of the DG
in the SL framework. These include the schemes’ ability to resolve solution structures and to evaluate the diffusion term
by the LDG method. In the LDG method, by introducing auxiliary variables the second spatial derivative is rewritten into
a system of first order equations, and proper choices of fluxes are made for numerical stability and accuracy. Third, un-
like the method-of-lines approach in an Eulerian framework, the time integration has to be performed for the material
derivative which is not necessarily aligned with the background grid. Hence, extra effort has to be made. Second order
Crank-Nicolson and BDF methods have been proposed and used in the SL setting [21]; yet there is little existing work that
employs higher than second order multi-stage RK method for the integration of non-convection terms. In this work, on
each RK stage, we propose to update the solution and the diffusion term on the background elements; and then project
them to the characteristics elements by the same SLDG algorithm in a purely convective setting [5]. The RK implementa-
tion can be done in a stage-by-stage manner as that of first order backward Euler method. As we use the SL method for
transport and implicit RK method along characteristics for other terms, our scheme is highly accurate and unconditionally
stable for linear problems. Last, our scheme formulation does not employ operator splitting and thus is free of splitting
error.

Another class of very popular solvers for (1.1) is the Eulerian method, among which the most relevant high order methods
related to this work is the Eulerian DG method. Typically, an implicit-explicit (IMEX) RK time discretization is used for time
discretization of (1.1), i.e. the convection term is handled by explicit RK methods, while the diffusion term is discretized by
an LDG [8] method in space along with an implicit RK method in time. From the stability analysis via the energy method in
[19], there is a very strong result stating that “such IMEX LDG schemes are unconditionally stable for the linear problems
in the sense that the time-step size is only required to be upper-bounded by a constant which depends on the ratio of
the diffusion and the square of the advection coefficients and is independent of the spatial mesh-size h, even though the
advection term is treated explicitly.” We remark that, under the same setting, our scheme is unconditionally stable with no
time step constraint for stability, when a first order backward Euler method is used. Extension of the theoretical analysis,
when a higher order DIRK method is used for diffusion term, is subject to future work.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed methodology for one-dimensional
(1D) and two-dimensional (2D) problems; theoretically we prove the mass conservation and L? stability when the method
is coupled with the first-order backward Euler method. In Section 3, we present numerical results to demonstrate the
effectiveness of our proposed approach with high order accuracy, and stability under large time stepping sizes. Finally, a
conclusion is given in Section 4.

2. The SLDG-LDG method for convection-diffusion problems

In this paper, we focus on problems in one and two dimensions on rectangular domains with zero or periodic boundary
conditions. Notice that our problem (1.1) is in the conservative form, for which local mass conservation is desired at the
discrete level for the numerical scheme. Below, we formulate the proposed scheme for 1D problems in Section 2.1 by first
introducing the spatial discretization and the adjoint problem for the test function; then we introduce the proposed treat-
ment of the diffusion and source terms with DIRK methods along characteristic elements. The extensions to 2D problems
are then discussed briefly in Section 2.2.
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Fig. 1. Schematic illustration of the SLDG-LDG formulation in 1D. Left: Integration region K, dynamic interval I ?“'” =

lﬁ]'” U 13!45]‘”. Right: Interpolation of ¢!,

(t) and upstream interval [

2.1. Scheme formulation: 1D case
To introduce the algorithm, we start from the 1D case of (1.1):

ur + (a(x, HHu)x = €uxy + &. (2.1)

I. Spatial discretization: DG solution and test function spaces. We discretize the 1D domain [x4, x,] into N elements: x, =
x% <x% < e <xN+% = Xp, with I; = [xjf%,xH%] denoting an element of length Ax; :Xj+% —xJ;% for j=1,2,---,N.
At =t"t1 _ " represents the time discretization step. In the framework of the DG method, we let numerical solutions and
test functions belong to the finite dimensional piecewise approximation space

VE={vh:vnli, € P, j=1,2,--- N}, (22)
where P"(Ij) denotes the set of polynomials of degree at most k over I;.

II. Adjoint problem. To formulate the SLDG-LDG scheme, we follow a similar idea in [13,5] by considering the following
adjoint problem for the test function ¥ (x, t) that satisfies

Ye+ax, Yy =0, telr, ] (2.3)

with

¥ (X, 1) = ¥(x) € VF. (2.4)

In other words, v satisfies a final-value problem with function values specified at t2. For a pure convection problem [5],
we have [19, 2] = [t", t"t1]; while 77 and 7, could also correspond to different time stages in an implicit RK method when
discretizing the diffusion and source terms along characteristics. Next, we make the following observations for the test
function v (x, t):

(i) While the original problem (1.1) is in the conservative form, an adjoint problem for the test function is in the advective
form (2.3). Along characteristics curves governed by

dx(t) -
=a(x(t), t), 2.5
i (*(), £) (2.5)
¥ (x(t),t) stays constant. Hence v (x,t), VX € [Xq, Xp], t € [T1, T2) can be obtained by tracking characteristics based on
(2.5).
(ii) The test function satisfies a final value problem (2.4). In general, v (x, t) with t € [t1, T2), is not necessarily a polynomial.
Yet, it can be approximated by polynomials with high order accuracy as presented in the algorithm flowchart Step 1.1
below.

IIL. Time dependent characteristics interval, see Fig. 1(a). Let

IO =Ry 0. %, 1 (01, telt ™,
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be the dynamic interval bounded by characteristics curves x 1([) and x 1(t) emanating from cell boundaries of I; at

"1 where X Xjx1 (t) satisfy the final value problems

dx. 1(t)
S R 0,0, R (@) =x;

dt jE vl i*3 IESN (26)

Let [X; 1 ™), x Xjp1 ™= [x"“ n '}f ™, which will be referred to as the “upstream cell” at t" later. Here the superscripts
2

n+1,n refer to the interval from "1 being tracked backward in time to t". See Fig. 1(a) for illustration of )?jf% @), )?H% (t)
and [ n+1 n Xn+1.n

- N
IV. SLDG-LDG scheme formulation and discretization. Let u" be the numerical solution at time t", the SLDG-LDG scheme is
formulated based on Proposition 2.1 presented below.

Proposition 2.1. Consider the 1D problem (2.1) and the adjoint problem (2.3) for the test function v, then the following identity holds

tn+1
/u"“xp dx — / uty L dx = / / [€ux + gl dxdt, We PK(I)) (2.7)
Ij 'r]&l,n tn ir}&l,n(t)
Term | Term Il

where ™11 is the solution to the adjoint problem (2.3) with v (x, t"T1) = W at t".

Proof. [,-(2.1)- ¢ +(2.3)-u dx dt leads to

/([ut + (alx, Owx]Y + (Y +alx, Hy]u) dx dt=/[6uxx+g]w dxdt, (2.8)
K K

where the domain K (see Fig. 1(a)) is bounded by I}, I?“’” from above and below, and characteristic trajectories Scj_% (t)
and 7<j +1 (t) from left and right, respectively. Rearranging terms in Eq. (2.8) gives

/[uW]t + [ax, Huy ]y dxdt = /[euxx + gly dx dt. (2.9)
K K

Applying the divergence theorem to the left-hand side (LHS) of Eq. (2.9) and due to the cancellation of the integrals along
the characteristic curves, we prove (2.7). O

To update u"+! ¢ V,’j, one has to evaluate Term I and Term II in Eq. (2.7) by letting the test function W go through all the
basis functions in V,’j. In particular, the proposed SLDG-LDG scheme consists of the following two steps: Step 1.1 and 1.2.

Step 1.1: Evaluation of Term I of (2.7) as in the SLDG method [5]. To evaluate fﬂﬂ,n u"yy" 1L dx, we propose the procedures
J
below.

Step 1.1a: Reconstruct test function "+ through interpolation. Choose k + 1 interpolation points {x Joig }f;;l such as the

n+1 n}k+1

Gauss-Lobatto (GL) points over I; at "1 and locate the characteristic feet {x ; at t* by solving

O _ qx(t), t)

(2.10)
1
X(t“+ )= Xjig
with high order numerical integrators. In our implementation, a fourth order RK method is applied. Thus, y"*1- "(x’}f;l M=
W(Xjig)s forig=1,---,k+ 1. We then construct a degree k polynomial \IJZH‘"(X) interpolating the ™" function at

n+1, n}k+1

characteristic feet {x; Juig Jig=1

located over upstream interval I?H’” in Step 1.1a, see Fig. 1(b).

Step 1.1b: Integrating Term I by summation over sub-intervals. From Fig. 1(a), we can see that there are two inter-

sections I"H n [x"“ mx -1 and I"H n =[x, x’}“ ™ between I'”'l " and the background element I;. In general,
L - U I"Jr1 " where I is the index for sub—intervals. Term I is approximated by

J
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/ a3 / WL gy, (211)

ln+1.n l ln+1.n

? !
On each of these subintervals I"Jr1 o "kI/f“'" is continuous and its integration can be approximated by quadrature rules.
Notice that u" is discontinuous across cell boundaries.

Step 1.2: Evaluation of Term II of (2.7) along characteristics intervals. There are two technical components involved in
this step: one is an LDG approximation to the second order derivative term uy, together with a proper evaluation of
fim,n(t) [€uxx + gl¥ dx; the other is the high order temporal discretization by a RK method for

J

% / uy dx = / [euxx + gl dx, (212)

i;&Ln(t) iTr]'"(t)

which is the time differential form of Eq. (2.7). We will first discuss the evaluation of Term II coupled with a simple
backward Euler time discretization. Then we will extend the idea to high order time integration by employing diagonally
implicit RK (DIRK) methods. The diagonally implicit property allows one to solve a linear system for the current RK stage
only, greatly reducing computational complexity and cost.

Step 1.2a: LDG approximation of u,, [8]. We use the LDG formulation to seek p € V,’j approximating uxy. In particular,
D = Uxx can be rewritten as a first order system

{ngx’ (2.13)
—u,.

Then, we seek p,q € V,’j such that, for all test functions v, w € P"(Ij),

(V)1 =8V, =0y f% @ voi;, (2.14a)
@w)y =iy Wi, =0 Wi = W W, (2.14b)

where (-, -);; stands for the L2 inner product on interval I}, and * denotes the numerical fluxes defined at the cell interfaces,
which are taken as the alternating fluxes for stability consideration

Gg=q-, a=u"; or g=q*, d=u". (2.15)

Notice that g can be solved explicitly in terms of u from (2.14b); and also p can be solved explicitly from g from (2.14a).
In short, p =uxx can be computed locally by using u from three nearby elements, namely I;_q, I; and Ij4q.

Step 1.2b. DIRK methods for accurate evaluations of the time integral.
We start from a first order backward Euler time discretization of (2.12):

@ W) — @, "t ”),n+1 n= At (eulf! 4+ g™, xp),j . (2.16)
After rearranging the terms in Eq. (2.16), we obtain
@ W) — e At Wy = @ YT e + AL W) (217)
J

For notational simplicity of the presentation, above we let (€uyy, ¥) 1; represent the LDG discretization of the diffusion term,
without writing out all the flux and volume integral terms from integration—by—part in an LDG formulation.

With the test function W going through all basis functions in V¥, we can formulate a linear system for degrees of freedom
(i.e., the coefficients of the basis) of u"*! as

h’

Biu™! =1, (2.18)

which can be solved by an iterative method, e.g. GMRES. Here the matrix By = — € AtDA, where Do comes from an
LDG discretization of uyy; and f; can be obtained from evaluating right-hand side (RHS) terms of (2.17). The details in
constructing the sparse matrix By are provided in Appendix A.

To attain higher order accuracy in time, we propose to employ high order DIRK methods. Here, we demonstrate the
scheme with an L-stable, two-stage, second-order DIRK method, termed as DIRK2 [1] (as in Table 1) that involves two
stages: t() =" + pAt and t@ ="+,
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Table 1

DIRK2.
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Fig. 2. Schematic illustration of 1D SLDG-LDG formulation coupled with DIRK2. Left: First time stage t1). Right: Second time stage t"*!.

For the convenience of our presentations for DIRK discretization along characteristics, we introduce the following nota-
tions
UACECONM (2.19)
(i) ¥™7(x) denotes the solution v (x, T) satisfying the final value problem (2.4). Here 7, and t may refer to intermediate
RK stages in a DIRK discretization. Assuming DIRK has s stage t" <t < ... <¢® =¢+1, Pt (x) with 1 < jj <ii <
s, denotes the function v (x) at t =t satisfying the adjoint problem (2.4) with the final value ¥ (x, t1) = ¥(x) € V}.
For notational simplicity, we let y Ui = y e (x),

s TT o T2.T JT2.T . 2,7 . . . s _ (D ¢Uh
(ii) Ij = [xj_%,xj+%] with in% being the solution to Eq. (2.6) at time T with xji%(rz) _xji%. For example, Ij

[ij_% Ny, ;(H% (tv(.”))v] with chi% (t) satisfying (2.6) and the final value iji% iy = Xji1s respectively. For simplicity,
we let [0 = e
j j :

Following the above notations, the proposed SLDG-LDG scheme when coupled with a DIRK2 method (see Table 1) along
characteristics curves can be implemented as below.

(i) In the first time stage 7, = t()), as shown in Fig. 2(a), for each Eulerian background cell I;, we solve the numerical
solution u™ € Vf at intermediate stage t" from the following formulation

J

W, Wy = @y O = AL (euy) +80. W) (2:20)

Note that the formulation is equivalent to applying a first order backward Euler method with vAt. Implementation-wise,
(2.20) can be written as Bou» =f,, where B, and f, can be collected in a similar fashion as those for matrix B; and
vector f; in Eq. (2.18).

(i) In the second time stage T, = t"t!, as shown in Fig. 2(b), we have the following formulation

1
(uﬂ+17 \IJ)IJ- _ (un’ ]//11+1,n)1r}+1m = At |:(1 _ U) . <€u)((x) + g('l)7 wn+1,(1)) w1 RIS (euz)-:-l + gTH—'l! lp)[j] )

I}
(2.21)

Notice that 1.7 1.0 are in general not polynomials, yet can be well approximated by polynomials as in Step
1.1b. Reorganizing terms in (2.21) gives

@™ W), — At veh W) = @ YT i + At (1= e,y D) i
J J

+AE-(1—v) (g“), WH’(])),mm + At-v (g, \I/),j . (2.22)
J
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Notice that the first term on RHS of (2.22) can be evaluated as in Step 1.1; the second term on RHS of (2.22) can

be evaluated by first computing u,((}() in an LDG fashion with u® given from the first stage of RK computation, and

then applying the same procedure as in Step 1.1 to evaluate (u,g(), w”“’(”)lnﬂ.m; the latter two terms involving g can be
j

directly evaluated by quadrature rules. Implementation-wise, (2.22) can be written as Bzu""! = f3 with B3 the same
matrix as By in the first time stage.

Remark 2.2. The above procedure is for a two-stage second-order DIRK discretization of diffusion and source terms. Such a
procedure can be generalized to any DIRK methods. For some high order DIRK discretization methods we use for the numer-
ical experiment, the associated Butcher tableaus are provided in Appendix A including the L-stable, three-stage, third-order
DIRK method in Table 7 [6], the L-stable, five-stage, fourth-order method in Table 8 [20]. Notice that, we use the SLDG
method for the convection term and an implicit discretization for the diffusion and source terms; thus the time stepping
size allowed could be much larger than that of an explicit Eulerian RKDG method.

Remark 2.3. All DIRK time discretization methods we employ in the paper have the property that a;; #0, Vi=1,---s and
the method are stiffly accurate; these properties are important for numerical stability.

2.2. Scheme formulation: 2D case

In this subsection, we generalize the above 1D SLDG-LDG scheme for solving the following 2D problem

ur+ (ax, y, Hw)x + (b(x, y, Hu)y =€Au+ g. (2.23)
We begin with a partition of the 2D domain as Q = {Ej}}:1. The numerical solutions and test functions belong to the finite
dimensional piecewise approximation space

VE={vp:vnlg; € PYE). j=1,2,- . ]} (2.24)

where Pk(Ej) denotes the set of polynomials of degree at most k over each element E;.
Similar to the 1D case and the strategy in [5], we consider the adjoint problem for the test function ¢ = ¥ (x, y,t)
satisfying

Ye+ax, y, Oy +bx, y, 0%y =0, telt,12], (2.25)

with ¥ (x,y, 72) = V(x,y) € V,’j. A similar observation as in the 1D case is that the solution to (2.25) stays constant along
the characteristic curves governed by
dx(t) dy(t)

Let E j(t) be the dynamic moving cell bounded by characteristics curves emanating from the edges of Eulerian cell E; at
t"*1 and E'}“’” be the upstream cell as E"j(t =t"), see Fig. 3(a). A 2D generalization of Proposition 2.1 is established in the
following.

Proposition 2.4. Consider the 2D problem (2.23) and the adjoint problem (2.25) for the test function v, then the following identity

holds
tlH—l
// U™ W dx dy — // uy " dx dy = / / le Au + gly dxdy dt, (2.26)
E; E?H,n th Ej(t)
Term I Term Il

where ¥t 11 is the solution to the adjoint problem (2.25) at t" with ¥ (x, y, t"1) = W e V,’j.

Similar to the 1D case, the update of u™*! ¢ V,’f depends on proper evaluations of Term I and Term II of Eq. (2.26). We
again refer to [5] for detailed procedures of evaluating Term I and only summarize main steps below. The computation of
Term II consists of two parts: the first part is approximating Au by using 2D LDG spatial discretization, and the second part
is high order time integration over the dynamic moving cell E j(t) along the characteristics. These two parts share the same
spirit with Step 1.2 in Subsection 2.1. Below we outline the main procedures for a 2D problem.

Step 2.1: Evaluation of Term I of (2.26). It's worth noting that when the velocity field is space and time dependent, the up-

stream cell E'}‘H’" might not be of quadrilateral shape. When they are approximated by a quadrilateral or a quadratic-curved
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Fig. 3. Schematic illustration of the SLDG formulation with P! polynomial spaces in 2D. Left: upstream cell E;’.“‘”. Right: Quadrilateral upstream cells.

(QC) quadrilateral, second or third-order spatial accuracy can be achieved, respectively. Here, as an example, we discuss the
formulation with P! polynomial spaces.

n+1, n} n+1,n

Step 2.1a: Characteristic tracing. Locate four vertices {vg at t" by solving the final value

problem

_, of upstream cell E

BO _ (D), J(O), 0, XEH) =xy,,
GO p(e), 50,0, FEH) = yy,

by high order numerical integrators the same way as in the 1D case, and {vq};‘:1 with coordinates (xy,, yy,) are the four
vertices of Ej.

(2.27)

Step 2.1b: Reconstruction of the test function y"*!" and decomposition of Term I. It is known that ¥ (x, y, t) with adjoint
problem (2.25) stays constant along characteristics,

P (v, y (vt M) = W(x(vg). y(vg)). q=1.--- .4 (2.28)
We can reconstruct P¥ (k=1) polynomial \ll”+1 "M (x) to approximate "1 by a least-square strategy. Let E”+1 " be inter-
sections between the upstream cell E"Jrl " and the background cell E;, see in Fig. 3(b). In general, E"H "= U E"Jrl "

l€€n+1 n
J

where 6”+1 o {llE'H'l T £ ¢ where E'H'1 = E"Jr1 "N E;}, and then Term I in (2.26) can be approximated with

// Uty dx dy &~ Z // um WL (x ) dx dy. (2.29)

n+l n n 1n

En+1 n

n+1,n

Step 2.1c: Line integral evaluation. To evaluate the area integral [, prn u"\w, (x, y) dx dy, we can introduce two auxiliary
jil

functions P(x, y) and Q (x, y) satisfying
—— = =u" Tk, ).

Due to the Green’s theorem, the area integral can be converted into the line integrals as

// u" M (x y) dx dy = # Pdx+Q dy, (2.30)

n+1,n Apn+in
E" IET]

n+1 n

where quadrature rules can be directly applied along BE . This evaluation procedure is the same as in [14].

Remark 2.5. Applying quadrilateral approximation to P? polynomial spaces will restrict us with the second-order accuracy
in a general setting. This motivates us to use QC quadrilateral approximatlon to the upstream cells for higher order accuracy.
There are two additional key steps. First, locate nine upstream points {v"+ "}9_] belonging to the upstream cell E"LR see

Fig. 4(a), by solving (2.27) with final values {Vq}q=1 (nine uniformly distributed points at E;). Second, approximate each
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n+1n 4
(= /
4
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n+l,n

‘ U;Hrl,n 5

(a) (b)

Fig. 4. Schematic illustration of the SLDG formulation with P2 polynomial spaces in 2D. Left: upstream cell E?“‘" and subregion E'}T]’”. Right: QC quadri-
lateral upstream cells.

side of the upstream cell with a quadratic curve by a parameterization and evaluation of the area integral through the line
integrals. For more details, we refer to [5].

Step 2.2: Evaluation of Term IL. Evaluation of Term II in Eq. (2.26) can be realized by similar steps as in Step 1.2. First, the
LDG approximation to uy, in Step 1.2a can be directly generalized to evaluate Au in the 2D setting. p = Au is rewritten
into a system of first order equations

p=qx+hy, q=ux, h=uy. (2.31)

Weak formulations of (2.31) can be discretized by an LDG method as in (2.14) to compute p = Au from five nearby elements.
High order time discretizations of Term II can be fulfilled with DIRK methods on E (t) in the same fashion as Step 1.2b, by
applying DIRK methods to the time differential form of the scheme (2.26)

%//ux/zdxdy://[eAu + gly dxdy. (2.32)

Ej® Ej@®
We summarize the flowchart below in Algorithm 1, assuming the DIRK method has s-stages with the Butcher tableau

c| A
bT

where A = (g;;,jj) € R¥, be R, and ¢ € R®. In this paper, we assume that the DIRK method is stiffly accurate, i.e. the last

row of the A matrix is the same as the b” vector. Below we adopt a similar set of notations for the E;Z’r and ¥ T (x, y) as

in the 1D case, see (2.19). In particular, Ejr.2~r is the upstream cell at time 7, traced from the Eulerian cell E; at time

Ty; and ¥ ™7 (x,y) is the approximation to the test function y satisfying the adjoint problem (2.25) with final value
Y(x,y, 1) =W y) e VK

(i) In each DIRK stage t() 1 <ii <s, we have

n
@, Wyg, = @y OM) i+ Y ai At (eAu(“) +glh, 1//(n).(u))E(.my(jj) .
L= i
Rearranging the terms gives

(u(il’), \,IJ)Ej — a,',",'iAtE(Au(ii), \I’)Ej
) ii—1 .. . i (ii
_ (un’ w(“)’n)E(_i")v” + Z aii,jjAt <EAU(]]) —|—g(]])’ ,(//.(”)~(]]))
j o
Jji=1

g T i AL (g(”), \IJ)E,’ (2.33)
j j
which is a generalization from the scheme for 1D problems (2.17) and (2.21).
(i) Since the DIRK method we used is stiffly accurate, u™! =u®.
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Algorithm 1 The SLDG-LDG scheme coupled with DIRK methods.

forii=1— s do
for jj=1—ii do

Compute the RHS of Eq. (2.33) by performing the following:
1. Find upstream cell Ej-")'(”) via tracing characteristic backwards by (cij — cj;) At

as in Step 2.1a. o
2. Approximate test function 1//‘”“{” by a least-square strategy as in Step 2.1b.
3. Compute (u, ™) i, (AulD, -0y a5 and (g0, g D-UD) oo i

J J I

by SLDG method as in Step 2.1c.

4. Evaluate (g™, W), by quadrature rules.
J

end for
Compute u‘™® from Eq. (2.33).
Compute Au™) with LDG method.

end for
u™tl =y,
| Cell-E } | Cell-U |
I I
| SLDG-LDG solution | | Node-E — Node-U | | Test function
(i) Cell-E: Eulerian Cell E;. (i) Cell-U: Upstream Cell £{")°07),
Node-E: {Ufl}ézl for PO9& P! or {'Uq}g:l for P2. Node-U: {vt(;‘i)’(jj)}‘lzl for PO P! or
SLDG-LDG solution: u™ € P*(E). {009 for P2,

Test function: ¢(#):(35)
(41, 77 here refer to the indexes in the Algorithm 1).

Fig. 5. Data structure of 2D SLDG-LDG schemes.

Finally, we present the data structure for setting up the 2D SLDG-LDG implementation, which is similar to that in [5].
There are two main classes as specified below. Please see Fig. 5 in which the lines in the figure indicate connections between
classes.

(i) Cell-E representing Eulerian cells, e.g. E; in Fig. 4(a). Main variables are
- Node-E: {vq}f;z1 for P? and P1; {vq}g=1 for P2 as vertices of Eulerian cell.
- SLDG-LDG solution.

(ii) Cell-U representing upstream cells, e.g. in Fig. 4(a). Main variables are

Eq+1,n

- Node-U: {vf,”)’(“)}gzl for P? and P!; {vf]”)‘(”)}f;:l for P2 as vertices of upstream cell.

- Test function: e.g. Y"1 (x, y) approximated by a least-square procedure and by following characteristics of the
adjoint problem, see Step 2.1b.

2.3. Stability analysis

We now briefly discuss the mass conservation and stability properties of the proposed SLDG-LDG schemes when coupled
with first order backward Euler method. Stability analysis of our scheme coupling with higher order time discretization will
be pursued in the future.

Proposition 2.6 (Mass conservative). The SLDG-LDG method coupled with any DIRK time discretization methods for the linear
convection-diffusion problems enjoy the mass conservation property, assuming the source term g = 0 in Eq. (2.1) and periodic bound-
ary condition.

/u”“dx:/u“dx.

Q Q

Proof. This proposition can be easily proved by letting the test function ¥ =1 in Eq. (2.7) and Eq. (2.26) for 1D and 2D
cases respectively, and then making use of the flux form of the LDG approximation of the diffusion term. O
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Proposition 2.7 (L? stability). Consider the proposed SLDG-LDG scheme coupled with the first-order backward Euler time discretiza-
tion for 1D linear convection-diffusion equation u; + Uy = €uyxy, € > 0 and periodic boundary condition, then:
lu™ ) < . (2.34)

where || - || denotes the standard L? norm over S2.

Proof. The SLDG-LDG scheme for the 1D linear problem writes

N j+3
(un-'r], "Il)lj _ (ul‘l’ wn+1,n)ly+1,n =€ - At <(qn+1 \p)|jii _ (qTH-]’ \IJX)Ij) s (2353)
2
N j+1
@), =@ @I - @ gy, (2.35b)

j—
where W, ¢ € V,’j. As a standard technique for proving the stability, we take the test function ¥ = u"! and ¢ =¢"*! on I j
in Eq. (2.35a) and Eq. (2.35b), respectively. According to (2.3), we have

Y = 0" (x4 AL = 5pu"
This, together with the weak formulations in Eq. (2.14), yields

. i+
@ "t — @ amu"“),r}ﬂ.n =€ At ((q”“ W HITE - @ u;‘“nj) , (2.36a)
2

N j+1
(qn+],qn+])lj — (uﬂ+1 qn+1)|j_§ _ (un+],qz+])lj (236b)

(2.36a)+ € - At -(2.36b) and summing up over j give us
Xp
”un—H ”2 _ /un . 8A[un+1dx+ EAt“qn-‘r] ”2

Xa

N j+l ~ ]Jrl
—€. At.z (qn-H un+])|j7; + (urH—] Cln+1)|jé . [(q”“,uﬁ“)lj + (UHH»QZ-H)IJ-]}
J

. R i+3
—€-At- Z (qn+1 un+1)|J_i + (un+1 qn+1)|]_i _ /(qn+1 un+1 )X dX
. 2 2
J Ij

. i+ a j+3 j+3
—€-At- Z (qn+] un+])|j_i + (unJr] qﬂ+1)|]_§ _ (qﬂ+1ul’l+])| s % } — 0’ (2‘37)

J=32

where the cancellation is due to the alternating fluxes used, see (2.15), and the periodicity.
Noting that € At||q™t1||2 > 0 on the LHS of (2.37), we have

Xb
u™1)? S/u" - Sacu™dx. (2.38)
Xa

Then, applying the Cauchy-Schwarz inequality to (2.38) together with the identity |§a.u™1| = |[u™t!]|| yields
™ < fu. (239)

This completes the proof. O

3. Numerical tests

In this section, we present the convergence study in terms of spatial and temporal orders of the proposed SLDG-LDG
methods for a collection of 1D and 2D benchmark linear convection-diffusion equations. Mass conservation in Propo-
sition 2.6 is also numerically verified. We assume uniform partition of the computational domain €. In principle, the
addressed schemes can be extended to general nonuniform meshes. We let At = —SL__ and At = CFL

max |a(x,t)]
Ax

max [0y, max Bix.y.01
X y
for 1D and 2D tests respectively, in which the CFL number is to be specified. For the test of spatial accuracy, we choose
DIRK4 with Butcher tableau specified in Table 8 in order minimize the time discretization error. Likewise, for temporal
accuracy tests, we use SLDG-LDG with piecewise P2 polynomial space unless otherwise specified.
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Table 2
Spatial order of accuracy for Example 3.1 with CFL=1.0, e =1 at T =1.0.
k=0
Mesh L' error Order L? error Order L error Order
10 3.79E-02 4.78E—02 1.08E—01
20 1.92E—-02 0.98 2.40E—02 0.99 5.45E—02 0.99
40 9.41E—03 1.03 118E—02 1.02 2.70E—02 1.02
80 4.70E—-03 1.00 5.90E—03 1.00 1.35E—-02 1.00
160 2.35E-03 1.00 2.95E-03 1.00 6.74E—03 1.00
k=1
Mesh L' error Order L? error Order L error Order
10 4.60E—03 5.57E—03 1.15E—02
20 1.21E-03 1.92 1.50E—03 1.90 4.27E-03 143
40 2.88E—04 2.07 3.70E—04 2.01 1.17E-03 1.87
80 7.01E—05 2.04 9.28E—05 2.00 3.04E—04 1.94
160 1.78E—05 1.98 2.39E-05 1.96 7.95E—05 1.94
k=2
Mesh L' error Order L? error Order L error Order
10 2.18E—04 3.19E-04 1.08E—03
20 2.57E—04 3.09 3.92E-05 3.03 1.36E—04 2.99
40 3.32E-06 2.95 5.05E—06 2.96 1.77E-05 2.95
80 4.00E—07 3.05 6.02E—07 3.07 2.05E—06 311
160 5.10E—08 2.97 7.73E—08 2.96 2.68E—07 294
10
10 ¢ 3
108 4
« o«
- v "
S 4
& 10° E
o
107 ¢ 5 ]
o
o
o
00! o]
o0 DIRK3
slope =3
DIRK4
slope =4
100 |

Fig. 6. L! error with varying CFL numbers of Example 3.1. SLDG-LDG with P2 polynomial space. N =500 for spatial discretization.

3.1. One-dimensional tests

Example 3.1 (1D linear convection-diffusion equation). Consider the following 1D convection-diffusion equation

Ur + Uy = €EUyy, X€[0,2m]

with exact solution u = sin(x — t) exp(—et). Table 2 provides L!, L2, L*® errors to verify the spatial performance of the
SLDG-LDG method. One can observe the method is of k + 1 order when V,’1‘ is used, as expected. To demonstrate the
temporal orders of accuracy of the employed DIRK methods, we fix N =500 and let the CFL numbers vary from 1.1 to 12.1
(note the extra large values of CFL numbers). Fig. 6 shows the L! error of the proposed scheme coupled with DIRK2, DIRK3
and DIRK4 and expected orders can be observed as compared with reference slopes. Note that for this problem there is no
error incurred in time for the convection part, since the characteristics are tracked exactly in the proposed SL setting.

CFL

Example 3.2 (1D equation with variable coefficient). Consider

U + (Sin(X)u)x = €lixy + g,

xe[0,2r]
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Table 3
Spatial order of accuracy for Example 3.2 with CFL=1.0,e =1 at T =1.0.
k=0
Mesh L' error Order L? error Order L error Order
10 4.20E—-02 4.96E—02 111E-01
20 1.97E-02 1.09 2.42E-02 1.03 5.41E-02 1.05
40 9.96E—03 0.98 1.22E-02 0.99 2.71E—02 1.00
80 4.97E—03 1.00 6.11E—03 0.99 1.35E-02 1.00
160 2.50E—03 1.00 3.07E-03 1.00 6.80E—03 0.99
k=1
Mesh L' error Order L? error Order L error Order
10 6.24E—03 8.42E—03 3.11E-02
20 1.33E-03 223 1.78E—03 2.25 6.53E—03 225
40 3.06E—04 212 3.20E—04 2.08 1.57E—-03 2.05
80 7.39E—05 2.05 1.04E—04 2.02 3.91E-04 2.01
160 1.85E—-05 2.00 2.62E—05 1.98 9.42E—05 2.05
k=2
Mesh L' error Order L? error Order L error Order
10 4.29E—-04 5.38E—04 1.69E—03
20 9.53E—05 217 1.09E—04 2.31 2.60E—04 2.70
40 8.16E—06 3.55 9.63E—06 3.49 2.70E—05 3.27
80 7.72E—07 3.40 9.37E-07 3.36 3.03E—-06 3.15
160 7.57E—08 335 9.60E—08 3.29 3.39E-07 3.16
10% .

(n]
[ -3 o
e % a% -
= 6 | o 4
o 10 & e
- 5=
&« u]
o
107 | N i
o
o
108 ¢ 5
9 | | N
10
10° 10’
CFL

Fig.7. L' error with varying CFL numbers of Example 3.2. SLDG-LDG with P2 polynomial space. N = 500 for spatial discretization.

with u = sin(x) exp(—et) and g = sin(2x) exp(—et). Expected spatial orders of accuracy are observed in Table 3. With fixed
mesh N =500 and CFL varying from 0.3 to 12.1, high order temporal convergences are observed in Fig. 7.

3.2. Two-dimensional tests

Example 3.3 (2D linear convection-diffusion equation). Consider

U +uy+uy=€Au, x,yel0,2m] (3.3)

with exact solution u = sin(x + y — 2t) exp(—2¢€t).

We observe k + 1 spatial orders of accuracy from Table 4 when V,’j is employed. The temporal convergence study is
summarized in Fig. 8 with fixed a mesh of | = 2002 cells. The observation is similar to that in the 1D case (Example 3.1).
To verify the mass conservation property claimed in Proposition 2.6 for Example 3.3, we plot | ] fQ u"dx| with V,? computed
using different thresholds 10~1°, 10~12 and 10~'* for the GMRES iterative method in Fig. 9. We see that the variation of
|ffQ u"dx| in time depends on the choice of threshold and it gets closer to the machine precision when a smaller threshold
in GMRES is used.
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Table 4
Spatial order of accuracy for Example 3.3 with CFL=1.0,e =1 at T =1.0.

k = 0; Quadrilateral

Mesh L' error Order L? error Order L error Order
20? 4.64E—02 5.15E—02 7.67E—02
60° 1.99E—02 0.77 2.21E-02 0.77 3.30E—02 0.77
1002 1.26E—02 0.89 1.40E—02 0.89 2.09E—-02 0.89
140° 9.23E—03 0.93 1.03E-02 0.93 1.53E-02 0.93
1802 7.27E—03 0.95 8.08E—03 0.95 1.20E—02 0.95
k =1; Quadrilateral
Mesh L' error Order L? error Order L error Order
202 1.10E-03 1.35E-03 5.23E-03
60° 9.59E—05 222 1.28E—04 214 6.94E—04 1.84
1002 3.28E—05 210 4.52E—05 2.04 2.57E—04 1.95
140° 1.65E—05 2.05 2.31E-05 2.00 1.33E—04 1.95
1802 9.87E—06 2.04 1.40E—-05 2.00 8.14E—05 1.96
k = 2; Quadrilateral
Mesh L' error Order L? error Order L error Order
202 414E—05 6.06E—05 4.82E—-04
60° 1.59E—06 2.96 2.35E—06 2.96 1.88E—05 2.95
1002 3.45E—07 3.00 5.09E—07 2.99 4.08E—06 2.99
140° 1.26E—07 2.99 1.86E—07 2.99 1.49E—06 3.00
1802 5.96E—08 2.98 8.78E—08 2.99 7.03E—07 2.99
102 :
103 ¢
o«
104 o w "
-2
o
- o«
< o o®
= 5| o
<1>'_ 10 ) . o
- o
o
10 ¢ °
o
107 |
-8 L
10
10° 10’
CFL

Fig. 8. L error with varying CFL number of Example 3.3. From top to bottom: DIRK2, DIRK3 and DRIK4.

Example 3.4 (Rigid body rotation). Consider

ur — (yu)x + xu)y =€Au+g, x,yel[-2m, 2m]. (3.4)

In order to test the spatial order of accuracy, we choose u = exp[—(x*> + 3y% + 2¢t)] and g = [6€ — 4xy — 4e(x* +
9y2)]exp[— (x> + 3y% + 2¢t)]. The results are summarized in Table 5 for € = 1.0, CFL = 10.0. The choice of the large
CFL number once again supports our claim that the proposed methods are free of the stringent CFL restriction, leading
to computational savings. Fig. 10 displays the temporal convergence study where we use two different ways to compute
the numerical error: test1 is done by using the exact solution on mesh J = 200%; test2 uses the reference solution when
CFL =0.01 on mesh J =150% and the final time T =0.1. In Fig. 10, when test1 is used, expected orders for DIRK2 and
DIRK3 are observed, while the numerical convergence order is not clear for DIRK4. In order to reduce the interference of
the spatial error, we carry out test2 and observe the expected order of temporal accuracy.

We numerically solve Eq. (3.4) with an initial condition plotted in Fig. 11 which includes a slotted disk, a cone as well as
a smooth hump. € = 0.01, g = 0 and mesh size | = 2002 are chosen here. The numerical solutions and the corresponding
contour plots obtained by the proposed SLDG-LDG schemes with V,’; space (k=1,2) after T = 1.0 are plotted in Fig. 12.
DIRK4 time discretization method is applied.
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Table 5

Spatial order of accuracy for Example 3.4 with CFL = 10.0, e =1.0 at T =1.0.

k = 0; Quadrilateral

Mesh L' error Order L2 error Order L error Order
20° 1.97E-03 6.53E—03 9.39E—02

602 8.86E—04 0.73 3.08E—-03 0.68 4.62E—02 0.65
100? 5.73E—04 0.85 2.02E—03 0.82 2.99E—02 0.85
1402 4.23E-04 0.90 1.51E-03 0.88 2.23E-02 0.87
180° 3.36E—04 0.92 1.20E-03 091 1.78E—02 0.90

k = 1; Quadrilateral

Mesh L' error Order L2 error Order L error Order
20° 2.76E—04 1.30E-03 2.81E—02

602 2.68E—05 212 1.58E—04 1.92 5.75E—03 145
100? 9.33E—06 2.07 5.72E—05 1.99 2.25E—03 1.83
1402 4.70E—-06 2.04 2.94E-05 1.98 119E-03 1.91
180° 2.82E—06 2.03 1.78E—05 1.98 7.29E—04 1.94

k = 2; Quadrilateral

Mesh L' error Order L? error Order L error Order
20° 711E—05 3.51E-04 1.32E—02

602 1.92E-06 3.29 1.18E—-05 3.08 5.31E-04 292
100? 4.04E—07 3.05 2.57E—06 2.99 1.14E—04 3.01
1402 1.46E—07 3.03 9.39E-07 3.00 4.24E—05 294
180° 6.82E—08 3.02 4.41E—07 3.00 2.00E—05 2.99

To better compare the performances of the schemes with V}} and Vlf spaces for the DG and LDG discretization, we plot

the 1D cuts of the numerical solutions at X = —1.0 and Y = 1.0 with mesh size | =50% along with the one computed on
a refined mesh with J = 2002 as in Fig. 13 at T =1.0.

Example 3.5 (Swirling deformation flow). Consider

U — (cos(g)2 sin(y) f (H)u)x + (sin(x) cos(%)zf(t)u)y =€AU, x,ye[-m, 7]

with f(t) =cos(%)m.

To test the spatial order of accuracy, the initial condition is set to be

b P& 6
ry COS(——
ux,y,00=1"° T

’

ifrb(x) <rb,

otherwise,

(3.5)
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Fig. 10. L' error with varying CFL number of Example 3.4. Left: test1 using exact solution on mesh J =2002. Right: test2 using reference solution when

CFL=0.01 on mesh J =1502.
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Fig. 11. Plots of the initial profile consisting of a slotted disk, a cone and a smooth hump for Example 3.4. Mesh size is 200 x 200. Left: Initial condition.
Right: Contour plot. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

0
X

Fig. 12. First row consists of plots for numerical solutions with SLDG-LDG for equation (3.4) with initial data Fig. 11 and the second row
consists of the corresponding contour plots. Mesh size is 200 x 200. Final integration time T = 1.0. At = 2.5Ax. From left to right: P!
SLDG-LDG, P2 SLDG-LDG.
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Fig. 13. Plots of the 1D cuts of the numerical solutions for equation (3.4) at X = —1.0 (left) and Y = 1.0 (right) with initial data in Fig. 11

with CFL=2.5 at T =1.0.

Table 6

Spatial order of accuracy for Example 3.5 with CFL = 1.0, e =1.0 at T =0.1.

k = 0; Quadrilateral

Mesh L' error Order L? error Order L error Order
20° 2.15E-03 6.50E—03 5.86E—02

602 7.56E—04 2.05 2.42E—-03 1.94 2.15E-02 1.96
100? 3.60E—04 2.20 118E-03 213 113E-02 1.92
140° 2.83E—-04 0.96 9.35E—04 0.93 1.20E—02 —0.23
180° 2.29E—04 1.05 7.58E—04 1.04 8.08E—03 1.95

k = 1; Quadrilateral

Mesh L' error Order L2 error Order L error Order
20° 2.93E-04 9.13E—-04 1.49E—02

602 3.17E-05 436 1.04E—04 4.25 2.14E-03 3.80
100? 1.10E—-05 3.13 3.63E-05 3.14 7.66E—04 3.06
140° 5.90E—06 2.50 1.98E—-05 242 4.53E—04 2.09
180° 3.83E—06 2.16 1.29E-05 214 3.04E—04 1.98

k = 2; Quadrilateral

Mesh L' error Order L2 error Order L error Order
20° 3.42E—05 1.10E-04 2.73E-03

602 1.35E—-06 6.33 4.74E—06 6.15 1.22E—-04 6.09
100? 3.00E—07 447 1.06E—06 4.44 2.67E—05 4.51
1402 1.10E—-07 3.98 3.96E—-07 3.94 1.00E—-05 3.90
180° 5.32E—08 3.63 191E-07 3.63 5.04E—06 343

k=2; QC

Mesh L' error Order L2 error Order L error Order
202 3.30E—05 1.06E—04 2.53E-03

602 1.14E—-06 6.58 3.75E—06 6.54 9.73E-05 6.38
1002 2.48E—07 4.54 8.15E—07 4.54 2.09E—05 4.58
140° 9.07E—08 4.01 3.00E—-07 3.98 7.83E—06 3.90
180° 4.32E—08 3.70 1.42E-07 3.71 3.86E—06 3.53

where rg =0.37 and r’(x) = \/(x — xg)2 +(y— y’(’))2 denotes the distance between (x, y) and the center of the cosine bell

(xg, yg) = (0.3, 0). Since there is no analytical solution available, we choose the numerical solution computed on a refined
mesh with | =300?% cells as a reference solution. The results are shown in Table 6. Note that comparable performance are
observed when quadrilateral and quadratic curved (QC) approximations to the upstream cells are used. Fig. 14 shows the
temporal convergence study for the proposed scheme coupled with different DIRK methods. A mesh of J = 2002 cells is
used. The solution computed with CFL = 0.01 is chosen as the reference solution. The final time is 0.1. Again, expected high

order temporal convergence rates are observed for all three cases.

Additionally, we solve Eq. (3.5) with the same initial condition as in Fig. 11. We choose € = 0.01, T = 1.5 and numerically
integrate the solution up to time 1.5. Numerical solutions and the corresponding contour plots for the proposed schemes
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Fig. 14. L error with varying CFL number of Example 3.5. From top to bottom: DIRK2, DIRK3 and DRIK4.
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Fig. 15. First row consist of mesh plots of SLDG-LDG solutions for equation (3.5) with f(t) = cos(”%)n, initial data Fig. 11 and the second
row consists of the corresponding contour plots. Mesh size is 100 x 100. Final integration time T = 1.5. At =2.5Ax. From left to right:
P! SLDG-LDG, P? SLDG-LDG, P? SLDG-LDG+QC.

are plotted in Fig. 15. The 1D cuts of the numerical solutions of Eq. (3.5) at X =0 and Y = 1.54 with mesh size | =502
along with the one computed on a refined mesh with J = 2002 are plotted in Fig. 16. From the 1D cut plot at X =0, both
P2 SLDG-LDG and P2 SLDG-LDG-QC schemes perform better than P! scheme on mesh of size 502

4. Conclusions

In this paper, we developed a semi-Lagrangian (SL) discontinuous Galerkin (DG) method for solving linear convection-
diffusion equations. For the scheme formulation, the DG solution is evolved along the characteristics to treat the convection
part by an efficient SLDG transport method; while the diffusion part is discretized by a local DG method in conjunction
with diagonally implicit Runge-Kutta methods along characteristics. The method is high order accurate, mass conservative
and is unconditionally stable. In the theoretical aspect, the unconditional L? stability was proved for the method coupled
with the backward Euler discretization. In view of the application of the SLDG method coupled with RK exponential inte-
grators to nonlinear Vlasov dynamics in [4], extensions of our algorithm to nonlinear convection-diffusion problems will be
investigated in our future research work.
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Fig. 16. Plots of the 1D cuts of the numerical solutions for equation (3.5) at X =0 (left) and Y = 1.54 (right) with initial data Fig. 11 a
with CFL=2.5at T =1.5.

Table 7
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Table 8
DIRK4.
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1 1
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1 2 1
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24 T 16 12 1
25 _ 49 125 _8 1
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Appendix A
A.1. Butcher tableaus for time discretization methods

In the following Table 7 and Table 8, we present the third-order DIRK3 and fourth-order DIRK4 respectively. Both tableaus
are stiffly accurate.

A.2. Implementation procedures

We now briefly discuss the components of the sparse matrix B; in (2.18). Let ¢ (I=0,---,k) denote the local bases of
Pk([j), the numerical solution u can be written as

k

u=>y up=u-@, xelj
1=0

where u = (ug,---,u) and @ = (¢o, ---, @ )" . The basis functions are chosen as the scaled Legendre polynomials. For
instance, for k=2, P2(I;) = {1,&,&2 — .5} with & = 0.
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To update u"™t1,

(un+1

k
 Pm)1; = Zu”“(pz,wm => u" @, om)y, - (A1)
I
Then, as ¢n; in (A.1) going through bases in P"(Ij),
W™ @), =M@

where M is the mass matrix of size (k + 1)2 with Mm = (¢1, (pm),j (m1=0,1,---,k).

Following the procedures in Step 1.2a, the LDG spatial approximation to Au"*! can be represented by a matrix vector
form as Dau™!, where D, is the matrix approximating diffusion operator via the LDG formulation.

e For (2.14b), suppose it =u~, then

~n+1 n+1\T An+1 ..+ n+1 n+1 n+1\T
u,w, ; =C(u u, w =D(u u wy);. = N(u )
]+% ]+; ( )J - j— 1 ( )11 1 ( s X)IJ ( )1]

with m=0,1,---,k)

N

Cot =@ X DPmXj 1), Dmi=@ix;_1)¢mX;_1),  Nmi= (@1 (@m)x)i;

as w going through {g} .
e For (2.14a), choose g =q™, then

AN

~n+1 n+1\T +1 + _ n+1\T n+1 _ n+1\T
q]+%"]+2 E(q )]j+1! q %jl_F(q )[j, (q ,Vx)lj—N(q )Ij

m

with (m=0,1,---,k)
Emi=@ix, Dem®x;_ 1), Fmi=@iX;_1)¢m&;_1),

as v going through {(pl};;o.

Then, (uﬂj‘l, (p)lj (Vj) can be represented with a linear combination of the above matrices C, D, E, F, N and u™tl,
To sum up, By in (2.18) can be obtained with pre-calculated elements M, C, D, E, F and N.
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