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Abstract. This paper addresses the problem of efficiently computing higher-
order variational integrators in simulation and trajectory optimization of mechan-
ical systems as those often found in robotic applications. We develop O(n) al-
gorithms to evaluate the discrete Euler-Lagrange (DEL) equations and compute
the Newton direction for solving the DEL equations, which results in linear-time
variational integrators of arbitrarily high order. To our knowledge, no linear-time
higher-order variational or even implicit integrators have been developed before.
Moreover, an O(n?) algorithm to linearize the DEL equations is presented, which
is useful for trajectory optimization. These proposed algorithms eliminate the bot-
tleneck of implementing higher-order variational integrators in simulation and
trajectory optimization of complex robotic systems. The efficacy of this paper is
validated through comparison with existing methods, and implementation on var-
ious robotic systems—including trajectory optimization of the Spring Flamingo
robot, the LittleDog robot and the Atlas robot. The results illustrate that the same
integrator can be used for simulation and trajectory optimization in robotics, pre-
serving mechanical properties while achieving good scalability and accuracy.

1 Introduction

Variational integrators conserve symplectic form, constraints and energetic quan-
tities [1-6]. As a result, variational integrators generally outperform the other types of
integrators with respect to numerical accuracy and stability, thus permitting large time
steps in simulation and trajectory optimization, which is useful for complex robotic sys-
tems [1-6]. Moreover, variational integrators can also be regularized for collisions and
friction by leveraging the linear complementarity problem (LCP) formulation [7, 8].

The computation of variational integrators is comprised of the discrete Euler-Lagra-
nge equation (DEL) evaluation, the descent direction computation for solving the DEL
equations and the DEL equation linearization. The computation of these three phases
of variational integrators can be accomplished with automatic differentiation and our
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prior methods [2,4], both of which are O(n?) to evaluate the DEL equations and O(n?)
to compute the Newton direction and linearize the DEL equations for an n-degree-of-
freedom mechanical system. Recently, a linear-time second-order variational integrator
was developed in [9], which uses the quasi-Newton method and works for small time
steps and comparatively simple mechanical systems.

Higher-order variational integrators are needed for greater accuracy in predicting
the dynamic motion of robots [10, 11]. However, the computation of higher-order vari-
ational integrators has rarely been addressed. The quasi-Newton method in [9] only
applies to second-order variational integrators, and while automatic differentiation and
our prior methods [2,4] are implementable for higher-order variational integrators, the
complexity increases superlinearly as the integrator order increases.

In this paper, we address the computation efficiency of higher-order variational in-
tegrators and develop: i) an O(n) method for the evaluation of the DEL equations, ii) an
O(n) method for the computation of the Newton direction, and iii) an O(n?) method for
the linearization of the DEL equations. The proposed characteristics i) — iii) eliminate
the bottleneck of implementing higher-order variational integrators in simulation and
trajectory optimization of complex robotic systems, and to the best of our knowledge,
no similar work has been presented before. In particular, we believe that the resulting
variational integrator from i) and ii) is the first exactly linear-time implicit integrator of
third or higher order for mechanical systems.

The rest of this paper is organized as follows. Section 2 reviews higher-order vari-
ational integrators, the Lie group formulation of rigid body motion and the tree rep-
resentation of mechanical systems. Sections 3 and 4 respectively detail the linear-time
higher-order variational integrator and the quadratic-time linearization, which are the
main contributions of this paper. Section 5 compares our work with existing methods,
and Section 6 presents examples of trajectory optimization for the Spring Flamingo
robot, the LittleDog robot and the Atlas robot. The conclusions are made in Section 7.

2 Preliminaries and Notation

In this section, we review higher-order variational integrators, the Lie group for-
mulation of rigid body motion, and the tree representation of mechanical systems. In
addition, notation used throughout this paper is introduced accordingly.

2.1 Higher-Order Variational Integrators

In this paper, higher-order variational integrators are derived with the methods in
[1,12,13].

A trajectory (q(t), ¢(t)) where 0 < t < T of a forced mechanical system should
satisfy the Lagrange-d’Alembert principle:
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06 =9 L(q,¢)dt + / F(t)-dqdt =0 (1)
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in which £L(g, ¢) is the system’s Lagrangian and JF (¢) is the generalized force. Provided
that the time interval [0, T’ is evenly divided into N sub-intervals with At = T'/N, and



each q(t) over [kAt, (k+1)At] is interpolated with s+ 1 control points ¢*® = ¢(t*:®)
inwhicha =0, 1, ---, s and kAt = 90 < th1 < ... <tk = (k 4 1) At, then
there are coefficients b*? (0 < «a, < s) such that
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In this paper, we assume that the quadrature points of the quadrature rule are also t*:©
though our algorithms in Sections 3 and 4 can be generalized for any quadrature rules.
Then the Lagrange-d’ Alembert principle Eq. (1) is approximated as
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in which w® are weights of the quadrature rule used for integration. In variational inte-
grators, the discrete Lagrangian and the discrete generalized force are defined to be

La(@, g™t g") =) wL(gh, ) A )
a=0

and }"g’a(tk’“) = w*F(tF*) At, respectively. Note that by definition we have t** =

tF+1.0 and ¢F* = ¢#*1.0, and as a result of Eq. (3), we obtain
pF 4+ DiLa(@) + Fi° =0, (5a)
Dos1La(T") + FF* =0 Va=1,---,s—1, (5b)
P =Dy La(@") + —7:5’8 (50)
in which pF is the discrete momentum, G* stands for the tuple (¢*°, ¢®1, --- | ¢®9),

and D41 L, is the derivative with respect to g"*. Note that Eq. (5) is known as the
discrete Euler-Lagrangian (DEL) equations, which implicitly define an update rule
("0, p*) — (¢"+19, p*+1) by solving sn nonlinear equations from Egs. (5a) and (5b).
In a similar way, for mechanical systems with constraints h(q, ¢) = 0, we have

P+ D1La(@") + Fy® + AR (gH0) AR =0, (62)
Dos1La(T") + FE 4 AR (o) A2 =0 VYa=1,---,5s—1, (6b)
PP =D La@) + Fy (6¢)

R (ghthe ghthey =0 va=1,--- s (6d)

in which A% (¢"<) is the discrete constraint force matrix and A*® is the discrete
constraint force.

The resulting higher-order variational integrator is referred as the Galerkin integra-
tor [1, 12, 13], the accuracy of which depends on the number of control points as well
as the numerical quadrature of the discrete Lagrangian. If there are s + 1 control points
and the Lobatto quadrature is employed, then the resulting variational integrator has an
accuracy of order 2s [12, 13]. The Galerkin integrator includes the trapezoidal varia-
tional integrator and the Simpson variational integrator as shown in Examples 1 and 2,
the DEL equations of which are given by Egs. (5) and (6).



Example 1. The trapezoidal variational integrator is a second-order integrator with two
control points g = (¢"°, ¢"!) such that ¢*° = ¢(kAt) and ¢*! = q((k + 1)At),
. A k,1_ _k,0 _ . .

"0 = ¢ht = 3 and La(7") = 5 [L(¢"0,¢0) + L™, dM1)].

Example 2. The Simpson variational integrator is a fourth-order integrator with three
control points 7* = (¢*%, ¢¥1, ¢¥2) in which ¢*0 = q(kAt), ¢*° = q((k + 3)At)

k,0

. ka_o kO_ k2 k2 k,
and qk,2 _ q((kJr 1)At), qk,o _ 44 3gt q , qk,l — g Atq

k,0 k24 k1 . R . .
LA and £4(77) = 4E[L(g"0, ¢70) + AL (g%, 7 1Y) + L(g72, ¢52)].

and "2 =

2.2 The Lie Group Formulation of Rigid Body Motion

The configuration of a rigid body g = (R, p) € SE(3) can be represented as a 4 x 4

matrix g = Zgﬂ in which R € SO(3) is a rotation matrix and p € R3 is a position
vector. The body velocity of the rigid body v = (w,v0) € T..SE(3) is an element of the

Lie algebra and can be represented either as a 6 x 1 vector v = (¢7§)" = [w” v}] ora

4x4dmatrixd = g~ lg = [(E)j UOO} in whichw = (w,, wy, w,) € T.SO(3) is the angular

0 —w, wy
velocity, vo is the linear velocity, v = | w, 0 —w;| € R3*3, and the hat “A” and
—wy wz 0
unhat“V” are linear operators that relate the vector and matrix representations. The same
representation and operators also apply to the spatial velocity 7 = (w, 7o) € T.SE(3),

whose 6 x 1 vector and 4 x 4 matrix representations are respectively v = (gg~*)" and
el .1
U=g9 .
In the rest of this paper, if not specified, vector representation is used for 7. SE(3),
such as v, 7, etc., and the adjoint operators Ad, and ad, : T.SE(3) — T.SE(3) can
. . R O w 0
be accordingly represented as 6 x 6 matrices Ad, = La R R} and ad,, = [@o d}] such

that 7 = Adgv and ad,, v = (0102 — 0201)V. For consistence, the dual Lie algebra
T>SE(3) uses the 6 x 1 vector representation as well. As a result, the body wrench
F = (1, fo) € TSE(3) is represented as a 6 x 1 vector F' = [77 fg}T in which
7 € T SO(3) is the torque and fo is the linear force so that (F,v) = F'Tv. Moreover,
we define the linear operator ad% : T,SFE(3) — T*SE(3) which is represented as a

. T
6% 6 matrix adh = LE fé)] so that FTad,, vy = v} ad2v; = —vTadPv, forvy, vy €
o

T.SE(3). The same representation and operators also apply to the spatial wrench F=
Ad;TF = (7, fo) which is paired with the spatial velocity 7 = Ad,v.

2.3 The Tree Representation of Mechanical Systems

In general, a mechanical system with n inter-connected rigid bodies indexed as
1, 2, ---, n can be represented through a tree structure so that each rigid body has a
single parent and zero or more children [2, 14], and such a representation is termed
as tree representation. In this paper, the spatial frame is denoted as {0}, which is the
root of the tree representation, and we denote the body frame of rigid body 7 as {i},



and the parent, ancestors, children and descendants of rigid body ¢ as par(i), anc(i),
chd(7) and des(7), respectively. Since all joints can be modeled using a combination of
revolute joints and prismatic joints, we assume that each rigid body 7 is connected to
its parent by a one-degree-of-freedom joint ¢ which is either a revolute or a prismatic
joint and parameterized by a real scalar ¢; € R. As a result, the tree representation
is parameterized with n generalized coordinates ¢ = [(h qo - - qn]T € R™. For each
joint 4, the joint twist with respect to frame {0} and {i} are respectively denoted as
6 x 1 vectors S; = [5] ﬁﬂT and S; = [s] nZT]T in which 3;, s; are 3 x 1 vectors
corresponding to rotation and 7;, n; are 3 X 1 vectors corresponding to translation.
Note that S;, s; and n; are constant by definition. Moreover, S; and S; are related as
Si = Ady,S; where g; € SE(3) is the configuration of rigid body 7, and S; = ady, S,
where 7; € T.SE(3) is the spatial velocity of rigid body i.

It is assumed without loss of generality in this paper that the origin of frame {i} is
the mass center of rigid body ¢, and j € des(z) only if ¢ < j, or equivalently j € anc(i)
only if 7 > j.

The rigid body dynamics can be computed through the tree representation. The
configuration g; = (R;,p;) € SE(3) of rigid body i is g; = gpar(i)Jpar(i),i(¢) in
which gpar(iy,i(¢) = gpar(s),i(0) exp(S‘iqi) is the rigid body transformation from frame
{i} to its parent frame {par(¢)}, and the spatial velocity T; of rigid body i is v; =
Upar(i) + S - Gi- In addition, the spatial inertia matrix M of rigid body {i} with respect
to frame {0} is M; = Ad;iTMiAd;il in which M; = diag{Z;, m;I} € R%6 is the
constant body inertia matrix of rigid body i, Z; € R3*3 is the body rotational inertia
matrix, m; € R is the mass and I € R3*3 is the identity matrix.

In rigid body dynamics, an important notion is the articulated body [14]. In terms
of the tree representation, articulated rigid body 7 consists of rigid body ¢ and all its
descendants j € des(i), and the interactions with articulated body 7 can only be made
through rigid body ¢, which is known as the handle of the articulated body .

In the last thirty years, a number of algorithms for efficiently computing the rigid
body dynamics have been developed based on tree representations and articulated bod-
ies [14-16], making explicit integrators have O(n) complexity for an n-degree-of-
freed-om mechanical system. Even though the same algorithms might be used for the
evaluation of implicit integrators, none of them can be used for the computation of the
Newton direction for solving implicit integrators. If the residue is r*, the Newton direc-
tion of an implicit integrator is computed as 5¢¥ = —7(¢")~1r*; however, the Jacobian
matrix 7 (¢¥) is usually asymmetric and indefinite, and has a size greater than n x n
for higher-order implicit integrators, which means that the computation of implicit inte-
grators is distinct from explicit integrators whose computation is simply a combination
of the algorithms in [14—16] with an appropriate integration scheme. Furthermore, the
computation of implicit integrators is much more complicated than the computation of
forward and inverse dynamics and out of the scope of those algorithms in [14-16].

3 The Linear-Time Higher-Order Variational Integrator

In this and next section, we present the propositions and algorithms efficiently com-
puting higher-order variational integrators, whose derivations are omitted due to space



limitations. Though not required for implementation, we refer the reader to the supple-
mentary appendix of this paper [17] for detailed proofs.!

In the rest of this paper, if not specified, we assume that the mechanical system
has n degrees of freedom and the higher-order variational integrator has s 4+ 1 control

points ¢ = ¢(t*) in which 0 < a < s. Note that the notation (-)* is used to

denote quantities (-) associated with ¢¥' and %, such as qf . gf . 62"’0‘, etc.

3.1 The DEL Equation Evaluation

To evaluate the DEL equations, the discrete articulated body momentum and dis-
crete articulated body impulse are defined from the perspective of articulated bodies as
follows.

Definition 1. The discrete articulated body momentum ﬁf’a € RS for articulated body
—k —k

1 is defined to be ﬁf’a = M, ’aﬂf’a + ZjEChd(i) ﬁ?’a in which M, “ and @f’o‘ are

respectively the spatial inertia matrix and spatial velocity of rigid body 1.

Definition 2. Suppose F;(t) € RS is the sum of all the wrenches directly acting on
rigid body 1, which does not include those applied or transmitted through the joints that

are connected to rigid body i. The discrete articulated body impulse Tf’a € RS for
articulated body i is defined to be ff’a = F?’a + X jechd() Tja in which Ff’a =
WOE (tF) At € RS is the discrete impulse acting on rigid body i. Note that F;(t),
F?’a and Tf"a are expressed in frame {0}.

Remark 1. As for wrenches exerted on rigid body i, in addition to F;(¢) which includes
gravity as well as the external wrenches that directly act on rigid body i, there are also

wrenches applied through joints, e.g., from actuators, and wrenches transmitted through
joints, e.g., from the parent and children of rigid body ¢ in the tree representation.

It can be seen in Proposition 1 that ﬁf’a and Tfa make it possible to evaluate the
DEL equations without explicitly calculating ]D)aﬂﬁd(qk) and F 5 " in Egs. (5) and (6).

Proposition 1. If Q;(t) € R is the sum of all joint forces applied to joint i and p* =

[plf plﬁ - p’ﬁb]T € R"™ is the discrete momentum, the DEL equations Eq. (5) can be
evaluated as
ko _ gL k0T k0 N ogakBT kB ko
r=pp S 82 —|—Za R e (7a)
B=0

kol — 5 8T
r{f’a = Slfva . Qfﬂ_’_zaaﬁsfﬁ _ﬁf,ﬁ_’_Qf,a Va=1,---,s—1, (7b)
B=0
—k,s —k.,s ° —kﬂT
=S Y 70)
B=0

" In addition to the proofs, the supplementary appendix [17] also contains the complete O(n)
algorithms to compute the Newton direction for higher-order variational integrators.



Algorithm 1 Recursive Evaluation of the DEL Equations

1: initialize g5*® = Tand Ty = 0
2: fori=1—ndo

3: forao =0 — sdo
. k,a _  k,a k,a k,a
4 9; - gpar(i)gpar(i),i(qi )
—k, o —k,a T 1
5: S = AdgpaSi M= AT MAL
i 9;

S
ka1 kB ko _ —k, oka Lk,
0" = Bzobaﬁqi . T Up;:( y t S g

6
7. end for
8
9

: end for
:fori=n—1do
10: fora =0 — sdo
11: g =M 4 Y e, TV =F Yy Y TGC
12: j€E€chd(z) j€E€chd (i)
13: ﬁf’a = w*At - ad *k ¥+ F
14: end for

155 k0= gk EE +Z ST Qe

16: fora=1—s—1do

17: rf’o‘:?fa 78 —I-Za kﬁ et 4 Qb
18:  end for o

19 pht =Sl Z aPS g Qhe
20: end for

in which rk’a is the residue of the DEL equations Egs. (5a) and (5b), a®? = wPbP?,
ﬁfa = w*At - ad,k o 7k ¥+ F “, and Qfa = weQ; (tF) At is the discrete joint
force applied to jomt i.

Proof. See [17, Section D.1] O

In Egs. (7a) and (7b), if all rf " are equal to zero, a solution to the variational
integrator as well as the DEL equations is obtained.

All the quantities used in Proposition 1 can be recursively computed in the tree rep-
resentation, therefore, we have Algorithm 1 that evaluates the DEL equations, which
essentially consists of s + 1 forward passes from root to leaf nodes and s 4 1 backward
passes in the reverse order, thus totally takes O(sn) time. In contrast, automatic differ-
entiation and our prior methods [2,4] take O(snz) time to evaluate the DEL equations.

3.2 Exact Newton Direction Computation

T
From Eq. (5), the Newton direction 67* = |§g*1" ... §g%s"| € R*" is com-
puted as 65" = — 7% (7*)-r* in which 7% (%) € R*"**" is the Jacobian of Eqs. (5a)



and (5b) with respect to control points ¢*1, - - | ¢**, and r* € R*" is the residue of
evaluating the DEL equations Eqgs. (5a) and (5b) by Proposition 1.

In this section, we make the the following assumption on F'; "“ and Qf’a, which is
general and applies to a large number of mechanical systems in robotics.

Assumption 1. Ler u(t) be the control inputs of the mechanical system, we assume that

. . =k, . .. ,
the discrete impulse F'; “ and discrete Jjoint force Qf“ can be respectively formulated

—k, —k,a _ ) . .
as P = F; a(gf’a vk’a,uk“’) and Qica = Qf’a(qf’a7qf’a,uk’°‘) in which ub =

1 V;
u(th).

If Assumption 1 holds and 7% ! (") exists, it can be shown that [17, Algorithm B.1]
computes the Newton direction for variational integrators in O(s3n) time.

Proposition 2. For higher-order variational integrators of unconstrained mechani-
cal systems, if Assumption 1 holds and J k'_l(@k) exists, the Newton direction §q° =
—jk_l@k) - 1% can be computed with [17, Algorithm B.1] in O(s®n) time.

Proof. See [17, Section D.2]. O

In [17, Algorithm B.1], the forward and backward passes of the tree structure take
O(s?n) time, and the n computations of the s x s matrix inverse takes O(sn) time, thus
the overall complexity of [17, Algorithm B.1] is O(s®>n + s2n). In contrast, automatic
differentiation and our prior methods in [2,4] take O(s?n?) time to compute J*(g")

and another O(s®>n3) time to compute the sn x sn matrix inverse J kot (%), and the
overall complexity is O(s3n® + s?n?). Though the quasi-Newton method [9] is O(n)
time for second-order variational integrator in which s = 1, it requires small time steps
and can not be used for third- or higher-order variational integrators.

Therefore, both Algorithm 1 and [17, Algorithm B.1] have O(n) complexity for a
given s, which results in a linear-time variational integrator. Furthermore, Algorithm 1
and [17, Algorithm B.1] have no restrictions on the number of control points, which
indicates that the resulting linear-time variational integrator can be arbitrarily high or-
der. To our knowledge, this is the first exactly linear-time third- or higher-order implicit
integrator for mechanical systems.

3.3 Extension to Constrained Mechanical Systems

Thus far all our discussions of linear-time variational integrators have been re-
stricted to unconstrained mechanical systems. However, Algorithm 1 and [17, Algo-
rithm B.1] can be extended to constrained mechanical systems as well.

In terms of the the DEL equation evaluation, the extension to constrained mechan-
ical systems is immediate. From Eq. (6), we only need to add the constraint term
Ale (gFe) . NP 1o the results of using Algorithm 1.

If the variational integrator is second-order and the mechanical system has m con-
straints, it is possible to compute the Newton direction d¢**1 and SA* in O(mn) +
O(m?) time using [17, Algorithm B.1]. In accordance with Eq. (6), ¢"**! and §\*
should satisfy " (q¥) - 6¢" ™ + A¥(¢¥) - 6A% = —rl and DRF (g1, GF+1) - 6gF+t =



k
c

follows: i) compute 6gF+! = —gE r¥ with [17, Algorithm B.1] which takes O(n)
time; ii) compute J’“il - A¥ by using [17, Algorithm B.1] m times which takes O(mn)
time; iii) compute SAF = (DA - J* - Ak)fl(ric + Dh* - 5¢F+1) which takes O(m?)
time; iv) compute 5! = §gk+! — TR AR L GAR,

In regard to third- or higher-order variational integrators, if the constraints are of
Wk (g 5%%) = 0 or hE(¢P™,¢*) = 0 or both for each i = 1,2, ---, n, [17,
Algorithm B.1] can be used to compute the Newton direction 6g* and 6\ in a similar
procedure to the second-order variational integrator.

In next section, we will discuss the linearization of higher-order variational integra-
tors in O(n?) time.

—r¥ in which ¥ and 7% are equation residues. Then §¢*** and §A* can be computed as

4 The Linearization of Higher-Order Variational Integrators

The linearization of discrete time systems is useful for trajectory optimization, sta-
bility analysis, controller design, etc., which are import tools in robotics.

From Egs. (5) and (6), the linearization of variational integrators is comprised of the
computation of D2L,4(g"), DF5* (#%) and DA®® (¢*). In most cases, DF, (t¥:*)
and DA% (g*<) can be efficiently computed in O(n?) time, therefore, the linearization
efficiency is mostly affected by DL 4(g").

It is by definition that the Lagrangian of a mechanical system is £(q, ¢) = K(q,¢)—
V(q) in which K (q, ¢) is the kinetic energy and V'(q) is the potential energy, and from

K 9’°K 0°K 0°K

Eq. (4), the computation of DQEd(qk ) is actually to compute 372’ 530" Dade® Ja2

g—;{z, for which we have Proposition 3 and Proposition 4 as follows.

and

Proposition 3. For the kinetic energy K(q,q) of a mechanical system, %2712(, %,
g;éz, %2;2( can be recursively computed with Algorithm 2 in O(n?) time.
Proof. See [17, Section D.3]. O

In the matter of potential energy V' (¢), we only consider the gravitational potential
energy Vg (q), and the other types of potential energy can be computed in a similar way.

Proposition 4. If g € R® is gravity, then for the gravitational potential energy Ve(q),

8;;‘* can be recursively computed with Algorithm 3 in O(n?) time.
Proof. See [17, Section D.4]. ]

In regard to Proposition 4 and Algorithm 3, we remind the reader of the notation
introduced in Sections 2.2 and 2.3 that m; € R is the mass of rigid body 7, p; € R? is the
mass center of rigid body i as well as the origin of frame {4}, and S; = [ElT ﬁlT] L
is the spatial Jacobian of joint ¢ with respect to frame {0}.

AK 9’K 0°K 9’K v : 2\ ¢ :
If 9670 930q° 9395° O and §gz are computed in O(n?) time, then according to

Egs. (2) and (4), the remaining computation of D2L,(g*<) is simply the application



9’°K 9°K 0*K 9’K

Algorithm 2 Recursive Computation of 532 * 9300 Dq08 Da°

1: initialize go = I and 5o = 0

2: fori=1—ndo

3 Gi = Gpar(i)Ipar(i),i (¢)

4 MZ = Adg_lTMzAdgll, §7 = Adgi S

S Vs = Vpar(s) + S - Gi» S5 = adw, S

6: end for

7: initialize 53

8: fori=n — 1do

9 =My, + 3 s Mi=M;+ > M;
jEchd(s) . jechd(s)

10: M = MiS;, M; =M,S;—adls;

11: for j € anc(i) U {:} do

K _ K _ K _ K _
z =0 55 =0 535 = 0. =0

. °K _ 9’K _ T34
12: 94,04, — 04,04 — S; M;
.7
. 2’k _ 9*K _ o 744 °K _ 9*°K _ al54B
13: 8q;9q; ~ 9q;04; SJ M, 9q;904; — 9q;0q; SJ Mi
. T
. 9°K _ 9K _ G 4B
14: Bai0q, — Ba,00 — S; M;
15: end for
16: end for

Algorithm 3 Recursive Computation of

8%V
0q?

: initialize go = I
:fori=1—ndo

1

2

30 i = Gar(i)Ipar(i),i(¢i), Si = Adg, Si
4: end for

5 2V =0

6: fori =n — 1do

7

. initialize

Om; =M + Z ETYLj! Op; = Mipi + Z Epj
jEchd(i) j€chd(z)

8 G =g (@m, T —0p,  5i)
9: for j € anc(i) U {i} do

. 8%V _ 9%Vg T —A
10: 3%3; - aqj'aii =8 0
11: end for
12: end for

of the chain rule. Therefore, if the variational integrator has s + 1 control points, the
complexity of the linearization is O(s?n?). In contrast, automatic differentiation and
our prior methods [2,4] take O(s?>n?) time to linearize the variational integrators.

5 Comparison with Existing Methods

The variational integrators using Algorithms 1 to 3 and [17, Algorithm B.1] are
compared with the linear-time quasi-Newton method [9], automatic differentiation and

10



the Hermite-Simpson direct collocation method, which verifies the accuracy, efficiency
and scalability of our work. All the tests are run in C++ on a 3.1GHz Intel Core Xeon
Thinkpad P51 laptop.

5.1 Comparison with the Linear-Time Quasi-Newton Method

x107*

s w2

iterations

cpu time (s)
- v o e oo e u ®
w0

0
0 0.01 0.02 0.03 0.04 005 0.06 0 0.01 0.02 003 0.04 0.05 0.06 0 0.01 0.02 003 0.04 0.05 0.06
time step (s) time step (s) time step (s)

(a) (b) (©

Fig. 1: The comparison of the O(n) Newton method with the O(n) quasi-Newton
method [9] for the trapezoidal variational integrator of a 32-link pendulum with dif-
ferent time steps. The results of computational time are in (a), number of iterations in
(b) and success rates in (c). Each result is calculated over 1000 initial conditions.

In this subsection, we compare the O(n) Newton method using Algorithm 1 and
[17, Algorithm B.1] with the O(n) quasi-Newton method in [9] on the trapezoidal vari-
ational integrator (Example 1) of a 32-link pendulum with different time steps.

In the comparison, 1000 initial joint angles ¢° and joint velocities ¢" are uniformly
sampled from [—7, 7] for each of the selected time steps, which are 0.001s, 0.002s,
0.005s, 0.01s, 0.02s, 0.03s, 0.04s, 0.05s and 0.06s, and the Newton and quasi-Newton
methods are used to solve the DEL equations for one time step. The results are in Fig. 1,
in which the computational time and the number of iterations are calculated only over
initial conditions that the DEL equations are successfully solved. It can be seen that
the Newton method using Algorithm 1 and [17, Algorithm B.1] outperforms the quasi-
Newton method in [9] in all aspects, especially for relatively large time steps.

5.2 Comparison with Automatic Differentiation

In this subsection, we compare Algorithms 1 to 3 and [17, Algorithm B.1] with au-
tomatic differentiation for evaluating the DEL equations, computing the Newton direc-
tion and linearizing the DEL equations. The variational integrator used is the Simpson
variational integrator (Example 2).

In the comparison, we use pendulums with different numbers of links as bench-
mark systems. For each pendulum, 100 initial joint angles ¢° and joint velocities ¢"
are uniformly sampled from [—7, 7]. The results are in Fig. 2 and it can be seen that
our recursive algorithms are much more efficient, which is consistent with the fact that
Algorithms 1 to 3 and [17, Algorithm B.1] are O(n) for evaluating the DEL equations,
O(n) for computing the Newton direction, and O(n?) for linearizing the DEL equa-
tions, whereas automatic differentiation are O(n?), O(n?®) and O(n?), respectively.

11
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Fig.2: The comparison of our recursive algorithms with automatic differentiation for
pendulums with different numbers of links. The variational integrator used is the Simp-
son variational integrator. The results of evaluating the DEL equations are in (a), com-
puting the Newton direction in (b) and linearizing the DEL equations in (c). Each result
is calculated over 100 initial conditions.

5.3 Comparison with the Hermite-Simpson Direct Collocation Method

In this subsection, we compare the fourth-order Simpson variational integrator (Ex-
ample 2) with the Hermite-Simpson direct collocation method, which is a third-order
implicit integrator commonly used in robotics for trajectory optimization [10,11].2 Note
that both integrators use three control points for integration.

The strict comparison of the two integrators for trajectory optimization is usually
difficult since it depends on a number of factors, such as the target problem, the opti-
mizers used, the optimality and feasibility tolerances, etc. Therefore, we compare the
Simpson variational integrator and the Hermite-Simpson direct collocation method by
listing the order of accuracy, the number of variables and the number of constraints for
trajectory optimization. In general, the computational loads of optimization depends on
the problem size that is directly related with the number of variables and the the number
of constraints. The higher-order accuracy suggests the possibility of large time steps in
trajectory optimization, which reduces not only the problem size but the computational
loads of optimization as well. The results are in Table 1.3 It can be concluded that the
Simpson variational integrator is more accurate and has less variables and constraints
in trajectory optimization, especially for constrained mechanical systems.

The accuracy comparison in Table 1 of the Simpson variational integrator with the
Hermite-Simpson direct collocation method is further numerically validated on a 12-
link pendulum. In the comparison, different time steps are used to simulate 100 trajec-
tories with the final time 7' = 10 s, and the initial joint angles ¢" are uniformly sam-

% The Hermite-Simpson direct collocation methods used in [10, 11] are actually implicit inte-
grators that integrate the trajectory as a second-order system in the (g, ¢) space, whereas the
variational integrators integrate the trajectory in the (g, p) space.

3 The explicit and implicit formulations of the Hermite-Simpson direct collocation methods
differ in whether the joint acceleration ¢ is explicitly computed or implicitly involved as extra
variables. Even though the explicit formulation of the Hermite-Simpson direct collocation has
less variables and constraints than the implicit formulation, it is usually more complicated for
the evaluation and linearization, therefore, the implicit formulation is usually more efficient
and more commonly used in trajectory optimization [11].

12



integrator

accuracy

# of variables

## of constraints

variational integrator
direct collocation (explicit)
direct collocation (implicit)

4th-order
3rd-order
3rd-order

(AN +3)n+ (2N + )m
(6N +3)n+ (2N +1)m
BN +4H)n+ (2N +1)m

3Nn+ (2N +1)m
ANn + (6N + 3)m
(6N +1)n+ (6N + 3)m

Table 1: The comparison of the Simpson variational integrator with the Hermite-
Simpson direct collocation method for trajectory optimization. The trajectory optimiza-
tion problem has N stages and the mechanical system has n degrees of freedom, m
holonomic constraints and is fully actuated with n control inputs. Note that both inte-
grators use three control points for integration.

~&-Variational Integrator
—e-Direct Collocation
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Fig. 3: The comparison of the Simpson variational integrator with the Hermite-Simpson
direction collocation method on a 12-link pendulum with different time steps. The re-
sults of the integrator error are in (a), the computational time in (b) and the integration
error v.s. computational time in (c). Each result is calculated over 100 initial conditions.

01 0125 107! 10

s ™

pled from [—75, 5] and the initial joint velocities ¢° are zero. Moreover, the Simpson
variational integrator uses Algorithm 1 and [17, Algorithm B.1] which has O(n) com-
plexity for the integrator evaluation and the Newton direction computation, whereas
the Hermite-Simpson direct collocation method uses [14, 18] which is O(n) for the in-
tegrator evaluation and O(n?) for the Newton direction computation. For each initial
condition, the benchmark solution g4(t) is created from the Hermite-Simpson direct
collocation method with a time step of 5 x 10~* s and the simulation error in g(¢) is
evaluated as - fOT llg(t) —qa(t)||dt. The running time of the simulation is also recorded.
The results are in Fig. 3, which indicates that the Simpson variational integrator is more
accurate and more efficient in simulation, and more importantly, a better alternative to
the Hermite-Simpson direction collocation method for trajectory optimization.

In regard to the integrator evaluation and linearization, for unconstrained mechani-
cal systems, experiments (not shown) suggest that the Simpson variational integrator
using Algorithms 1 to 3 is usually faster than the Hermite-Simpson direct colloca-
tion method using [14, 18] even though theoretically both integrators have the same
order of complexity. However, for constrained mechanical systems, if there are m holo-
nomic constraints, the Simpson variational integrator is O(mn) for the evaluation and
O(mn?) for the linearization while the Hermite-Simpson direct collocation method
in [10, 11] is respectively O(mn?) and O(mn?), the difference of which results from
that the Hermite-Simpson direct collocation method is more complicated to model the
constrained dynamics.
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6 Implementation for Trajectory Optimization

In this section, we implement the fourth-order Simpson variational integrator (Ex-
ample 2) with Algorithms 1 to 3 on the Spring Flamingo robot [19], the LittleDog
robot [20] and the Atlas robot [21] for trajectory optimization, the results of which
are included in our supplementary videos. It should be noted that the variational inte-
grators used in [2—4, 6, 8] for trajectory optimization are second order. In Sections 6.1
and 6.2, a LCP formulation similar to [8] is used to model the discontinuous frictional
contacts with which no contact mode needs to be prespecified. These examples indicate
that higher-order variational integrators are good alternatives to the direct collocation
methods [10, 11]. The trajectory optimization problems are solved with SNOPT [22].

6.1 Spring Flamingo

T
(a)t=0s (b)t=0.13s (c)t=0.33s (dt=0.44s
i = l = ‘l‘———‘l
()t =0.57s f)t=0.68s (g)t=0.88s ht=11s

Fig. 4: The Spring Flamingo robot jumps over a obstacle of 0.16 meters high.

The Spring Flamingo robot is a 9-DoF flat-footed biped robot with actuated hips and
knees and passive springs at ankles [19]. In this example, the Spring Flamingo robot is
commanded to jump over an obstacle that is 0.16 m high while walking horizontally
from one position to another. The results are in Fig. 4, in which the initial walking
velocity is 0.26 m/s and the average walking velocity is around 0.9 m/s.

6.2 LittleDog

The LittleDog robot is 18-DoF quadruped robot used in research of robot walking
[20]. In this example, the LittleDog robot is required to walk over terrain with two gaps.
The results are in Fig. 5, in which the average walking velocity is 0.25 m/s.

6.3 Atlas

The Atlas robot is a 30-DoF humanoid robot used in the DARPA Robotics Chal-
lenge [21]. In this example, the Atlas robot is required to pick a red ball with its left
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(@t=0s (b)t=10.48s (c)t=0.56s (d)yt=1.04s

()t =1.84s (f)t=216s (@) t=2.72s (h)t=32s

Fig. 5: The LittleDog robot walks over terrain with gaps.

(a)t =0s (b)yt=04s (c)t=0.6s (dt=13s

Fig. 6: The Atlas robot picks a red ball while keeping balanced with a single foot.

hand while keeping balanced only with its right foot. Moreover, the contact wrenches
applied to the supporting foot should satisfy contact constraints of a flat foot [11]. The
results are in Fig. 6 and it takes around 1.3 s for the Atlas robot to pick the ball.

7 Conclusion

In this paper, we present O(n) algorithms for the linear-time higher-order varia-
tional integrators and O(n?) algorithms to linearize the DEL equations for use in tra-
jectory optimization. The proposed algorithms are validated through comparison with
existing methods and implementation on robotic systems for trajectory optimization.
The results illustrate that the same integrator can be used for simulation and trajec-
tory optimization in robotics, preserving mechanical properties while achieving good
scalability and accuracy. Furthermore, thought not presented in this paper, these O(n)
algorithms can be regularized for parallel computation, which results in O(log(n)) al-
gorithms with enough processors.
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Abstract. This appendix provides the complete O(n) algorithms to compute the
Newton direction for higher-order variational integrators and the proofs of the
propositions in the paper “Efficient Computation of Higher-Order Variational In-
tegrators in Robotic Simulation and Trajectory Optimization” [1], accepted to
the 13th International Workshop on the Algorithmic Foundations of Robotics
(WAFR’18). It is assumed that the reader has read the original paper and knows
the problem statements and the notation used. The numbering of the equations,
algorithms, propositions, etc., is consistent with the numbering used in the origi-
nal paper.

A Introduction

In the paper “Efficient Computation of Higher-Order Variational Integrators in Rob-
otic Simulation and Trajectory Optimization” [1], we present O(n) algorithms to eval-
uate the discrete Euler-Lagrange (DEL) equations and compute the Newton direction
for solving the DEL equations, and O(n?) algorithms to linearize the DEL equations.
As an appendix to [1], this document provides the complete O(n) algorithms to com-
pute the Newton direction for higher-order variational integrators and the proofs of the
propositions in [1], which are not covered in the original paper due to space limitations.

In this appendix, we begin with the complete O(n) algorithms to compute the New-
ton direction in Section B. In Section C, we give an overview of preliminaries used in
the algorithms and proofs. Propositions 1 to 4 in [1, Sections 3 and 4] to compute the
higher-order variational integrators are proved in Section D.

For implementation only, the reader only needs to read Algorithms B.1 and B.2 in
Section B as well as Algorithms 1 to 3 in [1, Sections 3 and 4]. Sections C and D are
not required to read as they present the proofs of the propositions in [1] that do not
necessarily aid in implementation.

Even though most of the important content in [1] is reiterated, we still advise the
reader to read the original paper to know the problem statements and the notation used.
Moreover, as mentioned in the abstract, the numbering of the equations, algorithms,
propositions, etc., is consistent with the numbering used in [1]. Therefore, the original
paper will not be explicitly cited in the rest of this appendix when we make references
to anything in it.



B The O(n) Algorithms to Compute the Newton Direction

In this section, we present Algorithms B.1 and B.2 to compute the Newton direc-
tion for higher-order variational integrators. The algorithms are self-contained and we
refer the reader to Section C.3 for differentiation on Lie groups that is used to compute

lef “in Eq. (B.3b) of Algorithm B.2. The correctness and the O(n) complexity of
Algorithms B.1 and B.2 are proved in Section D.2, however, this is not required to read
for implementation. We remind the reader that 5" is the Newton direction for ¢*7,
and rf ¢ is the residue of the DEL equations Egs. (7a) and (7b). Moreover, from Proposi-
tion 2, Algorithms B.1 and B.2 assume that the inverse of the Jacobian 7 ~1(g") exists,
k,«x 6]4:,(17 uk@)

and Ff’a and Q" can be respectively formulated as ff’a = F?’a(gi , U,
and Q)" = Q" (", ¢, uh*).

There are a number of quantities, such as Df’“”, st,ow, Cik’a, Hik”y, etc., which are
recursively introduced in Algorithm B.2 to compute the Newton direction. Since there
is no influence on the implementation of the algorithms as long as these quantities are
correctly computed, we leave the explanation of their meaning to Section D.2. Similarly,
the detailed explanation of ’f"’ and gﬁf’p in Algorithm B.1 is left to Sections C.1
and C.2, respectively. For purposes of implementation, the reader only needs to know

that these quantities are recursively computed through Algorithms B.1 and B.2.

Algorithm B.1 Recursive Computation of the Newton Direction

I: initialize g = T and 75 = 0
2: fori=1—ndo

33 foraa=0— sdo
4.

ko _  k,« k,a k,a
95" = Ipar(iyIpar(iy,i (4 )

—k —k - -

5: Si% = AdpeSi, M;" = Adg,fa MiAdg,j,a
-k, - kB ko _ —k gk g,

6: 4" = ﬁﬁ;obaﬁ% e = Vpm(iy T 4"
~k,a —k

7: S, = adsaS; "

8:  end for '

9: end for

10: fori=n — 1do

11: use Algorithm B.2 to evaluate

a) Df’a[), Gf,au’ lf,a and ﬁf,oz
by I B, and T
¢) HF* and ¢~
d) X7, Y and y

12: end for

13: initialize ﬁlg’” —0and gglgﬁp —0

14: for: =1 — ndo




5k
Y
v=1

—k
7’]payr(l) + yz

15: for7—1—>sdo
. ko _ k,vp k.p

16: oq;” Z X; 5vpar( )
17: end for
18: forv =1— sdo .

_k _k, <k k,
19: ;= npa”r(i) +8;7 - 0q;”
20: end for
21: forp=0— sdo

S

22: 8" = L Z b - 8q)
23: Sohr = 6vp;§ ot S0 oq 157 6dl
24: end for
25: end for

Algorithm B.2 Recursive Computation of the Newton Direction — Backward Pass

I: Va=0,1,---,sVp=0,1,---,

S
D?,ap _ Uapr,a+ Z (Df’ap—i-ZHf’MXf’w—

j€chd(i)

sand Vv = 0,

=1

1o, s—1,

aaoacﬁ’@,aé’?’axj’?)w), (B.1a)
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C Preliminaries

In this section, we present additional preliminaries used in Algorithms B.1 and B.2
and the proofs of Propositions 1 to 4. In Section C.1, we extend the contents of Sec-
tion 2.3 for the computation of variations and derivatives. In Sections C.2 and C.3, we
respectively introduce the notion of the spatial variation for spatial quantities and the
differentiation on Lie groups, which are mainly used in Algorithms B.1 and B.2 and the
proof of Proposition 2.

C.1 The Tree Representation Revisited

In addition to the computation of rigid body dynamics as those in Section 2.3, the
tree representation can also be used to compute the variations and derivatives.
As is known, in the tree representation, the configuration g; € SE(3) of rigid body
118
gi = gpar(i)gpar(i),i((h) (C.1)

in which gpar(3),i(¢i) = 9par(i),i(0) exp(Sig;) and S; is the body Jacobian of joint i
with respect to frame {i}. In addition, the spatial Jacobian of joint 7 with respect to
frame {0} is B
S; = Ad,,S; (C2)
in which S; is constant by definition. Using Eqgs. (C.1) and (C.2) as well as Ad, S; =
('S,_,l\/ = L —1\v
9:5:g; ") ", we obtain 7j; = (6g;g; )" as

= ﬁpar(i) + EZ ’ 5(]27 (C.3)
or equivalently,
m,=Si0q;+ » 8;-dg (C4)
j€anc(z)



and furthermore,

\% rad . . .
(agl i_l) _ )5S Je anc?,(z) u {i}, (C50)
0q; 0  otherwise,
dg; _1>V Si jedes(i)U {i},
2 = C.5b
( 0q; Ji 0 otherwise. (C.5b)

In addition, from Egs. (C.2) and (C.3), 6Ad,, = ady, Adg, and adgigi = 0, we obtain
5§7; = adﬁigi = —adglﬁl = adﬁpar(i)gi = —adgﬁpar(l) (C6)

Moreover, as a result of Egs. (C.4) to (C.6), we further obtain

05 _ [adg S j € anc(i), (C.7a)
dq; 0 otherwise,
95, _ [adg,5; gedeﬁ(w, (C.7b)
dq; 0 otherwise.

Since the spatial velocity v; of rigid body i is
v =S8 di+ Z gj'dj
j€anc(z) (C.8)
= Tpar(i) + Si * G,
we obtain - - - -
00; = 08; ¢+ Si-0di+ Y (65,4 +S; - 54;)
Jj€anc(z)
= 6Tpar(i) +05; - 4; + Si - 6¢;.
Substitute Eq. (C.6) into the equation above, the result is
60; = ady S i+ 8; -6+ Y (adﬁﬁj G+ S 5qj)
j€anc(z) (C9)
= 56par(i) + ad?/igi g + gz - 0G;-
From Egs. (C.6) to (C.9), we obtain

31‘,1. _ S; je anc'(l) U {i}, (C.10a)
04, 0  otherwise,
ov; _ )5S J€ deé(i) u{i}, (C.10b)
04, 0  otherwise,
and
@ _ adgj (ﬁi - Ej) j € an(':(i) U {Z}’ (C.11a)
dq; 0 otherwise,



(C.11b)

85]‘ N adgi (fj — 51',) ] S dGS(l) U {Z},
0q; o otherwise.

In addition, from Egs. (C.2) and (C.8), Ad;, = ady, Ad,, and adgigi = 0, we obtain

?i = ad@Sl = —adgi@i = ady §1 = —adgﬁpar(i). (C.12)

Upar (i)

As for the spatial inertia matrix M; = Adg_iTMiAd;, algebraic manipulation shows
that
OM; = —adl - M; — M; - ady,, (C.13)

and from Eqgs. (C.3) to (C.5) and Eq. (C.13), we obtain

_ T =7 v ; ; ]
OM, _ [~adg M = Miads, j & anc(i) U {i} (C.142)
g 0 otherwise,
_ T 575 T ; 3 )
OM; _ ) —adg M; = Mjadg,  j & des(i) U{il, (C.14b)
9q; 0 otherwise.

In Sections D.1 to D.4, Eq. (C.3) to (C.14) will be used to prove Propositions 1 to 4.

C.2 The Spatial Variation

In this subsection, we introduce the spatial variation 6 (-) that is used in Algo-
rithms B.1 and B.2 and the proof of Proposition 2. Note that the notion of the spatial

variation 4 (-) only applies to the spatial quantities (-) of T, SE(3) or T;*SFE(3) that are
described in the spatial frame.
Ifa,a € T.SE(3) are related as @ = Ad,a in which g € SE(3), we have

0a = Adgda + adza
in which 7 = (6gg~')V. For numerical simplicity, it is sometimes preferable to have

the variations of @ and a still related by Ad,. Therefore, we define the spatial variation
da to be

éa = éa — adza (C.15)

such that 6a = Ad,da as long as @ = Ad,a. In a similar way, ifb",b* € T*SE(3) are
related as b — Ad;Tb*, we obtain

T* —T c1.% TT*
5" = Ad;T6b* — adZb".
Similar to Eq. (C.15), the spatial variation 85" is defined to be

50" =0b +adlb” (C.16)



such that §b° = Ad,"6b* as long as b= Ad, "b*. In addition, note that §(b*" a) =
T T ——xT T —_ —xT _ T
0b* a+b""da=90b a+b daandd(b a)=0(b*" a), we have

5@ @) =5 a+v sa. (C.17)

In general, the spatial variations 36 are the infinitesimal changes of spatial quanti-
ties in either the Lie algebra T,.SE(3) or the dual Lie algebra T, SE(3) after canceling
out the influences of the frame change.

In Section 3, we have a number of spatial quantities that are defined in 7. SE(3)
and T} SE(3), whose spatial variations § () can be computed in the tree representation.

Following Egs. (C.2), (C.6) and (C.15), for §f’a = Adg@,aSZ—, the spatial variation
—=—=k,a ’
05,7 is

g

K2

=0 (C.18)
though 53? = adﬁk,agf’a is usually not zero. In addition, according to Egs. (C.9)
and (C.15), we have

k,« k,«x <k ko k. ko —k,«
0" = =0V T adﬁ?aSi ¢+ S - 6gT — adﬁf,avi

Substitute Egs. (C.3) and (C.8) into the equation above to expand adﬁ@,aff’o‘ and apply
Egs. (C.6) and (C.12), it can be shown that

Sobe = Fphe SN g 4 5

i) 20 eghe. (C.19)

—k, —k,a . . . o

In terms of ﬁf’o‘, I “and 2, “in Eq. (7), which are spatial quantities in T* SF(3),
we can still implement the tree representation to compute the spatial variation. Accord-
ing to Definition 1, we have

o = 6(MT; T+ Y ot
]Echd(z)

From Egq. (C.16), the spatial variation gﬁf’a is
<. « k ai oz —k,«
5ﬁf’ =6(M k Z 6u + ad%,auf’
j€chd(z)

. _ka  w5RO0_ka —k,o _k,a _ —ka gkho k,a
Using i3, = M; "0, + X jcanay By~ and ;" =1% = S;7 - 6¢;7, we have

oy = (M 0E) + el (M5 )

> <6ka+adkauj —adgea i 5q§’a> (C.20)
j€chd(z)



kozka
i Uy

As a result of Eqgs. (C.13) and (C.15), (M. bogh a)+ad m( ) is

SOV v F) +adl. (M AT :Wf’a(éﬁf’“—adﬁ@,mf’“)

7

L (€21
=M, v

From Egs. (C.16) and (C.21) and adgk,aﬁ;?’a - ad/ijk,m?f’a, Eq. (C.20) is simpli-
J J
fied to

Py BN ( kaadwgm.aq;w>
j€chd(7)

N ) (C.22)
ST S a5 )
j€chd(s
In a similar way, for the spatial variation gff’a, we obtain
STy =0F "+ Y <5r§’ —adg. T f“-aq;““)
j€Echd(s) (€.23)
<k, S alitiel D < ko
=0F; "+ > (61" —admsj S0q; ).
j€Echd(s)

As for 27 = w At - adleo I+ T, from Egs. (C.15) and (C.16), algebraic
manipulation shows that '

SO =600 +adl 2"
i

= w At - (adlin - 5" + ad] ) + 0T (C.24)

w* At - (ad,k o O 4 ad,k 0T )+ 6F

In Section D.2, Egs. (C.18), (C.19) and (C.22) to (C.24) will be used to prove Propo-
sition 2.

C.3 Differentiation on Lie Groups

For an analytical function f : R™ — R, the directional derivative at x € R™ in the
direction dx is defined to be

d
Df(z) -0z = —f(xz+1t-0x)
dt =0
T
in which Df () = [2£ 2L . 201" e e,
In a similar way, we might define the directional derivative on Lie groups using the
Lie algebra and the exponential map as follows.



Definition C.1. If G is a n-dimensional smooth Lie group and f : G — R is a smooth
function on G, the directional derivative at g € G in the direction ] = 6gg~* € T.G
is defined to be

_ d _
Df(g)-m= 7/ (exp(t-1)g)
t=0
Moreover, if €1, €, -+, €, is a basis for the Lie algebra T.G, then Df(g) can be
explicitly written as

Df(9) = 5 [f (exp(t-@)g) flexp(t-2)g) -+« flexp(t-e)a)]”|
t=0

In regard to Lie group theory, R™ is also a smooth Lie group for which the binary op-
eration is addition, the Lie algebra is itself and the exponential map is the identity map.
Furthermore, the definition of directional derivatives on Lie groups in Definition C.1
is consistent with the definition of directional derivatives in R™. Therefore, it is with-
out loss of any generality to interpret all the quantities in this paper as elements of Lie
groups and all the derivatives in this paper as derivatives on Lie groups that are defined
by Definition C.1.

In this paper, following the notation in multivariate calculus, if f : G1 X Gg X - -+ X
G4 — R is a smooth function in which G1, Gs, - - -, G4 are Lie groups, we use D; f to
denote the derivative with respect to G;. In particular, for Ff’a = Ff g T b

i 07

that is used for the computation of the Newton direction in Algorithm B.2, note that

=k, . L. . =k, . L. .
Dy F, “ is the derivative with respect to gf " and Do F, “ is the derivative with respect

—k,«
to v;

D Proof of Propositions

In this section, we review and prove Propositions 1 to 4 in [1] though these proofs
are not necessary for implementation.

D.1 Proof of Proposition 1

In Section 3.1, we define the discrete articulated body momentum and discrete ar-
ticulated body impulse are respectively as follows.

Definition 1. The discrete articulated body momentum ﬁf’a € RS for articulated body
1 is defined to be

e =30+ Y mh va=0,1,- s (D.1)
j€chd(z)

. . . =7k, _ . P . . . ,
in which M “ and vf’a are respectively the spatial inertia matrix and spatial velocity
of rigid body 1.

10



Definition 2. Suppose F;(t) € RS is the sum of all the wrenches directly acting on
rigid body i, which does not include those applied or transmitted through the joints that

are connected to rigid body i. The discrete articulated body impulse Tf’a € RS for
articulated body 1 is defined to be

Y =F"+ Y " (D.2)
j€chd(z)
in which Ff’a = WF,;(t"*) At € RS is the discrete impulse acting on rigid body i.

Note that F(t), e

. and ff’a are expressed in frame {0}.

The DEL equations Eq. (5) can be recursively evaluated with ﬁf’a and Ff “ as

Proposition 1 indicates.

Proposition 1. If Q;(t) € R is the sum of all joint forces applied to joint i and p* =

[p’f ph - pﬁ]T € R" is the discrete momentum, the DEL equations Eq. (5) can be
evaluated as

S
k,0 k0T —k,0 k8T g, k.0
T; :pf—i-Si 02+ E aoﬁSi -uiﬁ—l—Qi , (D.3a)
B=0
fk,aT k,a

S
. — - —k, T
e =S 1 Y e B QR Ya =1, s~ 1, (D3b)
B=0

<ksT —k, - kBT k
AR A A D D R e X (D.3¢)
5=0

in which rf’a is the residue of the DEL equations Eqs. (5a) and (5b), a®f = whpbe,

-k, — -k, : . . ..
Q27" = wAt - adg@,a P T, and QF Y = wrQy(th) At is the discrete joint

3 2

force applied to joint i.

Proof. The Lagrangian of a mechanical system is defined to be
L(q,9) = K(g,9) = V(q) (D.4)

in which K(g,q) is the kinetic energy and V(q) is the potential energy. It is by the
definition of F';(t) and Q;(¢) that

T T T no T n
/0 }"(t)~5th75/0 V(q)dt:/o ;Fi(t)'mdtJr/O ;Qi(t)ﬁqidt

in which i, = (6gig;1)v. Therefore, the Lagrange-d’ Alembert principle Eq. (1) is
equivalent to

T T n T n
56:5/ K(q,q)dt+/ Zfi(t).mdw/ > Qit) - gidt =0. (D.5)
0 0 0 =1

11



As aresult of Egs. (3) and (D.5), we have

Z |: <8qL (qk7o‘7 q'kvo‘)7 6qf7(y> + <%(qk7aa qk,a)a 6qi€7a> +

k=0 a=0 i=1

N—-1 s

F(t).707) +(Qu(t"), 048 ) | At = 0. (D.6)

Note that the kinetic energy K (¢"%, %) is

n

1 T—k,a
K(,q5) = 5 Yo My e (D.7)

j=1

in which 77;"" € RY%6 is the spatial inertia matrix and 77 € RS is the spatial velocity.
Using Egs. (C.10b), (D.1) and (D.7), we obtain

OK v, 2”:8*’“’ TRk
8qz , i=1 0¢q; ] Vi
—k, aT =k, _k o —k,aT—k,afkﬂ (DS)
=S, M, v;" + Z S, Mj v;
jEdes(i)
_gka —koz

In a similar way, as a result of Egs. (C.14b), (C.11b), (C.12), (D.1) and (D.7), a tedious
but straightforward algebraic manipulation results in

aK a k.o _k,« —k,« T*’Cxa @
5y A = D fadgee () — 00 —adgeowy® | B
! jedes(i)u{i}
:Sk’aTadT ﬂk‘()(
G e
(D.9)
In addition, using Egs. (C.4) and (D.2) and Ff " = wF(t:) At, we obtain
- aT @ —k,a - o [eY gk ,Q ko «@
D OF () ALY =) (WO Fi ()AL ST dq + > 87 g
i=1 i=1 Jj€anc(z)
D IR MR AR AR

jEdes(z)

= fo’a’?f’a - 5g)°%)
=1

=S G T 6db).
1=1

(D.10)
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From Eq. (2), we obtain

1 S
5 = N "B L 5gP, D.11
di At; i (D.11)

Substituting Egs. (D.8) to (D.10) into Eq. (D.6) and simplifying the resulting equation
with Eq. (D.11) as well as the chain rule, we obtain

N—-1 s n el i s k5T . . .

o, _k,x s — q L

E E E (S;7 -7+ E a®S;"7 it + QP 6q ) =0
k=0 a=0i=1 B=0

- —k, "y

in which o = wfbPe, 2] = wO‘At-adgf,M,uf’a—i—Fi “and Q¥ = W, (th) At.

The equation above is equivalent to requiring

—k,0T —k,0 2 k8T i k.0
PE+STT 2+ a%ST w0 =0,

B=0
kol —ka apc BT _kp ko
Si QZ —|—Za Si 'z +Q2 =0 VOZ:L"',S—L
B=0

o1 ohsT ks ° spahBT _kp k,s

P =5 Jrza Si w7
B=0
This completes the proof. [

D.2 Proof of Proposition 2

. . . . —k, .
In Section 3.2, we make the assumption on the discrete impulse F'; “ and discrete
P k,a
joint force Q;"" as follows.

Assumption 1. Let u(t) be control inputs of the mechanical system, we assume that

. . -k, . .. .
the discrete impulse F', “ and discrete Jjoint force Qf’a can be respectively formulated

?
=k, =k, ko —ka  k k,a ks ka ka ok . . k
as F,”" =F;" (g%, v, u™) and Q" = Q;"“(¢;"%, ¢;”, u"*) in which u®* =

1V

From the notion of the spatial variation in Section C.2, we have the following propo-
sition for the Newton direction computation, which is later used in the proof of Propo-
sition 2.

k,a

Proposition D.1. If 5q,f»C '* is the Newton direction for qf 1% is the residue of the

DEL equations Egs. (7a) and (7b), and Assumption 1 holds, the computation of the
Newton direction 6q;"” is equivalent to requiring

<. « k0= k.« <k, -k, ,Q
o = Mo+ Y (6 — adl. S5 - 6q)7)
jechd(4) !
YVa=0,1,---,s, (D.12a)

13



5Ty = (D, + adgea —adgra) 7 + D, F . 5ot
> (5Fj - dDMSJ 6¢7%) Ya=0,1,---,s—1, (D.I2b)
j€Echd(i)
507" =w At (ad%. -5 + adB. 501 ") + 5T
Va=0,1,---,s—1, (D.12¢)
N N afgk BTk, ko o ki
SiTSRT 4 aPST St 4+ DiQE  6q
B=0
k,a ko k,« _
D2Q;" - 6¢;"" = —r; YVa=0,1,---,s—1. (D.12d)

. . < <5k, <=k . .. — —=k,a
in which 60", 5, 8T, " and 52, are the spatial variations of T2*, it>®, T

and ﬁf’a, respectively. Note that 6qf’0 = 0 and ﬁf’o = 0 though gﬂf’o # 0.

Proof. Egs. (D.12a) and (D.12c) are respectively the same as Egs. (C.22) and (C.24),

thus we only need to prove Egs. (D.12b) and D. 12d)

o k, . k
(g5 R 5 k) and since Su;® =0,

» Y

i

From Assumption 1, we have Ff ’ F
we obtain 5Ff’a as
OF, " =Dy F, - + Do Fy - oufe.
According to Eq. (C.16), the spatial variation 3?- s
SF =Dy F 7 4 Do FY T 5T ad%,jf”
Since 6, = §u5"* +ad; " o) ¢, ad, 5 WY = —adﬁf,aﬁf’a as well as ad%‘aff’a =

ad%_mﬁf **, the equation above is equlvalent to

TF; " = (DiF; " +ad.. — DoF; “adyes) 70" + DoF, ™ 50}
Substitute the equation above into Eq. (C.23), the result of which is Eq. (D.12b).
As for the proof of Eq. (D.12d), from Egs. (7a) and (7b), the Newton direction 5qf»€ @
requires that

5(sH" ;) +Zaaﬂ5 (L T W) W LR P
B=0
DoQ . 5GP = =B Yo =0,1,---,5s—1. (D.13)

—k,ozTik a —k,aT
As a result of Egs. (C.17) and (C.18), we have §(S;" 1;") = S;

—k,aT—k,a —k,an—k,oz . . ' .
6(S; 2;7) =8, 88, with which and Eq. (D.13), we obtain Eq. (D.12d).

3 3 K3

This completes the proof. O

SE® and

14



In Section 3.2, Proposition 2 to compute the Newton direction is stated as follows,
for which note that the higher-order variational integrator has s + 1 control points and
the mechanical system has n degrees of freedom.

Proposition 2. For higher-order vartattonal integrators of unconstrained mechani-
cal systems, if Assumption 1 holds and J*~ ( *) exists, the Newton direction 5G*
-Jk 1( ) - 7% can be computed with Algorithm B.1 in O(s>n) time.

Proof. The proof consists of proving the correctness and the O(n) complexity of the
algorithms.
For eachj € chd(4), we suppose that there exists Df’a”, Gf’a”, lf’a and Hf’ap,

WY ¢ such that
7k: « k,ap T 7p k,av 719,1/ k,a
Z Dy - ov " + Z Gy my

Ya=0,1,---,s (D.14)

S WACRL RS S AR
Va=0,1,---,s—1. (D.15)

According to Egs. (C.3), (C.19) and (D.11), Sﬁ?’p and ﬁ?’" can be respectively com-
puted as

v gk v
Y =T+ 8 oq) (D.16)
and

ok = Sule 4 Sk st 1 —S’c % Z b - 5 (D.17)

for which note that 5q;-“’0 = 0. Substitute Egs. (D.16) and (D.17) into Eq. (D.14), alge-
braic manipulation shows that

S =" Dyt o) ’P+ZG’”‘” 7Y l’“’+ZH’“’”§qﬂ (D.18)

p=0 v=1 ~y=1

in which
k,oy k,a'yék,'y k,a'y*kv’Y 1 ¢ k,ozp*kaﬂ
HP®Y = DSy 4 Ghevsy” + Zthij S;°.
In a similar way, using Egs. (D.15) to (D.17), we also have

ZH’”P 5*’“P+Zu7’”‘”f’” + B Y5 (D.19)
=1

15



in which
S
kay _ grk,aygk,y k,ay gk 1 oy 7k, apghkP
e | +E2b myers;”.
p=0

From Egs. (C.12), (C.24) and (D.17) to (D.19) and

—k,aT T —kao —k,ozT D Gk
Sj adgfaﬂj - SJ adﬁ?,a Sj — 0,
we obtain
val i s s
oh.at TRk k,ap T—k,p —k,av —k,v k,a
S =N ke Gy £ N Sher b g gh (D.20)
p=0 v=1
in which
. T T T
kap _ .« . k.o k,ap ap*k’a D ok, k,ap
0;"" =w* At (Sj D% +0%"S; adﬁ;m) +5;7 1,
~ k:,aT

Ehar _ et S

T
k,av <k, k,av
J J Gj + Sj 7;

J ’
kol kol 5 . T
& =t AL ST ST e Y [we A (50 BPeTs
y=1
kol shon] ¢ ko
)+ 5 @ }5%‘ )

—k,aT —k,x
o5 adb.. S
J By J

and note that o is given in Eq. (B.2) of Algorithm B.2. Substituting Egs. (D.11),
(D.18) and (D.20) into Eq. (D.12d), we obtain

s s s

—k,ap <-k,p =kav gy <k« k,ay k,y k,a
E 0, " - ov;" + E =M+ + E AT 0qT =~
p=0 v=1 y=1

J
YVa=0,1,---,s—1. (D.21)
in which
e k - k68T k.8
oher _ ,ap e Bp
0;"" =07 + ) a5 DY,
B=0
k k - k8T k.8
=rar  —k,av apBgh ,Br
M =Ep )y et G,
B=0
S
sk —k,aT k,a —k,aT ko aﬁ—k,ﬁT k.8

B=0

s
kaoy _  « <k,aT k,oy —k,aT k,ay aﬁ*k:ﬁT k,By
AT =w At - S5 H™ + 8,7 0777 + E a®’ Sy Hp T+

8=0
v (D k,« oA gk,aT dD ?k,a 1 b . D ka
o 1057 +w* At - S aﬁj‘a p +Zt ‘D@5
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For notational convenience, we define A j “ to be

o N~pkar <t kp | N~mhar by | gha
APt =3 0" du Y BT A
p=0 v=1
Va=0,1,---,s—1. (D22)

such that Eq. (D.21) is rewritten as

Do AP ag)T =t = AP Ya=0,1, 0, s 1. (D.23)
y=1

In addition, if we further define A;?, rf, A? and 6@9‘5 respectively as

A =[] e roxe,

J

T
k __ k,0 k,1 k,s—1 s
T = {rj T T } € R?,

k
Aj

T
[A?’O A?,l L A?,s—li| c RS,

T
o7k = g} 6q)? - oq)] e Ry,

inwhich0 < a <s—1and 1 < vy < s, then Eq. (D.23) is equivalent to requiring

k sk k k
Aj ~6qj =-rj— Aj. (D.24)
in which Af is invertible since 7% " (g") exists. From Eq. (D.24), we obtain
_ —1
6q§ = —Af (rf + Af)

If Af_l is explicitly written as /1;?_1 = {Z?"m} € R***in which 1 < v < s and

0 < p < s — 1, expanding the equation above, we obtain
s—1 i
6qhT = =S A (Tf"’ ¥ Ajﬁ‘-’) Vy=1,2, -, s (D.25)
0=0
Substitute Eq. (D.22) into Eq. (D.25), the result is
5q;?,’Y — Z X]]?a’YP 3 g@fvp + Z Y’jka’YV . ﬁf,l’ + y;?”\/ (D26)
p=0 v=1
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in which

xhe — sz e k gp
J

k'yl/ o z : 7’YQ ,QV
. fk,w ko , £k.0
0=0

Making use of Egs. (D.18) and (D.26) and canceling out 5q§’7, we obtain

ko —k,« P s —k, - k. ° —k,av _Ly -k,
Oy —adpl 55 0gp e =Y DTG0 4 3G+ 1 a2
p=0 v=1

in whichaa=0,1, ---, s, and
EJ =D+ Z HP X e U“Oa¢k GS xper, (D.28a)
y=1
G =aher Z H} Y — 7°%d) W e (D.28b)
~y=1
l k,a lk @ + Z Hk ay k,‘Y —aOa¢k aSk ay;v a7 (D.28¢)
y=1

and note that *° is given in Eq. (B.2) of Algorithm B.2. In a similar way, using
Egs. (D.19) and (D.26), we obtain

J

==k, D Gk k a k,ap 7k P k,av 7k v =k«
65" —adfia5;" - Z)H .50 +Zzp T+ (D29)
p=

inwhicha=1, 2, ---, s,and
k S
—k,a B
Hj 4 = H;C,ap + Z @?,OL’YX;%’YP _ Uaoad%? aS Xk ap (DSOa)
~y=1
S
—=k,av  _koav E,avy kv  —a0. 1D GFsQy k,av
Uy =Pt 4y ey o adpea ;" Y, (D.30b)
y=1
S
G = G Y B 7 ad e 5 (D.300)
y=1 J

Finally, for each j € chd(i), substituting Egs. (D.27) and (D.29) respectively into

Egs. (D.12a) and (D.12b) and applying Egs. (D.28) and (D.30) to expand D e Gk Y
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<k, —k,ap —=k,av —<k,a . . k,p kv k,a k,ap k,av
lj andﬂj ,Wj ,Qj , we respectively obtain D;"", G, [,”" and 11", %",

(ik’a as Egs. (B.1) and (B.3) of Algorithm B.2 such that

S S
<k, kap Tk, kav —k, k,
of; " = E Dz ot + E G mt
p=0 v=1

Ya=0,1,---,s, (D31

ST = 3 IIES - Gupt 4 3wl 4 ¢
Ya=0,1,---,5s—1. (D.32)

In particular, note that even if rigid body ¢ is the leaf node of the tree representation
whose chd(i) = @, there still exists D", G¥, 19 and II}*7, WP, ¢F* from
Egs. (B.1) and (B.3) of Algorithm B.2. Moreover, as long as Df”’, Gf"’, lf” and
k,ap Yk',au

s Lg >

Hik’o‘p, Wik’o”’, Cik’a are given for each rigid body 7, we can further obtain X

yf "* following lines 3 to 9 of Algorithm B.2.
In summary, for each rigid body 4, we have shown that X Zk ap ykor, yf " as well

as DF?, GF 15 and 11527, wF*" | ¢ are computable through the backward pass
by Algorithm B.2, and 6¢/* as well as 777 and 0v/"* are computable through the
forward pass by lines 4 to 15 of Algorithm B.1, which proves the correctness of the
algorithms.

In regard to the complexity, Algorithm B.2 has O(s?) + O(s%) complexity since

there are O(s?) quantities and the computation of Af’a_l takes O(s3) time, and thus
the backward pass by lines 1 to 3 of Algorithm B.1 totally takes O(s®>n + s%n) time.
Moreover, in lines 4 to 15 of Algorithm B.1, the forward pass takes O(szn) time. As a
result, the overall complexity of Algorithm B.1 is O(s3n), which proves the complexity
of the algorithms. O

D.3 Proof of Proposition 3

. L . . K 9’K
Proposition 3. For the kinetic energy K(q,q) of a mechanical system, 532 Dadq”
K 9’K
9q9q’ 9q?

Proof. According to Egs. (D.1), (D.8) and (D.9), we have

can be recursively computed with Algorithm 2 in O(n?) time.

0K 1 /— —_
— =5 (Mvi + M vy (D.33)
0 ( i/e%;(i) )
and -
dgi =57 (Mo +i,€§(i) M) (D.34)
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Since M;7;, S; and S; only depend on qj and ¢; for j € anc(i) U {i}, it is straightfor-
ward to show from Egs. (D.33) and (D.34) that the derivatives 83_2K K K

and

K
0q:0q;

0q4;° 04;0q;° 0qi0q;

can be respectively computed as

o [#(35) seme@u,
= ’K . . D.
aqlaq] 94;0q: ] € des(z), ( 35)
0 otherwise,
aZK % (géf) *7 € anc(i) U {Z}7
= 02K . e .
94:0; a0 j € des(i), (D.36)
0 otherwise,
o [#(35) seme@u,
= 9’ K . - .
0¢;0q; 24;0q; j € des(i), (D.37)
0 otherwise,
s[5 (85) geanciuin
oK = 8’°K . . (D.38)
9qi0q; ) a0 J € des(i), :
0 otherwise.

Therefore, we only need to consider the derivatives for j € anc(¢) U {i}, whereas the
derivatives for j ¢ anc(i) U {i} are computed from Egs. (D.35) to (D.38). In addition,
if j € anc(i) U {i}, using Egs. (C.14a), (C.10a), (C.11) and (C.12), we obtain

OMv; — —
5i = MiS;, (D.39)
i
5‘qu = —ad%j M;v; — Ml‘adgjiz‘ + Miadgj (ﬁi — 5j)
i
_ Mi;j B ad%j M5 (D.40)
95 =
5. - adgj S, (D41
J
95 - _
aq ) = a,dgi adgj S»L + a’dadgA (vi—vy) Sl . (D42)
g J
For notational clarity, we define 7,, M, M:‘ and MiB as
o, = Mz'@i + Z Mj@j = Mqﬁz + Z ﬁj, (D.43)
j€Edes(z) j€chd(4)
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Mi=M;+ > M;=M;+ > M, (D.44)

j€Edes(i) j€chd(z)
M = M5, (D.45)

: : : aty ’K  _9°K  _9’°K K
which will be used in the derivation of 94:04,° 94,00,° 94,04, and 9404,

K
D 94;9q;

If j € anc(i) U {i}, from Egs. (D.33), (D.39), (D.44) and (D.45), it is simple to
show that

04:04;  9¢; \ 94;

PE 9 8K>

- (D.47)

K
2) 094¢;0q;

If j € anc(4) U {i}, using Egs. (C.7a), (D.33), (D.40), (D.44) and (D.45), we obtain

0?K 0 (8K>

04:;0q;  9g; \ 9di
i’ edes(i)U{i}
_ g? (Mz + Z Mll)gj (D.48)
i/ €des(2)
=5, M;5;
— 5 M
’K
3) 9q;0q;
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If j € anc(4) U {3}, using Egs. (D.34), (D.39), (D.41), (D.43) and (D.44), we obtain

PK o <8K>
0q;0¢;  9¢; \ 9q;
= Z (?ZTMZISJ + g?ad%ﬂz/@/)
i/ €des(i)U{i} ’
:Ef (Mi + Z Mi,)@- + (Mm + Z Mi@-/)Tadng-
i/ €des(7) i’ €des(i)

 ST—=5 _r —

Then simplify the equation above with ﬁiTadgj S = —ngadgi S; and Eq. (D.46), the
result is
2K

_ 57 (346, - adl’3,) = 57"
9000 = 5 (MiSi - adl5:) =5, M. (D.49)

8°K
4 0q;0q;

If j € anc(i) U {i}, using Egs. (C.12), (D.34), (D.39), (D.40) and (D.42) to (D.44)
and ad, g, = ady,adg, —adg ady,, we obtain

PK 9 (8K>
0¢;0q;  Oq; \ Og;
. [ (W5)" (a5 ads, 5 — adg ady, 5+

i/ €des(i)U{s}

S
- __ __ T _
= JT(Ml + Z MZ/)Sl + (szl + Z szvlf) adéjSl
i/ €des(z) i’ €des(i) '
= g?ﬂzgl + uiTadj S,
Similar to %, using ﬁiTadgj S; = —?fadgi S; and Eq. (D.46), we obtain
PK a1 - — ~T—B

=5 (M5 - dPSZ-):S- 4 D.50
5ag =5 (MiBi—ad?5,) =574, (D.50)
Thus far, we have proved that 8?;;; s 8‘232 - 823; and a‘?;g] - can be compuzted
using Egs. (D.35) to (D.38) and (D.47) to (D.50) with which we further have %;2( ,

’K 0°K ’K
5300 Da0q and o2 computed.
As for the complexity of Algorithm 2, it takes O(n) time to pass the tree repre-

sentation forward to compute g;, M;, Si, T;, S; and another O(n) time to pass the

22



. -— ——A -—B
tree representation backward to compute fz;, M;, M; and M, . In the backward pass,

a?;é;, 82,2(;;} a?;a{; and 8‘?;;; are computed for each ¢ using Egs. (D.35) to (D.38)
and (D.47) to (D.50) which totally takes at most O(n2) time. Therefore, the complexity

of Algorithm 2 is O(n?). This completes the proof. O

D.4 Proof of Proposition 4

Proposition 4. If g € R3 is gravity, then for the gravitational potential energy Vg(q),

2
% can be recursively computed with Algorithm 3 in O(n?) time.

Proof. It is known that the gravitational potential energy Vg (g) is
Velg) == mi-g"pi. (D.51)
i=1

in which m; € R is the mass of rigid body i and p; € R? is the mass center of rigid
body 4 as well as the origin of frame {i}. In addition, from Egs. (C.5a) and (C.5b), we
have

Opi _ Sipi+m; jE an‘?(i) u{il, (D.52a)
3% 0 otherwise,

and N
Op; _ [Swj+7s € des(i) Ui}, (D.52b)
dq; 0 otherwise,

in which 3;,7m; € R3and S; = [E,T ﬁzT] T € R is the spatial Jacobian of joint 7. From
Egs. (D.52b) and (D.51), algebraic manipulation gives

%l% _— (mi [pig} + > ma [pi’g} ) (D.53)
di g i’ €des(i) g

Moreover, observe that S; and p; only depends on g; for j € anc(i) U {i}, we obtain
from Eq. (D.53) that

OV . . .
v 2 (5x) Jeanc(i) Ui},
g _ 9%V, . .
aqqaqj - Wag(h J c des(z), (D54)
0

otherwise,

which means that only 822‘}'9/3' for j € anc(i) U {i} needs to be explicitly computed. If

J € anc(i)U{i}, using Egs. (C.7a), (D.52a) and (D.53) as well as the equality ab = —ba
for any a, b € R3, we obtain

Ve D (avg)
0qi0q;  0q; \ O0g;

= Z mys [5? (§§jpz‘/ +§jﬁi'g) - ﬁ?ggj} :
i’ €des(1)U{t}
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In addition, since pyg5; = —5,;pir — s5;prg and @’ = —a for any a € R3, the
equation above is equivalent to

2V, . B
3,3g4282g[(mi+ Z my )i, — (map; + Z mapir Z} (D.55)
4i94; i/ €des(7) i/ €des(7)
If we define
=it X m=mit ¥
j€Edes(7) j€chd(z)
Tpo=mipit D, mgpy=mipit > T,
j€Edes(z) j€chd(7)

G =8 (Tm, -7 — Op, - 5i)
then Eq. (D.55) is further simplified to

Vg A T_A
g T, i — 0p,;8i) =5;0; - (D.56)
aQia% ( P )

Asa result, 57 2 can be computed from Egs. (D.54) and (D.56).

The O(n 2) complexity of Algorithm 3 is as follows: the forward pass to compute
gi and S; and the backward pass to compute &,,,, 0, and &4 take O(n) time, respec-

. . 9%V, 2%V, T— .
tively; and the computation of Wd;j = 2 Bg = s]TU;4 totally takes O(n?) time.
Therefore, it can be concluded that Algorithm 3 has O(n?) complexity. This completes
the proof. U
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