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ABSTRACT

Encrypted voice-over-IP (VoIP) communication often uses variable
bit rate (VBR) codecs to achieve good audio quality while min-
imizing bandwidth costs. Prior work has shown that encrypted
VBR-based VoIP streams are vulnerable to re-identification attacks
in which an attacker can infer attributes (e.g., the language being
spoken, the identities of the speakers, and key phrases) about the
underlying audio by analyzing the distribution of packet sizes. Ex-
isting defenses require the participation of both the sender and
receiver to secure their VoIP communications.

This paper presents Whisper, the first unilateral defense against
re-identification attacks on encrypted VoIP streams. Whisper works
by modifying the audio signal before it is encoded by the VBR codec,
adding inaudible audio that either falls outside the fixed range of
human hearing or is within the human audible range but is nearly
imperceptible due to its low amplitude. By carefully inserting such
noise, Whisper modifies the audio stream’s distribution of packet
sizes, significantly decreasing the accuracy of re-identification at-
tacks. Its use is imperceptible by the (human) receiver.

Whisper can be instrumented as an audio driver and requires
no changes to existing (potentially closed-source) VoIP software.
Since it is a unilateral defense, it can be applied at will by a user to
enhance the privacy of its voice communications. We demonstrate
that Whisper significantly reduces the accuracy of re-identification
attacks and incurs only a small degradation in audio quality.
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Figure 1: Overview of a traffic re-identification attack on an en-
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1 INTRODUCTION

Voice-over-IP (VoIP) systems encode voice for transmission over a
network. The majority of popular VoIP systems use variable bitrate
encoding (VBR) to achieve high quality audio while conserving
bandwidth. The output data of VBR per unit time depends on the
complexity of the input audio, resulting in audio frames (and ul-
timately, packets) of various sizes. To secure encoded voice data
during transmission, VoIP systems often support end-to-end encryp-
tion, for example, via secure real-time transport protocol (SRTP).

Such protocols, however, while ensuring message confidential-
ity, still leak information about the underlying audio. Prior work
has shown that significant information about the audio stream—
including the identify of the speaker, the gender of the speaker,
the spoken language, and even key phrases—can be inferred by
analyzing the distribution of encrypted packet sizes [13, 14, 19-21].
Such re-identification attacks are possible because the size of the
encrypted packets depend on the type of audio being encoded by
the VBR codec; less complex audio (e.g., silence) requires fewer bits
to encode.

Typically, re-identification attacks use machine learning tech-
niques to infer information about the encoded audio from the en-
crypted VoIP stream. Figure 1 shows an overview of the attack’s
workflow. An adversary intercepts the encrypted VoIP stream and
extracts features from the distribution of encrypted packet sizes.
Using a labeled training corpus, the adversary applies machine
learning techniques to build a classifier (again, using features based
on the distribution of encrypted packet sizes), and applies the clas-
sifier to extract information about the underlying audio. Modern
encrypted VoIP systems are surprisingly vulnerable to such attacks;
for example, Wright et al. [21] showed that the spoken language can
be inferred with 87% accuracy when presented as a binary classifi-
cation problem and 66% accuracy using a 21-way (i.e., 21-language)
classifier.

A straightforward and effective defense against re-identification
attacks is to abandon VBR in favor of constant bitrate encoding
(CBR). CBR offers complete protection against re-identification
attacks since it eliminates information leakage due to packet size.
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Figure 2: (Top) The VBR codec of a VoIP application encodes input
frames to generate encoded packets that are vulnerable to traffic re-
identification attacks. (Bottom) Whisper adds extra inaudible audio
to the input audio frames before they are encoded by the VBR codec,
altering the packet sizes of encoded packets and thwarting traffic re-
identification attacks.

However, for the same targeted bitrate, VBR offers far better audio
than CBR. Reliance on CBR incurs such a bandwidth overhead that
we know of no encrypted VoIP system that has opted to use it.

There are also existing defenses that attempt to disrupt re-identi-
fication attacks while still permitting the use of VBR codecs [14, 22].
These function by modifying the size of packets generated by a
VBR codec, thus hiding the underlying packet size distribution
of the encoded audio. However, existing defenses either require
participation of both the sender and receiver [14, 22] or require
white-box access to the VBR codec [22].

In this paper, we propose Whisper, a unilateral defense against
re-identification attacks. Whisper leverages the limits of the human
audible range to alter the size of packets generated by a VBR codec
in a manner that (i) obfuscates the true packet size distribution
and (ii) is (ideally) imperceptible to the receiver. It allows a privacy
conscious sender to secure his side of the communication without
any support from the receiver.

Whisper alters the size of output packets generated by a VBR
codec by overlaying tuning audio on the actual audio before encod-
ing occurs. The addition of tuning audio changes the characteristics
of the original audio signal to be encoded, without affecting the
contents of the original audio as perceived by the human listener
on the receiver side.

At first blush, it may seem that Whisper is inherently incompat-
ible with modern audio codecs, since codecs often use band filters
to remove audio outside of the human audible range. However,
in practice, codecs typically err on the side of preserving audio
quality and are inexact in their filtering. This leads to segments
of the spectrum that are both not-filtered and either inaudible or
unplayable due to the limits of commodity speakers.

Figure 2 shows an overview of Whisper. Whisper overlays tun-
ing audio to the input audio frame before it is encoded by the VBR
codec in the VoIP application. It is thus agnostic to the particular
VoIP application, which we assume is unaware of the Whisper pro-
tections and merely receives audio data from a Whisper-enabled
audio/microphone driver. In summary, Whisper’s unilateral protec-
tions and ability to be used with any closed-source (i.e., black-box)
VoIP software enable the practical protection of communication
using deployed VoIP systems.

We evaluate Whisper using large voice corpora and the popular
Opus VBR codec [2]. We show that Whisper significantly reduces
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the accuracy of re-identification attacks. For example, Whisper
decreases the adversary’s accuracy to correctly identify the speaker
of an encoded VoIP conversation from 97.22% (without Whisper) to
31.13% (with Whisper). Whisper incurs limited bandwidth overhead
and has no significant impact on the quality of actual audio.

2 RELATED WORK

VoIP re-identification attacks are instances of traffic fingerprinting,
the latter of which has been richly explored (see, for example, early
work by Hintz [12] and Crotti et al. [7]). Traffic fingerprinting at-
tempts to infer characteristics about communication by examining
its network attributes (e.g., the timing, sizes, and inter-arrival times
of packets; and their distributions) rather than by analyzing the
communication’s contents. There is an active arms race between
website traffic fingerprinting techniques and defenses [6, 18], which
is especially relevant to anonymity networks such as Tor [8].

VoIP re-identification attacks apply similar fingerprinting tech-
niques to identify attributes of the underlying call audio and/or
the participants of the communication. Prior studies have found
the distribution of (encrypted) packet sizes to be sufficient to infer
with high accuracy the language being spoken [21], the gender and
identity of the speaker [14], and even key phrases [19, 20].

Wright et al. [22] first proposed a defense against statistical
traffic analysis of VoIP streams by morphing one class of traffic to
look like another class. Their proposed defense alters the packet
sizes of the source traffic such that the statistical distribution of its
encoded packet sizes closely matches that of the target traffic. With
only black-box knowledge of the codec, their defense increases
the packet sizes by padding the encoded output of a VBR codec.
With white-box access to the codec, Wright et al. [22] rely on the
selection of the bit rate within the codec to increase or decrease
the size of an encoded packet. To find a distribution closest to that
of the target traffic, Wright et al. use comparison functions such as
the y? statistic and convex optimization to minimize the overhead
due to the padding of packets.

Rather than morphing the source distribution to a particular
target distribution, Moore et al. [14] calculate a new, synthetic,
“superdistribution” to which all source traffic distributions can be
morphed. To calculate the superdistribution, their defense considers
the distributions of all potential source traffic and determines the
least bandwidth-intensive distribution that can be used to map all of
the source traffic. Once the superdistribution has been determined,
the output of the VBR codec is padded to map it to the size described
by the superdistribution. Because the padding is itself encrypted
end-to-end, an attacker cannot easily infer the original, unpadded
distribution of packet sizes. Whisper’s approach to determine how
much noise/padding to add to the baseline traffic borrows from
Moore et al’s algorithm.

Limitations of existing defenses. A straightforward defense
to prevent the leakage of information due to traffic analysis of
packet sizes is to use constant bitrate encoding (CBR). However,
to achieve the same audio quality as VBR, CBR incurs significant
bandwidth overheads. This makes CBR unsuitable for networks
with limited bandwidth such as cellular networks.



The major limitation of existing traffic morphing defenses for
VoIP streams [14, 22] is that they require both communicating par-
ties to support and participate in the defenses. Defenses proposed
by both Wright et al. [22] and Moore et al. [14] add padding to alter
the size of the encrypted packets on the sender side, requiring the
receiver to strip the extra padding. In cases where the receiver does
not support the removal of the extra padding, the sender can only
communicate over the vulnerable VBR channel. This essentially
prohibits a privacy conscious participant from communicating with
another party who does not support these defenses.

In contrast, our proposed Whisper defense is unilateral and does
not require the participation of the receiver. Currently, to our knowl-
edge, no deployed VoIP system supports a unilateral defense that
can prevent traffic analysis of encrypted VoIP streams while sup-
porting VBR encoding. Our techniques can be implemented as a
virtual device driver, and are therefore compatible with existing
closed-source VoIP software (e.g., Skype).

Additionally, the approach taken by Wright et al. [22] of changing
the codec’s bitrate to manipulate packet sizes requires white-box
access to the VBR codec. In contrast, Whisper takes a black-box
approach and can work with applications that do not allow access
to the codec or its settings.

3 USER AND ATTACK MODELS

We assume two parties communicating via a VoIP application that
uses VBR encoding. The VoIP application provides end-to-end en-
cryption; that is, it encrypts all traffic between the communicating
parties to prevent eavesdropping, but does not make any effort to
hide the size of the encrypted packets. Furthermore, we assume that
the communicating parties use a closed-source VolIP application
such as Skype and are unable to modify the codec parameters. This
assumption enforces the constraint that the defense should work
with popular VoIP clients without requiring any modifications to
them.

As with previous work [14], Whisper assumes that the VBR
codec used by the VoIP application is publicly known. Whisper
requires some per-codec tuning, which necessitates having black
box access to the codec. This is a realistic assumption since popular
VoIP clients use standardized codecs whose implementations are
publicly available. For example, Skype uses the Silk codec [17]
while WhatsApp is known to use the Opus codec [2, 9, 16], both of
which have publicly available implementations. We do not require
that the codec is itself open source; rather, we require only that an
implementation is available for tuning our defense.

Since VoIP is typically a bidirectional channel, it should be em-
phasized that Whisper protects only the communication that is
generated by the party applying Whisper. We do not consider cor-
relation attacks in which the unprotected direction is used to in-
fer information about the channel being protected by Whisper;
this is likely feasible for inferring language (since typically both
communicants use the same language), but may be difficult for re-
identification attacks that attempt to perform speaker identification
or identify key phrases. Of course, Whisper can be used by both
parties to provide bidirectional protections.
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Our attacker model follows existing work [14, 22] with respect to
the adversary’s capabilities and access to training data for perform-
ing traffic analysis. We consider a passive adversary that intercepts
all encrypted VolIP traffic between the communicating parties. The
adversary does not have access to the underlying plaintext audio.
However, it can inspect the traffic and learn other characteristics,
including the size and timing of packets.

The adversary’s goal is to use the distribution of packet sizes
obtained from the encrypted packet stream to discern information
about the underlying audio. In this paper, we focus on the case in
which the adversary attempts to learn the identity of the speaker,
given a closed-world setting in which the set of candidate speak-
ers is known apriori. We emphasize that the closed-world setting
is a conservative model (for the defense). That is, a defense that
successfully thwarts accurate re-identification in the (worse-case)
closed-world setting is also effective in the open-world setting in
which all speakers (or languages, genders, phrases, etc.) must be
considered.

We chose to consider speaker identification—as opposed to re-
identifying gender or language—as speaker identification has been
previously shown to be highly accurate [14] and arguably more
interesting to potential eavesdroppers than gender or language
identification. (Presumably, learning the identity of the speaker
also provides hints at gender and language.)

To conduct its attack, the adversary has access to a training
corpus of unencrypted audio samples, including samples from all
potential speakers in our closed-world setting. The adversary also
has complete knowledge of the Whisper algorithm and its parame-
ters, excluding the private random bits generated by the sender.

As shown in Figure 1, the adversary uses the training corpus
to build a machine learning classifier to learn information about
the encoded audio from the encrypted packet size distribution. All
known re-identification attacks on encrypted VoIP streams [13, 14,
19-21] consider the frequency of n-grams over the size of packets
as features to the machine learning classifier. We use a similar
approach to show the vulnerability of the Opus codec [2] to re-
identification attacks and to evaluate the effectiveness of Whisper
in mitigating such attacks.

4 METHODOLOGY

Re-identification attacks on encrypted VoIP streams leverage the
packet size distribution of the encrypted VoIP packets to perform
traffic analysis. Whisper defeats such attacks by changing the size of
the encrypted packets generated by the VoIP application before they
are sent over the network. The updated sizes of these encrypted
packets should be such that their packet size distribution decreases
the information leaked by the encrypted VoIP stream and reduces
the ability of the adversary to perform accurate traffic analysis.

Moore et al. [14] propose padding packets to achieve a particular
distribution—the superdistribution—to which all classes of traffic
(e.g., different speakers, genders, phrases, etc.) can be mapped. Con-
ceptually, morphing all underlying (and revealing) distributions
to the superdistribution hinders re-identification attacks since it
removes the adversary’s ability to discover distinguishing features
within the packet size distribution.

Whisper borrows the superdistribution concept from Moore et al.
[14], but uses inaudible audio to enable unilateral protections. In



what follows, we provide a brief overview of the superdistribu-
tion generation (§4.1) and mapping techniques (§4.2), and then
describe how Whisper uses inaudible noise to morph traffic to the
superdistribution (§4.3).

4.1 Creating the Superdistribution

Moore et al. [14] construct a superdistribution using an audio cor-
pus, which we will refer to as the training corpus. (They conserva-
tively assume that the adversary also has access to this corpus.)
Without loss of generality, we will describe both the defense of
Moore et al. and our Whisper system in terms of defending against
re-identification attacks that aim to identify a speaker from a closed
set of potential speakers. Our defenses are equally applicable to
other re-identification tasks.

We assume a VBR codec that produces a sequence (vector) of L
audio frames d = (a1, - - - ,ar), where each audio frame encodes a
fixed-length time period of the audio (usually 20 ms) and L is a func-
tion of the length of the source audio. That is, a is the encoding of
the input audio sample produced by the VBR encoder. We consider
the set of possible packet sizes over d to be the codec alphabet (Zi,)
of that codec. We note that ¥;, is finite, and treat it as an ordered
set Zjp = {21,22,- -+, 2|, |} Where ; < 3; when i < j, for all
i’j € [1’ |Zin|]’i #‘]

The superdistribution generation algorithm considers the distri-
bution of all the speakers in the training corpus and calculates the
least bandwidth-intensive distribution that can be used as the target
distribution. To preserve audio quality, we are limited to additive
modifications only: we can pad any audio sample a4 € @ of size 3;
to any size larger than 3;, but cannot decrease the size of ag without
significantly degrading audio quality. While the defense of Moore et
al. does not require that the set of padded packet sizes (Zoyt) equal
that of the codec (i.e., Zj,), Whisper necessitates that oyt = Zin
since the receiver should be agnostic (and potentially unaware)
of the defense’s use. For clarity, in what follows, we assume that
Yout = Zin and use X as shorthand.

We directly apply the superdistribution generation algorithm
of Moore et al. [14, see Algorithm 1]. Briefly, the superdistribution
generation algorithm considers the packet size distributions for
each speaker in the training corpus, and then calculates the least
bandwidth-intensive distribution to which the packet size distri-
bution of all the speakers in the training corpus can be morphed.
For the ascending list L, = (I1,,-,l ) of k different possible
lengths of output packet sizes for a packet stream z, the superdis-
tribution algorithm calculates a target distribution L; such that for
all1<i<k X, +-+ +1,) =max(X(l;, +---+ 1)) over all
packet streams z in the training corpus.

We assume an adversary will consider not just the relative fre-
quency of packet sizes, but also the relative frequency of n-grams
of packet sizes. (This is the predominant approach used by prior
work on re-identification attacks [14, 19-21].) More precisely, the
adversary uses overlapping sequences of length n over the output
packet sizes in X as features for the machine learning classifier.
Like the approach of Moore et al. [14], Whisper’s superdistribution
generation algorithm computes a separate superdistribution for
each unique sequence of n — 1 packet lengths. Thus, there will be
|21 superdistributions. During the mapping step (see §4.2), the
superdistribution matching the last n — 1 packet length sequence is
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used to determine the target packet size of the next packet to be
encoded.

4.2 Mapping to the Superdistribution

Whisper uses the superdistribution to determine the desired size of
the next outgoing packet from the VoIP application. That is, given
an input audio frame a4 of size 3; and the history of previously
transmitted audio frames (including their added noise), Whisper
determines the desired augmented packet size X} (where %} > %;)
that will cause the distribution of packet sizes to appear closest to
that of the superdistribution. (As discussed above, >} cannot be less
than ¥; without incurring a significant loss of audio quality.)

We make a slight modification to the mapping algorithm pro-
posed by Moore et al. [14] to include additional parameters to allow
a trade-off between security and bandwidth overhead. (We use the
term packets to be consistent with the terminology of Moore et al.
[14]. Moore et al’s defense added padding to the encoded packets
generated by the VoIP application. In contrast, Whisper modifies
audio frames before they are encoded by the VoIP application. )

Algorithm 1 describes how Whisper calculates the target packet
size from an input stream such that the distribution of target packet
sizes closely resembles the superdistribution. The mapping algo-
rithm works for any level of n-grams.

In lines 5-8, we pad the initial n — 1 packets (audio frames) to
the maximum packet size for bootstrapping. Next, for each input
audio frame, line 11 computes the cost of choosing each possible
packet size based on the current distribution of the last n — 1 output
packet sizes and the target distribution. The cost for each potential
packet size represents the distance between the target and current
distribution, if that particular packet size was chosen. Line 13 mod-
ifies the cost of choosing a packet size for the next packet based on
a pktSizeWeights weighting parameter for each target packet size.
The weighted costs allow for favoring smaller packet sizes while
penalizing larger packet sizes. This allows us to trade off between
performance and security. Based on weighted cost, line 15 assigns
the probability of selection to each packet size. The non-negative
strictness parameter determines how strictly the target distribution
adheres to the superdistribution. A smaller value means stricter
adherence compared to a larger value. The strictness parameter
allows the mapping algorithm to boost the selection probability of
smaller packet sizes to reduce the bandwidth overhead by trading-
off security. Line 17 returns either the next output packet size based
on the computed probabilities or the size of the maximum packet if
there are no non-zero probabilities. Lines 19-22 update the current
distribution counts and the last n packets. Line 23 then modifies the
input audio frame (by overlaying tuning audio) before passing it to
the VoIP application such that the size of the encoded output packet
generated by the VoIP application matches the desired packet size
chosen in line 17.

4.3 Whisper

Whisper’s overarching goal is to decrease the accuracy of re-ident-
ification attacks by modifying the size of encoded packets generated
by the VBR codec of a VoIP application. The modification of audio
frames to produce packet sizes that are reflective of the superdistri-
bution minimizes information leakage and reduces the accuracy of
traffic re-identification attacks.



Algorithm 1 Mapping an input distribution to output distribution determined by the superdistribution.

1: procedure MORPHSTREAM(inputStream, targetStream, numPktSizes, NgramSize, pktSizeWeights, strictness)
2 currentDistCounts «— Empty array of size numPktSizesN9ramSize

3 lastNPkts «— Empty queue of packet sizes

4 maxSizePkt « Size of largest packet in inputStream

5 for x in range(0, NgramSize) do

6 currentPkt « inputStream.dequeue()

7 doW hisper(currentPkt, maxSizePkt)

8 lastNPkts.enqueue(currentPkt.size())

9: while currentPkt « inputStream.dequeue() do
10: > Cost is the distance between the target & current distribution for all packet sizes, if that size was chosen.
11: sizeCosts «— computeSizeCosts(currentPkt.size(), targetStream, maxSizePkt, currentDistCounts, last NPkts)
12: > Weighted costs allow for favoring smaller packet size/penalize larger size.

13: weightedSizeCosts «— computeWeightedSizeCosts(sizeCosts, pktSizeW eights)

14: > Based on weighted cost, decide probability of selection for each packet size.

15: pktSizeProbabilities <— computeProbabilities(weightedSizeCosts, maxSizePkt, strictness)

16: > Choose the output packet size using weighted selection probabilities.

17: chosenPktSize « choosePktSize(pktSizeProbabilities, maxSizePkt)

18: > Update current distribution.

19: currentDistCounts[lastNPkts][chosenPktSize] + +
20: currentDistCounts[last NPkts][total Pkts] + +
21: lastNPkts.enqueue(chosenPktSize)
22: lastNPkts.dequeue()
23: doW hisper(currentPkt, chosenPktSize)

As shown in Figure 2, Whisper mitigates re-identification at-
tacks by overlaying extra audio, called tuning audio, to the audio
frames generated by the sender before they are passed to the VoIP
application.

In our preliminary investigation, we observed that the addition
of tuning audio to the original audio can alter the size of the encoded
output generated by the VBR codec. VBR codecs are sensitive to
the complexity of the audio being encoded; the output data of VBR
per unit time varies with the audio complexity. Encoding an audio
frame containing a high frequency (ultrasonic) signal will therefore
result in a larger encoded packet size as compared to an audio
frame with silence. We leverage this behavior of VBR codecs to
overlay tuning audio to alter input audio frames in order to achieve
the desired size of the encoded output, as determined using the
superdistribution (see §4.1 and §4.2). As we discuss in the remainder
of this section, we consider various forms of tuning audio.

Characteristics of tuning audio. ~Whisper affects packet sizes
by adding tuning audio to the sender’s audio messages before they
are encoded by the VoIP application. On the receiver side, the VoIP
application decodes the encoded audio, which includes the original
audio frames intermixed with the tuning audio. Whisper is a unilat-
eral defense and does not require any support on the receiver; put
equivalently, the receiver does not attempt to actively remove the
tuning audio. This restricts the types of tuning audio that can be
used, since audible tuning audio could significantly degrade audio
quality. In contrast, tuning audio should not introduce extraneous
noise and have minimal impact on the receiver’s perceived audio
quality.

For example, even if using white noise as tuning audio results in
the desired output packet size for a given audio frame, the white
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noise will be audible in the decoded audio on the receiver side and
will too substantially degrade the quality of the communication.

To satisfy these requirements, we consider tuning audio that
lies on and beyond the boundary of the human auditory range (20
Hz to 20 kHz [10]). Even though frequencies outside this range
are imperceptible to human listeners, we found that they are not
discarded by popular VBR encoders. Moreover, their inclusion as
tuning audio influences the size of the encoded output, without
introducing any perceptible noise in the decoded output on the
receiver side.

In addition to inaudible frequencies, we also consider extremely
low amplitude tuning audio signals in the audible frequency range.
This was necessitated by the observed relationship between the
range of input frequencies in the input audio to be encoded and the
corresponding encoded packet size. We observed that when using
the Opus codec [2], for instance, there were some transitions from
one packet size to another, as required by the superdistribution, that
we could not achieve by injecting inaudible tuning audio. These
required transitions from input packet sizes to target packet sizes
were such that the use of tuning audio below 20 Hz resulted in
encoded packet sizes less than the desired packet size, whereas the
use of tuning audio above 20 kHz resulted in encoded packet sizes
greater that the desired encoded packet size. Thus, to achieve these
target packet sizes, we found it necessary to inject low amplitude
(volume) tuning audio. We further discuss the use of various types
of tuning audio and their implications to security, audio quality,
and bandwidth overhead in §5.
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Figure 3: Whisper’s workflow of modifying an input audio frame using tuning audio.

Whisper workflow. Figure 3 shows Whisper’s high level work-
flow. To protect a speaker’s VoIP communication from traffic re-
identification attacks, the overlaying of tuning audio onto the out-
going audio frame should happen before it is encoded by the codec.
Our user model assumes that Whisper has access to an implementa-
tion of the codec used by the VoIP application. Using the standalone
codec implementation, Whisper first encodes the input audio frame
aq generated by the sender to determine the encoded packet size
X € 2. It then uses the MorphStream procedure (Algorithm 1) to
determine the target packet size T € ¥ (where T > X) for the
audio frame. If the encoded packet size X matches the target packet
size T required by MorphStream (i.e., X = T), then no change is
required to the size of the encoded packet and there is no need for
any tuning audio overlay. In this case, Whisper trivially outputs
the unmodified input audio frame a4 as the output.

In the case in which the encoded packet size X of the input
audio frame a4 does not match the desired packet size T, Whisper
overlays a single tuning audio from a predetermined candidate set
(explained below) onto ag4, encodes the modified frame a, using
the standalone codec implementation and determines the encoded
packet size X of ag. If the encoded packet size X" equals the desired
packet size T, Whisper outputs the modified audio. Otherwise (i.e.,
X’ # T), Whisper tries the next tuning audio.

We restrict the time Whisper can take to try different tuning
audio from the set of candidates to under 20 ms to prevent gaps in
audio on the receiver side, since packets usually convey 20 ms of
audio. This restricts the number of tuning audio candidates that
can be tried as overlays to achieve the desired packet size T.

If the encoded target packet size T is not achieved within 20 ms,
Whisper outputs an audio frame according to a fallback strategy: in
the default strategy, Whisper outputs the unmodified audio frame
aq; the random strategy overlays the input audio frame ag with
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tuning audio selected uniformly at random from the candidate set
(see below); finally, the max strategy outputs the input audio frame
overlaid with a high frequency tuning audio such that the resulting
encoded packet is maximally sized (i.e., Z|5|). We analyze the impact
of the various fallback strategies in §6.1.

Generating tuning audio candidate set.  To build the pool of
tuning audio candidates, we use the Sox utility [4] to produce audio
tones that are 20 ms in duration and are composed of one or more
sine wave signals at different frequencies and amplitudes. We first
consider candidates that lie outside or at the boundary of the human
auditory range. In particular, we consider the infrasonic integer
valued frequencies between 1 and 18 Hz, and the four ultrasonic
frequencies between 20-23 kHz, at increments of 1 kHz. For each
frequency, we generate multiple tuning audio candidates with dif-
ferent peak amplitudes, spaced uniformly, with a maximum peak
amplitude factor of 0.5 (meaning, one-half the original amplitude
of the sine wave).

As discussed above, the use of tuning audio in the inaudible
range fails to achieve certain transitions between source and target
packet sizes. Thus, we also include candidates with frequencies
within the human audible range, but with peak amplitudes factors
not exceeding 0.001. This ensures that the tuning audio that lie
within the human audible range remain faint in comparison to the
actual audio produced by the human speaker. Within the audible
range, we consider 40 equally spaced frequencies between 100 Hz
and 20 kHz as candidate tuning audio.

Finally, we also consider tuning audio candidates that are com-
posed of sine waves at three to five randomly chosen frequencies.

This results in a (rather large) set of tuning audio candidates.
This is undesirable since Whisper needs to identify the correct



tuning audio to overlay to achieve the desired packet size (via trial-
and-error) within 20 ms. To prune the set of tuning audio candidates,
we select a random subset of the training corpus and construct a
superdistribution over all audio samples in this subset. We then
morph this subset using all the tuning audio candidates in the pool
of candidates. For each audio frame to be encoded, we consider
every candidate tuning audio in the existing pool to encode each
frame until we hit the desired packet size for that frame or run
out of tuning audio to try. The candidates are tried in the order of
ultrasonics, infrasonics and then those within the human audible
range. For each of these categories, we try tuning audio in the
increasing order of peak amplitude to prioritize quieter candidates.
Starting with a large set of tuning audio candidates and encoding the
subset of training data, we note the number of successful transitions
achieved by the current pool. We also note the number of successful
transitions achieved by each candidate tuning audio. To shrink this
pool of tuning audio such that all candidates in the pool can be
overlaid and encoded within 20 ms, we repeatedly eliminate the
tuning audio with the minimum number of successful transitions
each from the ultrasonic, infrasonic and audible range candidates.
During our shrinking process, we found that the candidates with
the same frequency (outside of the human audible range) but with
peak amplitude difference of less than 0.3 resulted in the same
encoded packet size for a given input packet. This allowed us to
further prune the pool by eliminating tuning audio with nearby
peak amplitudes for a given frequency without affecting the total
number of successful transitions.

The above procedure produces a final set of 64 inaudible candi-
dates that lie outside or at the boundary of human and 151 audible
candidates (which include the 64 candidates from the inaudible set).
All of the tuning audio are faded-in and faded-out to prevent the
appearance of “clicking” noise across frame boundaries in the de-
coded output. This smoothing is necessary at frame boundaries to
compensate for physical limitations in commodity speakers: speak-
ers feature diaphragms with specific frequency response ranges
that cause artifacts (clicks) when inter-frame transitions are insuffi-
ciently smooth.

5 EVALUATION

We next evaluate the efficacy of Whisper to defeat re-identification
attacks and examine the defense’s communication overheads and
effects on audio quality.

Experimental setup. We use a subset of the Voxforge speech
corpus [5] for evaluating Whisper. Our dataset is comprised of 21
speakers (14 male and 7 female) reading English literature recorded
under different settings and with various background noises. The
heterogeneity in recording environments influences the VBR codec’s
encoding behavior, making this a conservative (difficult) case for
traffic morphing defenses such as Whisper. For each speaker, we
consider 240 audio samples.

We use the Opus codec [2] to evaluate our proposed defense. The
Opus codec is standardized by the IETF and is the successor of the
Silk codec considered in prior work [14]. We encode our training
corpus with Opus in VBR mode with its default parameters to
generate encoded packets of various sizes. We note that the number
of distinct packet sizes (|2|) generated by the Opus codec is far more
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than the Speex and Silk codecs considered in previous research [14,
22]. Speex and Silk produced only nine and eight distinct packet
sizes respectively, whereas the Opus codec outputs a much larger
range of packet sizes which is dependent on the sampling rate of
the input audio. All audio samples in our dataset were sampled at
16 kHz, resulting in encoded packets with a contiguous packet size
distribution between 62 to 327 bytes.

5.1 Evaluation Strategy

We evaluate the effectiveness of our proposed defense by com-
paring the attacker’s ability to successfully perform a traffic re-
identification attack on Opus-encoded VoIP streams when (i) no
defense is applied and (ii) Whisper is enabled. The attacker’s goal
is to successfully identify the speaker (out of the 21 speakers in
our dataset) from the intercepted packet stream. Figure 1 shows
the high level overview of traffic re-identification attacks on VoIP
streams.

Since the large number of distinct packet sizes generated by
Opus makes traffic analysis difficult, we adopt a binning strategy
to reduce the number of distinct packet sizes, mapping the various
packet sizes into eight bins prior to performing traffic analysis.
(That is, we force |X| = 8.) We consider the relative frequency of n-
grams as features for the machine learning classifier. We considered
various supervised machine learning classifiers and n-gram features
during our investigation and found trigram features with an SVM
classifier to provide the best accuracy. We, therefore, report results
for 10-fold cross validation with an SVM classifier that uses the
relative frequency of various trigrams as the feature vector.

We provide the attacker with access to the same training corpus
used by Whisper to generate the superdistribution. This conser-
vative assumption only provides more power to the attacker for
improving its classifier. The attacker is also allowed to train or up-
date its existing classifier with packet streams generated by Whisper.
That is, the attacker is Whisper-aware and can apply Whisper as
a preprocessor over the training corpus, allowing it to train on
(labeled) Whisper-processed traffic streams. As discussed in §4.3,
we make use of the inaudible and the audible sets of tuning audio
in our evaluation.

5.2 Attack Accuracy

We define the attack accuracy to be the average accuracy across
the ten folds of the cross validation. The best case attack accuracy
(from the attacker’s perspective) corresponds to the maximum ac-
curacy achieved by the attacker using its SVM classifier, across
all tested configurations (e.g., superdistribution parameters and
fallback schemes).

Baseline accuracy. When no defense is applied, the attacker
can perform traffic analysis of Opus-encoded VoIP packet streams
and identify the speaker from the dataset with a best case attack
accuracy of 97.22%, using trigrams and an SVM classifier. This
shows that the Opus codec in VBR mode is vulnerable to traffic
re-identification attacks.

Whisper accuracy. Whisper is able to significantly reduce the
attacker’s accuracy of traffic re-identification. Using candidates
from the inaudible set of tuning audio as overlays, the attacker’s
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Figure 4: CDF of ViSQOL quality scores for baseline audio with no
encoding (“No Codec”) and audio encoded with the Opus codec with-
out (“Opus”) and with (“Whisper”) the Whisper defense.

best case attack accuracy is reduced to 62.24% (compared to the
baseline case of 97.22%). With the use of tuning audio from the
larger audible set, the best case attack accuracy is further reduced
to just 31.13%. The audible set outperforms the smaller inaudible
set because the tuning audio in the inaudible set are only able to
morph packets to certain packet sizes, whereas the audible tuning
audio are able to cover the entire range of target packet sizes.

We also compare Whisper’s effectiveness to a hypothetical tech-
nique that is able to perfectly morph the distribution of packet sizes
in the input audio stream to that of the superdistribution. (The ap-
proach by Moore et al. [14] is always successful at morphing to the
superdistribution, but does so at the expense of requiring bilateral
cooperation between the two communicating parties.) Whisper
fails to achieve ideal morphing when it cannot find a tuning audio
from the candidate set of tuning audio that results in the target
packet size within 20ms; in such cases, it uses one of the fallback
schemes to modify the audio frame (see §4.3). Notably, however,
such failures are rare and have only a modest effect on the defense’s
effectiveness: the hypothetical perfect morpher achieves the best
case attack accuracy of 26.3%, compared to 31.13% when Whisper
is used. We discuss the effects of various fallback strategies in more
detail in §6.1.

5.3 Bandwidth Overhead

The bandwidth overhead incurred by Whisper stems from the in-
crease in packet sizes necessary for hiding the underlying packet
size distribution. Whisper incurs modest overheads of 34.01% and
38.43% (relative to unprotected audio) with inaudible and audible
sets of tuning audio, respectively. As a point of comparison, switch-
ing to constant bitrate encoding imposes nearly a 90% overhead.
Whisper allows for tunable security and performance, with one
coming at the cost of decreasing the other. For example, the mini-
mum bandwidth overhead using the audible tuning audio candidate
set can be reduced from 38.43% to 18.6%, at the cost of increasing
the accuracy of re-identification attacks from 31.13% to 52.94%. We
discuss these tradeoffs in more detail in §6.2.
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5.4 Impact on Audio Quality

We evaluate the impact of adding the tuning audio on audio quality,
as measured on the receiver side. We use the following two methods
to quantify VoIP quality:

5.4.1 Virtual Speech Quality Objective Listener (ViSQOL).

ViSQOL [11] is a model of human sensitivity to degradations in
speech quality. It uses a spectro-temporal measure of similarity
between a reference and a test signal to determine the quality of
speech in an audio sample and provides a mapping from an internal
metric to a Mean Opinion Score (MOS) estimate. The MOS met-
ric [3] has been commonly used to measure the quality of audio,
including VoIP conversations. The metric ranges from a quality
score of 1.0 to 5.0, with 1.0 being the worst. Actual VoIP calls usu-
ally lie in the range of 3.5 to 4.2 [1]. To determine the impact of
tuning audio on audio quality, we use the reference implementation
made publicly available by Hines et al. [11]. We refer to the MOS
estimate generated by this implementation as the ViSQOL score.

We consider each audio sample from our training corpus. As a
baseline, for each audio sample, we compare the raw audio without
any VBR encoding to itself. Unsurprisingly, this yields an average
quality score of 5.0 across the entire dataset, as the reference and
test audio samples are identical.

We next assess the quality achieved after encoding with the
Opus VBR codec. Equivalently, this is the audio quality that results
when the Whisper defense is not used. Here, we compare each
raw audio sample to the sample produced after encoding with
Opus. This yields an average ViSQOL audio quality score of 4.6.
We consider this a reasonable “upper-bound” for defenses against
re-identification attacks.

Figure 4 shows the cumulative distribution of ViSQOL scores
across all audio samples in the corpus for no encoding (“No Codec”),
Opus without any Whisper protections (“Opus”), and Whisper. For
the Whisper configuration, we use the audible tuning audio setting,
which offers the best security (corresponding to a best case attack
accuracy of 31.13%) but also intuitively should impose the greatest
degradation in audio quality (since it inserts audible noise).

When Whisper uses audible tuning audio, we observe an average
ViSQOL score of 3.9; the average increases slightly to 4.0 when
Whisper uses inaudible tuning audio. In summary, Whisper imposes
a modest degradation in audio quality, and the difference between
using audible and inaudible tuning audio is minimal.

The minor difference in ViSQOL scores between the audible and
inaudible tuning audio settings indicates a potential downside in
using automated models to measure audio quality: such techniques
do not satisfactorily filter out audio outside of the human audible
range, and thus may not reflect how actual human listeners perceive
audio quality. That is, they may be too conservative because they
do not fully model human hearing limitations. This motivates our
subjective, human-based assessment of audio quality, which we
describe next.

5.4.2  User Study. To further understand the impact of Whisper on
the quality of decoded audio, we conduct a small user study that
asks human evaluators to rate the quality of a given audio sample.
For the user study, we randomly choose eight audio samples—with
four female and four males speakers—from our dataset. For each of
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Figure 5: Sections and flow of the user study.

Metric Percentage Metric Percentage
Gender Age

Female 32.9% 18-29 years 39.4%
Male 67.1% 30-49 years 53.3%
Ethnicity 50-64 years 6.5%
Caucasian 75.9% 65+ years 0-7%
African American 6.5% Education

Hispanic or Latino 11.6% H.S. or below 13.1%
Asian 5.8% Some college 24.8%
Other 4.4% B.S. or above 62.0%

Table 1: Participant demographics for the user study. Percentages
may not add to 100% due to non-response or selection of multiple
options.

these eight samples, we also select the corresponding audio files
produced with Opus without Whisper and with Whisper. For the
Whisper-encoded version, we select the candidates encoded with
the max fallback option, with the packet cost weight ratio between
adjacent packet sizes set to 1 and the strictness parameter set to 0
(see §4.2). Thus, we use a total of 24 audio files in our user study
encoded in three ways. The audio samples presented to the human
evaluators are available at https://www.whisperIntoVoIP.com.

Figure 5 illustrates the design of our online user survey. In Part A
of the survey, the participants first listen to an audio sample and are
asked to transcribe it. This ensures that the participants actually
listened to the audio and also informs us whether they are able to
understand the spoken audio content. The participants are then
asked to rate the overall audio quality on a five point Likert scale
from Bad to Excellent (or Excellent to Bad, to minimize ordering
effects). They are then asked to briefly explain their choice of rating
as a free text response.

Part B of the survey asks the same questions as Part A but for
an audio that differs in the encoding method and the spoken con-
tent from the audio presented in Part A. Finally, Part C concludes
the survey with demographic questions about education, gender,
ethnicity, age, income, and employment.

Recruitment. We used Amazon’s Mechanical Turk (MTurk) crowd-
sourcing service to recruit participants for the user study. We re-
quired participants to be at least 18 years old, fluent in English,
and located in the United States. To improve data quality, we also
required participants to have at least a 95% HIT approval rate [15].
Participants were paid $1.00 for completing the study, which was
reviewed and approved by our institution’s ethics board. The de-
mographics of our participants are summarized in Table 1.
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No Codec Opus Opus with Whisper

Responses 93 89 92

Table 2: Number of responses for each type of audio depending on
how the audio was encoded.

No Codec I -
Opus -
I

25% 50% 75%
Percentage of Participants

100%

Whisper I

0%

W Bad Poor M Fair Good M Excellent

Figure 6: Audio quality as reported by human evaluators for audio
with no encoding and audio encoded with the Opus codec with and
without Whisper defense.

Results. In total, 150 MTurk human evaluators participated and
completed our study. We exclude three responses as duplicates
based on their originating IP addresses and only consider their first
response. We also discard 10 responses that provided unintelligible
transcriptions. For the remainder of the paper, we refer to the
remaining 137 survey participants. Table 2 shows the number of
responses for each type of audio presented.

Figure 6 summarizes the audio quality as reported by the survey
participants. For the baseline audio with no encoding, the partic-
ipants reported 4.2 as the average audio quality. When the audio
was encoded with Opus (without Whisper protections), the average
audio quality was 4.4. The participants, therefore, did not perceive
any significant difference in the quality of audio when encoded
with the Opus codec.

For audio encoded with Opus and protected using Whisper,
participants reported an average audio quality of 3.6. On examining
the reasoning behind the responses, one participant reported that
he could hear a bit of static in the background but everything else
was clear. Another participant said that there was noise in the
background but could fully understand the audio. We remark that
all of the study participants were able to correctly understand the
contents of the spoken audio, even when they reported hearing
artifacts or background noise. The perceived audio quality reported
by the participants of the user study indicates that Whisper has
no effect on listeners’ ability to understand the audio and only
introduces minimal noise.

Comparison of ViSQOL and User Study Results. The results ob-
tained from the ViSQOL metric and the user study are largely
consistent. For example, for audio encoded with the unprotected
Opus codec, the audio quality reported by the ViISQOL metric (4.6)
is close to that obtained from the user study (4.4). Similarly, both
approaches report an average audio quality of 3.6 for audio encoded
with Opus equipped with Whisper. Overall, our two techniques are
consistent in showing that Whisper does not significantly impact
audio quality and does not affect the perception of audio content.
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mance metrics.

6 TUNING WHISPER

Whisper has a number of configuration parameters that influence
its effectiveness in thwarting re-identification attacks, its impact
on audio quality, and its bandwidth overheads. In this section, we
highlight some important points in this parameter space.

6.1 Effect of Fallback Options

Whisper overlays tuning audio on input audio before it is encoded
by the sender’s VBR codec; the choice of tuning audio is dictated
by the target packet size as determined using the superdistribution.
As discussed in §4.3, Whisper may fail to achieve the target packet
size within the 20 ms window in which it needs to modify the audio
frame. In such (rare) cases, Whisper can choose from the default,
random or max fallback options (see §4.3 for details).

Figure 7 shows the effect of the various fallback options on at-
tack accuracy, bandwidth overhead, and audio quality (note that
lower is better for the first two performance metrics). Overall, the
choice of fallback option has only a minor effect on the three perfor-
mance metrics. Falling back to the maximum (max) packet size only
slightly reduces the attack accuracy while incurring slight band-
width overhead. Audio quality, as measured using ViSQOL, also
remains almost the same across different fallback options. Thus, a
user can safely configure Whisper to use any of the fallback options.
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6.2 Effect of MorphStream Parameters

The MorphStream procedure (Algorithm 1) determines the output
packet size for each input audio frame based on the superdistri-
bution. The user specifies the pktSizeWeights and the strictness
parameters to favor security or performance.

Figure 8 shows the effect of the cost weight ratio between adja-
cent packet sizes on various performance metrics when the default
fallback scheme is used. As discussed in §4.2, the pktSizeWeights
parameter influences the relative cost of choosing a packet size
among all target packet sizes. By increasing the relative cost be-
tween packet sizes, the cost of selecting a larger packet size in-
creases, resulting in a comparatively lower bandwidth overhead as
smaller-sized output packets become more favorable. This also re-
sults in increased attack accuracy for the attacker as MorphStream
may now choose a smaller packet size which can result in a packet
size distribution that does not closely resemble the superdistribu-
tion. However, as shown in Figure 8, these effects are small. When
pktSizeWeights is set to the maximum tested value, the attack accu-
racy rose to approximately 40% while providing little bandwidth
savings. This indicates that a reasonable value of pktSizeWeights
is 1, maximizing the efficacy of the attack while imposing little
bandwidth overheads.

Figure 9 shows the effect of the strictness parameter on vari-
ous performance metrics. The non-negative strictness parameter
determines how strictly the target distribution should match the
superdistribution. A smaller value results in stricter adherence to
the superdistribution, achieving greater security. As the strictness
parameter increases, the MorphStream procedure boosts the selec-
tion probability of smaller packet sizes, even though it may cause
the target distribution to stray from the superdistribution. The
strictness parameter allows the user to trade off between security
and bandwidth savings, but (as shown in the Figure) does not affect
the decoded audio quality. We consider a default value of 0 for the
strictness parameter as it does not allow deviation from the su-
perdistribution thus providing maximum security while incurring
modest bandwidth overhead.

7 CONCLUSION AND DISCUSSION

In this paper, we propose the first unilateral defense, Whisper, for
thwarting traffic analysis of encrypted VoIP streams. One of the
major limitations of previously proposed blackbox defenses is that
they require support from both the sender and receiver sides of



a VoIP stream; that is, both of the communicating parties’ VoIP
clients must support the defense. Unfortunately, to our knowledge,
no such VoIP client has implemented existing defenses. In contrast,
Whisper enables unilateral protections that can be deployed by
either communicating party, without requiring the participation of
the other and without modifying the VoIP client. Whisper is thus
compatible with existing closed-source VoIP software.

Building on existing work, and leveraging the mechanisms of
audio perception in humans, Whisper uses tuning audio at the
boundaries of the human audible range to manipulate the size
of the audio frames generated by VBR codecs. Our experiments
demonstrate that Whisper significantly degrades the accuracy of
re-identification attacks while incurring only a small loss in audio
quality. Additionally, Whisper preserves much of the bandwidth
savings of VBR.

Although in this paper, we focus on two-party VoIP commu-
nication, Whisper is also practical for improving the security of
group communication. Here, speakers can apply Whisper to protect
the privacy of their individual speech. We leave an evaluation of
Whisper in the multiparty setting as a future research direction.
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