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BUBBLE ASSEMBLIES IN TERNARY SYSTEMS
WITH LONG RANGE INTERACTION∗

CHONG WANG† , XIAOFENG REN‡ , AND YANXIANG ZHAO§

Abstract. A nonlocal diffuse interface model, based on the Nakazawa-Ohta density functional
theory for triblock copolymers, is used to study bubble assemblies in ternary systems. The model has
three parameters weighing three types of long-range interaction and two parameters that fix the total
area of each constituent. As the parameters vary, a large number of morphological phases appear as
stable stationary states. One open question related to the polarity direction of double bubble assem-
blies is answered numerically. Moreover, it is shown that the average size of bubbles in a single bubble
assembly depends on the sum of the minority constituent areas and the long-range interaction coeffi-
cients. One further identifies the ranges for area fractions and the long-range interaction coefficients
for double bubble assemblies.
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1. Introduction
Block copolymers have generated much interest in materials science in recent years

due to their remarkable ability for self-assembly into nanoscale ordered structures [1–3].
This ability can be exploited to create materials with desired mechanical, optical, electri-
cal, and magnetic properties [1–3]. There have been many experimental and theoretical
studies focusing on this subject [4–13]. Self-consistent field theory derived from a micro-
scopic description of interacting polymer chains is one successful theoretical approach
for the study of block copolymers [5–11]. However, this method is computationally
demanding because of the heavy calculation of path integrals for the chain conforma-
tion [14, 15]. There is a need for efficient methods to model the self-assembly for block
copolymers at the mesoscale level. The density functional theory (DFT) [16, 17] is a
very promising approach to modeling such phenomena and it is customarily referred to
as cell dynamics simulation [12,13].

In this paper, we consider the Ohta-Nakazawa model introduced in [17], which
describes the ternary system such as ABC-type triblock copolymers by a free energy
functional written as follows:

E(φ1,φ2) =

∫
D

[ ε
2

(
|∇φ1|2 + |∇φ2|2 +∇φ1 ·∇φ2

)
+

1

2ε
WT (φ1,φ2)

]
dx

+
2∑

i,j=1

γij
2

∫
D

[
(−4)

− 1
2 (f(φi)−ωi)×(−4)

− 1
2 (f(φj)−ωj)

]
dx. (1.1)

where 0<ε�1 is an interface parameter, indicating that the system is in the strong
segregation regime [13]. D⊂Rn, n= 2,3 is a spatial domain, and φi=φi(x) (i= 1,2) are
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phase field labeling functions which represent the density of A and B species, respec-
tively. The concentration of C species can be implicitly represented by 1−φ1(x)−φ2(x)
since the system is assumed to be incompressible [16]. WT (φ1,φ2) is of the form of

WT (φ1,φ2) :=W (φ1)+W (φ2)+W (1−φ1−φ2),

where W (s) = 18(s2−s)2. Note that WT (φ1,φ2) is a triple-well potential having three
minima at (1,0,0), (0,1,0) and (0,0,1), which correspond to the phase separation be-
tween the A,B,C species. The first integral in (1.1) describes the short-range interaction
which accounts for the interfacial free energy of the system and favors large domains
with minimum surface area.

The second integral term in (1.1) indicates the long-range interaction between the
chain molecules with γij being the strength of such interactions. The long-range in-
teraction coefficients γij form a symmetric two by two matrix γ= [γij ]. For triblock
copolymers, the matrix γ is positive definite [18]; for homopolymer/diblock copolymer
blends γ has one positive eigenvalue and one zero eigenvalue [19]. In our work, we study
the effect of γ in a wide range, including positive definite and non-positive definite cases.
The new introduced term

f(φi) = 3φ2
i −2φ3

i , i= 1,2 (1.2)

is adapted to mimic φi, i= 1,2 as the indicator for the A and B species, respectively.
ωi∈ (0,1), i= 1,2 are the relative volumes of the A and B species, respectively, which
indicate that the Ohta-Nakazawa model is usually associated with volume constraints:∫

D

f(φi)dx=ωi|D|, i= 1,2. (1.3)

The negative square root of −∆ is defined in Section 3 in details.
The importance of the new introduced term f(φi) is due to two reasons. Firstly,

heuristically, with such a function, we have not only f(0) = 0, f(1) = 1 which resembles
the behavior of φi, but also that

f ′(0) = 0, f ′(1) = 0. (1.4)

These will lead to a more localized ‘boundary force’ near the A-C, B-C and A-B inter-
faces. On the other hand, if taking f(s) = s, then f ′(s) = 1 will induce a local surface
tension force against a global long-range repulsive force. To balance such two forces, the
φi has to sacrifice by losing the desired tanh profile (a hyperbolic tangent shape which
monotonically changes its value from 0 to 1) and results in either unphysical negative
values in the proximity of the interface (see [20]) or values not equal to 0 or 1 away from
the interface [21]. Secondly, since the new f(φi) results in a much better tanh profile,
consequently the new model will describe the interfacial structures more accurately and
lead to a better estimate of the free energy.

Now we consider the dynamic problem of the L2 gradient flow

∂φi
∂t

=− δE

δφi
= ε4φi+

ε

2
4φj−

1

2ε

∂WT

∂φi

−γii(−4)−1(f(φi)−ωi)f ′(φi)−γij(−4)−1(f(φj)−ωj)f ′(φi)−λi(t)f ′(φi)
(1.5)

in which i,j= 1,2 and j 6= i. Here λi(t) is some appropriate time-dependent Lagrange
multiplier associated with the volume constraints (1.3). The L2 gradient flow dynamics
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will lead us to a variety of equilibrium configurations. On the other hand, to see how
the volume constraints (1.3) play a role in the energy minimization, we can alternatively
incorporate the penalty term in (1.1) and change it into an unconstrained one:

Epenalty(φ1,φ2) =

∫
D

[ ε
2

(
|∇φ1|2 + |∇φ2|2 +∇φ1 ·∇φ2

)
+

1

2ε
WT (φ1,φ2)

]
dx

+
2∑

i,j=1

γij
2

∫
D

[
(−4)

− 1
2 (f(φi)−ωi)×(−4)

− 1
2 (f(φj)−ωj)

]
dx

+
2∑
i=1

Mi

2

(∫
D

f(φi)dx−ωi|D|
)2

, (1.6)

and consider the corresponding penalized L2 gradient flow dynamics:

∂φi
∂t

=−δEpenalty

δφi
= ε4φi+

ε

2
4φj−

1

2ε

∂WT

∂φi

−γii(−4)−1(f(φi)−ωi)f ′(φi)−γij(−4)−1(f(φj)−ωj)f ′(φi)

−Mi

(∫
D

f(φi)dx−ωi|D|
)
f ′(φi). (1.7)

When Mi→∞, Mi

(∫
D
f(φi)dx−ωi|D|

)
approaches the Lagrange multiplier λi(t) which

makes the penalized L2 gradient flow dynamics (1.7) consistent with the dynamics
(1.5) [22]. Throughout this paper, we will focus on the penalized L2 gradient flow (1.7)
to study the configurations of minimizers of (1.6).

As ε→0, the free energy (1.1) Γ-converges to the strong segregation limit (sharp
interface limit) [23–28]

J (Ω1,Ω2) =
1

2

3∑
i=1

PD(Ωi)+
2∑

i,j=1

γij
2

∫
D

[
(−∆)−1/2(χΩi−ωi)×(−∆)−1/2(χΩj −ωj)

]
dx,

(1.8)

where Ωi⊂D denotes the region covered by the i-th constituent and the measure of Ωi

is fixed at

|Ωi|=ωi|D|. (1.9)

PD(Ωi) denotes the perimeter of Ωi in D which is defined as the total variation of the
function χΩi (see (2.1) for the definition) and χΩi is the characteristic function of Ωi,
that is, χΩi(x) = 1 if x∈Ωi and 0 if x∈D\Ωi.

We address small volume-fraction asymptotic analysis (ωi�1) of the sharp inter-
face model. We then design and implement stable and accurate numerical methods for
solving the penalized L2 gradient flow Equation (1.7). Our methods couple a linear
operator-splitting technique and spectral discretization which leads to a stabilized nu-
merical scheme for (1.7). We apply our model and numerical methods to the triblock
copolymer systems with ωi�1, from which we find patterns such as hexagonal double
bubble assemblies, square single bubble assemblies and double bubble and single bubble
coexisting states. We perform quantitative studies on these numerical results and verify
them theoretically through the sharp interface approach.

The rest of the paper is organized as follows. In Section 2, we perform asymptotic
analysis for the sharp interface model. In Section 3, we describe our numerical methods
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for solving the gradient flow dynamic equations of the penalized phase field free energy
functional. In Section 4 we present numerous equilibrium configurations as parameters
vary. Moreover, we provide quantitative studies and verify them theoretically. Section
5 gives the conclusion and future directions.

2. Sharp interface model: asymptotic analysis
A function f ∈L1(D) is said to have bounded variation in D if

∫
D
|∇f |<∞, where∫

D

|∇f | := sup

{∫
D

f divgdx :g= (g1, ·· · ,gn)∈C1
c (D,Rn), and |g(x)|≤1 for x∈D

}
,

is the total variation of f and C1
c (D,Rn) denotes the space of all C1-mappings from D

to Rn that are compactly supported inside D; cf. [29–31]. If f ∈W 1,1(Ω), then∫
D

|∇f |=
∫
D

|gradf |dx,

where gradf = (f1, ·· · ,fn) and f1, ·· · ,fn are the generalized derivatives of f . Then the
space BV (D) is defined as the space of all functions in L1(D) with bounded variation.
It is a Banach space with the norm

||f ||BV (D) := ||f ||L1 +

∫
D

|∇f |.

If Ω is Lebesgue measurable, then the perimeter of Ω in D is defined by the total
variation of the function χΩ [29–31], that is,

PD(Ω) :=

∫
D

|∇χΩ|= sup

{∫
Ω

divgdx :g∈C1
c (D,Rn), |g(x)|≤1

}
. (2.1)

A stationary point (Ω1,Ω2) of J (1.8) consists of two disjoint subsets Ω1 and Ω2 of
D, each bounded by piecewise smooth curves. It satisfies the following equations:

κ1 +γ11IΩ1
+γ12IΩ2

=λ1 on ∂Ω1∩∂Ω3 (2.2)

κ2 +γ12IΩ1
+γ22IΩ2

=λ2 on ∂Ω2∩∂Ω3 (2.3)

κ0 +(γ11−γ12)IΩ1
+(γ12−γ22)IΩ2

=λ1−λ2 on ∂Ω1∩∂Ω2 (2.4)

T1 +T2 +T0 =~0 at ∂Ω1∩∂Ω2∩∂Ω3 (2.5)

Ti⊥∂D at ∂Ωi∩∂Ω3∩∂D, i= 1,2 (2.6)

T0⊥∂D at ∂Ω1∩∂Ω2∩∂D. (2.7)

The Equation (2.2) holds on ∂Ω1∩∂Ω3 which is the interface between Ω1 and Ω3.
On the left side of (2.2) κ1 is the curvature of this interface with respect to the normal
vector that points inward into Ω1. The IΩi ’s are shorthand notations:

IΩi = (−∆)−1(χΩi−ωi), i= 1,2, (2.8)

which we call inhibitors. The Equations (2.3) holds on the interface between Ω2 and
Ω3 and the curvature κ2 is measured with respect to the normal vector pointing into
Ω2; the Equation (2.4) holds on the interface between Ω1 and Ω2 and the curvature κ0

is measured with respect to the normal vector pointing into Ω1. On the right sides of
these equations there are unknown constants λ1 and λ2. These are Lagrange multipliers
associated with the constraints |Ωi|=ωi|D|, i= 1,2.
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The three interfaces, ∂Ω1∩∂Ω3, ∂Ω2∩∂Ω3 and ∂Ω1∩∂Ω2, may meet at a common
point in D, which is termed a triple junction point. In (2.5), T1, T2 and T0 are unit
tangent vectors of the curves ∂Ω1∩∂Ω3, ∂Ω2∩∂Ω3, and ∂Ω1∩∂Ω2 at triple junction
points: T1 is inward pointing (pointing towards the interior of the curve) and tangent to
∂Ω1∩∂Ω3, T2 is inward pointing and tangent to ∂Ω2∩∂Ω3, and T0 is inward pointing
and tangent to ∂Ω1∩∂Ω2; see Figure 2.1. The Equation (2.5) is equivalent to the
condition that at any triple junction point the three interfaces meet at 120 degrees.

Fig. 2.1. Unit tangent vectors T1, T2 and T0.

In the case that an interface meets the domain boundary ∂D, the Equations (2.6)
and (2.7) assert that it does so perpendicularly. Here T1, T2 and T0 are again unit
tangent vectors of ∂Ω1∩∂Ω3, ∂Ω2∩∂Ω3 and ∂Ω1∩∂Ω2 respectively.

It is convenient to introduce a fixed m∈ (0,1) and a small η so that

ω1|D|=η2m and ω2|D|=η2(1−m). (2.9)

The area constraints (1.9) now take the form

|Ω1|=η2m and |Ω2|=η2(1−m). (2.10)

Instead of ω1 and ω2, η becomes one parameter. The fixed number m measures the

relative size of |Ω1| vs |Ω2| since |Ω1|
|Ω2| =

m
1−m .

In two dimensions, currently only three types of stationary assembly were known
for ternary systems: the double bubble assembly [32], the core-shell assembly [33] and
the single bubble assembly [34]. In a double bubble assembly each component is a
perturbed double bubble where one of the bubbles is made of type-A constituent and
the other of type-B constituent and in a single bubble assembly each component is a
perturbed single bubble made of either type-A or type-B constituent; see Figure 2.2.
In our earlier work, we have shown the existence of a double bubble assembly and the
existence of a single bubble assembly. Here we list the results as follows. One can refer
to [32,34] for detailed proofs.

Theorem 2.1 ( [34]). Let D be a bounded and sufficiently smooth domain in R2.
For m∈ (0,1), K1,K2∈N, δ>0, and B>0, there exists η0 =η0(D,m,K1,K2,δ,B)>0
so that if

(1) 0<η<η0,

(2) each entry γij>0 and each diagonal entry γii∈
(

1+δ
ρ3i log 1

ρi

, 12−δ
ρ3i

)
, where ρ1 =

η( m
K1π

)1/2 and ρ2 =η( 1−m
K2π

)1/2,
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Fig. 2.2. Left: schematic for a single bubble assembly of type-A (red) constituent and type-B
(yellow) constituent. Right: schematic for a double bubble assembly.

(3)
max{γij}
min{γij} <B,

then J admits a stable stationary assembly of K1 perturbed single bubbles of type-A and
K2 perturbed single bubbles of type-B, satisfying (2.2), (2.3), and (2.10).

Moreover, the radii of the type-A single bubbles in the assembly are close to ρ1 and
the radii of the type-B single bubbles are close to ρ2. If

γij
|γ|
→Γij as η→0,

the centers of the type-A single bubbles are ξ∗,11 ,...,ξ∗,K1

1 , and the centers of the type-B

single bubbles are ξ∗,12 ,...,ξ∗,K2

2 , then (ξ∗,11 ,...,ξ∗,K1

1 ,ξ∗,12 ,...,ξ∗,K2

2 ) is close to a minimum
of the function

Fs(ξ
1
1 ,...,ξ

K1
1 ,ξ1

2 ,...,ξ
K2
2 ) =

Γ11m
2

K2
1

( K1∑
k=1

R(ξk1 ,ξ
k
1 )+

K1∑
k=1

K1∑
l=1,l 6=k

G(ξk1 ,ξ
l
1)
)

+
2Γ12m(1−m)

K1K2

K1∑
k=1

K2∑
l=1

G(ξk1 ,ξ
l
2)

+
Γ22(1−m)2

K2
2

( K2∑
k=1

R(ξk2 ,ξ
k
2 )+

K2∑
k=1

K2∑
l=1,l 6=k

G(ξk2 ,ξ
l
2)
)
.

Theorem 2.2 ( [32]). Let D be a bounded and sufficiently smooth domain in R2. For
m∈ (0,1), K ∈N, ι∈ (0,1], there exists η0 =η0(D,m,K,ι)>0, σ̃= σ̃(D,m,K,ι)>0, and
σ=σ(D,m,K,ι)>0, so that if

(1) 0<η<η0,

(2) σ̃
η3 log 1

η

≤ λ̄(γ)≤ ¯̄λ(γ)< σ
η3 ,

(3) ι¯̄λ(γ)≤ λ̄(γ),

then J admits a stable stationary assembly of K perturbed double bubbles satisfying
(2.2)-(2.5) and (2.10). Each perturbed double bubble is bounded by three smooth curves
that meet at two triple junction points.

Moreover, all the perturbed double bubbles in the solution have almost the same
size and shape. If the perturbed double bubbles in the solution are located at points
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ξ∗,1,ξ∗,2,...,ξ∗,K , then ξ∗,1,ξ∗,2,...,ξ∗,K is close to a minimum of the function

Fd(ξ
1,ξ2,...,ξK) =

K∑
k=1

R(ξk,ξk)+
K∑
k=1

K∑
l=1,l 6=k

G(ξk,ξl).

The smoothness condition on D in Theorem 2.1 and Theorem 2.2 is to ensure that
(−∆)−1 is well defined; any C2,α domain meets the requirement [35, Section 6.7]. Note
that in Theorem 2.1, ρ1 and ρ2 are the average radii of the type-A and type-B discs
respectively; in Theorem 2.2, λ̄(γ) and ¯̄λ(γ) are two eigenvalues of γ. |γ| is the operator
norm of γ. The definition of functions Fs and Fd involve G and R. Here G is the
Green’s function of −4 operator on D with either periodic or homogeneous Neumann
boundary condition. The function G(x,y) as a function of x for each y∈D solves

−4G(·,y) = δ(·−y)− 1

|D|
,

∫
D

G(x,y)dx= 0. (2.11)

One can write G as a sum of two terms:

G(x,y) =
1

2π
log

1

|x−y|
+R(x,y). (2.12)

The first term 1
2π log 1

|x−y| is the fundamental solution of the Laplace operator; the

second term R is the regular part of the Green’s function, a smooth function of (x,y)∈
D×D. In the case that D is the unit disc,

G(x,y) =
1

2π
log

1

|x−y|
+

1

2π

[ |x|2
2

+
|y|2

2
+log

1

|xy−1|

]
− 3

8π
, (2.13)

where y is the complex conjugate of y and D is viewed as a subset of C, so we have a
closed formula for both Fs and Fd.

The primary difference of Theorem 2.1 and Theorem 2.2 lies on the matrix γ. In
Theorem 2.1, all the entries of γ should be positive and comparable. The matrix γ can
be positive definite or not. In Theorem 2.2, the matrix γ should be positive definite and
the two eigenvalues of γ need to be comparable.

When (Ω1,Ω2) is a stationary single bubble assembly found in Theorem 2.1, the
free energy in the strong segregation limit J (Ω1,Ω2) in (1.8) becomes:

J (S1,S2) =
2∑
i=1

Ki∑
k=1

(
2π(rki )+

γiiπ

4
(rki )4 log

1

rki

)
+

2∑
i=1

Ki∑
k=1

γiiπ
2

2
(rki )4

(
1

8π
+R(ξki ,ξ

k
i )

)

+
2∑
i=1

Ki∑
k,l=1
k 6=l

γiiπ
2

2

(
rki
)2(

rli
)2
G(ξki ,ξ

l
i)+γ12π

2
K1∑
k=1

K2∑
l=1

(rk1 )2(rl2)2G(ξk1 ,ξ
l
2)+O(|γ|η6).

(2.14)

Here (S1,S2) is an assembly of perturbed single bubbles at equilibrium.
An assembly of perfect single bubbles is used as an approximate solution, and then

one proves that small and suitable perturbations of the single bubbles will turn the
assembly to an equilibrium of the nonlocal system. Thus the existence of single bubble
assemblies is theoretically established [34]. The free energy (2.14) gives rise to (4.2) up
to the leading order which is used to verify the relationship (4.1) in Section 4.2.
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When (Ω1,Ω2) is a stationary double bubble assembly found in Theorem 2.2, the
free energy in the strong segregation limit J (Ω1,Ω2) in (1.8) reads:

J (D1,D2) =η

Kb∑
k=1

2∑
i=0

aki l
k
i +η4 log

1

η

Kb∑
k=1

2∑
i,j=1

γijw
k
i w

k
j

4π

+η4
Kb∑
k=1

2∑
i,j=1

γij
2

∫
Bki

∫
Bkj

1

2π
log

1

|x̂− ŷ|
dx̂dŷ+η4

Kb∑
k=1

2∑
i,j=1

γij
2
wki w

k
jR(ξk,ξk)

+η4
Kb∑
k,l=1
k 6=l

2∑
i,j=1

γij
2
wki w

l
jG(ξk,ξl)+o(|γ|η4). (2.15)

Here the equilibrium (D1,D2) is an assembly of perturbed double bubbles. Each double
bubble is built from an exact double bubble (Bk1 ,B

k
2 ) whose three radii are lki ,i= 0,1,2

and two areas are wk1 and wk2 . There is a transformation

Tk : x̂→ηeiθk x̂+ξk

that maps (Bk1 ,B
k
2 ) to (T (Bk1 ),T (Bk2 ) in the domain and (D1,D2) is a perturbation of

∪Kbk=1(T (Bk1 ),T (Bk2 )). Here x̂∈R2 and we identify R2 with C to perform the complex
multiplication. In Tk, ξk and θk are the center and the direction of the double bubble
respectively. The free energy (2.15) results in (4.4) up to the leading order which is
used to verify the two-thirds law (4.5) in Section 4.2.

3. Numerical methods
In this section we describe our numerical methods for solving the Equation (1.7) in

two dimensions (2D). Our computational domain is taken as D= [−Lx,Lx]× [−Ly,Ly]
in R2.

3.1. Notations. Let D=
∏d
i=1[−Xi,Xi)⊂Rd,d= 2,3 be a periodic domain.

Denote the space consisting of periodic functions in Hs(D),s≥0 as Hs
per(D). We define

the subspaces

H̊s
per(D) :=

{
u∈Hs

per(D) :

∫
D

u(x)dx= 0

}
(3.1)

consisting of all functions of u∈Hs
per(D) with zero mean. We use ‖·‖Hs to represent

the standard Sobolev norm. When s= 0, Hs(D) =L2(D) and we take 〈·, ·〉 as the L2

inner product and ‖·‖Hs =‖·‖L2 .
We define the inverse Laplacian (−∆)−1: L̊2

per(D)→ H̊1
per(D) as

(−∆)−1g=u⇐⇒−∆u=g.

or in terms of Fourier series:

(−∆)−1g=
∑

k∈Z3\{0}

|k|−2ĝ(k)eik·x̃, (3.2)

where

ĝ(k) =

∫
D

f(x)e−ik·x̃dx, with x̃= (πx1/X1, ·· · ,πxd/Xd).

Note that the definition (3.2) can be extended to any function g∈L2
per(D) because of

the removal of the zeroth mode.
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3.2. Linear splitting and semi-discrete scheme. We adopt an analogous
linear splitting scheme which has been used in designing stabilized numerical methods
for the classic Allen-Cahn equation [20,22,36–38]. We rewrite ∂WT

∂φi
as

∂WT

∂φi
=κφi+

[
∂WT

∂φi
−κφi

]
. (3.3)

Plug (3.3) into (1.7), we get an equivalent formulation

∂φi
∂t

= ε4φi−
κ

2ε
φi+Bi(φ1,φ2), i= 1,2, (3.4)

where

Bi(φ1,φ2) =
ε

2
4φj−

1

2ε

(
∂WT

∂φi
−κφi

)
−γii(−4)−1(f(φi)−ωi)f ′(φi)−γij(−4)−1(f(φj)−ωj)f ′(φi)

−Mi

(∫
D

f(φi)dx−ωi|D|
)
f ′(φi), (3.5)

in which i,j= 1,2 and j 6= i.
We choose a time step ∆t>0 and set tn=n∆t, (n= 0,1, ·· ·). For a given function

φi(x), we denote by φni an approximation of φi(x) at time tn. We use the semi-implicit
splitting scheme to discretize the time variable for Equations (3.4):

φn+1
i −φni

∆t
= ε4φn+1

i − κ

2ε
φn+1
i +Bi(φ

n
1 ,φ

n
2 ), (3.6)

for i= 1,2. In our numerical simulation, we take κ= 72.

3.3. Spectral spatial discretization with periodic boundary condition.
Consider our rectangular domain D⊂R2

D={−Lx<x<Lx,−Ly<y<Ly}

with periodic boundary condition for some positive numbers Lx and Ly. Let Nx,Ny be
even integers. We discretize D by a rectangular mesh which is uniform in each direction
as follows:

xjk = (xj ,yk) = (−Lx+jhx,−Ly+khy)

for 0≤ j≤Nx, 0≤k≤Ny, hx= 2Lx/Nx, hy = 2Ly/Ny. Let φni,jk≈φi(xj ,yk,tn) =
φi(xjk,tn) denote the approximate solution at grid xjk and time tn. Denote the approx-
imate solution in array form as Φi= (φjk)0:Nx−1,0:Ny−1, and denote its discrete Fourier

transform (DFT) by Φ̂i= (φ̂jk)0:Nx−1,0:Ny−1. Notice that the Laplacian operator ∆ in
the spectral space corresponds to the spectrum

λjk =−λ2
x(j)−λ2

y(k),

where

λx(j) =

{
πj/Lx if 0≤ j≤Nx/2,
π(Nx−j)/Lx if Nx/2≤ j≤Nx−1,
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λy(k) =

{
πk/Ly if 0≤k≤Ny/2,
π(Ny−k)/Ly if Ny/2≤k≤Ny−1,

Taking the fast Fourier transform (FFT) [39] on both sides of the Equation (3.6) yields

L� Φ̂n+1
i = Φ̂ni + ¤�Bi(φn1 ,φ

n
2 )∆t, i= 1,2, (3.7)

where L� Φ̂n+1
i is given by

L� Φ̂n+1
i = (ljkφ̂

n+1
i,jk )0:Nx−1,0:Ny−1, with ljk = 1+ελjk∆t+

κ

2ε
∆t.

Then Φ̂n+1
i can be solved from Equation (3.7) and Φn+1

i is obtained by performing

inverse FFT on Φ̂n+1
i .

4. Numerical results
The five parameters, γ11, γ12, γ22, ω1, and ω2, play the key roles in pattern formation

of ternary systems. In numerical simulations, the domain D is fixed as [−1,1]2, the
uniform mesh grid in space is fixed as 512×512, namely, ∆x= ∆y= 2/512, ε is fixed as
5∆x, M1 =M2 = 10, κ= 72, and the time step ∆t is 0.001. In each image below, red,
yellow and blue colors correspond to A-rich, B-rich and C-rich regions, respectively.

4.1. Sample equilibria. Two sample equilibria are presented in Figure 4.1.
Figure 4.1(a) shows a double bubble assembly. All double bubbles grow into the same
size and are located hexagonally. The polarity direction of each double bubble, the
direction from center of mass of yellow region to that of red one, in an assembly is
unknown theoretically [32]. Numerical simulations show double bubble assemblies when
|γ12| is small, and the polarity directions of double bubbles in equilibrium configurations
are parallel. Figure 4.1(b) shows a single bubble assembly. All yellow bubbles become
equal in size, as do red bubbles. Interestingly, they form a square lattice pattern in
which each single bubble is surrounded by four bubbles of the other color. In a binary
system, a hexagon pattern is most stable experimentally [40] and theoretically [16, 41–
44]. For a ternary system, our numerical simulations show that a square structure can be
energetically more favorable than a hexagonal one, which agrees with the experimental
findings [45] and theoretical studies [17,46,47]. More excitingly, a recent work in [48] has
theoretically verified the square lattice pattern obtained from our numerical simulation.

4.2. Single bubble assemblies. For single bubble assemblies, the average size
of red/yellow bubbles does not depend on the ratio of area fractions, namely, ω1/ω2.
In Figure 4.2(a), for several (ω1,ω2) and fixed γij = 20,000, 1≤ i,j≤2, the ratio r1/r2

remains at 1/1 up to a 3% error regardless of the different values of ω1/ω2. Note
that (ω1,ω2) has an impact on the number of red/yellow bubbles, as seen in the insets
of Figure 4.2(a). On the other hand, the values of γ11 and γ22 affect r1/r2. In Figure
4.2(b), with various (γ11,γ22), the ratio r1/r2 decreases as γ11/γ22 becomes larger. More
precisely, the two ratios satisfy the following law:

r1

r2
=

(
γ11

γ22

)− 1
3

. (4.1)

This relationship can also be verified theoretically. Let K1 be the number of red
bubbles and K2 be the number of yellow bubbles in a single bubble assembly. The full
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Fig. 4.1. Two characteristic patterns in ternary systems. (a) A ternary system with γ12 = 0
maintains a hexagonal double bubble assembly. (b) A system with γ12 = 11,000 yields a single bubble
assembly in a square lattice. The snapshots are taken at time T = 400. γ11 =γ22 = 20,000, ω1 = 0.10,
and ω2 = 0.09 in these simulations.

Fig. 4.2. (a) Independence of the average red and yellow bubble sizes on the ratio of area frac-
tions ω1/ω2. For (ω1,ω2) =(0.05,0.10), (0.09,0.144), (0.09,0.12), (0.09,0.10), (0.09,0.08), (0.09,0.072),
(0.09,0.06), (0.10,0.05), the ratio r1/r2 remains at 1/1 up to a 3% error. Here γ11 =γ12 =γ22 = 20,000.
(b) Dependence of the average red and yellow bubble sizes on the long-range interaction coefficients
γ11 and γ22. For (γ11,γ22) =(20,000, 60,000), (20,000, 50,000), (10,000, 20,000), (20,000, 30,000),
(20,000, 20,000), (30,000, 20,000), (20,000, 10,000), numerical simulations agree with the law of
r1/r2 = (γ11/γ22)−1/3. Here γ12 = 20,000, 20,000, 10,000, 20,000, 10,000, 20,000, 10,000 respec-
tively. (ω1,ω2) =(0.10,0.05), (0,10,0.05), (0.09,0.06), (0.10,0.05), (0.07,0.07), (0.09,0.06), (0.09,0.06)
respectively.

form of the free energy of a single bubble assembly in the strong segregation limit is
(2.14). In an equilibrium state, all red bubbles develop into approximately the same
size; so do yellow bubbles. Let r1 and r2 be the average radii of red and yellow bubbles,
respectively. Up to the leading order, the free energy is

2∑
i=1

Ki

(
2πri+

γiiπ

4
(ri)

4 log
1

ri

)
. (4.2)
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Let η2m=ω1|D|, η2(1−m) =ω2|D|, and Γij =η3 log 1
ηγij . Then (4.2) becomes

η

(
2
√
mπK

1
2
1 +

Γ11m
2

4π
K−1

1 +2
√

(1−m)πK
1
2
2 +

Γ22(1−m)2

4π
K−1

2

)
.

With respect to K1 and K2 the above is minimized at

K1 =

(
Γ11

4

) 2
3 m

π
, K2 =

(
Γ22

4

) 2
3 1−m

π
.

Consequently the average radii of red and yellow bubbles, are

ri= 4
1
3

(
log

1

η

)− 1
3

γ
− 1

3
ii , i= 1,2, (4.3)

from which (4.1) follows.

4.3. Double bubble assemblies. In some parameter ranges, ternary systems
may display double bubble assemblies (see Figure 4.1 (a)). Let ω1 =ω2 = 0.09, γ12 = 0,
and increase γ11 =γ22 from 200 to 40,000. The number of double bubbles Kb in an
assembly increases correspondingly as seen in the insets of Figure 4.3(a). The increment

of Kb obeys the law Kb∼γ2/3
11 . This confirms that the long-range interaction favors small

domains.

Fig. 4.3. (a) Log-log plot of the dependence of the number of double bubbles on γ11 in symmetric
double bubble assemblies. Here γ11 =γ22, γ12 = 0, and ω1 =ω2 = 0.09. As γ11 increases, the number of
double bubbles in the assemblies grows accordingly. For γ11 = 200, 1,000, 20,000, 30,000, 40,000, the
corresponding number of double bubbles are 2, 5, 38, 48 and 60, respectively. (b) The range of γ11/γ22
under which random initials evolve to double bubble assemblies for given ω1 and ω2. For (ω1,ω2) =
(0.09,0.09), (0.09,0.09/1.2), (0.09,0.09/1.4), (0.10,0.10/1.7), (0.10,0.05), the ranges of γ11/γ22 are
(0.72,1.3), (0.57,0.98), (0.46,0.73), (0.39,0.54), and (0.3774,0.40) respectively. Here γ12 = 0.
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This two-thirds law can be verified theoretically for both symmetric (ω1 =ω2) and
asymmetric (ω1 6=ω2) double bubble assemblies. To this end, consider the strong seg-
regation limit of the free energy E [27]. The full form of the free energy of a double
bubble assembly in the strong segregation limit is (2.15). In an equilibrium state, all
double bubbles have approximately the same shape and size. Let li, i= 0,1,2, denote
the radii of the three arcs of a double bubble whose two areas are m

Kb
and 1−m

Kb
. Let ai,

i= 0,1,2, denote the angles associated with these arcs. Up to the leading order, the free
energy is

Kb

 2∑
i=0

ailiη+
2∑

i,j=1

γij
4π

(
η4 log

1

η

)
mimj

K2
b

 , (4.4)

where η2m=ω1|D|, η2(1−m) =ω2|D|, m1 =m, and m2 = 1−m. If Li, i= 0,1,2, are
the radii of the three arcs of a double bubble whose two areas are m and 1−m, then
li=Li/

√
Kb. Let Γij =η3 log 1

ηγij and rewrite (4.4) as

η

( 2∑
i=0

aiLi

)
K

1
2

b +

 2∑
i,j=1

Γijmimj

4π

K−1
b

 .
With respect to Kb, this is minimized at

Kb=

(∑2
i,j=1 Γijmimj

2π
∑2
i=0aiLi

) 2
3

. (4.5)

Figure 4.3(b) shows the relationship between γ11/γ22 and ω1/ω2 when double bubble
assemblies occur. The vertical green line for each value of ω1/ω2 indicates the range of
γ11/γ22 for which double bubble assemblies exist. Beyond this range, ternary systems
display other patterns such as coexisting single and double bubbles. The range becomes
wider when ω1/ω2 approaches 1. Taking γ11/γ22 to be the middle value in each range,
and plotting it with respect to the ratio ω1/ω2, one finds that it agrees with the graph
of y=x−3/2.

4.4. The effect of γ12. As γ12 increases from 0, red and yellow constituents
tend to break. In Figure 4.4(a), γ12 = 0 and all components are double ones. In Figure
4.4(b), γ12 = 8,000, many double bubbles break into single red and yellow bubbles to
yield a coexisting pattern. In Figure 4.4(c), γ12 = 10,000, all double bubbles disappear,
the assembly becomes a pure single bubble one. In this case the red and yellow bubbles
are well mixed in an organized way. In Figure 4.4(d), γ12 = 20,000, the system still
displays a single bubble assembly, but the red and yellow bubbles are mixed randomly;
many single bubbles of the same color gather together. When γ12 = 22,000 is even
larger in Figure 4.4(e), red bubbles are completely separated from yellow bubbles in the
assembly. Note that as γ12 increases, the matrix γ changes from being positive definite,
to semi-positive definite, and to indefinite. In Figure 4.4(f), a negative γ12 is used.
Red and yellow constituents tend to be more “adhesive”. Nonstandard double bubbles
appear in the assembly. In Figure 4.5, the numbers of single and double bubbles when
γ12 changes from 0 to 10,000 are recorded. The existence of double bubble assemblies
and single bubble assemblies have been theoretically established recently [32,34]. There
have been no theoretical studies on assemblies of coexisting single and double bubbles
or on assemblies of nonstandard double bubbles.
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Fig. 4.4. The effect of γ12. As γ12 increases, double bubble assemblies change to coexisting single
and double bubbles, and then to single bubble assemblies. When γ12 is negative, nonstandard double
bubbles appear. (a) γ12 = 0, (b) γ12 = 8,000, (c) γ12 = 10,000, (d) γ12 = 20,000, (e) γ12 = 22,000, and
(f) γ12 =−13,000. The other parameters are γ11 =γ22 = 20,000, ω1 =ω2 = 0.09.

Fig. 4.5. The numbers of bubbles as γ12 increases from 0 to 10,000. The other parameters are
γ11 =γ22 = 20,000, ω1 =ω2 = 0.09.

5. Conclusion

We explore the dynamics of bubble assemblies via the gradient flow of a nonlocal
energy functional modeling the self-assembly of triblock copolymers in ternary systems
with small volume fractions of two constituents. Here for numerical simulations we focus
attention on the diffuse interface approach. Meanwhile, we also use the sharp interface
limit, the nonlocal two-component isoperimetric functional, to provide theoretical verifi-
cation of the quantitative studies. In the diffuse interface model, we introduce the term
f(φ) = 3φ2−2φ3 to localize the ‘boundary force’ near the A-C, B-C and A-B interfaces.
In developing the numerical method for the gradient-flow dynamics, we first adopt a
linear splitting scheme to reformulate the coupled nonlocal Allen-Cahn equations, and
then use the semi-implicit scheme to discretize the time variable and the spectral method
to discretize the space variables. In the sharp interface model, we derive the leading
order of the free energy via asymptotic analysis. Numerical simulations answered one
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open question from the theoretical study of triblock copolymers: the polarity direction
of double bubbles in double bubble assemblies should be parallel. Moreover, it is shown
both numerically and theoretically that the average size of red/yellow bubbles in a single
bubble assembly does not depend on ω1/ω2, the ratio of the area fractions of the minor-
ity constituents, but rather on γ11 and γ22, as well as ω1 +ω2 and the number of double
bubbles in a double bubble assembly satisfies a two-thirds power law. A relationship
between γ11/γ22 and ω1/ω2 is also identified for double bubble assemblies.

This work can be extended in a number of directions. Morphological patterns in
three dimensions can be studied by the same model. It can also be generalized for
quaternary systems, such as tetrablock copolymers. Other gradient flows of E, such as
a H−1 flow which leads to nonlocal Cahn-Hilliard system of equations, are also worth
studying.
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