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ABSTRACT. When the Ohta-Kawasaki theory for diblock copolymers is applied
to a bounded domain with the Neumann boundary condition, one faces the
possibility of micro-domain interfaces intersecting the system boundary. In a
particular parameter range, there exist stationary assemblies, stable in some
sense, that consist of both perturbed discs in the interior of the system and
perturbed half discs attached to the boundary of the system. The circular arcs
of the half discs meet the system boundary perpendicularly. The number of
the interior discs and the number of the boundary half discs are arbitrarily
prescribed and their radii are asymptotically the same. The locations of these
discs and half discs are determined by the minimization of a function related
to the Green’s function of the Laplace operator with the Neumann boundary
condition. Numerical calculations based on the theoretical findings show that
boundary half discs help lower the energy of stationary assemblies.

1. Introduction. Morphological phases exist in multi-constituent physical or bi-
ological systems characterized by controlled growth. Common in these systems is
that a deviation from homogeneity has a strong positive feedback on its further
increase, and in the meantime a longer ranging confinement mechanism exists to
limit increase and spreading. As a result, exquisitely structured patterns, known as
morphological phases in materials science, arise in such systems as orderly outcomes
of self-organization principles.

This study is to a large extent motivated by the diblock copolymer theory of
Ohta and Kawasaki [8]. A diblock copolymer is a block copolymer whose molecular
structure is a linear subchain of A-monomers grafted covalently to another sub-
chain of B-monomers [2]. Because of the repulsion between the unlike monomers,
the different type subchains tend to segregate, but as they are chemically bonded
in chain molecules, segregation of subchains lead to local micro-phase separation:
micro-domains rich in either A-monomers or B-monomers emerge as a result. These
morphological structures determine the mechanical, optical, electrical, ionic, barrier
and other physical properties.
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Here we consider an ideal situation where micro-domains are clearly separated
from each other by interfaces with zero width [7, 10, 4]. Mathematically, let D be
a bounded domain in R2?; D is assumed to be of class C°, a condition necessary for
many results in [9]. The energy functional is defined for every Lebesgue measurable
subset 2 of D whose Lebesgue measure is fixed at w|D|:

€2 = w|D|. (1.1)

Here w € (0,1) is one of the two parameters in this problem. We write || for the
two dimensional Lebesgue measure of Q and |D| for the Lebesgue measure of D.
The free energy of ) is given by

T =Po@ + [ 1=8)"xa —w) e (12)

Here Pp () is the perimeter of 2 in D. In the case that () is piecewise C1, it is
the length of the part of the boundary of 2 that is inside D. For a general (2, see
[11, 9] for the definition of Pp(§2). The part of the boundary of  inside D is called
the interface of Q. It separates  from D\Q.

To define the operator (—A)~1/2 let u be the solution of the following Poisson’s
equation with the Neumann boundary condition:

—Au=fin D, d,u=0o0ndD, / u(x) dx =0, (1.3)
D

where f € L?*(D) and [, f(z)dxz = 0, In (1.3) 9, stands for the outward normal
derivative at dD. Because the integral of f is 0, the partial differential equation
with the boundary condition is solvable. The solution is unique up to an additive
constant. The condition [, u(z)dz = 0 fixes this constant and gives us a unique
solution. The map f — u from the space of {f € L*(D) : [, f(x)dz = 0} to itself
defines the operator (—A)~!. Since this operator is bounded and positive definite,
it has a positive square root, which is (—=A)~%/2 in (1.2). Like (—A)~1, (=A)~1/2
is a nonlocal operator. It acts on xq — w where xq is the characteristic function of
Q; xa(r) =1if z € Q and xq(z) =0if x € D\Q.

The notion of stationary sets in the most general sense is given in [9, (2.12)]. If
the interface of Q is C?, then  is stationary if and only if it satisfies the following
Euler-Lagrange equation and the intersection condition:

K(0QND)+~I(Q) =X on 0QND, (1.4)
o0ND LoD at 90N DNAD. (1.5)

In (1.4), K(0Q2N D) is the curvature of the curve 92N D with respect to the normal
vector inward towards 2. The variable I(€) is called the inhibitor of Q. It is the
solution of the Poisson’s equation (1.3) with f = yq — w:

_AI(Q) = xo—win D, 8,1(Q) =0 on aD, / (Q)(2)dr =0.  (16)
D

The equation (1.5) asserts that the interface of € is perpendicular to 9D if the two
meet.

One of the morphological phases observed in diblock copolymers is the cylindrical
phase [2]. Omne monomer constituent is small in volume compared to the other
monomer constituent. The minority monomers form many parallel cylinders in a
system. Take D to be a cross section of the system. Then these cylinders give rise
to an assembly €2 of discs.
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In [11] Ren and Wei showed the existence of disc assemblies as stationary sets of
the functional 7. In such a stationary assembly, 2 is a union of multiple compo-
nents, each of which is a perturbed disc located inside the domain D. Their result
require that the parameters w and =y be in a particular range where w is sufficiently
small and ~y is suitably large. Their proof also shows that these assemblies are stable
in some sense. All the perturbed discs in their stationary assembly have approxi-
mately the same radius. If Ei’i,..., fl“l are the centers of the discs in a stationary
assembly found in [11], then (£} ;,
This function is given by

Fi(&),&, .8 =Y RE,)+2 Y GEL&h. (1.7)

Jjsng J<k<n;

., &%) is close to a minimum of a function Fj.
;

Here n; is the number of perturbed discs in the assembly, and &},... £ are distinct
points in D. The subscript ¢ used here indicates that the points Eg are in the
interior of D, not on the boundary of D. This point will become important later.
The function G is the Green’s function of —A on D with the Neumann boundary

condition; namely it satisfies

—A,G(x,y) = 6(x) = in D, 90,,G(z,y) =0o0ndD, / G(z,y)dz =0 (1.8)
D

D]
for all y € D. One writes G as a sum of two parts:
1 1
G =—log——+R 1.9
(#,y) = 5 log P (z,9), (1.9)

where the first term is the fundamental solution of the —A operator, and the second
term R, which appears in (1.7), is the regular part of G, a smooth function on D x D.

One caveat in Ren and Wei’s work is that the discs in their stationary assemblies
do not touch the boundary of D. One can avoid the issue of the domain boundary
by assuming that D is a rectangle and imposing the periodic boundary condition
instead of the Neumann boundary condition; see [3, 6, 1, 5]. We prefer working
with the more realistic Neumann boundary condition. In this case if the interface
of a stationary set meets the domain boundary 9D, (1.5) states that it does so
perpendicularly.

Finding a stationary set whose interface meets the domain boundary is a difficult
problem. The first non-trivial result came in our work [9]. When w is sufficiently
small and ~ is suitably large, there exists a stationary set shaped like a perturbed
half disc, stable in some sense, whose boundary inside D (a perturbed half circle)
meets 0D perpendicularly. A crucial quantity introduced in [9] is termed Rp(p, &b ),
& € 0D, given by

Ry (&, &) , & €0D. (1.10)

1
= 1. G - 71
ehm (&) —log

1
& — vl
Note that the second term in 1.10 is twice the fundamental solution of —A. If
&«p € 0D is the center of the perturbed half disc stationary set found in [9] and
the parameters w and y are in the same range as in this paper specified in Theorem

1.1, then &, p is close to a minimum of the function

& = Ro(&, &), & € OD. (1.11)

In this paper we construct stationary assemblies, stable in some sense, that con-
tain both perturbed discs in the interior of D and perturbed half discs that are
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attached to dD. The perturbed discs and perturbed half discs in a stationary as-
sembly have approximately the same radius, and the locations of their centers are
also determined asymptotically.

Let n; and n, be non-negative integers. We use the convention that the subscript

1 is attached to quantities related to the interior discs of an assembly, and the

subscript b is attached to quantities related to the boundary half discs. For a

stationary assembly of n; perturbed discs inside D and n; perturbed half discs

attached to 0D, it is convenient to introduce the average radius as a parameter in
place of w; namely let p > 0 so that

2

w|D| = nymp® + ngp .

Now p and ~y are the two parameters of our problem.

(1.12)

Theorem 1.1. Let n;, ny be non-negative integers. There exists o > 0 depending
on n;, ny, and D, and for every € > 0 there exists 6 > 0 depending on €, n;, np,
and D, such that if

1. p<5
2.

3log1 <ry<

then J admits a statzonary assembly Q. of n; perturbed interior discs and ny per-

anrp2

turbed boundary half discs, satisfying the constraint |Q.| = n;mp? +

Define a function

Pl € e ) = Y REE) + 7 YR +2 Y Gleeh)

J<n; J<mnp J<k<n;
1 . )

5 D G@&e)+ Y GE.E) (1.13)
I<k<np J<n;,k<ny

in the domain
= 6= (€€ ) s €D for =L, € £EE G AR,

g edD for j=1,..my & £ ifj;ék:}. (1.14)

Because G(z,y) — oo if [ —y| — 0 and R(z,2) = oo if z = 0D, F(§) — oo if
¢ — O0Z. More precisely for every M € R there exists a compact subset K of =
such that F(§) > M whenever £ € Z\K. In particular F' admits a minimum in Z.
The next theorem gives the sizes and the locations of the discs and half discs in the
stationary assemblies.

Theorem 1.2. Let §j € D and {J b € OD be the centers and r’ i and r!  be the
radii of the perturbed dzscs and half discs in the stationary assembly Q. of Theorem
1.1.

1. Asp—0, *‘—>1and ;b—>1

2. Asp— 0, every limit point of (&£}
a minimum of F.

ny -
L& Sk b, ...,5*’1)) along a subsequence is

*z?'

This stationary assembly is stable in some sense.

These two theorems contain very detailed information about the stationary as-
semblies. Figure 1 shows several stationary assemblies when D is the unit disc. The
range for n; is the set of integers from, 0 to 10 and the range for n; is the set of
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FIGURE 1. From the left of the first row with n; = 10 and n, = 0 to
the right of the last row with n; = 0 and n; = 20, these assemblies,
of n; + % = 10, minimize F. Among them, the right one on the
first row has the least F' value. Here w = 0.2.

even integers from 0 to 20. In all these assemblies n; + %> = 10. The locations of
the discs and half discs are determined by numerical minimization of F.

Probably the most important reason to study stationary assemblies with both
interior discs and boundary half discs is to see whether one can lower the free
energy of a stationary assembly of only interior discs by replacing some interior
discs by some boundary half discs. In the proofs of the main theorems, one obtains
detailed information on the stationary assemblies. This allows us to compare their
energy. We present examples where stationary assemblies with only interior discs
have higher energy than some stationary assemblies with both interior discs and
boundary half discs.

The proofs of Theorems 1.1 and 1.2 are organized as follows. In section 2 one
constructs approximately stationary assemblies of interior discs and boundary half
discs. The centers and radii of the discs and half discs are to be determined. In
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section 3 one formulates a problem S(®) = 0 in a Hilbert space. A solution to this
problem solves the Euler-Lagrange equation (1.4) up to the constant A. Namely
that a solution of S(®) = 0 represents a set {2 of multiple components. On the
boundary of each component, the equation (1.4) holds. However the constant A
varies from component to component.

To solve S(®) = 0, one actually solves a weaker problem in section 4: IIS(®) =
0 where II is a projection operator. Here one uses a fixed point argument with
the help of the invertibility of a linear operator. The resulting solutions are an
improvement of the previously constructed approximately stationary assemblies.
Finally in section 5 one chooses centers and radii properly so that the solution of
IIS(®) = 0 is also a solution of S(P) = 0 and a solution of (1.4).

Section 6 is devoted to the question of the advantage of stationary assemblies
with both interior discs and boundary half discs over stationary assemblies with
just interior discs.

2. Approximately stationary assemblies. We start with a construction of an
assembly of exact discs inside D and perturbed half discs attached to dD. Let
a>0,5€(0,1), and set

Eo={E= (&, &80, &") & €D, dist(¢,0D) > a,
& — ¥ >2aVi#k, & €D, |g - >2avi£k}  (21)
Wa = {r=(rl,.r o, ri®): rlr] € [(1—B)p, (1+ B)pl,

S e 3 e 2
m(r] =nmp” + 5 b (2.2)

: : 2
Jsng J<np
Note that we write & for (&},...,&", &, ....&") and r for (r},...,r, i, ...,r)") in
this paper. The number « is small enough so that
min F(§) < inf F(§); 2.3
min F(§) < _int_ F(6) (23)

the number 3 is also small so that for all t € [(1 — )2, (1 + 8)?],
g"(t) > 0 where g(t) = —— + 2. (2.4)

In (2.3) the set E is the domain of F, given in (1.14); in (2.4) € > 0 is the number
in the statement of Theorem 1.1. Note that, since F(§) — oo if £ — IZ, (2.3) holds
if « is sufficiently small. Also, since

2
1
g'(1) = 1_|_€—i-2>07
a small 8 can be found so that (2.4) holds. The significance of the conditions (2.3)
and (2.4) will emerge later in the paper. For now we only think of « and § as two
small fixed numbers.
Let & = (&,...,6, &}, ... &) € Eq and 7 = (r},..,rii vk, rp?) € Ws. We

first make n; discs centered at & of radius r7:
El={zeR%: [z—¢&| <} (2.5)

Before making perturbed half discs attached to the domain boundary 9D, one
needs to set up coordinate frames on dD. Let

t —r(t) (2.6)
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be a parametrization of a part of dD. We sometimes identify ¢ with r(¢) if no
confusion arises, and write ¢ € 0D. Let t(t) and n(¢) be the unit tangent and
normal vectors of D at t respectively. Assume that

L t(t) = 8.,

2. n(t) =it(t), i.e. (t(t),n(t)) is a right-handed coordinate system,
3. n(t) points inward with respect to D.

In this paper to simplify notation, R? is identified with C. Then it(t), the coun-
terclockwise 90 degree rotation of t(¢), is just the complex product of i and r(¢),
the latter viewed as a complex number. The arc length variable s measured from a

fixed point on 9D is given by
ds
Z ). (27)
The (signed) curvature x of 0D is defined with respect to the inward normal vector
n so that
dt_ odn_
ds "™ ds
With r(t) being the center, t(¢) and n(¢) form a right-handed orthonormal frame
so that any point x inside D or outside D can be described by

o =x(t)+ (t(0)n(e) (71 (2.9)

where p; and py are the coordinates of x under this frame. The transformation T;
is defined to be

—kt. (2.8)

Ty :p= < p1 ) = r(t) + (6(t),n(t)) < p1 ) , (2.10)

b2 D2

so that = Ty(p). We call = a point in the original space and p the coordinate
vector of x under the (t(£),n(¢)) frame.

Introduce a function f which is locally the graph of 0D under the (t(t),n(t))
frame. More precisely, for T near ¢ there exist p; and py such that r(r) = r(t) +
p1t(t) + pan(t). The correspondence p; — po defines a function whose graph is 9D
near t under the (t(¢),n(t)) frame. Since this function depends on the fixed point
t, we treat it as a function of two variables, p; and t: ps = f(p1,t). With f we have

r(7) :r(t)+(t(t),n(t))( fé)’ll’t) ) (2.11)
Note that

f(0,t) = D1f(0,t) =0, forall ¢te€ dD. (2.12)
In this paper we write D; f for the first partial derivative of f with respect to its
first argument, and D?f for the second partial derivative of f with respect to its

first argument, etc.
The function f also provides a way to locally flatten the domain D. Define a

transformation @; by
U1 U7
= . 2.13
Qt(w) (U2+f(uht)) (2.13)

The derivative of Q; is

DQy 1 0

pQ, pQ
Du le(uht) 1

Du

}, and

= O

} . (2.14)

O =

u=0
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The inverse of Q) is

Q! ( i; ) = ( . _’]?(pl,t) > (2.15)

Now we are ready to make perturbed half discs attached to dD. For each pair
of & and 7] let

E] ={z = T o in (u) : |u| <7, u=(ur,u), us >0} (2.16)
With these discs and perturbed half discs one obtains an assembly
E= (Ujgni EZ) U (Ujgnb Eg) (217)

The discs and half discs in F are non-overlapping if p is small because of the
definition of E,. We use F as an approximate solution to the equations (1.4)
and (1.5). The energy of F is estimated below. Its proof, which we omit, is a
combination of [11, Lemma 3.2] and [9, Lemma 2.3].

Lemma 2.1.
J(E) = Z 2] + Z 7T’I“g +0(p?)
J<n; J<np
J

+2[> (”(”)4 log% + W(TT)‘l + (n(r]?)°R(EL€D)

J<n; i

3 (T S () i)
b

b2 Y RErehraE. g Y () (2 g ¢

, . 2 2
J<k<n; j<k<np

w2 Y e (Mot ] + o)

. 2
J<ni,k<np

3. A Hilbert space. Lemma 3.1 below is a standard result on the variation of the
length of a curve, and Lemma 3.2 gives a formula for the variation of an integral on
a set. Following the two lemmas, the first variation of 7 is derived in Lemma 3.3.
Suppose that R(#), 6 € [a, b], is a parametrized curve. The unit tangent vector
of R is T given by
_ R(9)
IR/(0)]
Let N be a unit normal vector to R and K be the curvature of R, so that KN is
the curvature vector of R. Moreover
dT
A KN, (3.2)
where ds = |R/(0)|df is the length element. A deformation of R is a family of
curves R, parametrized by ¢ in a neighborhood of 0, so that Ry = R.

Lemma 3.1. Let R(0), 0 € [a,b], be a curve and Re(0) be a deformation of R(9).

Denote by X the infinitesimal element of the deformation R.: X(0) = 6%6(0) le=0-

Then

T(0)

(3.1)

d b b b
< /|R’E|d9:T-X‘ —/ KN - X ds,
de le=0 a a a
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where f; |RL|df is the length of R, and T, N, and K are the tangent, normal,
and curvature of R respectively.

Suppose that € is an open set with piecewise C' interface. A deformation (),
is a family of open sets with piecewise C'' boundary, parametrized by e, such that
0, is a deformation of the curve 0f).

Lemma 3.2. Suppose that a bounded domain Q) is enclosed by a curve 0X), and Q.
is a deformation of Q). Let X be the infinitesimal element of the deformation of 0S2.
Then

d

— dr = — N.-Xd
| s@de=— [ faN-Xds
where N is the inward unit normal vector on Of).

Let us consider a set 2 with n; components Qf inside D and n; components
Q) that touch the boundary of D. The first variation of this set is given by the
following lemma.

Lemma 3.3. Let €. be a deformation of a set () which consists of interior compo-
nents 2] and boundary components Q¥ in D with piecewise C* interface parametrized
by Rﬂ(Q), 0 €la,b], j=1,...,n,, p="1,b. Then

S -3 / i.x?
B e = 72 gy (KON D) TN, X do
+Z(T§-X§‘O—/ , (K(aﬂﬁD)+vl(Q))NZ~Xids.)
j=1 oND
Also

d|€2|
de

= - N, - X ds.
DEED ORI

J<nu,u=1i,b

In this section we find a way to perturbed the approximate solution E to a more
general assembly  of perturbed discs and half discs. Such perturbations will be
represented by elements in a Hilbert space. _

To perturb an interior component EY of E we need a 27-periodic function ¢

and thus set
pi = {tei9 0e St tel04/(r?)? 4260 (0)] } (3.3)

The circle S ! is used to denote the interval [0, 27] with identified end points. Shift
P/ by & to
Q) =¢ + P, (3.4)

and this set is a perturbation of Ef . To perturb a boundary component EZ, let

B ={te": 6e(0,m), te [0,/(])2+26}0)] }. (3.5)

and then map it to
0 = Ty 0 Qy (F) (3:0)

to yield a perturbation of Eg. Now set

= (Ujzn ) U (Ua, ) (3.7)
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Obviously ¢ and ¢} need to be small compared to (r7)? and (r])? respectively
for the definitions (3.3) and (3.5) to be meaningful. We also need some smoothness
for ¢! and ¢] for J(Q2) to be defined. Let us start with a Hilbert space

Z - {(b: (¢3”¢?7a(¢(1)a¢}1—7¢;),,( 70”’7 ;_Ib7 Z«b)):

2
¢z € LQ(SI)’ qﬁz = 07 .] = 17 ceey Ty
0

¢ € L*(0,7), ¢}, ¢ € R, / ¢ol=0,j=1, nb} (3.8)
0
The inner product in Z is
27 T
@u =3 [ e+ Y (dhuiroiuie [ evl) 69
jEN; 70 JEN, 0

The constraints
27

¢3 = 0) j = la ceey Mgy / (;b-l?) = 07 .7 = 1,...,7’Lb (310)
0

ensure that the area of Q7 is fixed at 7(r/)? and the area of ] is fixed at m(r])?/2,

since
) 27 \/ (r{)2+2¢g ) 2w )
Q] = / / rdrdd = mw(r])* + ¢ df = m(r])?
0 0 0

o=/ raras =" 1 [ gjap D"
0 70 2 0 2

Note that |Qi| = |Pg| since the Jacobian of in equals 1 by (2.14).

Next is a subspace )Y of Z,

V= {<I> €Z: ¢l e H(SY), ¢ € H'(0,7), ¢) = ¢(0), ¢} = asi(w)}. (3.11)
Let € and r be held fixed. Then the set € is represented by ® and J is viewed as a

functional of ®. In this setting, the domain of 7 is a neighborhood of the 0 element
nY:

Dom(J) = {® € ¥ [|®]y < bp?}, (3.12)
where b is a sufficiently small positive constant, independent of p, so that
(1)) +2¢7(0) >0, for all @ € S, (1])? + 241 (0) > 0, for all 6 € (0,7). (3.13)

This makes (3.3) and (3.5) geometrically meaningful definitions of perturbed discs
and half discs respectively.
It is easy to make a deformation in ). Let ® € Dom(J) and ¥ € ). Then

O — O +cVv (3.14)

defines a deformation of ®. Consequently it gives rise to a deformation 2., repre-
sented by ® + eV, of the assembly ) represented by ®. This deformation leads to

the first variation p

dié‘ e=0
Another subspace X of Z is

x={oecz: ¢l c HASY), o] € H2(0,7), 6} = 8}(0), ¢} =)(m)}. (3.16)

J(® + ). (3.15)
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The three spaces are nested: X C Y C Z. In the case that ® € X', integration by

parts yields
d

e EZOJ(@ +el) = (S(D), D). (3.17)
In (3.17) S is a nonlinear operator defined on
Dom(S) = {® € X : |®||x < bp*} (3.18)
where b is the same as the one in (3.12). More specifically
S = (8}, 8" (85, 8.8y ), . (857, S22, 8)) (3.19)
where
S1(®) = K(99n D)(R](0)) + I(Q)(R](6)) — A (@) (3.20)

1

) . 1
S (®)=-T"(0) — —— - y ; 3.21
0=r0 et (i o) O

4 -, 1 -1
SI(®) = T (7) - , . 4 .
" " (r])2 + 261 (1) ( —Dif(=/(3)? +2¢3(7), &) ) 52
S1(®) = K(0Q N D)(R}(0)) + I(Q)(R](0)) — X (®). (3.23)

The range of S is a subspace of Z. _
Here  is the assembly represented by ®. The interface of the component
(resp. ) is parametrized by R} (resp. Rf):

RI(0) =& +\/(r)2+20(0)”, j=1,...m (3.24)
R} (0) = Ty 0 Qg (1/ ()2 + 265(0)€), j = 1,....m. (3.25)
The tangent and normal vectors of R{L are denoted TfL and N{L.
For Rg, let Rg be the parametrization under the (t(ﬁg), n(fg)) frame so that

RJ(6) = Qg (\/ (r])? + 26(0)e”), RY(9) = T, (F(9)). (3.26)

The tangent and normal vectors of R{) are denoted T; g and J\_fg respectively.
In (3.20) and (3.23), A,(®) are numbers chosen such that

2 T
/ SH(®)dh =0, j=1,..,n,, / SH®)dO =0, j=1,....,np. (3.27)
0 0
If an assembly € represented by ® is a solution of S(®) = 0, then € satisfies the
equations
K(0QY) +~4I(Q) =X ondQ, j=1,....,n (3.28)
K@) +~4I(Q) =N ondY ND, j=1,...,n (3.29)
T} LdD ondD, j=1,..,n. (3.30)
Since the A{js vary from component to component, €2 is generally not a solution of

(1.4).
If R, is a deformation of R such that Ry = R, then the infinitesimal element is
X — aRév# )_(’j _ 8Rg
® de le=o’ 0 Oe le=0
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This deformation may be more general than the one considered in (3.14). Neverthe-
less the end points of each perturbed half disc can only move along the boundary
of D in this deformation. Define XJ and X7 in R by

X;(0) = X—g ( j 21 i) ¢ ) 7 (3.31)
()2 + 203 (0) \ P1f( (r)? +26,(0), &)
o XJ 1
X! (m) = l , ; , . .
o= (e ) O

The first variation formula in Lemma 3.3 can now be written as

9J(®) _ i ( J J . ~d
5| = J;/ms D) + N (®))N? - X7 ds
+ 3 (SY@xg+ @)X - [ (@) + N(®)N] - X]ds).
j<ny aQ,ND

(3.33)

The next lemma gives an estimate of S(0), where the element 0 in X represents
the approximate assembly E. The proof of this lemma is a combination of [11,
Lemma 3.1] and [9, Lemma 4.5].

Lemma 3.4.

j 1 (r])? 1 i e N2 ed ok
§10)= +7[ S-log — + ()R, )+ Y b6 eh)
i z k<n;,k#j
Leb) + 00" = X(0) (3.34)
k<np
Sé (0) =0(1) 3.35
S2(0) = 0(1) (3.36)
; ri)2 w(r 7 (rF)? ;
§4(0) = %+o<1>+v{%1og%+ " pg+ Y Tl o e
T T k<np k]
+ Y w(hGUEL ) + O™ = X (0). (3.37)
k<n;

Note that Lemma 3.4 implies the following.
Lemma 3.5. ||S(0)||z = O(1).

It is not realistic to solve the equation S(®) = 0 for any given £. Instead we will
solve a weaker equation first. Let us define three more subspaces at this point.
2m 2m

Zb:{éez: $lcost= [ ¢lsin0=0, j=1,..n,
0 0
¢g—¢;+/ ¢} cosf = 0, j:l,...,nb} (3.38)
0

Y, =¥Ynz (3.39)
X, =XNZ, (3.40)
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The projection from Z to Z, is denoted II, defined by the inner product (3.9). One
first looks for an element in A}, that solves IIS(®) = 0. Later one finds some special
¢ for which §(®) = 0.

When S§(®) = 0 is solved for all » € Wjg, one finds some special r such that in the
equations (3.28-3.30) for the solution of S(®) = 0 associated with this particular r,
all the A/ are the same and hence (1.4) holds.

Because of (3.10), if §2 is represented by ® € Z, the measure of QZ is 77(7“?)2 and
the measure of Q{J is W(gg)Q. If in addition ® € Z,, one interprets that fzj is the
center of the perturbed disc Qf and that fg is the center of the perturbed half disc
Qi. The subspace 2, gives precise meanings of the center and radius of a perturbed
disc or half disc. When ® € Z,, we call the 5{ ’s and the §Z ’s the centers of the

perturbed discs and half discs in ® and the 7’s and the r}’s their radii.

4. Solve IIS(®) = 0. Again consider J as a functional on Dom(J) C ). Let
® — 19U 4+ &5 be a two parameter deformation. Then the second variation of J
can be written as
82

851852 e1=€2=0
Here &' is the Fréchet derivative of S. For each ® € Dom(S) C X, §'(®) is a
linear operator from X to Z. Then (S'(®)(¥), Y) is defined for & € Dom(S) C X,
U e X, and T € Z. The left side of (4.1) is also meaningful if & € Dom(J) C Y
and U, T € Y.

T(@ + 1T + &) = (S'(®) (D), T). (4.1)

Lemma 4.1. 1. When p and vp> are sufficiently small,
1
TS (0)(¥) ][z > ﬁH‘I’Hx (4.2)

holds for all U € X,. The linear map IIS’(0) is one-to-one and onto from X,
to Z, and whose inverse is bounded by ||(IIS’(0)) || < 2p3.
2. When p and vp® are small,

(TS (0)(W), ¥) > %nwui (4.3)

for all U €)),.

Proof. The operator §’(0) is decomposed into

S'(0)=H+ M, (4.4)
where H is the major part and M is the minor part. Let
Ho= (Mo M (H Ho s M), o (HG S HEE HY)). (4.5)
Then
HI (W) = L ((W)” + W) — B (D) (4.6)
(] (T'Z)S 3 K3 1
, 1 A
Hp(¥) = — ) (¥3)'(0) (4.7)
b
. 1 ,
Hy (W) = ——= (i) () (4.8)

(r3)?
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1

(ry)?

Hi(w) = -

(W) +vi) - m(w) (4.9)

where the h/,(¥)’s are numbers chosen such that

27

HI(V) =0, j=1,..,n4 / HI(W) =0, j=1,....,m. (4.10)
0 0

The operator H has a non-trivial kernel which is the direct sum of

53;1 ={T: wz = Ajcosf + Assiné, Ay, As € R, other components of ¥ are 0},
(4.11)

55,0 ={U: (), ¢, ) = B(1,-1,cos6), B € R, other components of ¥ are 0}.
(4.12)

In other words 0 is an eigenvalue of H and the associated eigenspace is the direct
sum of the Eil’s and the &] ,’s. Denote this eigenvalue of multiplicity 2n; + n; by

Ni=0,j=1..n, Mg=0,j=1,..n. (4.13)
The other eigenspaces of H are

Sf;m ={U: 1/)17' = Ajcosmb + Ay sinmb, A, As € R,

other components of ¥ are 0}, m > 2 (4.14)
Em = (W01, 00) = Blom(0), om(7). om), B ER,
other components of ¥ are 0}, m > 1. (4.15)

In (4.15), the functions ¢,, are
2sin T )
cos,um<9—f)—7 if m>11is odd
2 Tl
Pom = . (4.16)

. 7T . .
smum(ﬁ — 5) if m > 1 is even

™

The p,,’s in (4.16) are given as follows. Consider two algebraic equations

mpu(p® — 1) T
———— = tan— 4.17
2p? —1) — wp? M (4.17)
p Th
’ug 1 = tan 7 (418)

both considered for g > 1. The solutions to (4.17) are denoted w1, us, us, ..., and
the solutions to (4.18) are denoted o, fi4, tis, ... Moreover

1< <2< <3< uz3 <4<y <..<2k—1< por_1 <2k < puop <2k+1...

(4.19)
and

lim (/1,2]6,1 - (2]6 - ].)) = 07 lim (,LLQk; - 2]€) =0. (420)

k—o0 k—o0

The eigenvalue of H associated to 51] m 1s clearly

2
; -1

Moo= (4.21)

ik
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It is shown in [9, Lemma 3.1] that the eigenvalue associted to Eg m 18

2
; -1
M= (4.22)
"y
The space Z, is exactly the subspace of Z that is perpendicular to all the kernel

of H, i.e. perpendicular to all 51,1’ j=1,..,n; and Sbo, j=1,...,np. It can be
written as a direct sum:

2, = (8L Om=2 &) © (721 Bt &5 y)- (4.23)

The operator ITH restricted to A}, maps from X, to Zy; it s identical to H
restricted to Aj,. Moreover in expression (4.6) and (4.9) h/(¥) = 0 when ¥ € Aj.
The eigenvalues of ITH,

Mo G=12m, m=2,34,..., X j=12..n, m=123., (424)

are all positive. Let us denote a palr of orthonormal eigenfunctions associated to
the eigenspace 8] by €] .1 and €] ., and a normalized eigenfunction associated

to Eym by e{; - For any ¥ € Z,, one can expand

\I]:ZZZ pz-mk+zz bmb.m (425)

j=1m=2p=1 j=1m=1

The norms in Z,, ), and A, are taken to be

n; 0o 2 n ]
ez =SS S e, PSS e P e 2, (4.26)

Jj=1 m—2p—1 j=1m=1
ny
||\P||y_ZZZ| zm,p m*1+ZZ|Cgm mil)a if\IJEybv
j=1m=2p=1 j=1m=1
(4.27)
ny oo
w3 = Z Z ZI Dl =12 DN O] Pud, - 1% iU e X,
Jj=1m=2p=1 j=1m=1
(4.28)
It is shown in [9, Lemma 3.2] that the || - |y norm is equivalent to the usual H*
norm of a Sobolev space and the || - ||x norm is equivalent to the H? norm.

Since for ¥ € )),

(IIHT, ) ZZZ| . zm+ZZIC§mI N (4.29)

j=1m=2p=1 j=1m=1

we deduce from (4.27) and (4.28) that

[IHY| = [V]lx, V¥ € A, (4.30)

>
- L 5 1.5p°
(MKW, U)

Y

5 w3, v e, (4.31)

if 81in (2.2) is so small that rf and ri are sufficiently close to p.
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Regarding the minor part M, one has
1
1MW)z < O +9) 1%l (4.32)

[(M(P), D)

IN

1
c(ﬁ +9) )3 (4.33)

The details of these estimates are found in the proofs of [11, Lemma 5.2] and [9,
Lemma 5.1]. Then (4.2) follows from (4.30) and (4.32), and (4.3) follows from (4.31)
and (4.33).

Finally to show that I1S’(0) is from &}, onto Z,, note that I1S’(0) is an unbounded
self-adjoint operator on 2, with the domain &, C Z,. If T € Z, is perpendicular to
the range of IIS’(0), i.e. (IIS'(0)(¥),T) = 0 for all ¥ € X,, then the self-adjointness
of IIS’(0) implies that T € A, and IIS’(0)(T) = 0. By the estimate in part 1, T = 0.
Hence, the range of IIS’(0) is dense in Z,. The estimate in part 1 also implies that
the range of IIS’(0) is a closed subspace of Z,. Therefore IIS’(0) is onto. O

Lemma 4.2. When p and vp* are sufficiently small, for each £ € 2, and r € Wpg,
the equation IIS(®) = 0 admits a solution @, € Dom(S) N X, satisfying ||P«||x =
O(p?).

The proof of this lemma uses a fixed point argument. It makes use of Lemmas
3.5 and 4.1. See the proof of [9, Lemma 6.1] for more details.

The first part of the next lemma shows that @, is non-degenerate; the second
part asserts that ®, is locally energy minimizing among assemblies of perturbed
discs and half discs of prescribed centers and radii. The proof of the lemma is the
same as the one of [9, Lemma 6.2].

Lemma 4.3. 1. For all ¥ € A,

TS (@) (W) [z = V]~

1
4p3
2. For all ¥ €)),
1
(S (@.)(0).9) > 15|03
The energy of @, turns out to be very close to the energy of the approximate

assembly F, as stated in the following lemma. The proof is similar to that of [9,
Lemma 6.3].

Lemma 4.4. It holds uniformly with respect to £ € =, and r € W3 that

J(®,) = Z 2777“{ + Z 7T7“Z

J<n; j<ny
J)4 1 Jy4 _ o
3 {; ("5 log 7+ L )R )
Tt 1wt )N e
+j;b( i 1ogr—i+ T +( ; ) Rol€l.€D)

, . 7(r)2\ sm(rk)? .
v2 3 weirehre e e Y (M) (T g )

J<k<n; J<k<np
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n; + % | n; | ny | Minimum F'
1 110 -0.0796
1 0| 2 -0.0307

1.5 11 -0.1365
1.5 0| 3 -0.1131
2 210 -0.2221
2 112 -0.2333
2 0| 4 -0.2025
2.5 2 1 -0.3440
2.5 1] 3 -0.3374
2.5 015 -0.2922
3 310 -0.4619
3 2|2 -0.4706
3 11| 4 -0.4421
3 0|6 -0.3780
3.5 3 1 -0.5955
3.5 2|3 -0.5890
3.5 115 -0.5707
3.5 0|7 -0.4573
4 410 -0.7301
4 312 -0.7287
4 2 | 4 -0.6783
4 1|6 -0.6963
4 0| 8 -0.5280

TABLE 1. Stationary assemblies with n; + % less than or equal to 4.

vz Y aeh (M ae g + 00

) 2
J<n;,k<ny

5. Find the right £ and r. Now we emphasize that ®., the solution of IIS(®,) =0
found in Lemma 4.2, depends on £ and r, and we denote it by ®.(&,r). The energy
of ®,.(&,r) can be viewed as a function of £ and r, and thus denoted by J(&,r):

JE, 1) =T (@.(&71)), (§71)€Ey x Ws. (5.1)
This function is estimated in Lemma 4.4.
Lemma 5.1. 1. Let r € W3 be fized. If & is a critical point of the function
E— J( ) from 2, to R, then S(P. (&, 7)) = 0.

2. If (&, 74) is a critical point of the function (§,7) — J(&,r) from Eq x Wy to
R, then ®. (&, r+) is a stationary assembly of J.

Proof. Denote the parametrization of the boundary of the perturbed discs in ®..(&,r)
by R} R, ...,R} where

R}(0) = & +1/(r])2 +2¢ ;(0) €. (5:2)
The unit tangent and normal vectors of R{ are
e |
T}(0) = 27 Ni(f) =iT}(0), (53)

OR(0)
‘ 0
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respectively. Note that N¥(0, 3, ¢) is inward pointing.

For the perturbed half discs in ®., denote by R} (0), T (0), and Ni (), j =
1,...,mp, the parametrization of the boundary, the unit tangent vector, and the unit
normal vector respectively. The corresponding quantities under the (t(fi ), n(§g )
frame are K] (6), T/ (6), and N/ (8). Let us denote the rotation matrix

M(&]) = (£(&]),n(&))- (5.4)
Then ' , L
R;(0) = r(&) + M(&§) 1, (0) (5.5)
where
. )2 4+ 2¢7 ,(#) cos @
Ry (0) = : V)4 200,0) ‘ . (5.6)
(13)% +2¢7 ,(0) sin € + f(4/(17)% + 297 ,(6) cos 6, )
Fix r and vary each fz 'k =1,...,n;, ¢ =1,2. This leads to a deformation of
®, and a variation along the path
dJ (&, , 4
Al 83 )+ )\] N7 - X! (k,q)ds
e = 0 [ (S0 + H@IN] X
+ Y (53 VX3 (k,q) + S1(2.) X7 (k, q)
J<np
=[S - N @IN - X (k) ds) (5.7)
o

by (3.33). Here X(k, ¢) is the infinitesimal element of the deformation:
OR], _
== J=Lo,n, p=14b k=1,...n; ¢=12, (5.8)

and X7 (k,q) and X7 (k,q) are given by (3.31) and (3.32) respectively. Similarly one
varies each fl’f to obtain

9J (&) o
o Zn: /BQ ) A7 (@))N7 - X (k) d
3 (32X (k) + 83(®.) X2 (k)
- / ) (3£(<I>*) + A{;(CD*))N{; Xi(k) ds) (5.9)
o]

where X (k) is the infinitesimal element of the deformation:
IR,

X, (k) = agk’ j=1,n,, p=1ib, k=1,..,n,. (5.10)

Since IIS(®.(¢,7)) = 0, there exist AJ(&,r), p= 1,2, and B (¢,7) in R such that
Sij(q)(f,r)) = Al cosf+ A)sing, j=1,..,n, (5.11)

SH@(Er) =B, j=1,..,m (5.12)

SH®(E,r) = =B, j=1,.,m (5.13)

SH(®(g,7) = Bicosh, j=1,...m (5.14)
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Since the deformations X(k, ¢) and X(k) preserve the area of each component,

» N/ - XI(k,q)ds =0, j=1,..,n (5.15)
mi NI - XI(k,q)ds =0, j=1,...m (5.16)
b
» N - XI(k)ds =0, j=1,..,n (5.17)
m NI - XI(k)ds =0, j=1,...,n. (5.18)
b

One can drop the X, (®.) terms in (5.7) and (5.9) and arrive at

aJ(Er) _ Z 2

(Al cosf + Al sin0) N7 - X! (k, q) df

k
55“1 j<n;
+3 (Bng(k:,q) — BIX(k,q) —/ B cos0 Nj - X (k,q) o)
j<np 0
(5.19)
(5771) o J J J J
oek jg; (Af cosf + Ajsinf) N/ - X/ (k) do
+ > (Bng(k) — BI X (k) —/ B cos® N - X} (k) de) (5.20)
J<np 0

At a critical point &, of & — J(&, ), the left sides of (5.19) and (5.20) vanish and
one obtains a linear homogeneous system for Ag) and B’. One can show, as in the
proof of [9, Lemma 8.1], that this system is non-singular and hence

Al(&r) =0, j=1,..,n;, p=1,2, B/(&,r)=0, j=1,...,m (5.21)
proving the first part of the lemma.
For the second part of the lemma, we replace r by a more convenient variable m:

m] =w(r])?, mj=mr(r])? (5.22)

One varies each mf to obtain another deformation of ®,. Since A{, (&, my) =0 and
BI(&,,m.) = 0, the first variation formula (3.33) yields

aJ (&, m) j
—_— = — M (&, m )N - X (v, k) ds
omk  l(em)=(e.,m.) j; o « ) k)

- Z/ A (Ex, ma)ND - X (v, k) ds
BQ

Jj<np

= > M (E.m = > M(&my) 6‘|Q;|

j<n; j<ng my

=->" )‘g(ﬁ*,m* = > N6 m.) 8( )

om
J<n; j<nyg

NE
o .

Ao
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AP, my)  ifr =1

_ _ (5.23)
—7)\5(5*’”1*) ifr==»~
2

Here X(v, k) is the infinitesimal element of the deformation. Note that the area of
the component Q¥ is not preserved in this deformation. Because my, are constrained
by

Zm?+zm—g=w\D| (5.24)
1] 2 ) .

Jj<n; J<ny

there exists a Lagrange multiplier A € R such that

W emy=omsy T =0 Wc’ﬂ(fn”gm)‘(s,mwsﬂmn " % =0 6%

It follows from (5.23) and (5.25) that
Ne(goom) =\, k=1,..,n,, v=1i,b. (5.26)
This proves the second part of the lemma. O

Proof of Theorem 1.1. Consider J in the domain Z, x W3 where =, and Wpg are
given in (2.1) and (2.2) respectively. One views E,, as a compact 2n;+n;, dimensional
manifold with boundary and Wjg as a compact n; + np — 1 dimensional manifold
with boundary. Then =, x Wy is a compact 3n;+2n; —1 dimensional manifold with
boundary. For each (&,r) € 2, x W3 there is @, (&, ) that solves IIS(®.(&, 7)) =0
by Lemma 4.2. Since Z, x Wp is compact, there exists (§.,7.) € Eq X W5 that
minimizes J in =, x Wpg. It suffices to show that (&, r,) is in the interior of =, x Wj.
First prove
j j

L Teb
=~ —1land — — 1, as p = 0. (5.27)
p p

. J . J
Let R = % and R} = %”,
By Lemma 4.4 we write

so R = (R},..,R, R, ..., R;*) is a scaled version of r.

HEr) = J6.R) = ('8 ) H(R) £ ' Bl&.R)+ O (529)
where
1 ) .
J(R) = T (J; o Rl + g,, ﬂRi)
1 m(R])* m(R})*
ALz s =
j<n; Jj<nyg
RI4 RI4 ) o
j<n; i
Rj 4 1 Rj 4 Rj 2.2 o
N e S LR
JSnp
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+2 ) o RY)*G(E].€F)

j<k<n;
W(Ri)2 m(Rp)? J ¢k
j<k<np
. rm(RF)? ;
+2 ) vr(Ri)%%)G( L) (5.30)
J<nik<np
Because of the lower bound 1 < 7 for v in this theorem, the term O(p?) in

(5.28) is much smaller than the other two terms in (5.28). By (2.4), the condition
L < -1 in the theorem, the range R, RJ € [1— 8,1+ f], and the constraint

vp® log =
> (R)?

JEN; JEN

2
— i + % (5.31)

one derives that J; is minimized at Rg = Ri = 1. The corresponding rf = ri =p

is a point in the interior of Wj. Since (5.28) implies that
1
——— 1 J(R) = Ji(R), asp—0, (5.32)
VPt 10g ST log

Tx

uniformly with respect to ¢ and R, R, = "
ie.

must converge to the minimum of Jy,

R, — (1,..,1,1,...,1) as p = 0, (5.33)

o (5.27) follows. Next consider J(&,7.) where £ € Z, but r is taken to be r, and
correspondingly R = R,. By (5.28) and (5.33),

lim — (6. R.) = (10 10g £ ) A7)
= ;HJ%JQ(&R*)
= (BT T r2re)) (5.34)

uniformly with respect to £&. Consequently, since J; does not depend on &, every
limit point of &, along a subsequence must be a minimum of F in =,. But (2.3)
says that a minimum of F in =, is also a minimum of F in Z and it is not on the
boundary of =Z,.

The last assertion and (5.27) imply that when p is small, (&, 7, ) is in the interior
of 24 x Wjs. Therefore (&, 7,) is a critical point of J, and the theorem follows from
Lemma 5.1.2. O

Proof of Theorem 1.2. The first part is proved in (5.27) and the second part is
proved after (5.34). Our assertion that ®.(&.,7) is a stable assembly is based on
the fact that this stationary point is obtained in successive (local) minimization
procedures. In section 4 for each (&,7) in Z, x Ws, ®,(§,7) was found as a fixed
point. Because of Lemma 4.3.2, ®.(&,r) is locally minimizing in &}, i.e. locally
minimizing in the class of assemblies whose discs are centered at 51{ and of radii r/{.
Then in the proof of Theorem 1.1, (&, ) is taken to be the minimum of 7 (®.(§, 7))

with respect to (§,7) in E, x Wp. O
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n; + % | n; | np | Minimum F
10 10] 0 -2.5781
10 9 | 2 -2.5819
10 8 | 4 -2.5885
10 716 -2.5793
10 6|8 -2.5644
10 5110 -2.5433
10 4 112 -2.4791
10 3 |14 -2.2864
10 2 |16 -1.9222
10 1 |18 -1.3549
10 0 |20 -0.3911

TABLE 2. Stationary assemblies with n; + % = 10.

6. Boundary half discs lower energy. Let D, (&4, r+) be an stationary assembly
found in Theorem 1.1. Since the ri’i and ri’b are all close to p according to Theorem
1.2, by Lemma 4.4 J(€,) is approximately equal to

7yptlog % (nz + %)

np
J (%) m(ni+ 5 )p+ 7
4 ny
TP (nZ + 7) 7T2W)4
F(&). 6.1
T et () (6.1)
Assume that v and w are in a specific parameter range such that
H K
v = 2l0a L (6.2)
wor=10g (("Jr L) )3/253 10g |D]
|D] ni+ﬂ)7rp2

for a fixed > 0. The leading order of the free energy calculated from (6.1) is

+ ) Jog =
27r(ni+%)p+ me 1 ?) g = 2\/w|D|7r,/nl+—
LVelDPp 1

8 mi+ B

+smaller term. (6.3)

With respect to n; + % the last quantity is minimized at

b |Dp*?
n; + — ~ .
2 4
This gives the optimal number of discs in a stationary assembly. Note that under
(6.2) and (6.4), the corresponding p and +y fall into the range specified in Theorem
1.1.

One should compare the energy of stationary assemblies of the same area, i.e.
the same w, and the same number of discs, i.e. the same n; + %>. In particular one
can compare stationary assemblies of the same area and of the optimal number of
discs. Then all disc radii are approximately equal to the same p. One must look at
the higher order term to distinguish the energy of these assemblies. By (6.1), the

(6.4)
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energy in the higher order is determined by F'(£.). This leads to the minimization
of F.

Let the domain D be the unit disc {z € R? : |z| < 1} so that the Green’s function
of —A is explicitly known:

1 1 1/lz?2 Jy)? 1 3
G = —log— —(— = +1o 7)7—. 6.5
@y =grlen— oG+ tler—) ~5 (6.5)

Table 1 lists the numerical minimum value of F' together with n; + %, n;, and
np. A row with highlighted minimum F' value is the stationary assembly with the
lowest energy among all stationary assemblies of the same w and the same n; + %>.

For instance, when n; + % = 3 the stationary assembly with the lowest energy has

2 interior discs and 2 boundary half discs.

One has a more realistic scenario when n; + % is a large number. Table 2 lists

stationary assemblies with n; + %> = 10. Here the assemblies with 9, 8, 7 interior

discs respectively have lower energy than the one with interior discs only. The
assembly of the lowest energy has 8 interior discs and 4 boundary half discs.

As one finds the minimum of F' numerically, the centers of the interior discs and
the boundary half discs of a stationary assembly are determined. Figure 1 shows
these stationary assemblies based on the numerical minimum of F' for all the cases
with n; + 2 = 10.
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