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Abstract. When the Ohta-Kawasaki theory for diblock copolymers is applied
to a bounded domain with the Neumann boundary condition, one faces the

possibility of micro-domain interfaces intersecting the system boundary. In a

particular parameter range, there exist stationary assemblies, stable in some
sense, that consist of both perturbed discs in the interior of the system and

perturbed half discs attached to the boundary of the system. The circular arcs

of the half discs meet the system boundary perpendicularly. The number of
the interior discs and the number of the boundary half discs are arbitrarily

prescribed and their radii are asymptotically the same. The locations of these
discs and half discs are determined by the minimization of a function related

to the Green’s function of the Laplace operator with the Neumann boundary

condition. Numerical calculations based on the theoretical findings show that
boundary half discs help lower the energy of stationary assemblies.

1. Introduction. Morphological phases exist in multi-constituent physical or bi-
ological systems characterized by controlled growth. Common in these systems is
that a deviation from homogeneity has a strong positive feedback on its further
increase, and in the meantime a longer ranging confinement mechanism exists to
limit increase and spreading. As a result, exquisitely structured patterns, known as
morphological phases in materials science, arise in such systems as orderly outcomes
of self-organization principles.

This study is to a large extent motivated by the diblock copolymer theory of
Ohta and Kawasaki [8]. A diblock copolymer is a block copolymer whose molecular
structure is a linear subchain of A-monomers grafted covalently to another sub-
chain of B-monomers [2]. Because of the repulsion between the unlike monomers,
the different type subchains tend to segregate, but as they are chemically bonded
in chain molecules, segregation of subchains lead to local micro-phase separation:
micro-domains rich in either A-monomers or B-monomers emerge as a result. These
morphological structures determine the mechanical, optical, electrical, ionic, barrier
and other physical properties.
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Here we consider an ideal situation where micro-domains are clearly separated
from each other by interfaces with zero width [7, 10, 4]. Mathematically, let D be
a bounded domain in R2; D is assumed to be of class C5, a condition necessary for
many results in [9]. The energy functional is defined for every Lebesgue measurable
subset Ω of D whose Lebesgue measure is fixed at ω|D|:

|Ω| = ω|D|. (1.1)

Here ω ∈ (0, 1) is one of the two parameters in this problem. We write |Ω| for the
two dimensional Lebesgue measure of Ω and |D| for the Lebesgue measure of D.
The free energy of Ω is given by

J (Ω) = PD(Ω) +
γ

2

∫
D

|(−∆)−1/2(χΩ − ω)|2 dx. (1.2)

Here PD(Ω) is the perimeter of Ω in D. In the case that Ω is piecewise C1, it is
the length of the part of the boundary of Ω that is inside D. For a general Ω, see
[11, 9] for the definition of PD(Ω). The part of the boundary of Ω inside D is called
the interface of Ω. It separates Ω from D\Ω.

To define the operator (−∆)−1/2, let u be the solution of the following Poisson’s
equation with the Neumann boundary condition:

−∆u = f in D, ∂νu = 0 on ∂D,

∫
D

u(x) dx = 0, (1.3)

where f ∈ L2(D) and
∫
D
f(x) dx = 0, In (1.3) ∂ν stands for the outward normal

derivative at ∂D. Because the integral of f is 0, the partial differential equation
with the boundary condition is solvable. The solution is unique up to an additive
constant. The condition

∫
D
u(x) dx = 0 fixes this constant and gives us a unique

solution. The map f → u from the space of {f ∈ L2(D) :
∫
D
f(x) dx = 0} to itself

defines the operator (−∆)−1. Since this operator is bounded and positive definite,
it has a positive square root, which is (−∆)−1/2 in (1.2). Like (−∆)−1, (−∆)−1/2

is a nonlocal operator. It acts on χΩ − ω where χΩ is the characteristic function of
Ω; χΩ(x) = 1 if x ∈ Ω and χΩ(x) = 0 if x ∈ D\Ω.

The notion of stationary sets in the most general sense is given in [9, (2.12)]. If
the interface of Ω is C2, then Ω is stationary if and only if it satisfies the following
Euler-Lagrange equation and the intersection condition:

K(∂Ω ∩D) + γI(Ω) = λ on ∂Ω ∩D, (1.4)

∂Ω ∩D ⊥ ∂D at ∂Ω ∩D ∩ ∂D. (1.5)

In (1.4), K(∂Ω∩D) is the curvature of the curve ∂Ω∩D with respect to the normal
vector inward towards Ω. The variable I(Ω) is called the inhibitor of Ω. It is the
solution of the Poisson’s equation (1.3) with f = χΩ − ω:

−∆I(Ω) = χΩ − w in D, ∂νI(Ω) = 0 on ∂D,

∫
D

I(Ω)(x) dx = 0. (1.6)

The equation (1.5) asserts that the interface of Ω is perpendicular to ∂D if the two
meet.

One of the morphological phases observed in diblock copolymers is the cylindrical
phase [2]. One monomer constituent is small in volume compared to the other
monomer constituent. The minority monomers form many parallel cylinders in a
system. Take D to be a cross section of the system. Then these cylinders give rise
to an assembly Ω of discs.
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In [11] Ren and Wei showed the existence of disc assemblies as stationary sets of
the functional J . In such a stationary assembly, Ω is a union of multiple compo-
nents, each of which is a perturbed disc located inside the domain D. Their result
require that the parameters ω and γ be in a particular range where ω is sufficiently
small and γ is suitably large. Their proof also shows that these assemblies are stable
in some sense. All the perturbed discs in their stationary assembly have approxi-
mately the same radius. If ξ1

∗,i,..., ξ
ni
∗,i are the centers of the discs in a stationary

assembly found in [11], then (ξ1
∗,i, ..., ξ

ni
∗,i) is close to a minimum of a function Fi.

This function is given by

Fi(ξ
1
i , ξ

2
i , ..., ξ

ni
i ) =

∑
j≤ni

R(ξji , ξ
j
i ) + 2

∑
j<k≤ni

G(ξji , ξ
k
i ). (1.7)

Here ni is the number of perturbed discs in the assembly, and ξ1
i ,... ξnii are distinct

points in D. The subscript i used here indicates that the points ξji are in the
interior of D, not on the boundary of D. This point will become important later.
The function G is the Green’s function of −∆ on D with the Neumann boundary
condition; namely it satisfies

−∆xG(x, y) = δ(x)− 1

|D|
in D, ∂νxG(x, y) = 0 on ∂D,

∫
D

G(x, y) dx = 0 (1.8)

for all y ∈ D. One writes G as a sum of two parts:

G(x, y) =
1

2π
log

1

|x− y|
+R(x, y), (1.9)

where the first term is the fundamental solution of the −∆ operator, and the second
term R, which appears in (1.7), is the regular part of G, a smooth function on D×D.

One caveat in Ren and Wei’s work is that the discs in their stationary assemblies
do not touch the boundary of D. One can avoid the issue of the domain boundary
by assuming that D is a rectangle and imposing the periodic boundary condition
instead of the Neumann boundary condition; see [3, 6, 1, 5]. We prefer working
with the more realistic Neumann boundary condition. In this case if the interface
of a stationary set meets the domain boundary ∂D, (1.5) states that it does so
perpendicularly.

Finding a stationary set whose interface meets the domain boundary is a difficult
problem. The first non-trivial result came in our work [9]. When ω is sufficiently
small and γ is suitably large, there exists a stationary set shaped like a perturbed
half disc, stable in some sense, whose boundary inside D (a perturbed half circle)
meets ∂D perpendicularly. A crucial quantity introduced in [9] is termed Rb(ξb, ξb),
ξb ∈ ∂D, given by

Rb(ξb, ξb) = lim
y∈D,y→ξb

G(ξb, y)− 1

π
log

1

|ξb − y|
, ξb ∈ ∂D. (1.10)

Note that the second term in 1.10 is twice the fundamental solution of −∆. If
ξ∗,b ∈ ∂D is the center of the perturbed half disc stationary set found in [9] and
the parameters ω and γ are in the same range as in this paper specified in Theorem
1.1, then ξ∗,b is close to a minimum of the function

ξb → Rb(ξb, ξb), ξb ∈ ∂D. (1.11)

In this paper we construct stationary assemblies, stable in some sense, that con-
tain both perturbed discs in the interior of D and perturbed half discs that are
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attached to ∂D. The perturbed discs and perturbed half discs in a stationary as-
sembly have approximately the same radius, and the locations of their centers are
also determined asymptotically.

Let ni and nb be non-negative integers. We use the convention that the subscript
i is attached to quantities related to the interior discs of an assembly, and the
subscript b is attached to quantities related to the boundary half discs. For a
stationary assembly of ni perturbed discs inside D and nb perturbed half discs
attached to ∂D, it is convenient to introduce the average radius as a parameter in
place of ω; namely let ρ > 0 so that

ω|D| = niπρ
2 +

nbπρ
2

2
. (1.12)

Now ρ and γ are the two parameters of our problem.

Theorem 1.1. Let ni, nb be non-negative integers. There exists σ > 0 depending
on ni, nb, and D, and for every ε > 0 there exists δ > 0 depending on ε, ni, nb,
and D, such that if

1. ρ < δ,
2. 1+ε

ρ3 log 1
ρ

< γ < σ
ρ3 ,

then J admits a stationary assembly Ω∗ of ni perturbed interior discs and nb per-

turbed boundary half discs, satisfying the constraint |Ω∗| = niπρ
2 + nbπρ

2

2 .

Define a function

F (ξ1
i , ..., ξ

ni
i , ξ

1
b , ..., ξ

nb
b ) =

∑
j≤ni

R(ξji , ξ
j
i ) +

1

4

∑
j≤nb

Rb(ξ
j
b , ξ

j
b) + 2

∑
j<k≤ni

G(ξji , ξ
k
i )

+
1

2

∑
j<k≤nb

G(ξjb , ξ
k
b ) +

∑
j≤ni,k≤nb

G(ξji , ξ
k
b ) (1.13)

in the domain

Ξ =
{
ξ =

(
ξ1
i , ..., ξ

ni
i , ξ

1
b , ..., ξ

nb
b

)
: ξji ∈ D for j = 1, ..., ni, ξ

j
i 6= ξki if j 6= k,

ξjb ∈ ∂D for j = 1, ..., nb, ξ
j
b 6= ξkb if j 6= k

}
. (1.14)

Because G(x, y) → ∞ if |x − y| → 0 and R(z, z) → ∞ if z → ∂D, F (ξ) → ∞ if
ξ → ∂Ξ. More precisely for every M ∈ R there exists a compact subset K of Ξ
such that F (ξ) > M whenever ξ ∈ Ξ\K. In particular F admits a minimum in Ξ.
The next theorem gives the sizes and the locations of the discs and half discs in the
stationary assemblies.

Theorem 1.2. Let ξj∗,i ∈ D and ξj∗,b ∈ ∂D be the centers and rj∗,i and rj∗,b be the
radii of the perturbed discs and half discs in the stationary assembly Ω∗ of Theorem
1.1.

1. As ρ→ 0,
rj∗,i
ρ → 1 and

rj∗,b
ρ → 1.

2. As ρ→ 0, every limit point of (ξ1
∗,i, ..., ξ

ni
∗,i, ξ

1
∗,b, ..., ξ

nb
∗,b) along a subsequence is

a minimum of F .

This stationary assembly is stable in some sense.

These two theorems contain very detailed information about the stationary as-
semblies. Figure 1 shows several stationary assemblies when D is the unit disc. The
range for ni is the set of integers from, 0 to 10 and the range for nb is the set of
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Figure 1. From the left of the first row with ni = 10 and nb = 0 to
the right of the last row with ni = 0 and nb = 20, these assemblies,
of ni + nb

2 = 10, minimize F . Among them, the right one on the
first row has the least F value. Here ω = 0.2.

even integers from 0 to 20. In all these assemblies ni + nb
2 = 10. The locations of

the discs and half discs are determined by numerical minimization of F .
Probably the most important reason to study stationary assemblies with both

interior discs and boundary half discs is to see whether one can lower the free
energy of a stationary assembly of only interior discs by replacing some interior
discs by some boundary half discs. In the proofs of the main theorems, one obtains
detailed information on the stationary assemblies. This allows us to compare their
energy. We present examples where stationary assemblies with only interior discs
have higher energy than some stationary assemblies with both interior discs and
boundary half discs.

The proofs of Theorems 1.1 and 1.2 are organized as follows. In section 2 one
constructs approximately stationary assemblies of interior discs and boundary half
discs. The centers and radii of the discs and half discs are to be determined. In
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section 3 one formulates a problem S(Φ) = 0 in a Hilbert space. A solution to this
problem solves the Euler-Lagrange equation (1.4) up to the constant λ. Namely
that a solution of S(Φ) = 0 represents a set Ω of multiple components. On the
boundary of each component, the equation (1.4) holds. However the constant λ
varies from component to component.

To solve S(Φ) = 0, one actually solves a weaker problem in section 4: ΠS(Φ) =
0 where Π is a projection operator. Here one uses a fixed point argument with
the help of the invertibility of a linear operator. The resulting solutions are an
improvement of the previously constructed approximately stationary assemblies.
Finally in section 5 one chooses centers and radii properly so that the solution of
ΠS(Φ) = 0 is also a solution of S(Φ) = 0 and a solution of (1.4).

Section 6 is devoted to the question of the advantage of stationary assemblies
with both interior discs and boundary half discs over stationary assemblies with
just interior discs.

2. Approximately stationary assemblies. We start with a construction of an
assembly of exact discs inside D and perturbed half discs attached to ∂D. Let
α > 0, β ∈ (0, 1), and set

Ξα =
{
ξ = (ξ1

i , ..., ξ
ni
i , ξ

1
b , ..., ξ

nb
b ) : ξji ∈ D, dist(ξji , ∂D) ≥ α,

|ξji − ξ
k
i | ≥ 2α ∀j 6= k, ξjb ∈ ∂D, |ξ

j
b − ξ

k
b | ≥ 2α ∀j 6= k

}
(2.1)

Wβ =
{
r = (r1

i , ..., r
ni
i , r

1
b , ..., r

nb
b ) : rji , r

j
b ∈ [(1− β)ρ, (1 + β)ρ],∑

j≤ni

π(rji )
2 +

∑
j≤nb

π(rjb)
2

2
= niπρ

2 +
nbπρ

2

2

}
. (2.2)

Note that we write ξ for (ξ1
i , ..., ξ

ni
i , ξ

1
b , ..., ξ

nb
b ) and r for (r1

i , ..., r
ni
i , r

1
b , ..., r

nb
b ) in

this paper. The number α is small enough so that

min
ξ∈Ξα

F (ξ) < inf
ξ∈Ξ\Ξα

F (ξ); (2.3)

the number β is also small so that for all t ∈ [(1− β)2, (1 + β)2],

g′′(t) > 0 where g(t) =
8
√
t

1 + ε
+ t2. (2.4)

In (2.3) the set Ξ is the domain of F , given in (1.14); in (2.4) ε > 0 is the number
in the statement of Theorem 1.1. Note that, since F (ξ)→∞ if ξ → ∂Ξ, (2.3) holds
if α is sufficiently small. Also, since

g′′(1) = − 2

1 + ε
+ 2 > 0,

a small β can be found so that (2.4) holds. The significance of the conditions (2.3)
and (2.4) will emerge later in the paper. For now we only think of α and β as two
small fixed numbers.

Let ξ = (ξ1
i , ..., ξ

ni
i , ξ

1
b , ..., ξ

nb
b ) ∈ Ξα and r = (r1

i , ..., r
ni
i , r

1
b , ..., r

nb
b ) ∈ Wβ . We

first make ni discs centered at ξji of radius rji :

Eji = {x ∈ R2 : |x− ξji | < rji }. (2.5)

Before making perturbed half discs attached to the domain boundary ∂D, one
needs to set up coordinate frames on ∂D. Let

t→ r(t) (2.6)
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be a parametrization of a part of ∂D. We sometimes identify t with r(t) if no
confusion arises, and write t ∈ ∂D. Let t(t) and n(t) be the unit tangent and
normal vectors of ∂D at t respectively. Assume that

1. t(t) = r′(t)
|r′(t)| ,

2. n(t) = i t(t), i.e. (t(t),n(t)) is a right-handed coordinate system,
3. n(t) points inward with respect to D.

In this paper to simplify notation, R2 is identified with C. Then i t(t), the coun-
terclockwise 90 degree rotation of t(t), is just the complex product of i and r(t),
the latter viewed as a complex number. The arc length variable s measured from a
fixed point on ∂D is given by

ds

dt
= |r′(t)|. (2.7)

The (signed) curvature κ of ∂D is defined with respect to the inward normal vector
n so that

dt

ds
= κn,

dn

ds
= −κt. (2.8)

With r(t) being the center, t(t) and n(t) form a right-handed orthonormal frame
so that any point x inside D or outside D can be described by

x = r(t) + (t(t),n(t))

(
p1

p2

)
(2.9)

where p1 and p2 are the coordinates of x under this frame. The transformation Tt
is defined to be

Tt : p =

(
p1

p2

)
→ r(t) + (t(t),n(t))

(
p1

p2

)
, (2.10)

so that x = Tt(p). We call x a point in the original space and p the coordinate
vector of x under the (t(ξ),n(ξ)) frame.

Introduce a function f which is locally the graph of ∂D under the (t(t),n(t))
frame. More precisely, for τ near t there exist p1 and p2 such that r(τ) = r(t) +
p1t(t) + p2n(t). The correspondence p1 → p2 defines a function whose graph is ∂D
near t under the (t(t),n(t)) frame. Since this function depends on the fixed point
t, we treat it as a function of two variables, p1 and t: p2 = f(p1, t). With f we have

r(τ) = r(t) + (t(t),n(t))

(
p1

f(p1, t)

)
. (2.11)

Note that

f(0, t) = D1f(0, t) = 0, for all t ∈ ∂D. (2.12)

In this paper we write D1f for the first partial derivative of f with respect to its
first argument, and D2

1f for the second partial derivative of f with respect to its
first argument, etc.

The function f also provides a way to locally flatten the domain D. Define a
transformation Qt by

Qt

(
u1

u2

)
=

(
u1

u2 + f(u1, t)

)
. (2.13)

The derivative of Qt is

DQt
Du

=

[
1 0

D1f(u1, t) 1

]
, and

DQt
Du

∣∣∣∣∣
u=~0

=

[
1 0
0 1

]
. (2.14)
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The inverse of Qt is

Q−1
t

(
p1

p2

)
=

(
p1

p2 − f(p1, t)

)
. (2.15)

Now we are ready to make perturbed half discs attached to ∂D. For each pair
of ξjb and rjb let

Ejb = {x = Tξjb
◦Qξjb (u) : |u| < rjb , u = (u1, u2), u2 > 0}. (2.16)

With these discs and perturbed half discs one obtains an assembly

E =
(
∪j≤ni E

j
i

)
∪
(
∪j≤nb E

j
b

)
. (2.17)

The discs and half discs in E are non-overlapping if ρ is small because of the
definition of Ξα. We use E as an approximate solution to the equations (1.4)
and (1.5). The energy of E is estimated below. Its proof, which we omit, is a
combination of [11, Lemma 3.2] and [9, Lemma 2.3].

Lemma 2.1.

J (E) =
∑
j≤ni

2πrji +
∑
j≤nb

πrjb +O(ρ2)

+
γ

2

[ ∑
j≤ni

(π(rji )
4

2
log

1

rji
+
π(rji )

4

8
+
(
π(rji )

2
)2
R(ξji , ξ

j
i )
)

+
∑
j≤nb

(π(rjb)
4

4
log

1

rjb
+
π(rjb)

4

16
+
(π(rjb)

2

2

)2

Rb(ξ
j
b , ξ

j
b)
)

+ 2
∑

j<k≤ni

π2(rji )
2(rki )2G(ξji , ξ

k
i ) + 2

∑
j<k≤nb

(π(rjb)
2

2

)(π(rkb )2

2

)
G(ξjb , ξ

k
b )

+ 2
∑

j≤ni,k≤nb

π(rji )
2
(π(rkb )2

2

)
G(ξji , ξ

k
b )
]

+O(γρ5).

3. A Hilbert space. Lemma 3.1 below is a standard result on the variation of the
length of a curve, and Lemma 3.2 gives a formula for the variation of an integral on
a set. Following the two lemmas, the first variation of J is derived in Lemma 3.3.

Suppose that R(θ), θ ∈ [a, b], is a parametrized curve. The unit tangent vector
of R is T given by

T(θ) =
R′(θ)

|R′(θ)|
. (3.1)

Let N be a unit normal vector to R and K be the curvature of R, so that KN is
the curvature vector of R. Moreover

dT

ds
= KN, (3.2)

where ds = |R′(θ)|dθ is the length element. A deformation of R is a family of
curves Rε, parametrized by ε in a neighborhood of 0, so that R0 = R.

Lemma 3.1. Let R(θ), θ ∈ [a, b], be a curve and Rε(θ) be a deformation of R(θ).

Denote by X the infinitesimal element of the deformation Rε: X(θ) = ∂Rε(θ)
∂ε |ε=0.

Then
d

dε

∣∣∣
ε=0

∫ b

a

|R′ε| dθ = T ·X
∣∣∣b
a
−
∫ b

a

KN ·X ds,
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where
∫ b
a
|R′ε| dθ is the length of Rε, and T, N, and K are the tangent, normal,

and curvature of R respectively.

Suppose that Ω is an open set with piecewise C1 interface. A deformation Ωε

is a family of open sets with piecewise C1 boundary, parametrized by ε, such that
∂Ωε is a deformation of the curve ∂Ω.

Lemma 3.2. Suppose that a bounded domain Ω is enclosed by a curve ∂Ω, and Ωε
is a deformation of Ω. Let X be the infinitesimal element of the deformation of ∂Ω.
Then

d

dε

∣∣∣
ε=0

∫
Ωε

f(x) dx = −
∫
∂Ω

f(x)N ·X ds

where N is the inward unit normal vector on ∂Ω.

Let us consider a set Ω with ni components Ωji inside D and nb components

Ωjb that touch the boundary of D. The first variation of this set is given by the
following lemma.

Lemma 3.3. Let Ωε be a deformation of a set Ω which consists of interior compo-
nents Ωji and boundary components Ωjb in D with piecewise C1 interface parametrized
by Rj

µ(θ), θ ∈ [a, b], j = 1, ..., nµ, µ = i, b. Then

dJ (Ωε)

dε

∣∣∣
ε=0

= −
ni∑
j=1

∫
∂Ωji

(K(∂Ω ∩D) + γI(Ω))Nj
i ·X

j
i ds

+

nb∑
j=1

(
Tj
b ·X

j
b

∣∣∣π
0
−
∫
∂Ωjb∩D

(K(∂Ω ∩D) + γI(Ω))Nj
b ·X

j
b ds.

)
Also

d|Ωε|
dε

∣∣∣
ε=0

= −
∑

j≤nµ,µ=i,b

∫
∂Ωjµ∩D

Nj
µ ·Xj

µ ds.

In this section we find a way to perturbed the approximate solution E to a more
general assembly Ω of perturbed discs and half discs. Such perturbations will be
represented by elements in a Hilbert space.

To perturb an interior component Eji of E we need a 2π-periodic function φji
and thus set

P ji =
{
teiθ : θ ∈ S1, t ∈

[
0,

√
(rji )

2 + 2φji (θ)
]}
. (3.3)

The circle S1 is used to denote the interval [0, 2π] with identified end points. Shift

P ji by ξji to

Ωji = ξji + P ji , (3.4)

and this set is a perturbation of Eji . To perturb a boundary component Ejb , let

P jb =
{
teiθ : θ ∈ (0, π), t ∈

[
0,

√
(rjb)

2 + 2φjb(θ)
]}
, (3.5)

and then map it to

Ωjb = Tξjb
◦Qξjb (P

j
b ) (3.6)

to yield a perturbation of Ejb . Now set

Ω =
(
∪j≤ni Ωji

)
∪
(
∪j≤nb Ωjb

)
. (3.7)
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Obviously φji and φjb need to be small compared to (rji )
2 and (rjb)

2 respectively
for the definitions (3.3) and (3.5) to be meaningful. We also need some smoothness

for φji and φjb for J (Ω) to be defined. Let us start with a Hilbert space

Z =
{

Φ =
(
φ1
i , ..., φ

ni
i , (φ

1
0, φ

1
π, φ

1
b), ..., (φ

nb
0 , φnbπ , φ

nb
b )
)

:

φji ∈ L
2(S1),

∫ 2π

0

φji = 0, j = 1, ..., ni,

φjb ∈ L
2(0, π), φj0, φ

j
π ∈ R,

∫ π

0

φjb = 0, j = 1, ..., nb

}
. (3.8)

The inner product in Z is

〈Φ,Ψ〉 =
∑
j∈Ni

∫ 2π

0

φjiψ
j
i +

∑
j∈Nb

(
φj0ψ

j
0 + φjπψ

j
π +

∫ π

0

φjbψ
j
b

)
. (3.9)

The constraints∫ 2π

0

φji = 0, j = 1, ..., ni,

∫ π

0

φjb = 0, j = 1, ..., nb (3.10)

ensure that the area of Ωj
i is fixed at π(rji )

2 and the area of Ωjb is fixed at π(rjb)
2/2,

since

|Ωji | =
∫ 2π

0

∫ √(rji )
2+2φji

0

r drdθ = π(rji )
2 +

∫ 2π

0

φji dθ = π(rji )
2

|Ωjb| =
∫ π

0

∫ √(rjb)
2+2φjb

0

r drdθ =
π(rjb)

2

2
+

∫ π

0

φjbdθ =
π(rjb)

2

2
.

Note that |Ωjb| = |P
j
b | since the Jacobian of Qξjb

equals 1 by (2.14).

Next is a subspace Y of Z,

Y =
{

Φ ∈ Z : φji ∈ H
1(S1), φjb ∈ H

1(0, π), φj0 = φjb(0), φjπ = φjb(π)
}
. (3.11)

Let ξ and r be held fixed. Then the set Ω is represented by Φ and J is viewed as a
functional of Φ. In this setting, the domain of J is a neighborhood of the 0 element
in Y:

Dom(J ) = {Φ ∈ Y : ‖Φ‖Y < bρ2}, (3.12)

where b is a sufficiently small positive constant, independent of ρ, so that

(rji )
2 + 2φji (θ) > 0, for all θ ∈ S1, (rjb)

2 + 2φjb(θ) > 0, for all θ ∈ (0, π). (3.13)

This makes (3.3) and (3.5) geometrically meaningful definitions of perturbed discs
and half discs respectively.

It is easy to make a deformation in Y. Let Φ ∈ Dom(J ) and Ψ ∈ Y. Then

Φ→ Φ + εΨ (3.14)

defines a deformation of Φ. Consequently it gives rise to a deformation Ωε, repre-
sented by Φ + εΨ, of the assembly Ω represented by Φ. This deformation leads to
the first variation

d

dε

∣∣∣
ε=0
J (Φ + εΨ). (3.15)

Another subspace X of Z is

X =
{

Φ ∈ Z : φji ∈ H
2(S1), φjb ∈ H

2(0, π), φj0 = φjb(0), φjπ = φjb(π)
}
. (3.16)
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The three spaces are nested: X ⊂ Y ⊂ Z. In the case that Φ ∈ X , integration by
parts yields

d

dε

∣∣∣
ε=0
J (Φ + εΨ) = 〈S(Φ),Ψ〉. (3.17)

In (3.17) S is a nonlinear operator defined on

Dom(S) = {Φ ∈ X : ‖Φ‖X < bρ2} (3.18)

where b is the same as the one in (3.12). More specifically

S =
(
S1
i , ...,S

ni
i , (S

1
0 ,S1

π,S1
b ), ..., (Snb0 ,Snbπ ,Snbb )

)
(3.19)

where

Sji (Φ) = K(∂Ω ∩D)(Rj
i (θ)) + I(Ω)(Rj

i (θ))− λ
j
i (Φ) (3.20)

Sj0(Φ) = −~T j(0) · 1√
(rjb)

2 + 2φjb(0)

(
1

D1f
(√

(rjb)
2 + 2φjb(0), ξjb

) ) (3.21)

Sjπ(Φ) = ~T j(π) · 1√
(rjb)

2 + 2φjb(π)

(
−1

−D1f
(
−
√

(rjb)
2 + 2φjb(π), ξjb

) ) (3.22)

Sjb (Φ) = K(∂Ω ∩D)(Rj
b(θ)) + I(Ω)(Rj

b(θ))− λ
j
b(Φ). (3.23)

The range of S is a subspace of Z.
Here Ω is the assembly represented by Φ. The interface of the component Ωj

i

(resp. Ωjb) is parametrized by Rj
i (resp. Rj

b):

Rj
i (θ) = ξji +

√
(rji )

2 + 2φji (θ)e
iθ, j = 1, ..., ni (3.24)

Rj
b(θ) = Tξjb

◦Qξjb
(√

(rjb)
2 + 2φjb(θ)e

iθ
)
, j = 1, ..., nb. (3.25)

The tangent and normal vectors of Rj
µ are denoted Tj

µ and Nj
µ.

For Rj
b, let ~Rjb be the parametrization under the (t(ξjb),n(ξjb)) frame so that

~Rjb(θ) = Qξjb

(√
(rjb)

2 + 2φjb(θ)e
iθ
)
, Rj

b(θ) = Tξjb

(
~Rj(θ)

)
. (3.26)

The tangent and normal vectors of ~Rjb are denoted ~T jb and ~N j
b respectively.

In (3.20) and (3.23), λjµ(Φ) are numbers chosen such that∫ 2π

0

Sji (Φ) dθ = 0, j = 1, ..., ni,

∫ π

0

Sjb (Φ) dθ = 0, j = 1, ..., nb. (3.27)

If an assembly Ω represented by Φ is a solution of S(Φ) = 0, then Ω satisfies the
equations

K(∂Ωbi ) + γI(Ω) = λji on ∂Ωji , j = 1, ..., ni (3.28)

K(∂Ωbb) + γI(Ω) = λjb on ∂Ωjb ∩D, j = 1, ..., nb (3.29)

Tj
b ⊥ ∂D on ∂D, j = 1, ..., nb. (3.30)

Since the λjµ’s vary from component to component, Ω is generally not a solution of
(1.4).

If Rε is a deformation of R such that R0 = R, then the infinitesimal element is

Xj
µ =

∂Rj
ε,µ

∂ε

∣∣∣
ε=0

, ~Xj
b =

∂ ~Rjε
∂ε

∣∣∣
ε=0
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This deformation may be more general than the one considered in (3.14). Neverthe-
less the end points of each perturbed half disc can only move along the boundary
of D in this deformation. Define Xj

0 and Xj
π in R by

~Xj
b (0) =

Xj
0√

(rjb)
2 + 2φjb(0)

(
1

D1f(

√
(rjb)

2 + 2φjb(0), ξjb)

)
, (3.31)

~Xj
b (π) =

Xj
π√

(rjb)
2 + 2φjb(π)

(
1

−D1f(−
√

(rjb)
2 + 2φjb(π), ξjb)

)
. (3.32)

The first variation formula in Lemma 3.3 can now be written as

∂J (Φ)

∂ε

∣∣∣
ε=0

= −
∑
j≤ni

∫
∂Ωji

(Sji (Φ) + λji (Φ))Nj
i ·X

j
i ds

+
∑
j≤nb

(
Sj0(Φ)Xj

0 + Sjπ(Φ)Xj
π −

∫
∂Ωjb∩D

(Sjb (Φ) + λjb(Φ))Nj
b ·X

j
b ds
)
.

(3.33)

The next lemma gives an estimate of S(0), where the element 0 in X represents
the approximate assembly E. The proof of this lemma is a combination of [11,
Lemma 3.1] and [9, Lemma 4.5].

Lemma 3.4.

Sji (0) =
1

rji
+ γ
[ (rji )

2

2
log

1

rji
+ π(rji )

2R(ξji , ξ
j
i ) +

∑
k≤ni,k 6=j

π(rki )2G(ξji , ξ
k
i )

+
∑
k≤nb

π(rkb )2

2
G(ξji , ξ

k
b ) +O(ρ3)

]
− λji (0) (3.34)

Sj0(0) = O(1) (3.35)

Sjπ(0) = O(1) (3.36)

Sjb (0) =
1

rjb
+O(1) + γ

[ (rjb)
2

2
log

1

rjb
+
π(rjb)

2

2
Rb(ξ

j
b , ξ

j
b) +

∑
k≤nb,k 6=j

π(rkb )2

2
G(ξjb , ξ

k
b )

+
∑
k≤ni

π(rki )2G(ξjb , ξ
k
i ) +O(ρ3)

]
− λjb(0). (3.37)

Note that Lemma 3.4 implies the following.

Lemma 3.5. ‖S(0)‖Z = O(1).

It is not realistic to solve the equation S(Φ) = 0 for any given ξ. Instead we will
solve a weaker equation first. Let us define three more subspaces at this point.

Z[ =
{

Φ ∈ Z :

∫ 2π

0

φji cos θ =

∫ 2π

0

φji sin θ = 0, j = 1, ..., ni,

φj0 − φjπ +

∫ π

0

φjb cos θ = 0, j = 1, ..., nb

}
(3.38)

Y[ = Y ∩ Z[ (3.39)

X[ = X ∩ Z[. (3.40)
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The projection from Z to Z[ is denoted Π, defined by the inner product (3.9). One
first looks for an element in X[ that solves ΠS(Φ) = 0. Later one finds some special
ξ for which S(Φ) = 0.

When S(Φ) = 0 is solved for all r ∈Wβ , one finds some special r such that in the
equations (3.28-3.30) for the solution of S(Φ) = 0 associated with this particular r,
all the λjµ are the same and hence (1.4) holds.

Because of (3.10), if Ω is represented by Φ ∈ Z, the measure of Ωji is π(rji )
2 and

the measure of Ωjb is
π(rjb)

2

2 . If in addition Φ ∈ Z[, one interprets that ξji is the

center of the perturbed disc Ωj
i and that ξjb is the center of the perturbed half disc

Ωjb. The subspace Z[ gives precise meanings of the center and radius of a perturbed

disc or half disc. When Φ ∈ Z[, we call the ξji ’s and the ξjb ’s the centers of the

perturbed discs and half discs in Φ and the rji ’s and the rjb ’s their radii.

4. Solve ΠS(Φ) = 0. Again consider J as a functional on Dom(J ) ⊂ Y. Let
Φ → ε1Ψ + ε2Υ be a two parameter deformation. Then the second variation of J
can be written as

∂2

∂ε1∂ε2

∣∣∣
ε1=ε2=0

J (Φ + ε1Ψ + ε2Υ) = 〈S ′(Φ)(Ψ),Υ〉. (4.1)

Here S ′ is the Fréchet derivative of S. For each Φ ∈ Dom(S) ⊂ X , S ′(Φ) is a
linear operator from X to Z. Then 〈S ′(Φ)(Ψ),Υ〉 is defined for Φ ∈ Dom(S) ⊂ X ,
Ψ ∈ X , and Υ ∈ Z. The left side of (4.1) is also meaningful if Φ ∈ Dom(J ) ⊂ Y
and Ψ,Υ ∈ Y.

Lemma 4.1. 1. When ρ and γρ3 are sufficiently small,

‖ΠS ′(0)(Ψ)‖Z ≥
1

2ρ3
‖Ψ‖X (4.2)

holds for all Ψ ∈ X[. The linear map ΠS ′(0) is one-to-one and onto from X[
to Z[ and whose inverse is bounded by ‖(ΠS ′(0))−1‖ ≤ 2ρ3.

2. When ρ and γρ3 are small,

〈ΠS ′(0)(Ψ),Ψ〉 ≥ 1

2ρ3
‖Ψ‖2Y (4.3)

for all Ψ ∈ Y[.

Proof. The operator S ′(0) is decomposed into

S ′(0) = H+M, (4.4)

where H is the major part and M is the minor part. Let

H = (H1
i , ...,H

ni
i , (H

1
0,H1

π,H1
b), ..., (H

nb
0 ,Hnbπ ,H

nb
b )). (4.5)

Then

Hji (Ψ) = − 1

(rji )
3

(
(ψji )

′′ + ψji

)
− hji (Ψ) (4.6)

Hj0(Ψ) = − 1

(rjb)
3

(ψjb)
′(0) (4.7)

Hjπ(Ψ) =
1

(rjb)
3

(ψjb)
′(π) (4.8)
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Hjb(Ψ) = − 1

(rjb)
3

(
(ψjb)

′′ + ψjb

)
− hjb(Ψ) (4.9)

where the hjµ(Ψ)’s are numbers chosen such that∫ 2π

0

Hji (Ψ) = 0, j = 1, ..., ni,

∫ π

0

Hjb(Ψ) = 0, j = 1, ..., nb. (4.10)

The operator H has a non-trivial kernel which is the direct sum of

Eji,1 = {Ψ : ψji = A1 cos θ +A2 sin θ, A1, A2 ∈ R, other components of Ψ are 0},
(4.11)

Ejb,0 = {Ψ : (ψj0, ψ
j
π, ψ

j
b) = B(1,−1, cos θ), B ∈ R, other components of Ψ are 0}.

(4.12)

In other words 0 is an eigenvalue of H and the associated eigenspace is the direct
sum of the Eji,1’s and the Ejb,0’s. Denote this eigenvalue of multiplicity 2ni + nb by

λji,1 = 0, j = 1, ..., ni, λjb,0 = 0, j = 1, ..., nb. (4.13)

The other eigenspaces of H are

Eji,m = {Ψ : ψji = A1 cosmθ +A2 sinmθ, A1, A2 ∈ R,
other components of Ψ are 0}, m ≥ 2 (4.14)

Ejb,m = {Ψ : (ψj0, ψ
j
π, ψ

j
b) = B(ϕm(0), ϕm(π), ϕm), B ∈ R,

other components of Ψ are 0}, m ≥ 1. (4.15)

In (4.15), the functions ϕm are

ϕm =


cosµm

(
θ − π

2

)
−

2 sin πµm
2

πµm
if m ≥ 1 is odd

sinµm

(
θ − π

2

)
if m ≥ 1 is even

. (4.16)

The µm’s in (4.16) are given as follows. Consider two algebraic equations

πµ(µ2 − 1)

2(µ2 − 1)− πµ2
= tan

πµ

2
(4.17)

µ

µ2 − 1
= tan

πµ

2
(4.18)

both considered for µ > 1. The solutions to (4.17) are denoted µ1, µ3, µ5, ..., and
the solutions to (4.18) are denoted µ2, µ4, µ6, .... Moreover

1 < µ1 < 2 < µ2 < 3 < µ3 < 4 < µ4 < ... < 2k − 1 < µ2k−1 < 2k < µ2k < 2k + 1...
(4.19)

and

lim
k→∞

(µ2k−1 − (2k − 1)) = 0, lim
k→∞

(µ2k − 2k) = 0. (4.20)

The eigenvalue of H associated to Eji,m is clearly

λji,m =
m2 − 1

(rji )
3
. (4.21)
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It is shown in [9, Lemma 3.1] that the eigenvalue associted to Ejb,m is

λjb,m =
µ2
m − 1

(rjb)
3
. (4.22)

The space Z[ is exactly the subspace of Z that is perpendicular to all the kernel
of H, i.e. perpendicular to all Eji,1, j = 1, ..., ni, and Ejb,0, j = 1, ..., nb. It can be
written as a direct sum:

Z[ = (⊕nij=1 ⊕
∞
m=2 E

j
i,m)⊕ (⊕nbj=1 ⊕

∞
m=1 E

j
b,m). (4.23)

The operator ΠH restricted to X[ maps from X[ to Z[; it is identical to H
restricted to X[. Moreover in expression (4.6) and (4.9) hjµ(Ψ) = 0 when Ψ ∈ X[.
The eigenvalues of ΠH,

λji,m, j = 1, 2, ..., ni, m = 2, 3, 4, ..., λjb,m, j = 1, 2, ..., nb, m = 1, 2, 3, .., (4.24)

are all positive. Let us denote a pair of orthonormal eigenfunctions associated to
the eigenspace Eji,m by eji,m,1 and eji,m,2 and a normalized eigenfunction associated

to Eb,m by ejb,m. For any Ψ ∈ Z[, one can expand

Ψ =

ni∑
j=1

∞∑
m=2

2∑
p=1

Cji,m,pe
j
i,m,k +

nb∑
j=1

∞∑
m=1

Cjb,me
j
b,m. (4.25)

The norms in Z[, Y[ and X[ are taken to be

‖Ψ‖2Z =

ni∑
j=1

∞∑
m=2

2∑
p=1

|Cji,m,p|
2 +

nb∑
j=1

∞∑
m=1

|Cjb,m|
2, if Ψ ∈ Z[, (4.26)

‖Ψ‖2Y =

ni∑
j=1

∞∑
m=2

2∑
p=1

|Cji,m,p|
2(m2 − 1) +

nb∑
j=1

∞∑
m=1

|Cjb,m|
2(µ2

m − 1), if Ψ ∈ Y[,

(4.27)

‖Ψ‖2X =

ni∑
j=1

∞∑
m=2

2∑
p=1

|Cji,m,p|
2(m2 − 1)2 +

nb∑
j=1

∞∑
m=1

|Cjb,m|
2(µ2

m − 1)2, if Ψ ∈ X[.

(4.28)

It is shown in [9, Lemma 3.2] that the ‖ · ‖Y norm is equivalent to the usual H1

norm of a Sobolev space and the ‖ · ‖X norm is equivalent to the H2 norm.
Since for Ψ ∈ Y[

〈ΠHΨ,Ψ〉 =

ni∑
j=1

∞∑
m=2

2∑
p=1

|Cji,m,p|
2λji,m +

nb∑
j=1

∞∑
m=1

|Cjb,m|
2λjb,m, (4.29)

we deduce from (4.27) and (4.28) that

‖ΠHΨ‖Z ≥ 1

1.5ρ3
‖Ψ‖X , ∀Ψ ∈ X[, (4.30)

〈ΠHΨ,Ψ〉 ≥ 1

1.5ρ3
‖Ψ‖2Y , ∀Ψ ∈ Y[, (4.31)

if β in (2.2) is so small that rji and rjb are sufficiently close to ρ.
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Regarding the minor part M, one has

‖M(Ψ)‖Z ≤ C
( 1

ρ2
+ γ
)
‖Ψ‖X (4.32)

|〈M(Ψ),Ψ〉| ≤ C
( 1

ρ2
+ γ
)
‖Ψ‖2Y . (4.33)

The details of these estimates are found in the proofs of [11, Lemma 5.2] and [9,
Lemma 5.1]. Then (4.2) follows from (4.30) and (4.32), and (4.3) follows from (4.31)
and (4.33).

Finally to show that ΠS ′(0) is from X[ onto Z[, note that ΠS ′(0) is an unbounded
self-adjoint operator on Z[ with the domain X[ ⊂ Z[. If Υ ∈ Z[ is perpendicular to
the range of ΠS ′(0), i.e. 〈ΠS ′(0)(Ψ),Υ〉 = 0 for all Ψ ∈ X[, then the self-adjointness
of ΠS ′(0) implies that Υ ∈ X[ and ΠS ′(0)(Υ) = 0. By the estimate in part 1, Υ = 0.
Hence, the range of ΠS ′(0) is dense in Z[. The estimate in part 1 also implies that
the range of ΠS ′(0) is a closed subspace of Z[. Therefore ΠS ′(0) is onto.

Lemma 4.2. When ρ and γρ3 are sufficiently small, for each ξ ∈ Ξα and r ∈Wβ,
the equation ΠS(Φ) = 0 admits a solution Φ∗ ∈ Dom(S) ∩ X[ satisfying ‖Φ∗‖X =
O(ρ3).

The proof of this lemma uses a fixed point argument. It makes use of Lemmas
3.5 and 4.1. See the proof of [9, Lemma 6.1] for more details.

The first part of the next lemma shows that Φ∗ is non-degenerate; the second
part asserts that Φ∗ is locally energy minimizing among assemblies of perturbed
discs and half discs of prescribed centers and radii. The proof of the lemma is the
same as the one of [9, Lemma 6.2].

Lemma 4.3. 1. For all Ψ ∈ X[

‖ΠS ′(Φ∗)(Ψ)‖Z ≥
1

4ρ3
‖Ψ‖X .

2. For all Ψ ∈ Y[
〈ΠS ′(Φ∗)(Ψ),Ψ〉 ≥ 1

4ρ3
‖Ψ‖2Y .

The energy of Φ∗ turns out to be very close to the energy of the approximate
assembly E, as stated in the following lemma. The proof is similar to that of [9,
Lemma 6.3].

Lemma 4.4. It holds uniformly with respect to ξ ∈ Ξα and r ∈Wβ that

J (Φ∗) =
∑
j≤ni

2πrji +
∑
j≤nb

πrjb

+
γ

2

[ ∑
j≤ni

(π(rji )
4

2
log

1

rji
+
π(rji )

4

8
+
(
π(rji )

2
)2
R(ξji , ξ

j
i )
)

+
∑
j≤nb

(π(rjb)
4

4
log

1

rjb
+
π(rjb)

4

16
+
(π(rjb)

2

2

)2

Rb(ξ
j
b , ξ

j
b)
)

+ 2
∑

j<k≤ni

π2(rji )
2(rki )2G(ξji , ξ

k
i ) + 2

∑
j<k≤nb

(π(rjb)
2

2

)(π(rkb )2

2

)
G(ξjb , ξ

k
b )
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ni + nb
2 ni nb Minimum F

1 1 0 -0.0796
1 0 2 -0.0307

1.5 1 1 -0.1365
1.5 0 3 -0.1131
2 2 0 -0.2221
2 1 2 -0.2333
2 0 4 -0.2025

2.5 2 1 -0.3440
2.5 1 3 -0.3374
2.5 0 5 -0.2922
3 3 0 -0.4619
3 2 2 -0.4706
3 1 4 -0.4421
3 0 6 -0.3780

3.5 3 1 -0.5955
3.5 2 3 -0.5890
3.5 1 5 -0.5707
3.5 0 7 -0.4573
4 4 0 -0.7301
4 3 2 -0.7287
4 2 4 -0.6783
4 1 6 -0.6963
4 0 8 -0.5280

Table 1. Stationary assemblies with ni + nb
2 less than or equal to 4.

+ 2
∑

j≤ni,k≤nb

π(rji )
2
(π(rkb )2

2

)
G(ξji , ξ

k
b )
]

+O(ρ2).

5. Find the right ξ and r. Now we emphasize that Φ∗, the solution of ΠS(Φ∗) = 0
found in Lemma 4.2, depends on ξ and r, and we denote it by Φ∗(ξ, r). The energy
of Φ∗(ξ, r) can be viewed as a function of ξ and r, and thus denoted by J(ξ, r):

J(ξ, r) = J (Φ∗(ξ, r)), (ξ, r) ∈ Ξα ×Wβ . (5.1)

This function is estimated in Lemma 4.4.

Lemma 5.1. 1. Let r ∈ Wβ be fixed. If ξ∗ is a critical point of the function
ξ → J(ξ, r) from Ξα to R, then S(Φ∗(ξ∗, r)) = 0.

2. If (ξ∗, r∗) is a critical point of the function (ξ, r)→ J(ξ, r) from Ξα ×Wβ to
R, then Φ∗(ξ∗, r∗) is a stationary assembly of J .

Proof. Denote the parametrization of the boundary of the perturbed discs in Φ∗(ξ, r)
by R1

i ,R
2
i , ...,R

ni
i where

Rj
i (θ) = ξji +

√
(rji )

2 + 2φj∗,i(θ) e
iθ. (5.2)

The unit tangent and normal vectors of Rj
i are

Tj
i (θ) =

∂Rj
i (θ)

∂θ∣∣∣∂Rj
i (θ)

∂θ

∣∣∣ , Nj
i (θ) = iTj

i (θ), (5.3)
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respectively. Note that Nk
i (θ, β, ξ) is inward pointing.

For the perturbed half discs in Φ∗, denote by Rj
b(θ), Tj

b(θ), and Nj
b(θ), j =

1, ..., nb, the parametrization of the boundary, the unit tangent vector, and the unit
normal vector respectively. The corresponding quantities under the (t(ξjb),n(ξjb))

frame are ~Rjb(θ),
~T jb (θ), and ~N j

b (θ). Let us denote the rotation matrix

M(ξjb) = (t(ξjb),n(ξjb)). (5.4)

Then
Rj
b(θ) = r(ξjb) + M(ξjb)

~Rjb(θ) (5.5)

where

~Rjb(θ) =

 √
(rjb)

2 + 2φj∗,b(θ) cos θ√
(rjb)

2 + 2φj∗,b(θ) sin θ + f(
√

(rjb)
2 + 2φj∗,b(θ) cos θ, ξ)

 . (5.6)

Fix r and vary each ξki,q, k = 1, ..., ni, q = 1, 2. This leads to a deformation of
Φ∗ and a variation along the path

∂J(ξ, r)

∂ξki,q
= −

∑
j≤ni

∫
∂Ωji

(Sji (Φ∗) + λji (Φ∗))N
j
i ·X

j
i (k, q) ds

+
∑
j≤nb

(
Sj0(Φ∗)X

j
0(k, q) + Sjπ(Φ∗)X

j
π(k, q)

−
∫
∂Ωjb

(Sjb (Φ∗) + λjb(Φ∗))N
j
b ·X

j
b(k, q) ds

)
(5.7)

by (3.33). Here X(k, q) is the infinitesimal element of the deformation:

Xj
µ(k, q) =

∂Rj
µ

∂ξki,q
, j = 1, ..., nµ, µ = i, b, k = 1, ..., ni, q = 1, 2, (5.8)

and Xj
0(k, q) and Xj

π(k, q) are given by (3.31) and (3.32) respectively. Similarly one
varies each ξkb to obtain

∂J(ξ, r)

∂ξkb
= −

∑
j≤ni

∫
∂Ωji

(Sji (Φ∗) + λji (Φ∗))N
j
i ·X

j
i (k) ds

+
∑
j≤nb

(
Sj0(Φ∗)X

j
0(k) + Sjπ(Φ∗)X

j
π(k)

−
∫
∂Ωjb

(Sjb (Φ∗) + λjb(Φ∗))N
j
b ·X

j
b(k) ds

)
(5.9)

where X(k) is the infinitesimal element of the deformation:

Xj
µ(k) =

∂Rj
µ

∂ξkb
, j = 1, ..., nµ, µ = i, b, k = 1, ..., nb. (5.10)

Since ΠS(Φ∗(ξ, r)) = 0, there exist Ajp(ξ, r), p = 1, 2, and Bj(ξ, r) in R such that

Sji (Φ(ξ, r)) = Aj1 cos θ +Aj2 sin θ, j = 1, ..., ni (5.11)

Sj0(Φ(ξ, r)) = Bj , j = 1, ..., nb (5.12)

Sjπ(Φ(ξ, r)) = −Bj , j = 1, ..., nb (5.13)

Sjb (Φ(ξ, r)) = Bj cos θ, j = 1, ..., nb. (5.14)
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Since the deformations X(k, q) and X(k) preserve the area of each component,∫
∂Ωji

Nj
i ·X

j
i (k, q) ds = 0, j = 1, .., ni (5.15)∫

∂Ωjb

Nj
b ·X

j
b(k, q) ds = 0, j = 1, ..., nb (5.16)∫

∂Ωji

Nj
i ·X

j
i (k) ds = 0, j = 1, .., ni (5.17)∫

∂Ωjb

Nj
b ·X

j
b(k) ds = 0, j = 1, ..., nb. (5.18)

One can drop the λjµ(Φ∗) terms in (5.7) and (5.9) and arrive at

∂J(ξ, r)

∂ξki,q
= −

∑
j≤ni

∫ 2π

0

(Aj1 cos θ +Aj2 sin θ) Nj
i ·X

j
i (k, q) dθ

+
∑
j≤nb

(
BjXj

0(k, q)−BjXj
π(k, q)−

∫ π

0

Bj cos θ ~N j
b · ~X

j
b (k, q) dθ

)
(5.19)

∂J(ξ, r)

∂ξkb
= −

∑
j≤ni

∫ 2π

0

(Aj1 cos θ +Aj2 sin θ) Nj
i ·X

j
i (k) dθ

+
∑
j≤nb

(
BjXj

0(k)−BjXj
π(k)−

∫ π

0

Bj cos θ ~N j
b · ~X

j
b (k) dθ

)
(5.20)

At a critical point ξ∗ of ξ → J(ξ, r), the left sides of (5.19) and (5.20) vanish and
one obtains a linear homogeneous system for Ajp and Bj . One can show, as in the
proof of [9, Lemma 8.1], that this system is non-singular and hence

Ajp(ξ∗, r) = 0, j = 1, ..., ni, p = 1, 2, Bj(ξ∗, r) = 0, j = 1, ..., nb (5.21)

proving the first part of the lemma.
For the second part of the lemma, we replace r by a more convenient variable m:

mj
i = π(rji )

2, mj
b = π(rjb)

2 (5.22)

One varies each mk
ν to obtain another deformation of Φ∗. Since Ajp(ξ∗,m∗) = 0 and

Bj(ξ∗,m∗) = 0, the first variation formula (3.33) yields

∂J(ξ,m)

∂mk
ν

∣∣∣
(ξ,m)=(ξ∗,m∗)

= −
∑
j≤ni

∫
∂Ωji

λji (ξ∗,m∗)N
j
i ·X

j
i (ν, k) ds

−
∑
j≤nb

∫
∂Ωjb

λjb(ξ∗,m∗)N
j
b ·X

j
b(ν, k) ds

= −
∑
j≤ni

λji (ξ∗,m∗)
∂|Ωji |
∂mk

ν

−
∑
j≤nb

λji (ξ∗,m∗)
∂|Ωjb|
∂mk

ν

= −
∑
j≤ni

λji (ξ∗,m∗)
∂mj

i

∂mk
ν

−
∑
j≤nb

λji (ξ∗,m∗)
∂(

mjb
2 )

∂mk
ν
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=


−λki (ξ∗,m∗) if ν = i

−λ
k
b (ξ∗,m∗)

2
if ν = b

. (5.23)

Here X(ν, k) is the infinitesimal element of the deformation. Note that the area of
the component Ωkν is not preserved in this deformation. Because mj

µ are constrained
by ∑

j≤ni

mj
i +

∑
j≤nb

mj
b

2
= ω|D|, (5.24)

there exists a Lagrange multiplier λ ∈ R such that

∂J(ξ,m)

∂mk
i

∣∣∣
(ξ,m)=(ξ∗,m∗)

+ λ = 0,
∂J(ξ,m)

∂mk
b

∣∣∣
(ξ,m)=(ξ∗,m∗)

+
λ

2
= 0. (5.25)

It follows from (5.23) and (5.25) that

λkν(ξ∗,m∗) = λ, k = 1, ..., nν , ν = i, b. (5.26)

This proves the second part of the lemma.

Proof of Theorem 1.1. Consider J in the domain Ξα ×Wβ where Ξα and Wβ are
given in (2.1) and (2.2) respectively. One views Ξα as a compact 2ni+nb dimensional
manifold with boundary and Wβ as a compact ni + nb − 1 dimensional manifold
with boundary. Then Ξα×Wβ is a compact 3ni+2nb−1 dimensional manifold with
boundary. For each (ξ, r) ∈ Ξα ×Wβ there is Φ∗(ξ, r) that solves ΠS(Φ∗(ξ, r)) = 0
by Lemma 4.2. Since Ξα ×Wβ is compact, there exists (ξ∗, r∗) ∈ Ξα ×Wβ that
minimizes J in Ξα×Wβ . It suffices to show that (ξ∗, r∗) is in the interior of Ξα×Wβ .

First prove

rj∗,i
ρ
→ 1 and

rj∗,b
ρ
→ 1, as ρ→ 0. (5.27)

Let Rji =
rji
ρ and Rjb =

rjb
ρ , so R = (R1

i , ..., R
ni
i , R

1
b , ..., R

nb
b ) is a scaled version of r.

By Lemma 4.4 we write

J(ξ, r) = J(ξ,R) =
(
γρ4 log

1

ρ

)
J1(R) + γρ4J2(ξ,R) +O(ρ2) (5.28)

where

J1(R) =
1

γρ3 log 1
ρ

( ∑
j≤ni

2πRji +
∑
j≤nb

πRjb

)
+

1

2

[ ∑
j≤ni

π(Rji )
4

2
+
∑
j≤nb

π(Rjb)
4

4

]
(5.29)

J2(ξ,R) =
1

2

[ ∑
j≤ni

(π(Rji )
4

2
log

1

Rji
+
π(Rji )

4

8
+
(
π(Rji )

2
)2
R(ξji , ξ

j
i )
)

+
∑
j≤nb

(π(Rjb)
4

4
log

1

Rjb
+
π(Rjb)

4

16
+
(π(Rjb)

2

2

)2

Rb(ξ
j
b , ξ

j
b)
)
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+2
∑

j<k≤ni

π2(Rji )
2(Rki )2G(ξji , ξ

k
i )

+2
∑

j<k≤nb

(π(Rjb)
2

2

)(π(Rkb )2

2

)
G(ξjb , ξ

k
b )

+2
∑

j≤ni,k≤nb

π(Rji )
2
(π(Rkb )2

2

)
G(ξji , ξ

k
b )
]
. (5.30)

Because of the lower bound 1+ε
ρ3 log 1

ρ

< γ for γ in this theorem, the term O(ρ2) in

(5.28) is much smaller than the other two terms in (5.28). By (2.4), the condition
1

γρ3 log 1
ρ

< 1
1+ε in the theorem, the range Rji , R

j
b ∈ [1− β, 1 + β], and the constraint

∑
j∈Ni

(Rji )
2 +

∑
j∈Nb

(Rjb)
2

2
= ni +

nb
2
, (5.31)

one derives that J1 is minimized at Rji = Rjb = 1. The corresponding rji = rjb = ρ
is a point in the interior of Wβ . Since (5.28) implies that

1

γρ4 log 1
ρ3 log 1

ρ

J(ξ,R)→ J1(R), as ρ→ 0, (5.32)

uniformly with respect to ξ and R, R∗ = r∗
ρ must converge to the minimum of J1,

i.e.

R∗ → (1, ..., 1, 1, ..., 1) as ρ→ 0, (5.33)

so (5.27) follows. Next consider J(ξ, r∗) where ξ ∈ Ξa but r is taken to be r∗ and
correspondingly R = R∗. By (5.28) and (5.33),

lim
ρ→0

1

γρ4

(
J(ξ,R∗)−

(
γρ4 log

1

ρ

)
J1(R∗)

)
= lim

ρ→0
J2(ξ,R∗)

=
1

2

(niπ
8

+
nbπ

16
+ π2F (ξ)

)
(5.34)

uniformly with respect to ξ. Consequently, since J1 does not depend on ξ, every
limit point of ξ∗ along a subsequence must be a minimum of F in Ξα. But (2.3)
says that a minimum of F in Ξα is also a minimum of F in Ξ and it is not on the
boundary of Ξα.

The last assertion and (5.27) imply that when ρ is small, (ξ∗, r∗) is in the interior
of Ξα×Wβ . Therefore (ξ∗, r∗) is a critical point of J , and the theorem follows from
Lemma 5.1.2.

Proof of Theorem 1.2. The first part is proved in (5.27) and the second part is
proved after (5.34). Our assertion that Φ∗(ξ∗, r∗) is a stable assembly is based on
the fact that this stationary point is obtained in successive (local) minimization
procedures. In section 4 for each (ξ, r) in Ξα ×Wβ , Φ∗(ξ, r) was found as a fixed
point. Because of Lemma 4.3.2, Φ∗(ξ, r) is locally minimizing in X[, i.e. locally
minimizing in the class of assemblies whose discs are centered at ξjµ and of radii rjµ.
Then in the proof of Theorem 1.1, (ξ∗, r∗) is taken to be the minimum of J (Φ∗(ξ, r))
with respect to (ξ, r) in Ξα ×Wβ .
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ni + nb
2 ni nb Minimum F

10 10 0 -2.5781
10 9 2 -2.5819
10 8 4 -2.5885
10 7 6 -2.5793
10 6 8 -2.5644
10 5 10 -2.5433
10 4 12 -2.4791
10 3 14 -2.2864
10 2 16 -1.9222
10 1 18 -1.3549
10 0 20 -0.3911

Table 2. Stationary assemblies with ni + nb
2 = 10.

6. Boundary half discs lower energy. Let Φ∗(ξ∗, r∗) be an stationary assembly

found in Theorem 1.1. Since the rj∗,i and rj∗,b are all close to ρ according to Theorem

1.2, by Lemma 4.4 J (Ω∗) is approximately equal to

J (Ω∗) ≈ 2π
(
ni +

nb
2

)
ρ+

πγρ4 log 1
ρ

(
ni + nb

2

)
4

+
πγρ4

(
ni + nb

2

)
16

+
π2γρ4

2
F (ξ∗). (6.1)

Assume that γ and ω are in a specific parameter range such that

γ =
µ

ω3/2 log 1
ω

=
µ

(

(
ni+

nb
2

)
π

|D| )3/2ρ3 log |D|(
ni+

nb
2

)
πρ2

(6.2)

for a fixed µ > 0. The leading order of the free energy calculated from (6.1) is

2π
(
ni +

nb
2

)
ρ+

πγρ4
(
ni + nb

2

)
log 1

ρ

4
= 2

√
ω|D|π

√
ni +

nb
2

+

√
ω|D|2µ

8π

1

ni + nb
2

+smaller term. (6.3)

With respect to ni + nb
2 the last quantity is minimized at

ni +
nb
2
≈ |D|µ

2/3

4π
. (6.4)

This gives the optimal number of discs in a stationary assembly. Note that under
(6.2) and (6.4), the corresponding ρ and γ fall into the range specified in Theorem
1.1.

One should compare the energy of stationary assemblies of the same area, i.e.
the same ω, and the same number of discs, i.e. the same ni + nb

2 . In particular one
can compare stationary assemblies of the same area and of the optimal number of
discs. Then all disc radii are approximately equal to the same ρ. One must look at
the higher order term to distinguish the energy of these assemblies. By (6.1), the
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energy in the higher order is determined by F (ξ∗). This leads to the minimization
of F .

Let the domain D be the unit disc {x ∈ R2 : |x| < 1} so that the Green’s function
of −∆ is explicitly known:

G(x, y) =
1

2π
log

1

|x− y|
+

1

2π

( |x|2
2

+
|y|2

2
+ log

1

|xy − 1|

)
− 3

8π
. (6.5)

Table 1 lists the numerical minimum value of F together with ni + nb
2 , ni, and

nb. A row with highlighted minimum F value is the stationary assembly with the
lowest energy among all stationary assemblies of the same ω and the same ni + nb

2 .
For instance, when ni + nb

2 = 3 the stationary assembly with the lowest energy has
2 interior discs and 2 boundary half discs.

One has a more realistic scenario when ni + nb
2 is a large number. Table 2 lists

stationary assemblies with ni + nb
2 = 10. Here the assemblies with 9, 8, 7 interior

discs respectively have lower energy than the one with interior discs only. The
assembly of the lowest energy has 8 interior discs and 4 boundary half discs.

As one finds the minimum of F numerically, the centers of the interior discs and
the boundary half discs of a stationary assembly are determined. Figure 1 shows
these stationary assemblies based on the numerical minimum of F for all the cases
with ni + nb

2 = 10.
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