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Firmware for Internet of Things devices can contain malicious code or vulnerabilities, which have already 
been used in devastating attacks. In this article, we discuss the problems in analyzing firmware for 
security, offer case studies, and propose challenge tasks to improve firmware analysis.

B orn from traditional embedded systems, the devices 
that comprise the Internet of Things (IoT) bring 

with them both opportunities and new challenges. 
Voice-controlled devices such as Google Home and 
Amazon Echo allow users to easily control their appli-
ances at home. Thermostats and cameras from Nest 
interface with the cloud to enable remote monitoring and 
control. Devices such as these are here to stay, with plenty 
more to come. Between smart homes, intelligent build-
ings, and industrial and medical environments, the num-
ber of IoT devices had already reached 7 billion as of early 
2018.10 These embedded systems are often built using a 
variety of processors and microcontroller architectures, 
all programmed with custom firmware. Most of this firm-
ware is closed source and proprietary, leading to a deficit 
of public scrutiny. Users often have no idea what is inside 
their firmware and rarely perform firmware updates. If 
they do, they often find themselves performing manual 
updates by flashing an opaque blob of binary code onto a 
device and hoping that everything still works.

Unfortunately, attacks targeting or residing in the 
firmware have shown that “everything still works” is not 
always the reality. For instance, the BadUSB attack12

allows attackers to add extra functionality to USB 
firmware, e.g., adding keyboard functionality to a USB 
thumb drive to automatically and rapidly inject mali-
cious keystrokes to the host as a way of compromis-
ing it. BlueBorne3 and BleedingBit4 allow attackers to 
inject shellcode into target systems due to vulnerabili-
ties within Bluetooth and Bluetooth Low Energy soft-
ware stacks in controller firmware. Smartphones with 
Android firmware were found to have backdoors trig-
gered by ATtention (AT) commands,15 allowing local 
attackers to bypass Android security mechanisms. The 
Mirai botnet2 was responsible for some of the most mas-
sive distributed denial-of-service attacks seen to date, 
building an army of IoT devices by exploiting different 
zero-days and weak credentials within device firmware. 
Even automobiles, which represent traditionally closed 
systems, might be stopped remotely on the highway due 
to a vulnerability in their telematics controller.1

In short, firmware can contain malicious or vulner-
able components that are effectively hidden from users 

Digital Object Identifier 10.1109/MSEC.2019.2926462
Date of publication: 1 August 2019

Toward Automated Firmware 
Analysis in the IoT Era



www.computer.org/security 39

and that can be leveraged by bad actors. The ubiqui-
tous connectivity and proliferation of IoT devices in all 
aspects of society raise the stakes of these deficiencies. 
As such, firmware analysis for these devices is getting 
more critical and urgent, yet there is no systematic way 
to assess the wide variety of firmware that exists across 
the IoT universe. In this article, we examine the chal-
lenges of firmware analysis for the IoT era. We discuss 
our experience and lessons learned from analyzing USB 
and Android firmware and look for future guidelines 
about how to make such analysis broader, more scal-
able, more accurate, and more automated.

Firmware Analysis
The goals of firmware analysis are similar to those of 
traditional software analysis. In particular, a goal of 
security-focused analysis is the ability to automati-
cally discover vulnerabilities or malicious components 
within firmware. To achieve this objective, researchers 
apply well-known program analysis techniques to rea-
son about the code and data. We can broadly categorize 
these techniques as static, dynamic, or symbolic. Figure 1 
connects these concepts together in the context of firm-
ware analysis. These three techniques may be applied at 
either the source code or binary level. With firmware, 
though, source code is rarely available, leaving binary 
analysis as the only option. This is more challenging, 
since analysts lose access to valuable information that 
can be found only in source code, such as source-level 
types and code boundaries.

Static analysis relies solely on firmware’s code and 
data. It does not require a working device or emula-
tion environment. As long as the underlying assembly 
instructions and their relations to data can be under-
stood and extracted, static analysis is possible. A con-
ventional static analysis technique when disassembling 
binaries is control flow recovery, which creates edges 
between procedures and helps define the skeleton of 
a program for later analysis. With a list of functions 
and their connections to each other, analysts can then 
answer questions such as “Who are the callers of func-
tion X?” and “Which bytes represent code, and which 
represent data?” Static approaches have a fixed view of 
a binary image, which has inherent limitations. Unless 
there is an explicit call or jump in the assembly, some 
functions and data boundaries may be undiscovered. 
For example, tracking interprocedural control flow 
through indirect branches is a path-sensitive problem. 
Static analysis does not have the program state neces-
sary to track the branch targets accurately. This becomes 
an issue for languages such as C++ in which classes use 
dynamically assigned lists of function pointers to call 
methods. Static analysis has its limitations, and overall 
it is forced to overapproximate. Fi
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In contrast, dynamic analysis is performed using 
an actual execution environment. Whether this is a 
physical platform, an emulated platform, or a combina-
tion of both depends on the availability of hardware or 
the completeness of an emulator. For example, to per-
form hardware-based dynamic analysis, you will likely 
need many copies of a device and a harness to moni-
tor and control them. Emulation-based analysis executes 
a programmed model of the target system. QEMU5

is arguably the most famous emulation platform and 
implements  m a n y 
arch i tectu res  and 
machine types. With 
an accurate emulation 
model, analysis scales 
with the amount of 
available computing 
resources instead of 
device-specific hard-
ware. However, if no 
emulation model exists, 
then creating one is 
a costly endeavor, especially if the target platform 
combines a significant amount of application-specific 
hardware. Emulators vastly improve the process of 
discovering vulnerabilities and debugging flaws, 
as they are easily instrumented as compared to 
closed-source software running on locked-down 
hardware. If a partial model exists but additional 
modeling would be too costly, we can use real hard-
ware for the missing components, an approach taken 
by the Avatar2 framework.11

Symbolic methods take an approach similar to that 
of dynamic analysis, with the key difference being that 
program memory can be symbolic during execution. 
This means that bytes in memory can be assigned a 
range of values instead of a single concrete number. 
Programs are run using a symbolic execution engine, 
which records individual operations on symbolic 
memory such as adds, subtracts, shifts, and others. The 
resulting contents of symbolic memory and registers 
are represented as expressions. When these expres-
sions reach a conditional branch and comparison, a 
constraint solver is employed to determine whether 
the branch is taken, not taken, or both. Symbolic exe-
cution splits into different paths when the compari-
son cannot be concretely decided. Effectively, with all 
memory defined as symbolic, execution would yield 
program paths for all combinations of input. In prac-
tice, any sufficiently complex program will undergo 
state explosion, an exponential creation of new states 
from existing paths, leading to memory exhaustion. To 
limit this, we can use targeted symbolic execution and 
combine traditional dynamic analysis. For instance, if 

a firmware image takes input from a known memory 
range, only that memory range can be made symbolic, 
limiting path explosion.

Case Study: FirmUSB
When the USB protocol was first released in 1996, 
there were many competing peripheral standards. USB 
has largely replaced previous interfaces such as serial, 
parallel, and FireWire ports. However, the ubiquity of 
USB and its lack of built-in security mechanisms have 

allowed for simple 
attack vectors, such 
a s  s p r e a d i n g  ma l-
ware from infected 
devices and the previ-
ously discussed Bad -
USB attack against 
device firmware. Un -
for tunately,  w hi le 
host-based protection 
suites aim to protect 
USB devices at the 

file system layer, they do not provide insight into the 
actual device functionality present within the firmware.

To provide insight into the actual device behavior, we 
created FirmUSB,9 a system for analyzing USB-controller 
firmware and performing behavioral firmware analysis. 
FirmUSB is designed to allow an understanding of device 
functionality; rather than focusing on manual reverse engi-
neering, we concentrate on automating our methods by 
employing a combination of static and  symbolic analysis.

Supporting New Microcontroller Architectures
We quickly ran into a major stumbling block: USB con-
trollers are often based on the Intel 8051 microcon-
troller architecture. In contrast to Intel x86’s and ARM’s 
instruction sets, which are the common targets of analy-
sis frameworks, 8051 represents a Harvard architecture 
design that dates to 1980. Despite being considered as 
one of the world’s most-copied microcontroller designs, 
and while basic binary analysis has been possible for 
about a decade, there was no support for deep analy-
sis, including symbolic analysis, on 8051 by any binary 
analysis framework prior to our research.

To analyze binary firmware compiled for the Intel 
8051, we first developed binary lifters for LLVM and 
VEX  intermediate representation (IR). A lifter con-
verts assembly instructions into a platform- and 
ar  chi  tecture-independent IR. Effectively, this is the first 
step in reversing the compilation process to recover a 
high-level understanding of the binary. Most importantly, 
by targeting LLVM IR and VEX IR, we were able to lever-
age the FIE7 (based on the KLEE symbolic analysis frame-
work) and ANGR14 symbolic execution frameworks.

With firmware, though, source code is 
rarely available, leaving binary analysis 

as the only option.
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During the lifting process, we ran into many 
embedded-system-specific issues. First, 8051 does not 
have any virtual memory hierarchy and operates directly 
on processor registers and memory-mapped input–out-
put (I/O). Capturing these low-level semantics in the 
target IRs was difficult, given their inherent assump-
tions. As an example, 8051 has multiple memory 
regions that are accessed by specific instructions. When 
lifting to generic IR memory operations, we lost these 
semantics during symbolic execution of the IR. To 
address this, we needed to hook all loads and stores and 
adjust the operations before continuing. Processing the 
IR alone was not sufficient to correctly execute 8051 for 
either LLVM or VEX.

Another limitation was the lack of bitwise seman-
tics. For example, a real processor will perform bitwise 
operations on a system control register affecting only 
a specific bit but not an adjacent one, since every indi-
vidual bit can have implications for the processor’s state. 
However, as they operate at the granularity of byte-level 
instructions, neither LLVM nor VEX succinctly cap-
tures bitwise operations, which are a common occur-
rence in firmware images. Therefore, we had to access 
and manipulate individual bytes to extract and manip-
ulate the appropriate bits. As a result, the symbolic 
execution engine needed to execute many more IR 
instructions, slowing down execution and lowering the 
precision of memory operations. This subtle difference 
at the IR level could affect how an environment model 
is recreated at the symbolic execution level.

In general, a new microcontroller architecture in a 
symbolic analysis framework must precisely replicate 
the firmware’s environment model, such as its interrupt 
handling. For FirmUSB, FIE supported interrupts for 
the MSP430 architecture, but we needed to adapt these 
handlers to the 8051 architecture. However, ANGR did 
not support interrupts, since it had been designed as 
a binary analysis framework for user-level programs. 
As such, we extended ANGR with interrupt handling, 
scheduling, and other specifics of Intel 8051, such as 
special or alias registers. The limitations we experi-
enced when developing FirmUSB demonstrate that 
there is a need for firmware specific IRs and symbolic 
execution engines.

Checking Behavioral Properties
One of the mysteries of closed-source, end-user firm-
ware is its actual functionality. In the IoT domain, 
understanding a device’s behavior is of utmost impor-
tance to assess the overall system’s security and pri-
vacy. Consumers often wonder what they can expect 
from their smart devices: e.g., “Why is my smart cam-
era blinking at this moment?” or “Is my smart speaker 
leaking my private conversations?” In an ideal world, 

device firmware would be vetted rigorously before 
deployment, yet in practice, vulnerable firmware is 
frequently found in the wild. This leaves end users and 
security researchers with the responsibility of vetting 
firmware themselves.

For FirmUSB, we wanted to be able to ask “What are 
the functionalities of this USB firmware?” and “Does 
this firmware act consistently with the functionalities it 
declares?” and be able to find the answers automatically 
using program analysis. To do this, we used symbolic 
execution to check the reachability of code locations 
relevant to these questions. For the functionality ques-
tion, we checked whether the firmware reaches a point 
in the disassembled code that corresponds to specific 
functionality, such as USB mass storage or human inter-
face device (HID) capabilities. To identify candidate 
code locations relevant to this behavioral query, we 
used static data-flow analysis and tracked memory loca-
tions that stored the USB-specific objects. To answer 
the consistency question, we verified that, for example, 
HID firmware forwarded keyboard scan codes that 
were obtained from an external I/O port. If it did not, 
instead of replaying hard-coded keystrokes, we were 
able to detect this inconsistency.

Symbolic execution is a powerful tool that can be 
employed to answer queries such as these. In our research, 
our queries were specific to the USB domain, but similar 
questions could be answered about different firmware. 
For example, using similar domain-informed techniques 
to analyze Bluetooth device firmware—once the under-
lying architecture has been lifted to an IR and query algo-
rithms have been developed with Bluetooth operation 
in mind—could allow us to similarly reason about the 
behavior of these devices. We could even imagine having 
an agreed upon set of domain-specific queries to apply to 
firmware, to perform a sort of compliance testing, similar 
to Underwriters Laboratories testing.

Domain-Informed Analysis
Since our goal was to behaviorally analyze USB firm-
ware, we formulated our questions in the context of 
the USB protocol. A USB device communicates with 
the host by responding to requests. Among those, the 
Get_Descriptor and Get_Configuration requests tell 
the operating system about the device’s functional-
ity. All USB devices must support responding to these 
requests, but for specific device classes, other responses 
also exist. For example, the HID device class is suffi-
ciently complex that it needs its own “report” descriptor 
with additional information for the host machine. Fir-
mUSB leverages USB constants in all of these descrip-
tor types and searches the firmware for references to 
them. Using this domain knowledge as a starting point 
simplifies all of the following analysis, as it gives the 
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symbolic execution engine known interesting locations 
to investigate.

Finally, during symbolic execution, we were able 
to apply USB-specific constraints to focus on specific 
code paths. As an example, USB speed-change request/
response pairs are not as relevant to understanding 
device functionality as the Get_Descriptor requests 
made by the host. Applying these constraints is known 
as preconditioned symbolic execution, and it allowed us 
to achieve a 7 # speedup during the analysis phase—
from almost 7 min to perform reachability analysis with 
fully symbolic memory to fewer than 56 s, and to 7.7 s 
with partially symbolic memory. Such a speedup makes 
analysis of real-world firmware far more tractable. With-
out incorporating knowledge of the USB protocol, 
FirmUSB not only would be slower but also would not 
have a starting point for more in-depth analysis. With 
such knowledge, we can ask questions relating to device 
functionality, determine input sources and sinks, and 
assure consistency of behavior.

The takeaway for firmware analysis, in general, is 
that incorporating domain knowledge is beneficial for a 
variety of reasons, but unfortunately, protocols are usu-
ally under- or informally specified. The lack of a formal, 
or even a machine-parseable, model of many protocols 
found in firmware hinders the application of domain 
knowledge beyond a high-level understanding of the 
firmware type.

Case Study: Android AT Commands
The FirmUSB case study reflects a more traditional 
type of firmware, which is a single binary handling inter-
rupts and running on the microcontroller unit directly 
without an operating system. Android firmware repre-
sents another type of firmware that is more complex. 
Android firmware images contain an operating sys-
tem, e.g., Linux, and a corresponding file system (e.g., 
rootfs) that provides all necessary user-space tools and 
daemons. In this case study, we discuss the challenges 
of collecting and extracting Android firmware images 
across multiple vendors. We sought to investigate the 

scope of “AT commands” being used in Android devices 
through static and dynamic analysis techniques.

AT commands were designed in the early 1980s to 
control modems. Not only are they still being used by 
modern smartphones to support telephony-related 
functions, but we discovered that they can also provide 
a conduit for accessing powerful functionality in mobile 
devices through access to privileged operations. We sys-
tematically retrieved and extracted 3,500 AT commands 
from more than 2,000 Android firmware images by 
building an Android firmware-image process pipeline 
as shown in Figure 2. The vast majority of these com-
mands have never been publicly documented. In short, 
we found AT commands that can flash device firmware, 
bypass Android security mechanisms, exfiltrate sensi-
tive device information, perform screen unlocks, and 
inject touch events.

Firmware Collection
We designed the firmware collection and extraction 
process as a three-stage process, as illustrated in Fig-
ure  2. These stages included firmware-image collection, 
firmware-image analysis to extract AT commands, and 
construction of an AT command database (DB). The first 
challenge came from collecting different Android firm-
ware images from a wide range of smartphone vendors. 
Vendors such as Google and ASUS allow firmware down-
loads from their official websites, while other vendors 
hide download links behind complicated device-query 
interfaces or do not provide firmware downloading at all. 
Third-party websites (e.g., AndroidMTK.com) collect 
different vendor firmware images but often deploy multi-
ple redirections before revealing the final download URL. 
We managed to crawl more than 2,000 Android firmware 
images across 11 different vendors, although the whole 
firmware collection stage took more than a month. An 
insight we gained from this exercise was the need for easy 
and standardized access to firmware images, which is as 
important to end users as it is to analysts. We provide our 
DB of extracted firmware as a service to the community 
through our website at https://atcommands.org.

Figure 2. A graphical depiction of the smartphone firmware-image processing pipeline. 
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Tool Chain and Domain Knowledge
Since each Android firmware image contains a com-
plete system file system with native daemons and pre-
installed apps, we needed to unpack the image before 
we could mount the file system for further stepping 
through. The next challenge was finding the right tool 
to unpack the firmware image. We ended up with a dif-
ferent tool for almost every vendor per every Android 
version, due to the fragmentation of Android platforms 
and vendor customization. Once inside the system 
file system, we needed to go through each file looking 
for potential AT commands. For native binaries, we 
could directly extract text symbols, while for Android 
apps, we decompiled the code and extracted AT com-
mands from the source files. We also used our domain 
knowledge of AT command formats to develop regular 
expressions to automatically extract commands while 
suppressing false positives, Additionally, we developed 
a heuristic algorithm to further filter out false positives. 
The end result is more than 3,500 unique AT com-
mands extracted from these firmware images. One take-
away from this exercise is that standardizing firmware 
images and creating more modular frameworks to sup-
port vendor customization can facilitate analysis.

Static and Dynamic Analyses
Once we had extracted a corpus of AT commands, 
we needed to understand their functionality. In some 
cases, such as for commands extracted from apps, 
we could examine source code and comments from 
decompiled binary code to understand usage. In other 
cases where only binaries were available, we manu-
ally reversed the code and examined the disassembled 
output to find function boundaries and to reconstruct 
command usage.

However, these static approaches do not in them-
selves indicate whether the code examined lives in the 
firmware image. We thus needed to use real Android 
devices to test and confirm the functionality of these 
AT commands. We built a unified phone-testing frame-
work using USB connections to achieve this. Because 
this was dynamic analysis in real-world environments, 
commands that ended up crashing the device required 
manual intervention, and ambiguous results required 
further examination of source or binary code to con-
firm the observed functionality. As discussed previ-
ously, through this combination of static and dynamic 
analysis, we were able to discover a broad range of func-
tionality, including previously undisclosed vulnerabili-
ties that we disclosed to smartphone vendors. There 
are very likely more interfaces to investigate and further 
vulnerabilities to be mitigated. We believe online docu-
mentation with technical details and lessons learned 
from the firmware analysis can aid the community 

with future analysis. Additionally, a testbed comprising 
numerous makes and models of smartphones, such as 
the “Droid Army” developed by Drake,8 accessible to 
mobile security researchers, would tremendously ben-
efit the community.

Future Directions for Improving  
IoT-Firmware Analysis
Historically, firmware was considered an intermediary 
between hardware and upper-layer software, such as the 
operating system. However, as devices have replaced 
traditional interfaces, reduced their size, and grown 
more complex, the line between software and firm-
ware has begun to blur. As past work by us and others 
has demonstrated, there is a wide range of firmware 
for devices used within the IoT context. This firmware 
varies considerably in its complexity, functionality, and 
target-device architecture, and firmware can look sub-
stantially different even between devices that appear 
functionally similar.

When analyzing firmware and the underlying plat-
forms on which it runs, we quickly encounter difficul-
ties in applying known techniques to reason about them 
automatically. Dynamic, static, and even symbolic anal-
ysis methods can be generally used. Ultimately, how-
ever, they must be applied to real platforms. We need to 
rework our analysis toolbox for the type of challenges 
and problems present on primarily firmware-based sys-
tems. Unfortunately, this also means that, currently, 
there is no prescriptive, “one-size-fits-all” approach to 
firmware analysis, given the disparity of architectures 
and capabilities. However, there are advances in tech-
nology to ensure that analysis can be performed more 
easily and automatically in the future.

For example, symbolic execution is one of the 
major program analysis techniques used in analysis 
frameworks such as, but not limited to, Firmalice,13 
ANGR,14 S2E,6 and FIE.7 As discussed, this is because 
of its ability to combine concrete and symbolic input 
values and achieve relatively high precision and mea-
surable coverage. However, we surveyed processors 
and microcontrollers used in IoT settings, and our 
results, summarized in Table 1, show that many micro-
controller architectures lack IRs that can allow their 
easy inclusion into symbolic-execution frameworks. 
While many architectures support lifting to QEMU’s 
Tiny Code Generator (TGR) IR, and some support 
Binary Ninja’s BIL representation, comparatively few 
can be lifted to LLVM or VEX, which are necessary for 
frameworks such as FIE and ANGR, respectively. Our 
experience lifting 8051 to LLVM and VEX demon-
strated to us the painstaking and time-intensive efforts 
necessary to build lifters into new IRs. Thus, one of 
the challenges of firmware analysis is the inability of 
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existing analysis frameworks to cover the wide variety 
of microcontroller architectures used in the wild.

We propose that as a community, we must develop 
methods for automating the lifting process to bet-
ter facilitate analysis. This can be done by using the 
QEMU lifters as a starting point and learning how 
mappings are made from CPU definitions and compil-
ers. Equally important is finding ways for existing anal-
ysis tools to work better together. There are a number 
of important binary-analysis and symbolic-execution 
tools being used for analysis, but they support only a 
single IR and often have different strengths. For exam-
ple, ANGR shines as a means for recovering control 
flow graphs from binaries, while KLEE has a rich set of 

tools designed for sophisticated symbolic execution. 
We need to develop ways to better interface these tools 
with each other or develop ways of translating IRs so 
that they can reap the benefits of multiple analysis 
platforms. Approaches such as the Avatar platform,2,11 
which allows for the orchestration of different binary 
analysis tools, could be a promising direction for con-
tinued research in this area.

It is not just the tooling that is challenging; envi-
ronment models are complicated, as are the commu-
nications used. We believe solutions that leverage 
domain knowledge of underlying architectures, envi-
ronments, programming models, and protocols will 
be more effective in dealing with the challenges.

As an example, particularly in the IoT context, many 
devices need to support some communication proto-
col to be useful. Firmware implements protocol-related 
functionality by recognizing specific types of messages 
defined by the protocol and then responding to these 
messages. The specification of a typical communica-
tion protocol is an informal yet structured and lengthy 
document. Microcontroller vendors may provide some 
example firmware in their software development kits 
to help developers understand how to program when 
they want to support a specific protocol. Although 
this type of program-based documentation supports 
firmware development, we cannot easily incorporate 
it into firmware analysis. As such, one of the challenges 
of firmware analysis is the lack of formal representa-
tions for domain knowledge. An important aspect of 
using domain knowledge is to extract it from firmware 
and/or from the associated artifacts in an automatic or 
semiautomatic way. Another aspect is to represent it in 
a formal way so that it can be incorporated into auto-
mated analysis and decision making. Techniques such 
as machine learning to generalize extracted knowledge 
and associating it with semantics can also help with this 
domain-knowledge representation.

We also reiterate another challenge in firmware 
analysis, the lack of standardization of firmware images 
and modularization of vendor customizations. We 
found this lack of standardization to be an impediment 
with our analysis of smartphone-firmware images. 
Standardizing formats around base images and includ-
ing customization features as modular additions could 
facilitate rapid and automated analysis. This is true not 
only for resource-rich firmware environments, but also 
in microcontroller architectures where vendors may 
add customizations to well-known architecture designs 
such as the 8051/MCS-51 microcontroller family. 
Such standardized architectures can aid in developing 
tooling that works across products and would be ben-
eficial even to companies developing these architec-
tures by assuring their consistency and inseparability 

Table 1. A partial survey of popular architectures and available 
architecture lifters and corresponding symbolic execution engines. 

Architecture Manufacturer Lifter 
Symbolic 
execution Supported IRs 

AVR/AVR32 Atmel ¡ RREIL 

PIC Microchip ¡ TCG 

Sparc Sun l ¡ VEX, TCG 

RISC-V RISC-V l ¡ TCG 

Blackfin Analog 
Devices

l ¡ TCG

s390x IBM l ¡ VEX, TCG 

SuperH Hitachi l ¡ TCG 

CRIS Axis l ¡ TCG 

i960 Intel l ¡ TCG

MSP430 TI l l LLVM 

MIPS MIPS 
Technologies

l l VEX, TCG 

Power/PPC IBM l l VEX, TCG 

8051 Intel l l VEX, LLVM, LLIL 

ARM/ARM64 ARM l l TCG, VEX, BIL 

x86/x86_64 Intel l l TCG, LLVM, VEX, 
BIL

AVR32 Atmel ¡ ¡ None 

ARM64 ARM l l TCG, VEX 

x86_64 Intel l l TCG, LLVM, VEX, 
BIL

NOTE: Many architectures have lifters for QEMU’s TCG IR, but lack support for symbolic 
execution. The “Lifter” and “Symbolic Execution” columns use ¡ for no support,  for partial 
or unofficial support, and l for full support. For example, there is a third-party lifter from 
AVR to RREIL but no symbolic execution engine, while SuperH has a lifter but no symbolic 
execution engine. RISC: reduced instruction set computing; CRIS: code reduced instruction set; 
RREIL: Relational Reverse Engineering Intermediate Language; LLIL: Low-Level Intermediate 
Language.
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while reducing the costs of developing and maintain-
ing in-house tooling.

Finally, while analysis tools have been more fully 
developed for ARM and x86 processor architectures and 
the sophisticated firmware that runs on these platforms, 
considering these platforms holistically demonstrates the 
need to better understand how different firmware pro-
grams interoperate. Many sophisticated devices such as 
smartphones and other well-resourced IoT devices have 
not only application processors such as ARM processors 
that might be running an operating system but also sen-
sors providing other functionality that are themselves 
built on separate microcontroller architectures (such as 
8051) within the system on chip; frequently, vendors are 
unaware of the full functionality of these controllers and 
place guard chips in front to constrain their behavior. 
Thus, a comprehensive approach to firmware analysis 
on these devices must consider both the high-level appli-
cation processor firmware and the low-level firmware 
found on these embedded microcontrollers.

T o conclude, we believe that large recent advances 
in firmware analysis frameworks, combined with 

the vast number and diversity of embedded devices being 
deployed in the IoT era, offer unique challenges. We are 
also, however, at the cusp of being able to provide guaran-
tees to ensure that computing on IoT devices can be made 
safer and more secure. The research challenges are not triv-
ial, but they offer rich rewards, and we encourage the com-
munity to embrace and review these issues. 
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