
38 September/October 2019 Copublished by the IEEE Computer and Reliability Societies 1540-7993/19©2019IEEE

THE IoT AND SECURITY AND PRIVACY

Grant Hernandez and Farhaan Fowze | University of Florida
Dave (Jing) Tian | Purdue University
Tuba Yavuz, Patrick Traynor, and Kevin R.B. Butler | University of Florida

Firmware for Internet of Things devices can contain malicious code or vulnerabilities, which have already
been used in devastating attacks. In this article, we discuss the problems in analyzing firmware for
security, offer case studies, and propose challenge tasks to improve firmware analysis.

B orn from traditional embedded systems, the devices
that comprise the Internet of Things (IoT) bring

with them both opportunities and new challenges.
Voice-controlled devices such as Google Home and
Amazon Echo allow users to easily control their appli-
ances at home. Thermostats and cameras from Nest
interface with the cloud to enable remote monitoring and
control. Devices such as these are here to stay, with plenty
more to come. Between smart homes, intelligent build-
ings, and industrial and medical environments, the num-
ber of IoT devices had already reached 7 billion as of early
2018.10 These embedded systems are often built using a
variety of processors and microcontroller architectures,
all programmed with custom firmware. Most of this firm-
ware is closed source and proprietary, leading to a deficit
of public scrutiny. Users often have no idea what is inside
their firmware and rarely perform firmware updates. If
they do, they often find themselves performing manual
updates by flashing an opaque blob of binary code onto a
device and hoping that everything still works.

Unfortunately, attacks targeting or residing in the
firmware have shown that “everything still works” is not
always the reality. For instance, the BadUSB attack12

allows attackers to add extra functionality to USB
firmware, e.g., adding keyboard functionality to a USB
thumb drive to automatically and rapidly inject mali-
cious keystrokes to the host as a way of compromis-
ing it. BlueBorne3 and BleedingBit4 allow attackers to
inject shellcode into target systems due to vulnerabili-
ties within Bluetooth and Bluetooth Low Energy soft-
ware stacks in controller firmware. Smartphones with
Android firmware were found to have backdoors trig-
gered by ATtention (AT) commands,15 allowing local
attackers to bypass Android security mechanisms. The
Mirai botnet2 was responsible for some of the most mas-
sive distributed denial-of-service attacks seen to date,
building an army of IoT devices by exploiting different
zero-days and weak credentials within device firmware.
Even automobiles, which represent traditionally closed
systems, might be stopped remotely on the highway due
to a vulnerability in their telematics controller.1

In short, firmware can contain malicious or vulner-
able components that are effectively hidden from users

Digital Object Identifier 10.1109/MSEC.2019.2926462
Date of publication: 1 August 2019

Toward Automated Firmware
Analysis in the IoT Era

www.computer.org/security 39

and that can be leveraged by bad actors. The ubiqui-
tous connectivity and proliferation of IoT devices in all
aspects of society raise the stakes of these deficiencies.
As such, firmware analysis for these devices is getting
more critical and urgent, yet there is no systematic way
to assess the wide variety of firmware that exists across
the IoT universe. In this article, we examine the chal-
lenges of firmware analysis for the IoT era. We discuss
our experience and lessons learned from analyzing USB
and Android firmware and look for future guidelines
about how to make such analysis broader, more scal-
able, more accurate, and more automated.

Firmware Analysis
The goals of firmware analysis are similar to those of
traditional software analysis. In particular, a goal of
security-focused analysis is the ability to automati-
cally discover vulnerabilities or malicious components
within firmware. To achieve this objective, researchers
apply well-known program analysis techniques to rea-
son about the code and data. We can broadly categorize
these techniques as static, dynamic, or symbolic. Figure 1
connects these concepts together in the context of firm-
ware analysis. These three techniques may be applied at
either the source code or binary level. With firmware,
though, source code is rarely available, leaving binary
analysis as the only option. This is more challenging,
since analysts lose access to valuable information that
can be found only in source code, such as source-level
types and code boundaries.

Static analysis relies solely on firmware’s code and
data. It does not require a working device or emula-
tion environment. As long as the underlying assembly
instructions and their relations to data can be under-
stood and extracted, static analysis is possible. A con-
ventional static analysis technique when disassembling
binaries is control flow recovery, which creates edges
between procedures and helps define the skeleton of
a program for later analysis. With a list of functions
and their connections to each other, analysts can then
answer questions such as “Who are the callers of func-
tion X?” and “Which bytes represent code, and which
represent data?” Static approaches have a fixed view of
a binary image, which has inherent limitations. Unless
there is an explicit call or jump in the assembly, some
functions and data boundaries may be undiscovered.
For example, tracking interprocedural control flow
through indirect branches is a path-sensitive problem.
Static analysis does not have the program state neces-
sary to track the branch targets accurately. This becomes
an issue for languages such as C++ in which classes use
dynamically assigned lists of function pointers to call
methods. Static analysis has its limitations, and overall
it is forced to overapproximate. Fi

gu
re

 1
. A

n
ov

er
vi

ew
 o

f p
ro

gr
am

 a
na

ly
sis

 c
on

ce
pt

s i
n

th
e

co
nt

ex
t o

f f
irm

w
ar

e.
 C

FG
: c

on
tr

ol
 fl

ow
 g

ra
ph

; I
ns

t.:
 in

st
ru

m
en

ta
tio

n.

F
irm

w
ar

e
P

la
tfo

rm

10
11
01
11
01
0

10
11
01
11
01
00
1

10
01
11
01
10
01
0

00
10
10
00
01
01
0

00
10
10
00
01
01
0

11
10
11
01
01
01
0

10
00
11
01
01
01
0

10
10
11
01
01
01
0

C
om

pi
le

//
 f
ir
mw
ar
e.
c

in
t
ma
in
()
 {

fo
r(
..
.)
 {

}

re
tu
rn
 0
;

}

Li
ft

re
g_
a
:=
 0

re
g_
a
+=
 1

re
g_
b
=
re
g_
a

ST
OR
E(
ad
dr
)

=

 r
eg
_a

re
g_
r2
 =

 L
OA
D(
ad
dr
)

IR

D
es

ig
n

R
eq

ui
re

m
en

ts

D
is

as
se

m
bl

e

0x
66
:
in
c
 R
6

0x
67
:
mo
v
 (
0x
5)
,
R7

0x
69
:
mo
v
 A
,
R5

0x
6a
:
de
c
 A

0x
6b
:
mo
v
 R
7,
 A

0x
6c
:
jn
z
 $
-8

B
in

ar
y

F
irm

w
ar

e

A
ss

em
bl

y
R

ea
ss

em
bl

e

S
ou

rc
e

C
od

e

D
ec

om
pi

le

T
yp

e
R

ec
ov

er
y

C
F

G
 R

ec
ov

er
y

A
lia

s
A

na
ly

si
s

S
ta

tic
 S

lic
in

g

V
al

ue
 S

et
 A

na
ly

si
s

C
od

e/
D

at
a

R
ec

ov
er

y

S
ta

tic
 A

na
ly

si
s

D
eb

ug
gi

ng

C
ov

er
ag

e
T

ra
ci

ng

E
m

ul
at

io
n

A
ut

om
at

ed
 T

es
tin

g

D
yn

am
ic

 B
in

ar
y

In
st

.

S
tr

uc
tu

re
 R

ec
ov

er
y

D
yn

am
ic

 A
na

ly
si

s

In
st

ru
m

en
t

W
rit

e

E
xt

ra
ct

/P
ro

gr
am

S
ym

bo
lic

 A
na

ly
si

s

S
pe

ci
fic

at
io

n

40 IEEE Security & Privacy September/October 2019

THE IoT AND SECURITY AND PRIVACY

In contrast, dynamic analysis is performed using
an actual execution environment. Whether this is a
physical platform, an emulated platform, or a combina-
tion of both depends on the availability of hardware or
the completeness of an emulator. For example, to per-
form hardware-based dynamic analysis, you will likely
need many copies of a device and a harness to moni-
tor and control them. Emulation-based analysis executes
a programmed model of the target system. QEMU5

is arguably the most famous emulation platform and
implements m a n y
arch i tectu res and
machine types. With
an accurate emulation
model, analysis scales
with the amount of
available computing
resources instead of
device-specific hard-
ware. However, if no
emulation model exists,
then creating one is
a costly endeavor, especially if the target platform
combines a significant amount of application-specific
hardware. Emulators vastly improve the process of
discovering vulnerabilities and debugging flaws,
as they are easily instrumented as compared to
closed-source software running on locked-down
hardware. If a partial model exists but additional
modeling would be too costly, we can use real hard-
ware for the missing components, an approach taken
by the Avatar2 framework.11

Symbolic methods take an approach similar to that
of dynamic analysis, with the key difference being that
program memory can be symbolic during execution.
This means that bytes in memory can be assigned a
range of values instead of a single concrete number.
Programs are run using a symbolic execution engine,
which records individual operations on symbolic
memory such as adds, subtracts, shifts, and others. The
resulting contents of symbolic memory and registers
are represented as expressions. When these expres-
sions reach a conditional branch and comparison, a
constraint solver is employed to determine whether
the branch is taken, not taken, or both. Symbolic exe-
cution splits into different paths when the compari-
son cannot be concretely decided. Effectively, with all
memory defined as symbolic, execution would yield
program paths for all combinations of input. In prac-
tice, any sufficiently complex program will undergo
state explosion, an exponential creation of new states
from existing paths, leading to memory exhaustion. To
limit this, we can use targeted symbolic execution and
combine traditional dynamic analysis. For instance, if

a firmware image takes input from a known memory
range, only that memory range can be made symbolic,
limiting path explosion.

Case Study: FirmUSB
When the USB protocol was first released in 1996,
there were many competing peripheral standards. USB
has largely replaced previous interfaces such as serial,
parallel, and FireWire ports. However, the ubiquity of
USB and its lack of built-in security mechanisms have

allowed for simple
attack vectors, such
a s s p r e a d i n g ma l-
ware from infected
devices and the previ-
ously discussed Bad -
USB attack against
device firmware. Un -
for tunately, w hi le
host-based protection
suites aim to protect
USB devices at the

file system layer, they do not provide insight into the
actual device functionality present within the firmware.

To provide insight into the actual device behavior, we
created FirmUSB,9 a system for analyzing USB-controller
firmware and performing behavioral firmware analysis.
FirmUSB is designed to allow an understanding of device
functionality; rather than focusing on manual reverse engi-
neering, we concentrate on automating our methods by
employing a combination of static and symbolic analysis.

Supporting New Microcontroller Architectures
We quickly ran into a major stumbling block: USB con-
trollers are often based on the Intel 8051 microcon-
troller architecture. In contrast to Intel x86’s and ARM’s
instruction sets, which are the common targets of analy-
sis frameworks, 8051 represents a Harvard architecture
design that dates to 1980. Despite being considered as
one of the world’s most-copied microcontroller designs,
and while basic binary analysis has been possible for
about a decade, there was no support for deep analy-
sis, including symbolic analysis, on 8051 by any binary
analysis framework prior to our research.

To analyze binary firmware compiled for the Intel
8051, we first developed binary lifters for LLVM and
VEX intermediate representation (IR). A lifter con-
verts assembly instructions into a platform- and
ar chi tecture-independent IR. Effectively, this is the first
step in reversing the compilation process to recover a
high-level understanding of the binary. Most importantly,
by targeting LLVM IR and VEX IR, we were able to lever-
age the FIE7 (based on the KLEE symbolic analysis frame-
work) and ANGR14 symbolic execution frameworks.

With firmware, though, source code is
rarely available, leaving binary analysis

as the only option.

www.computer.org/security 41

During the lifting process, we ran into many
embedded-system-specific issues. First, 8051 does not
have any virtual memory hierarchy and operates directly
on processor registers and memory-mapped input–out-
put (I/O). Capturing these low-level semantics in the
target IRs was difficult, given their inherent assump-
tions. As an example, 8051 has multiple memory
regions that are accessed by specific instructions. When
lifting to generic IR memory operations, we lost these
semantics during symbolic execution of the IR. To
address this, we needed to hook all loads and stores and
adjust the operations before continuing. Processing the
IR alone was not sufficient to correctly execute 8051 for
either LLVM or VEX.

Another limitation was the lack of bitwise seman-
tics. For example, a real processor will perform bitwise
operations on a system control register affecting only
a specific bit but not an adjacent one, since every indi-
vidual bit can have implications for the processor’s state.
However, as they operate at the granularity of byte-level
instructions, neither LLVM nor VEX succinctly cap-
tures bitwise operations, which are a common occur-
rence in firmware images. Therefore, we had to access
and manipulate individual bytes to extract and manip-
ulate the appropriate bits. As a result, the symbolic
execution engine needed to execute many more IR
instructions, slowing down execution and lowering the
precision of memory operations. This subtle difference
at the IR level could affect how an environment model
is recreated at the symbolic execution level.

In general, a new microcontroller architecture in a
symbolic analysis framework must precisely replicate
the firmware’s environment model, such as its interrupt
handling. For FirmUSB, FIE supported interrupts for
the MSP430 architecture, but we needed to adapt these
handlers to the 8051 architecture. However, ANGR did
not support interrupts, since it had been designed as
a binary analysis framework for user-level programs.
As such, we extended ANGR with interrupt handling,
scheduling, and other specifics of Intel 8051, such as
special or alias registers. The limitations we experi-
enced when developing FirmUSB demonstrate that
there is a need for firmware specific IRs and symbolic
execution engines.

Checking Behavioral Properties
One of the mysteries of closed-source, end-user firm-
ware is its actual functionality. In the IoT domain,
understanding a device’s behavior is of utmost impor-
tance to assess the overall system’s security and pri-
vacy. Consumers often wonder what they can expect
from their smart devices: e.g., “Why is my smart cam-
era blinking at this moment?” or “Is my smart speaker
leaking my private conversations?” In an ideal world,

device firmware would be vetted rigorously before
deployment, yet in practice, vulnerable firmware is
frequently found in the wild. This leaves end users and
security researchers with the responsibility of vetting
firmware themselves.

For FirmUSB, we wanted to be able to ask “What are
the functionalities of this USB firmware?” and “Does
this firmware act consistently with the functionalities it
declares?” and be able to find the answers automatically
using program analysis. To do this, we used symbolic
execution to check the reachability of code locations
relevant to these questions. For the functionality ques-
tion, we checked whether the firmware reaches a point
in the disassembled code that corresponds to specific
functionality, such as USB mass storage or human inter-
face device (HID) capabilities. To identify candidate
code locations relevant to this behavioral query, we
used static data-flow analysis and tracked memory loca-
tions that stored the USB-specific objects. To answer
the consistency question, we verified that, for example,
HID firmware forwarded keyboard scan codes that
were obtained from an external I/O port. If it did not,
instead of replaying hard-coded keystrokes, we were
able to detect this inconsistency.

Symbolic execution is a powerful tool that can be
employed to answer queries such as these. In our research,
our queries were specific to the USB domain, but similar
questions could be answered about different firmware.
For example, using similar domain-informed techniques
to analyze Bluetooth device firmware—once the under-
lying architecture has been lifted to an IR and query algo-
rithms have been developed with Bluetooth operation
in mind—could allow us to similarly reason about the
behavior of these devices. We could even imagine having
an agreed upon set of domain-specific queries to apply to
firmware, to perform a sort of compliance testing, similar
to Underwriters Laboratories testing.

Domain-Informed Analysis
Since our goal was to behaviorally analyze USB firm-
ware, we formulated our questions in the context of
the USB protocol. A USB device communicates with
the host by responding to requests. Among those, the
Get_Descriptor and Get_Configuration requests tell
the operating system about the device’s functional-
ity. All USB devices must support responding to these
requests, but for specific device classes, other responses
also exist. For example, the HID device class is suffi-
ciently complex that it needs its own “report” descriptor
with additional information for the host machine. Fir-
mUSB leverages USB constants in all of these descrip-
tor types and searches the firmware for references to
them. Using this domain knowledge as a starting point
simplifies all of the following analysis, as it gives the

42 IEEE Security & Privacy September/October 2019

THE IoT AND SECURITY AND PRIVACY

symbolic execution engine known interesting locations
to investigate.

Finally, during symbolic execution, we were able
to apply USB-specific constraints to focus on specific
code paths. As an example, USB speed-change request/
response pairs are not as relevant to understanding
device functionality as the Get_Descriptor requests
made by the host. Applying these constraints is known
as preconditioned symbolic execution, and it allowed us
to achieve a 7 # speedup during the analysis phase—
from almost 7 min to perform reachability analysis with
fully symbolic memory to fewer than 56 s, and to 7.7 s
with partially symbolic memory. Such a speedup makes
analysis of real-world firmware far more tractable. With-
out incorporating knowledge of the USB protocol,
FirmUSB not only would be slower but also would not
have a starting point for more in-depth analysis. With
such knowledge, we can ask questions relating to device
functionality, determine input sources and sinks, and
assure consistency of behavior.

The takeaway for firmware analysis, in general, is
that incorporating domain knowledge is beneficial for a
variety of reasons, but unfortunately, protocols are usu-
ally under- or informally specified. The lack of a formal,
or even a machine-parseable, model of many protocols
found in firmware hinders the application of domain
knowledge beyond a high-level understanding of the
firmware type.

Case Study: Android AT Commands
The FirmUSB case study reflects a more traditional
type of firmware, which is a single binary handling inter-
rupts and running on the microcontroller unit directly
without an operating system. Android firmware repre-
sents another type of firmware that is more complex.
Android firmware images contain an operating sys-
tem, e.g., Linux, and a corresponding file system (e.g.,
rootfs) that provides all necessary user-space tools and
daemons. In this case study, we discuss the challenges
of collecting and extracting Android firmware images
across multiple vendors. We sought to investigate the

scope of “AT commands” being used in Android devices
through static and dynamic analysis techniques.

AT commands were designed in the early 1980s to
control modems. Not only are they still being used by
modern smartphones to support telephony-related
functions, but we discovered that they can also provide
a conduit for accessing powerful functionality in mobile
devices through access to privileged operations. We sys-
tematically retrieved and extracted 3,500 AT commands
from more than 2,000 Android firmware images by
building an Android firmware-image process pipeline
as shown in Figure 2. The vast majority of these com-
mands have never been publicly documented. In short,
we found AT commands that can flash device firmware,
bypass Android security mechanisms, exfiltrate sensi-
tive device information, perform screen unlocks, and
inject touch events.

Firmware Collection
We designed the firmware collection and extraction
process as a three-stage process, as illustrated in Fig-
ure 2. These stages included firmware-image collection,
firmware-image analysis to extract AT commands, and
construction of an AT command database (DB). The first
challenge came from collecting different Android firm-
ware images from a wide range of smartphone vendors.
Vendors such as Google and ASUS allow firmware down-
loads from their official websites, while other vendors
hide download links behind complicated device-query
interfaces or do not provide firmware downloading at all.
Third-party websites (e.g., AndroidMTK.com) collect
different vendor firmware images but often deploy multi-
ple redirections before revealing the final download URL.
We managed to crawl more than 2,000 Android firmware
images across 11 different vendors, although the whole
firmware collection stage took more than a month. An
insight we gained from this exercise was the need for easy
and standardized access to firmware images, which is as
important to end users as it is to analysts. We provide our
DB of extracted firmware as a service to the community
through our website at https://atcommands.org.

Figure 2. A graphical depiction of the smartphone firmware-image processing pipeline.

build.
prop
build.
prop atcmds

AT
Commands

LG
HTC

init.usbinit.usb

Samsung

Image
1

Image
Unzip

Unpack
Decrypt

Grep
“AT” AT

Database

2) Extract 3) Import

Manufacturers’
Sites, Public

Mirrors

1) Download/Crawl

Image
2

Image
N

Parse
Filter

Assign

www.computer.org/security 43

Tool Chain and Domain Knowledge
Since each Android firmware image contains a com-
plete system file system with native daemons and pre-
installed apps, we needed to unpack the image before
we could mount the file system for further stepping
through. The next challenge was finding the right tool
to unpack the firmware image. We ended up with a dif-
ferent tool for almost every vendor per every Android
version, due to the fragmentation of Android platforms
and vendor customization. Once inside the system
file system, we needed to go through each file looking
for potential AT commands. For native binaries, we
could directly extract text symbols, while for Android
apps, we decompiled the code and extracted AT com-
mands from the source files. We also used our domain
knowledge of AT command formats to develop regular
expressions to automatically extract commands while
suppressing false positives, Additionally, we developed
a heuristic algorithm to further filter out false positives.
The end result is more than 3,500 unique AT com-
mands extracted from these firmware images. One take-
away from this exercise is that standardizing firmware
images and creating more modular frameworks to sup-
port vendor customization can facilitate analysis.

Static and Dynamic Analyses
Once we had extracted a corpus of AT commands,
we needed to understand their functionality. In some
cases, such as for commands extracted from apps,
we could examine source code and comments from
decompiled binary code to understand usage. In other
cases where only binaries were available, we manu-
ally reversed the code and examined the disassembled
output to find function boundaries and to reconstruct
command usage.

However, these static approaches do not in them-
selves indicate whether the code examined lives in the
firmware image. We thus needed to use real Android
devices to test and confirm the functionality of these
AT commands. We built a unified phone-testing frame-
work using USB connections to achieve this. Because
this was dynamic analysis in real-world environments,
commands that ended up crashing the device required
manual intervention, and ambiguous results required
further examination of source or binary code to con-
firm the observed functionality. As discussed previ-
ously, through this combination of static and dynamic
analysis, we were able to discover a broad range of func-
tionality, including previously undisclosed vulnerabili-
ties that we disclosed to smartphone vendors. There
are very likely more interfaces to investigate and further
vulnerabilities to be mitigated. We believe online docu-
mentation with technical details and lessons learned
from the firmware analysis can aid the community

with future analysis. Additionally, a testbed comprising
numerous makes and models of smartphones, such as
the “Droid Army” developed by Drake,8 accessible to
mobile security researchers, would tremendously ben-
efit the community.

Future Directions for Improving
IoT-Firmware Analysis
Historically, firmware was considered an intermediary
between hardware and upper-layer software, such as the
operating system. However, as devices have replaced
traditional interfaces, reduced their size, and grown
more complex, the line between software and firm-
ware has begun to blur. As past work by us and others
has demonstrated, there is a wide range of firmware
for devices used within the IoT context. This firmware
varies considerably in its complexity, functionality, and
target-device architecture, and firmware can look sub-
stantially different even between devices that appear
functionally similar.

When analyzing firmware and the underlying plat-
forms on which it runs, we quickly encounter difficul-
ties in applying known techniques to reason about them
automatically. Dynamic, static, and even symbolic anal-
ysis methods can be generally used. Ultimately, how-
ever, they must be applied to real platforms. We need to
rework our analysis toolbox for the type of challenges
and problems present on primarily firmware-based sys-
tems. Unfortunately, this also means that, currently,
there is no prescriptive, “one-size-fits-all” approach to
firmware analysis, given the disparity of architectures
and capabilities. However, there are advances in tech-
nology to ensure that analysis can be performed more
easily and automatically in the future.

For example, symbolic execution is one of the
major program analysis techniques used in analysis
frameworks such as, but not limited to, Firmalice,13
ANGR,14 S2E,6 and FIE.7 As discussed, this is because
of its ability to combine concrete and symbolic input
values and achieve relatively high precision and mea-
surable coverage. However, we surveyed processors
and microcontrollers used in IoT settings, and our
results, summarized in Table 1, show that many micro-
controller architectures lack IRs that can allow their
easy inclusion into symbolic-execution frameworks.
While many architectures support lifting to QEMU’s
Tiny Code Generator (TGR) IR, and some support
Binary Ninja’s BIL representation, comparatively few
can be lifted to LLVM or VEX, which are necessary for
frameworks such as FIE and ANGR, respectively. Our
experience lifting 8051 to LLVM and VEX demon-
strated to us the painstaking and time-intensive efforts
necessary to build lifters into new IRs. Thus, one of
the challenges of firmware analysis is the inability of

44 IEEE Security & Privacy September/October 2019

THE IoT AND SECURITY AND PRIVACY

existing analysis frameworks to cover the wide variety
of microcontroller architectures used in the wild.

We propose that as a community, we must develop
methods for automating the lifting process to bet-
ter facilitate analysis. This can be done by using the
QEMU lifters as a starting point and learning how
mappings are made from CPU definitions and compil-
ers. Equally important is finding ways for existing anal-
ysis tools to work better together. There are a number
of important binary-analysis and symbolic-execution
tools being used for analysis, but they support only a
single IR and often have different strengths. For exam-
ple, ANGR shines as a means for recovering control
flow graphs from binaries, while KLEE has a rich set of

tools designed for sophisticated symbolic execution.
We need to develop ways to better interface these tools
with each other or develop ways of translating IRs so
that they can reap the benefits of multiple analysis
platforms. Approaches such as the Avatar platform,2,11
which allows for the orchestration of different binary
analysis tools, could be a promising direction for con-
tinued research in this area.

It is not just the tooling that is challenging; envi-
ronment models are complicated, as are the commu-
nications used. We believe solutions that leverage
domain knowledge of underlying architectures, envi-
ronments, programming models, and protocols will
be more effective in dealing with the challenges.

As an example, particularly in the IoT context, many
devices need to support some communication proto-
col to be useful. Firmware implements protocol-related
functionality by recognizing specific types of messages
defined by the protocol and then responding to these
messages. The specification of a typical communica-
tion protocol is an informal yet structured and lengthy
document. Microcontroller vendors may provide some
example firmware in their software development kits
to help developers understand how to program when
they want to support a specific protocol. Although
this type of program-based documentation supports
firmware development, we cannot easily incorporate
it into firmware analysis. As such, one of the challenges
of firmware analysis is the lack of formal representa-
tions for domain knowledge. An important aspect of
using domain knowledge is to extract it from firmware
and/or from the associated artifacts in an automatic or
semiautomatic way. Another aspect is to represent it in
a formal way so that it can be incorporated into auto-
mated analysis and decision making. Techniques such
as machine learning to generalize extracted knowledge
and associating it with semantics can also help with this
domain-knowledge representation.

We also reiterate another challenge in firmware
analysis, the lack of standardization of firmware images
and modularization of vendor customizations. We
found this lack of standardization to be an impediment
with our analysis of smartphone-firmware images.
Standardizing formats around base images and includ-
ing customization features as modular additions could
facilitate rapid and automated analysis. This is true not
only for resource-rich firmware environments, but also
in microcontroller architectures where vendors may
add customizations to well-known architecture designs
such as the 8051/MCS-51 microcontroller family.
Such standardized architectures can aid in developing
tooling that works across products and would be ben-
eficial even to companies developing these architec-
tures by assuring their consistency and inseparability

Table 1. A partial survey of popular architectures and available
architecture lifters and corresponding symbolic execution engines.

Architecture Manufacturer Lifter
Symbolic
execution Supported IRs

AVR/AVR32 Atmel ¡ RREIL

PIC Microchip ¡ TCG

Sparc Sun l ¡ VEX, TCG

RISC-V RISC-V l ¡ TCG

Blackfin Analog
Devices

l ¡ TCG

s390x IBM l ¡ VEX, TCG

SuperH Hitachi l ¡ TCG

CRIS Axis l ¡ TCG

i960 Intel l ¡ TCG

MSP430 TI l l LLVM

MIPS MIPS
Technologies

l l VEX, TCG

Power/PPC IBM l l VEX, TCG

8051 Intel l l VEX, LLVM, LLIL

ARM/ARM64 ARM l l TCG, VEX, BIL

x86/x86_64 Intel l l TCG, LLVM, VEX,
BIL

AVR32 Atmel ¡ ¡ None

ARM64 ARM l l TCG, VEX

x86_64 Intel l l TCG, LLVM, VEX,
BIL

NOTE: Many architectures have lifters for QEMU’s TCG IR, but lack support for symbolic
execution. The “Lifter” and “Symbolic Execution” columns use ¡ for no support, for partial
or unofficial support, and l for full support. For example, there is a third-party lifter from
AVR to RREIL but no symbolic execution engine, while SuperH has a lifter but no symbolic
execution engine. RISC: reduced instruction set computing; CRIS: code reduced instruction set;
RREIL: Relational Reverse Engineering Intermediate Language; LLIL: Low-Level Intermediate
Language.

www.computer.org/security 45

while reducing the costs of developing and maintain-
ing in-house tooling.

Finally, while analysis tools have been more fully
developed for ARM and x86 processor architectures and
the sophisticated firmware that runs on these platforms,
considering these platforms holistically demonstrates the
need to better understand how different firmware pro-
grams interoperate. Many sophisticated devices such as
smartphones and other well-resourced IoT devices have
not only application processors such as ARM processors
that might be running an operating system but also sen-
sors providing other functionality that are themselves
built on separate microcontroller architectures (such as
8051) within the system on chip; frequently, vendors are
unaware of the full functionality of these controllers and
place guard chips in front to constrain their behavior.
Thus, a comprehensive approach to firmware analysis
on these devices must consider both the high-level appli-
cation processor firmware and the low-level firmware
found on these embedded microcontrollers.

T o conclude, we believe that large recent advances
in firmware analysis frameworks, combined with

the vast number and diversity of embedded devices being
deployed in the IoT era, offer unique challenges. We are
also, however, at the cusp of being able to provide guaran-
tees to ensure that computing on IoT devices can be made
safer and more secure. The research challenges are not triv-
ial, but they offer rich rewards, and we encourage the com-
munity to embrace and review these issues.

Acknowledgments
This work is supported in part by the U.S. National
Science Foundation under grants CNS-1540217,
CNS-1526718, CNS-1564140, CNS-1815883, and
CNS-1617474 as well as the Semiconductor Re -
search Corporation.

References
 1. A. Greenberg, “Hackers remotely kill a Jeep on the high-

way—with me in it,” Wired, July 21, 2015. [Online].
Available: https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/

 2. M. Antonakakis et al., “Understanding the Mirai botnet,” in
Proc. 26th USENIX Security Symp. (USENIX Security 17),
2017, pp. 1092–1110.

 3. Armis, Inc., “BlueBorne,” 2017. [Online]. Available:
https://www.armis.com/blueborne/

 4. Armis, Inc., “Bleeding Bit,” 2018. [Online]. Available:
https://armis.com/bleedingbit/

 5. F. Bellard, “QEMU, a fast and portable dynamic transla-
tor,” in Proc. USENIX Annu. Technical Conf., FREENIX
Track, 2005, p. 46.

 6. V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A
platform for in-vivo multi-path analysis of software sys-
tems,” ACM SIGPLAN Notices, vol. 46, no. 3, pp. 265–
278, Mar. 2011.

 7. D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE
on firmware: Finding vulnerabilities in embedded sys-
tems using symbolic execution,” in Proc. 22nd USENIX
Security Symp. (USENIX Security 13), 2013, pp. 463–478.

 8. J. J. Drake, “Researching Android Device Security with the
Help of a Droid Army,” Black Hat, Aug. 6, 2014. [Online].
Available: https://www.blackhat.com/docs/us-14
/materials/us-14-Drake-Researching-Android-Device-
Security-With-The-Help-Of-A-Droid-Army.pdf

 9. G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R.
Butler, “FirmUSB: Vetting USB device firmware using
domain informed symbolic execution,” in Proc. ACM
SIGSAC Conf. on Computer and Communications Security
(CCS ’17), Dallas, TX, 2017, pp. 2245–2262.

 10. K. L. Lueth, “State of the IoT 2018: Number of IoT devices
now at 7B—Market accelerating,” IoT Analytics, Aug. 8,
2018. https://iot-analytics.com/state-of-the-iot-update-
q1-q2-2018-number-of-iot-devices-now-7b/

 11. M. Muench, A. Francillon, and D. Balzarotti, “Avatar2:
A multi-target orchestration platform,” in Proc. Work-
shop on Binary Analysis Research, San Diego, CA, 2018,
pp. 1–11.

 12. K. Nohl and J. Lell, “BadUSB–On accessories that turn evil,”
Black Hat, Aug. 2014. [Online]. Available: https://www
.blackhat.com/us-14/video/badusb-on-accessories-that-
turn-evil.html

 13. Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and
G. Vigna, “Firmalice—Automatic detection of authenti-
cation bypass vulnerabilities in binary firmware,” in Proc.
Network and Distributed System Security Symp. (NDSS),
San Diego, CA, Feb. 2015, pp 1–15.

 14. Y. Shoshitaishvili et al., “SOK: (State of) the art of war:
Offensive techniques in binary analysis,” in Proc. IEEE Symp.
Security and Privacy, San Jose, CA, 2016, pp. 138–157.

 15. D. J. Tian et al., “ATtention spanned: Comprehensive
 vulnerability analysis of AT commands within the Android
ecosystem,” in Proc. 27th USENIX Security Symp.
 (USENIX Security 18), 2018, pp. 273–290.

Grant Hernandez is a Ph.D. candidate in the Department
of Computer and Information Science and Engineer-
ing at the University of Florida. His research focuses
on automated embedded binary firmware analysis to
discover vulnerabilities at scale. Contact him at grant
.hernandez@ufl.edu.

Farhaan Fowze is a Ph.D. candidate in the Department
of Electrical and Computer Engineering at the Uni-
versity of Florida. He received a B.Sc. from Bangla-
desh University of Engineering and Technology in

46 IEEE Security & Privacy September/October 2019

THE IoT AND SECURITY AND PRIVACY

2012. His research interests include model extraction,
binary analysis, and program analysis. Contact him at
farhaan104@ufl.edu.

Dave (Jing) Tian is an assistant professor in the De -
partment of Computer Science at Purdue Uni-
versity. His research involves systems infrastructure,
security, and storage. He received a Ph.D. from the
Department of Computer and Information Science
and Engineering at the University of Florida. Contact
him at daveti@purdue.edu.

Tuba Yavuz is an assistant professor with the Depart-
ment of Electrical and Computer Engineering at the
University of Florida. Her research is in the intersec-
tion of formal methods, software engineering, and
systems security. She received a Ph.D. in computer
science from the University of California, Santa Bar-
bara, in 2004. She is a Member of the IEEE and of
ACM. Contact her at tuba@ece.ufl.edu.

Patrick Traynor is a professor and the John and Mary
Lou Dasburg Preeminent Chair in Engineering
in the Department of Computer and Information
Science and Engineering at the University of Flor-
ida. He received a Ph.D. from The Pennsylvania
State University in 2008 and is a Senior Member
of the IEEE and ACM. Contact him at traynor@ufl
.edu.

Kevin R.B. Butler is an Arnold and Lisa Goldberg
Rising Star Associate Professor of Computer Sci-
ence at the University of Florida and associate
director of the Florida Institute for Cybersecurity
Research. His research focuses on establishing the
trustworthiness of computer systems and embed-
ded devices. He received a Ph.D. in computer sci-
ence and engineering from The Pennsylvania State
University in 2010. He is a Senior Member of
the IEEE and ACM. Contact him at butler@ufl
.edu.

Rejuvenating Binary Executables ■ Visual Privacy Protection ■ Communications Jamming

January/February 2016
Vol. 14, No. 1

Policing Privacy ■ Dynamic Cloud Certification ■ Security for High-Risk Users

March/April 2016
Vol. 14, No. 2

IEEE Symposium on
Security and Privacy

Smart TVs ■ Code Obfuscation ■ The Future of Trust

May/June 2016
Vol. 14, No. 3

IEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium on
Security and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and Privacy

IEEE Security & Privacy magazine provides articles
with both a practical and research bent by the top
thinkers in the fi eld.
• stay current on the latest security tools and theories and gain invaluable practical and
 research knowledge,
• learn more about the latest techniques and cutting-edge technology, and
• discover case studies, tutorials, columns, and in-depth interviews and podcasts for the
 information security industry.

computer.org/security

Digital Object Identifier 10.1109/MSEC.2019.2933709

