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Abstract. A two species interacting system motivated by the density functional theory for
triblock copolymers contains a long range interaction that affects the two species differently. In a
two species periodic assembly of discs, the two species appear alternately on a lattice. A minimal two
species periodic assembly is one with the least energy per area. There is a parameter b in [0, 1] and
the type of the lattice associated with a minimal assembly varies depending on b. There are several
thresholds defined by a number B = 0.1867.... If b € [0, B), a minimal assembly is associated with
a rectangular lattice whose ratio of the longer side to the shorter side is in [v/3,1); if b € [B,1 — B],
a minimal assembly is associated with a square lattice; if b € (1 — B, 1], a minimal assembly is
associated with a rhombic lattice with an acute angle in %, g) Only when b = 1 is this rhombic
lattice a hexagonal lattice. None of the other values of b yield a hexagonal lattice, a sharp contrast to
the situation for one species interacting systems, where hexagonal lattices are ubiquitously observed.
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1. Introduction. From honeycomb to chicken wire fence, from graphene to car-
bon nanotube, the hexagonal pattern is ubiquitous in nature. The honeycomb con-
jecture states that the hexagonal tiling is the best way to divide a surface into regions
of equal area with the least total perimeter [12]. The Fekete problem minimizes an
interaction energy of points on a sphere and obtains a hexagonal arrangement of
minimizing points (with some defects due to a topological reason) [4].

Against this conventional wisdom, we present a problem where the hexagonal pat-
tern is generally not the most favored structure. Our study is motivated by Nakazawa
and Ohta’s theory for triblock copolymer morphology [14, 20]. In an ABC triblock
copolymer a molecule is a subchain of type A monomers connected to a subchain
of type B monomers which in turn is connected to a subchain of type C monomers.
Because of the repulsion between the unlike monomers, the different type subchains
tend to segregate. However since subchains are chemically bonded in molecules, seg-
regation cannot lead to a macroscopic phase separation; only microdomains rich in
individual type monomers emerge, forming morphological phases. Bonding of distinct
monomer subchains provides an inhibition mechanism in block copolymers.

The mathematical study of the triblock copolmyer problem is still in the early
stage. There are existence theorems about stationary assemblies of core shells [17],
double bubbles [22], and discs [18], with the last work being the most relevant to
this paper. Here we treat two of the three monomer types of a triblock copolymer as
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species and view the third type as the surrounding environment, dependent on the
two species. This way a triblock copolymer is a two species interacting system.

The definition of our two species interacting system starts with a lattice A on
the complex plane generated by two nonzero complex numbers «; and as with
Im(ag/al) > 0:

(1.1) A = {jia1 + joaa s j1,j2 € Z}.
Define by D, the period parallelogram
(1.2) D, = {t1a1 +toag 11,10 € (0, 1)}

associated with a basis @ = (a1, az) of the lattice A. The lattice A defines an equiv-
alence relation on C where two complex numbers are equivalent if their difference is
in A. The resulting space of equivalent classes is denoted C/A. It can be represented
by D, where the opposite edges of D, are identified.

There are two sets of parameters in our model. The first consists of two numbers
wy and ws satisfying

(1.3) 0 <wi, weg <1, and wy +ws < 1.

The second is a two by two symmetric matrix -,

(1) TRl B PP

Furthermore, in this paper we assume that
(1.5) Y11 >0, Y22 > 0, v12 > 0, V11722 — V5o = 0.

Our model is a variational problem defined on pairs of A-periodic sets with pre-
scribed average size. More specifically, a pair (21, Q2) of two subsets of C is admissible
if the following conditions hold. Both €; and Qs are A-periodic, i.e.,

(1.6) Qi+ A=Q;forall A€ A, 7=1,2

Q1 and €, are disjoint in the sense that

(L.7) |21 N Q2| = 0;

the average size of 0y and s are fixed at wy, we € (0,1), respectively, i.e.,

€N Da| _

1.8 =w;, 7=12.
( ) |Da| w]7.] 9

In (1.7) and (1.8), | - | denotes the two-dimensional Lebesgue measure. Although
it can be given in terms of a; and g, | D, | actually depends on the lattice A, not the
particular basis «, and therefore we alternatively write it as |A],

(1.9) A = | Da| = Im(@as).

Given an admissible pair (21,2), let Q3 = C\(Q; U Q2). Again A imposes an
equivalent relation on 2; and the resulting space of equivalence classes is denoted
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Q;/A, j =1,2,3. Define a functional J, to be the free energy of (€21, 2) on a period
parallelogram given by

(1.10) JA(94,9) = ZPC/A (/M) + Z ik / VIA(2,)(C) - VIA(Q)(C) dC.
J,k=1

In (1.10), PC/A(Qj/A), j = 1,2, is the perimeter of Q; /A in C/A. One can take a
representation D, of C/A, with its opposite sides identified, and treat €; N Dy, also
with points on opposite sides identified, as a subset of D,. Then Pg,,(€2;/A) is the
perimeter of Q; N D,. If Q; N D, is bounded by C* curves, then the perimeter is just
the total length of the curves. More generally, for a merely measurable A-periodic €2,
(1.11)

Pe/a(2j/A) = sup {/ divg(z)dr: g€ C*(C/AR?), |g(z)| < 1V € (C}.
g Q,nD
Here g € C'(C/A,R?) means that g is a continuously differential, A-periodic vector
field on C; |g(x)| is the geometric norm of the vector g(x) € R2.

In 23:1 Pc/a(825/A) each boundary curve separating a Q; /A from a Q/A, j, k =
1,2,3, j # k, is counted exactly twice. The constant % in the front takes care of the
double counting.

The function I4(€2;) is the A-periodic solution of Poisson’s equation

(112 AL®)O) =xe, (O -wnC [ @) =0
where xq; is the characteristic function of €2;. Despite the appearance, the functional
Ja depends on the lattice A instead of the particular basis a.

A stationary point (21, Q2) of Jy is a solution to the following equations of a free
boundary problem:

(1.13) K1z + 71100 (Q1) + 71214 (22) = g1 on 924 N 9N3,
(1.14) ka3 + Y12Ia (1) + Y2217 (Q2) = p2 on 90y N 0N,
(1.15) K12 + (’711 — ’712).[1\(91) + (’712 — ’)/22).[1\(92) = {1 — M2 oOn 0 N 0N,
(1.16) Tiz 4 Tos +Tiz =0 at 9 NN, N IQ;.

n (1.13)—(1.15) K13, ka3, and K12 are the curvatures of the curves 923 N 93, 9N N
093, and 901 N 08, respectively. The unknown constants p; and po are Lagrange
multipliers associated with the constraints (1.8) for Q; and €29, respectively. The three
interfaces, 9021 N 03, 0N N ON3 and 0221 N 0N, may meet at a common point in D,
which is termed a triple junction point. In (1.16), Ty3, To3, and Tio are, respectively,
the unit tangent vectors of these curves at triple junction points. This equation simply
says that at a triple junction point three curves meet at 120 degree angles.

In this paper, we only consider a special type of (1,5), termed two species
periodic assemblies of discs, denoted by (24,1, Qq,2), with

(1.17)
3 1 1 3
_ / e ’
Qa1 = U {B(fﬂ"l)UB(f ,r1) 1§ = [t et &= 1041+1042+)\},
AEA
(1.18)
_ poy.e Lo 1 i3 .3
QQ,Q_ALEJA{B(@TZ)UB@,@).g_ o1+ qaz A € = 4a1+4a2—|—)\}.
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Fic. 1. A two species periodic assembly of discs given by (1.17) and (1.18), and a shift of the
assembly with disc centers at the lattice points and the half-lattice points.

In (1.17) and (1.18), B(§,r;), or B(£',r;), is the closed disc centered at & (or &) of
radius 7;; the r;’s are given by

272

1.19 L= L oi=1,2.
( ) w] |Da‘)] b

Be aware that (24,1, 2q,2) defined this way depends on the basis «, not the lattice
A generated by a. One may have two different bases that generate the same lattice,
but they define two distinct assemblies.

Shifting (24,1, ,2) does not change its energy, so our choice for the centers of
the discs in (1.17) and (1.18) is not the only one. Another aesthetically pleasing
placement is to put the disc centers on the lattice points and half lattice points; see
Figure 1. Nevertheless we prefer not to have discs on the boundary of the period
parallelogram D,,.

A two species periodic assembly (4.1, $24,2) is not a stationary point of the energy
functional J,. However Ren and Wang have shown the existence of stationary points
that are unions of perturbed discs in a bounded domain with the Neumann boundary
condition [18]. Numerical evidence strongly suggests the existence of stationary points
similar to two species assemblies [25].

In this paper we determine, in terms of «, which (4,1, 2q,2) is the most ener-
getically favored. For this purpose, it is more appropriate to consider the energy per
area instead of the energy on a period parallelogram. Namely, consider

1
(1.20) Ir(,92) = WJA(917Q2)7

take (21,€2) to be a two species periodic assembly, and minimize energy per area
among all such assemblies with respect to «a, i.e.,
(1.21)

rr}lin{jA(Qa,l,Qayg) s a=(a1,02), a1, ay € C\{0}, Imz—i > 0, Ais generated by a}.

Several lattices will appear as the most favored structures. They are illustrated in
Figure 2. A rectangular lattice has a basis a whose parallelogram D, is a rectangle.
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F1a. 2. Two species periodic assemblies of discs with their associated lattices. First row from
left to right: a rectangular lattice and a square lattice. Second row from left to right: a rhombic
lattice and a hexagonal lattice.

A square lattice has a square as a parallelogram. A rhombic lattice has a rhombus
parallelogram, i.e., a parallelogram whose four sides have the same length. Finally a
hexagonal lattice has a parallelogram with four equal length sides and an angle of %
between two sides. If we let

a2
(1.22) T
then in terms of 7, A is rectangular if Re7 = 0, A is square if 7 = ¢, A is rhombic
if || = 1, and A is hexagonal if 7 = ¢% . Note that these classes of lattices are not
mutually exclusive. A hexagonal lattice is a rhombic lattice; a square lattice is both
a rectangular lattice and a rhombic lattice.

The reason that a rhombic lattice with a % angle is termed a hexagonal lattice
comes from its Voronoi cells. At each lattice point, the Voronoi cell of this lattice
point consists of points in C that are closer to this lattice point than any other lattice
points. For the rhombic lattice with a % angle, the Voronoi cell at each lattice point
is a regular hexagon. With Voronoi cells at all lattice points, the hexagonal lattice
gives rise to a honeycomb pattern.

A two species periodic assembly of discs that minimizes the energy per area is

called a minimal assembly and its associated lattice is called a minimal lattice. The
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main result of this paper asserts that a minimal lattice must belong to one of three
lattice classes:
1. it is a rectangular lattice with a rectangle period parallelogram whose ratio
of the longer side to the shorter side lies in (1, v/3];
2. it is a square lattice;
3. it is a rhombic lattice with a rhombus period parallelogram whose acute angle
is in [, §).
Note that the rhombic lattice in the third scenario becomes a hexagonal lattice if the
angle is 7.
The parameter that determines which class of lattices a minimal lattice belongs

to is

2712w W2

1.23 = _-n2eim
(1.23) Y11wi + Y2203

given in terms of w; and ;. Conditions (1.3), (1.4), and (1.5) on w; and ~;, imply
that

(1.24) be[0,1].

To ensure the disjoint condition (1.7) for potential minimal assemblies we assume
that w; and wy are sufficiently small. Namely, let wg > 0 be small enough so that if

(1.25) wj <wp, j=1,2,

and (Qq,1,Qq,2) is a two species periodic assembly of discs whose basis (a1, az) sat-
isfies

(1.26) Re7 =0 and |7| € [1, V3]
or

™ T
(1.27) |7| =1 and argT € [g, 5},

then (24,1, Qq,2) is disjoint in the sense of (1.7). The line segment (1.26) and the arc
(1.27) are illustrated in the first plot of Figure 3. Now we state our theorem.

THEOREM 1.1. Let the parameters wj, j = 1,2, and v, j, k = 1,2, satisfy the
conditions (1.3), (1.4), (1.5), and (1.25). The minimization problem (1.21) always
admits a minimum. Let o, = (a1, 0u2) be a minimum of (1.21), A, be the lattice
determined by .. Then there exists B = 0.1867 ... such that the following statements
hold.

1. If b =0, then A, is a rectangular lattice. It has a rectangle period parallelo-

gram whose ratio of the longer side to the shorter side is \/3.

2. If b€ (0, B), then A, is a rectangular lattice. It has a rectangle period paral-
lelogram whose ratio of the longer side to the shorter side is in (1,v/3). Asb
increases from 0 to B, this ratio decreases from \/3 to 1.

. Ifbe [B,1— B], then A, is a square lattice.

4. Ifb € (1—B, 1), then A, is a nonsquare, nonhexagonal rhombic lattice. It has
a rhombus period parallelogram with an acute angle in (%, %5). As b increases
Jrom 1 — B to 1, this angle decreases from 5 to 5.

5. Ifb=1, then A, is a hexagonal lattice.

w
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F1G. 3. The left plot shows the set W. In Wy, f, attain the mazimum at a point either on
the thick line segment or on the thick arc. In the right plot, with b € (0, B), fp increases in the
directions of the arrows. The dot on the imaginary axis is qpi.

The threshold B is defined precisely in (4.40) by two infinite series, from which
one finds its numerical value.

Only in the case b =1, JA(Qa,1, Q0,2) is minimized by a hexagonal lattice. In all
other cases minimal lattices are not hexagonal. As a matter of fact, our assumption
on + in this paper is a bit different from the conditions for 7 in a triblock copolymer.
In a triblock copolymer, instead of (1.5), v needs to be positive definite. In [18],
where Ren and Wang found assemblies of perturbed discs as stationary points, 75 is
positive. In terms of b, v being positive definite and 12 > 0 mean that b € (0, 1).

In this paper we include both the b = 0 case and the b = 1 case for good reasons.
The case b = 1 corresponds to 11922 — Vi, = 0, i.e., v has a nontrivial kernel
spanned by (—wy,w2). This case is actually very special. It is equivalent to a problem
studied by Chen and Oshita in [6], a simpler one species analogy of the two species
problem studied here. The motivation of that problem comes from the study of
diblock copolymers where a molecule is a subchain of type A monomers connected to
a subchain of type B monomers. With one type treated as a species and the other as
the surrounding environment, a diblock copolymer is a one species interacting system.

The recent years have seen active work on the diblock copolymer problem; see
[19, 21, 1, 7, 13, 11] and the references therein. Based on a density functional theory of
Ohta and Kawasaki [15], the free energy of a diblock copolymer system on a A-periodic
domain is

(1.28) ER) = Pen(@/N) + 5 [ IVIN@OP dc

Here, analogously to the two species problem, 2 is a A-periodic subset of C under

the average area constraint I?BDFI = w, where w € (0,1) is one of the two given

parameters. The other parameter is the number 4 > 0. Now take € to be Q%, the

union of discs centered at % + A, A € A, of radius @, and minimize the
energy per area with respect to A:

.1 d
(1.29) min WSA(QA).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/20 to 128.164.101.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1910 SENPING LUO, XIAOFENG REN, AND JUNCHENG WEI

This time, unlike in the two species problem, Q4 depends on the lattice A, not the
basis (a1,a2). Chen and Oshita showed that (1.29) is minimized by a hexagonal
lattice.

In [23] Sandier and Serfaty studied the Ginzburg-Landau problem with magnetic
field and arrived at a reduced energy. Minimization of this energy turns out to be the
same as the minimization problem (1.29).

There is also a connection between problem (1.29) and the crystallization problem
pointed out by Petrache and Serfaty in [16]. It is related to the Cohn—Kumar conjec-
ture in two dimensions which states that the hexagonal lattice is universally minimiz-
ing with respect to all interaction potentials that are completely monotone functions
of square distance [8, 9]. Regarding the crystallization problem, Theil showed that
the hexagonal lattice is minimizing for a class of Lennard-Jones type potentials [24].
On the other hand, Bétermin, De Luca, and Petrache found a potential (not allowed
in the Cohn—Kumar conjecture) whose crystallization is achieved by a square lattice
[5].

In our two species problem (1.21), the condition b = 1 actually makes the two
species indistinguishable as far as interaction is concerned. It means that the two
species function as one species, hence the equivalence to the one species problem
(1.29). The case b = 0 is dual to the b = 1 case, a point explained below. It is
therefore natural to include both cases.

Our work starts with Lemma 2.1, which states that for us to solve (1.21) it suffices
to minimize the energy among two species periodic assemblies of unit period parallel-
ogram area. Then in Lemma 2.4 it is shown that the latter problem is equivalent to
maximizing a function,

z4+1

(1.30) fo(2) = blog [ Im (2)n(2)| + (1 — b) log ‘ i (5= )n(

z+1>’
2

with respect to z in the set {z€ C: Imz >0, |z| > 1, 0 <Rez < 1}. Here

(131) 77(2;) — G%Zi H (1 o 6271'7121')4
n=1

is the fourth power of the Dedekind eta function.

If b =1, then f, = fi1 and we are looking at the problem studied by Chen and
Oshita [6], and Sandier and Serfaty [23]. In this case, f; is maximized in a smaller set,
{zeC: |z| >1, 0 <Rez < 1/2}. Using a maximum principle argument, Chen and
Oshita showed that f; is maximized at z = e , which corresponds to the hexagonal
lattice. Sandier and Serfaty used a relation between the Dedekind eta function and
the Epstein zeta function, and a property of the Jacobi theta function to arrive at the
same conclusion.

Neither method seems to be applicable to the two species system with b # 1.
Instead we rely on a duality principle, Lemma 3.5, which shows that maximizing fj, is
equivalent to maximizing f1_,. This allows us to only consider b € [0,1/2], and there
we are able to show that fi(2) attains the maximum on the imaginary axis above i,
ie, Rez=0and Imz > 1.

So we turn to maximize f,(yi) with respect to y > 1. The most technical part of
this work, Lemma 4.4, shows that when b = 0, fo(yi) is maximized at y = v/3; when
b € (0,B), fy(yi) is maximized at some y = g, € (1,v/3); when b € [B, 1], fy(yi) is
maximized at y = 1. The theorem then follows readily. The key step in the proof of
Lemma 4.4 is to establish a monotonicity property for the ratio of the derivatives of
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folyi) and fi(yi) with respect to y € (1,+/3). This piece of argument is placed in the
appendix so a reader who is more interested in the overall strategy of this work may
skip it at the first reading.

2. Derivation of f,. The size and the shape of a two species periodic assembly
play different roles in its energy. To separate the two factors write the basis of a two
species periodic assembly as ta = (taq, tas), where t € (0,00) and the parallelogram
generated by « = (a1, as) has the unit area, i.e., |[D,| = 1. This way the assembly
is now denoted by (44,1, Rta,2) With ¢ measuring the size of the assembly (note
|Dio| = t?), and D,, describing the shape of the assembly. The lattice generated by
« is denoted A and the lattice generated by ta is tA.

LEMMA 2.1. Fiz ai,as € C\{0}, Im(aa/a1) > 0, and |Dy| = 1. Among all two
species periodic assemblies Oy, t € (0,00), the energy per area is minimized by the
one with t = t,,, where

20/2mw; + 21/2nw0, /3
2.1) ta:( i v v ) .
> k=1 Vik fDa VIA(Qa,5)(C) - VIA(Qa,k)(C) dC

The energy per area of this assembly is

(2.2)
Teon( Qo0 Uto2)

:3(m+m)2/3<z We/ VIA(Qa)(C) - VIA(Qa )(g)dg)l/g.

7,k=1
Consequently minimization of (1.21) is reduced to minimizing
Vik
23 =3[ S0, @O, 1Dl =1,
7,k=1

with respect to « of unit area.

Proof. Between the two lattices, the functions J4A (€, ;) and Ix (2, ;) are related
by

(24) ItA(Qta,j)(X) = t2IA(Qa,j)(C)u tC =X, C?X € (C7
because of (1.12). Then
%A(Qtoz,lv Qtoz,Q)

2
= t(2v2rwn + 2vFmw) + Y 5 VI (Qu0) (0 - VEer rar) () dx

jk*l Dta
= t(2v27w1 + 237w ) + 11 Z W/ VIA(20,)(C) - VIA(Ra,1)(C) dC.
J,k=1
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The energy per area is

\ZA (Qta,la Qta,Q)
1\2
= (3) Fa(@a)

1 2
n (2\/27rw1 + 2\/2770.)2) 4 ¢2 j%;l % /Da VIA(QW.)(C) . VIA(QO(JC)(C) dc.

With respect to ¢, the last quantity is minimized at ¢ = ¢, given in (2.1), and the
minimum value is given in (2.2).

Later one needs to minimize the right side of (2.2) with respect to «, |Dy| = 1.
This is equivalent to minimizing F(«) with respect to a, |Dy| = 1. Once a minimum,
say au, is found, then compute t,, from (2.1) and make the assembly Q;, o, with
the basis ¢, .. This assembly minimizes (1.21). d

Now that the minimization problem (1.21) is reduced to minimizing F, we proceed
to simplify F(«) to a more amenable form. To this end, one expresses the solution of
(1.12) in terms of the Green function G, of the —A operator as

(25) DO = [ Galc-x)dx
Q;ND,
Here G is the A-periodic solution of
(26) 8GO =A@ e [ GaOdc =0
AeA Do

in C. In (2.6) J, is the delta measure at A, and D,, is a period parallelogram of A. It
is known that

2 9
= i =3l i o+ ) (= ()

) TL((-e (ot ) (1= (wr = E))),

n=1
where
(2.8) e(z) = e**
and
Q2
2.9 = —=.
(29) =

A simple proof of this fact can be found in [6]. Sometimes one singles out the singu-
larity of Gp at 0 and decomposes G into

2
(2.10) Ga(0) = — Lo L L K g (),

27 VA 4lA]

where

)= =g e gt 7 1) Yo (1 (5)

2 4z|A\a1 20[1 12@1 27TC (651

e TGl )0l )

is a harmonic function on (C\A) U {0}.
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The integral term in (1.10) can be written in several ways:

VIO VIO & = [ @) de = [ In@) dx

Dy Qg

(2.12) = /Qk /Qj Ga(C = x) dxd¢.

LEMMA 2.2. Minimizing F(«) with respect to o of unit area is equivalent to min-
1mazing

= o1 + o o az _
(213)  Fla) = Ha(0) + Ga . )+b(GA(2)+GA(2)), IDa| =1,
where A is the lattice generated by o and

2.2
29127715 2712W1W2

2.14 = = )
( ) 7117“% + ’)’227“31 711w% + 72260%

Proof. Given a disc B(§;,r;) one finds

=& 7 T :
—b—2l 4+ 2 — Llogr; if | —&4] €10,r4],
1A<B(fj,rj>><<>={ i v g lesry =51 €(0.mg)
77]10g|<7§j‘ if |<*§j‘>7’j,
r? 21 s

(2.15) — —=log

2

by (2.10) and the mean value property of the harmonic function Hy. Then

) + 7 HA(C = &)

1 2 2
JFm(”ﬂC*fy\ t 3

(2.16)
[ e In(B(&,m))(Q) ¢
B(&;.rj) Y B(&;,r5) B(&;,rj)
4 4 ) 2,6
= WZT;»LHA(O) + o log 2mry T

+ .
8 2 VA 4IA
When j # k and B(&, %) N B(&5,75) = 0,

(2.17) / / Ga(C — ) dxdC = In(B(&.7))(C) dC
B(&k,r) Y B(&j,75) B(&k,rk)

2(,.2,4 4 .42
w2 (rert 4+ rirs)
- T?T]%GA(fj — &)+ ViR T iR

8|A|
Since only the role played by the lattice basis « is of interest, let
] omr;  wrd 2 (r2ry + rir?)
2'18 6277_7710 2 +777 C‘kzwa ' k?
U BV VR sar 07
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which are independent of & when |A| = 1. Then

(2.19) / / A (¢ = x) dxd¢ = wPri HA(0) + ¢,
B(¢;,r5) Y B(&5, TJ)

(2.20) / . )/B()E )GA(C — X) dxd¢ = WQT?TiGA(fj — fk) + Cjk-
ko Tk L

Similarly,

(2.21) /B o

(2.22) /
B(&},,rk)

Ga((—x)dxd¢ = 7'4HA(0) + ¢jj,

\

B(£75TJ)

Ga(C —x) dxd¢ = mrir{Ga(&) — &) + e, J# K,

—

B(fjvrj)

e [ )/ GGl = T GAG 6+ o ik =1.2
PR 5Ty
where
72(r2rd + rir2
(2.24) iy = (J8’“|A|J’“), j k=12

Note that in (2.23) and (2.24) j may be equal to k.
To complete the computation, note that

[ [ ea-wa
Qa1 v Qa1
‘/B(flﬂ”l)UB(Eiaﬁ) /B(flﬂ‘l)UB(Ei,?"l)
[ awadcr [ [ Ga-wdac
B(&1,m1) J/ B(&1,m1) B(&1,m1) / B(§1,m1)

v ] Gac-ddc [ Galc-naac
B(&1,71) B(flﬂ’l) B(flﬂ’l) 3(5177"1

= o(m 2 HA(D) + e1r) + 2(xr A CA (61 — €)) + by / / Ga(C — ) dxdc

Ga(C = x) dxd(

— 2(m2rAHA(0) + 22) + 2 G (62 — ) + cho) / / Ga(C — ) dxdc

=7 rlrgGA(& &)+cio+m 7'17"§GA(§1 &)+ c12
+ 7rirsG(6 — &) + chg + TrIr3G(E] — &) + clo.

In accordance with (1.17) and (1.18) choose

3 1 3
(2.25) &= ! + 10 & = 1 + 10
(2.26) o= Loy 4 > &y = +3
. 2 — 40{1 4@27 2 — 40{1 4@27
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to derive

Fla)y= 3 ”’“/ /MGAC %) dxdC

7,k=1,2

2) ton + )

o]+«
: 2 Z)JFC”JFC/”)

—|—2’}/12(7T r1r2(GA( > ) +GA( 5 )) +012+012>

= (yuum’r] + yaom 7’2)<HA(0) +GA(O[1 ‘5@2))

a a
n(0n(2) - 0(2)
+y11(c11 + i) + v22(co2 + ¢hy) + 2712(c12 + y)

= (yum?rt + ya2m’ry)

[ an(52) 4 2B (0() v ()

+y11(c11 + i) + v2a(can + o) + 2712(c12 + o).

=11 <7T T%HA(O) + +7T27“11GA( 7

+ a2 (7r T‘QHA(O) + +7T2T§GA(

Here Gp(21£92) = G5 (21522) follows from the A-periodicity of Ga. |

Calculations based on (2.11) show

(2.27) Hp(0) = —% log |VImTe (17——2) ﬁ(l —e(n7))?|,
om (G g) =gl ) I (v (0-3))
(2.29) GA(%) = —%log 2e (%) ﬁ(l —i—e(nT))Q‘

n=1
230 6(5) = grtoele (=) IL(1=¢((n=3)r))

To derive (2.27) we have used Tar] | = +/Im 7, which follows from 1 = |Dj| = Im(a7az).

Regarding the four infinite products in (2.27) through (2.30), one has the following
formulas.

ﬁ(l—e(nT ﬁ(ue((n_)T» :ﬁ(l‘ewgl))
I (=)D I L0 ((-3))
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Proof. To prove the first formula, rewrite and rearrange the terms as follows:

(1= etar) T (1+¢((n - 2)7))

3

3
Il

I
s

(e ) I (1= -75)

(o)

For the second formula, consider

(e g o+ T (—e((-5)7))

n=1

Q
3
Il

_

I
13

3
Il
—

8
2

(1 —e(nT))

1

(1—e(2n7)) [T —e((2n —1)7))
n=1

3
Il

I
==E

3
Il

Il
-

n

(1 —e(nT1)).

I
2

n=1

The second formula follows after one divides out [[ -, (1 — e(nT)). 0
These identities will allow us to further simplify F(a). Let

(2.31) H={zeC: Imz > 0}

be the upper half of the complex plane. Define

(2.32)  fioz) = blog | Im(2)n(2)| + (1 — b) log ] Im (%“)n(z ; 1) Lz €M,
where
(2.33) (1-
( ) J;[l e nz
One often writes f; as
(2.34) fo(z) = bf1(z) + (1 = b)fo(2),

where

(2.35) fi(z) =log|Im(2)n(2)], fo(z) = 105%’1““( ;1)”(231)‘

LEMMA 2.4. Minimizing ]t'(a) with respect to a of unit area is equivalent to maz-
imizing fy(z) with respect to z in H.

Proof. By the first formula in Lemma 2.3,

HAO) + G (M%) = — 5 tog|[VEmTe (57) Il (1-e(n"30))]

2

1
1 1 1 1
(2.36) :—Zlog‘lm(T;— )77(7+ )‘——Wlogz

7
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Using both formulas in Lemma 2.3, one deduces

0n(3) + () = ~gpleeoe (57) I +ewrn* [T (1= (2~ 3)7))

n= n=1
B ANEA) ) () (O )y
(2.37) :f%(logum(ﬂn( )|710g‘1m <72 1 7]( )DfﬁlogQ

By (2.36) and (2.37), F(«) of (2.13) is reduced to
(2.38)

Fla) = —%(blog [ Tm(r)n(r)| + (1~ b) log | Tm (TT“)W(

T—;—l)D_l—i—b

from which the lemma follows. O

3. Duality property of f,. The function 7 in the definition of f; satisfies two
functional equations.

LEmMA 3.1. For all z € H,

i

(3.1) Bz +1) = eF2),
(3.2) a(~ 1) =),

Proof. The function 7 in (2.33) is the fourth power of the Dedekind eta function

which is
np(z ( )H 1—enz

SO
n(z) = np(z), z€H.
For the Dedekind eta function, it is known [3, Chapter 2] that

(3.3) np(z+1) = eTnp(2),
(3.4) (= 1) =Vizun()

where +/- stands for the principal branch of the square root. 0
These functional equations lead to invariance properties.

LEMMA 3.2.
1. |Im(z)n(z)| and, consequently, fi(z), are invariant under the transforms

1
z—z+1 and z — ——.
z

2. [Im (222 )n (=
forms

)|, and, consequently, fo(z), are invariant under the trans-

1
z—2z+2 and z— ——.
z
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Proof. The invariance of |Im(z)n(z)| under z — z + 1 and the invariance of
| Im(=H)n(2EL)] under z — z + 2 follow from (3.1). By (3.2) it is easy to see that

(35) i (=2) (=2) | = ImGapnca

so |Im (2)n(z)| is invariant under z — —1.
The invariance of |Im (z)n(z)| under z — z 4+ 1 implies its invariance under
z — z + k for any integer k. Now one deduces
(53]

i (S ()| n
—z—1 —z—1
2z )77( 2z >’
n

!
3

(3.6) = |Im

by applying the invariance of |Im ( ) (z)| under z — z—1, z — f%, z — z—2, and
z— —= successwely This proves invariance of | Im (Z+1)77(Z—'*2'1)| under z — f%. |

There is another invariance that is not a linear fractional transform: the reflection
about the imaginary axis.

LEMMA 3.3. Both |Im (2)n(z)| and |Im (Z:)n(25)| and, consequently, fi(z)
and fo(2), are invariant under z — —Z.

Proof. These follow easily from the infinite product definition (2.33) of 7. d

[

The transforms z —+ 2+ 1 and z — —% generate the modular group I,

Fz{z—}az_i—b:a,b,c,dEZ, ad—bc:l}
cz+d

and I has

(3.7) Fr={zeH: |z|>1, -1/2<Rez<1/2}

as a fundamental region. It means that every orbit under this group has one element
in Frg, the closure of Fr in H, and no two points in Fr belong to the same orbit [3].
The transforms z — z + 2 and z — —% generate a subgroup IV of T,

b
F':{zﬁaz+ el a=d=1 mod2 and b=c=0 mod 2,
cz+d
(3.8) or a=d=0 mod2 and b=c=1 mon}.

It is known in number theory that this group has
(3.9 Fro={z€eH: |z|>1, -1 <Rez<1}

as a fundamental region [10].
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Denote by G the group of diffeomorphisms of H generated by
1 _
z2—>z4+2, z———, z— —Z.
z
Note that I is a subgroup of G but I' is not a subgroup of G.

With the group G, maximizing fj, need not be carried out in H, but in a smaller
set which contains at least one element from each orbit of G. Let

(3.10) W={zeH: 0<Rez<1, |z| >1}
and
(3.11) Wa={z€H: 0<Rez<1, |z| >1};

see Figure 3. Note that Wy is the closure of W in H so 1 o4 Wh.

LEMMA 3.4.
L. |Im (2)n(z)| and fi(z) are invariant under the group T and the transform
Z— —Z.
2. |Im (%)n(z'glﬂ, fo(2), and fp(z) for b € R, are invariant under the groups
IV and G.

3. As the group G acts on H, each orbit of G has at least one element in Wy.

Proof. Parts 1 and 2 follow from Lemmas 3.2 and 3.3. Part 3 follows from Fr-
being the fundamental region of I'” and the transform z — —z € G. ]

It is instructive to understand transforms from the viewpoint of bases. Let a =
(a1,a0) and o = (o}, a)) be two bases of unit area that define lattices A and A,
and two species periodic assemblies (24,1, q,2) and (Qq7.1,072). Set z = 3—? and

’
/ «
2 = 2.

a;

If a and o’ are related by the transform z — 2z’ = z + 1, then

/
Qo _a1+a2

aq a1

and, consequently, there exists £ € C such that of = ko and o = k(a1 + a2). Since
both bases have unit area,

1 =Im(ajas) = |s]* Im(@ (a1 + a2)) = |x* Im(ataz) = |x[*.

So there exists 6 € [0, 27) such that £ = €% and o’ = €% (a1, a1+az). Let o’ = e%a =
e’ (a1, a0). Then o and o generate the same lattice A’ and, consequently, A and A’
are isometric in the sense that a period parallelogram D, of A is just a rotation of a
period parallelogram D, of A’. However the assemblies (24,1, Qa,2) and (47,1, Qo 2)
are usually quite different since in general Ja(Qq,1, Qa.2) # Ja (Qar.1, Qo 2)-

The story changes if a and o are related by the transform z — 2’ = z + 2. This
time not only A and A’ are isometric, but Ja(Qq,1, Qa.2) = Ta (a1, Qo 2) as well
by Lemma 3.4.2.

If o and o are related by z — 2z’ = —1, one can show that (o, o}) = €% (—as, 1),
6 € [0,27). Then A and A’ are isometric since D,, and D, differ by a translation and
rotation. Moreover Jx(Qa,1,Qa,2) = Ja(Qa 1, Qs 2) by Lemma 3.4.2.

Finally if a and o' are related by z — 2/ = —Z, then (o}, a}) = % (a7, —az),
6 € [0,27). Therefore D, and D, differ by a mirror reflection, a translation and
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a rotation, so A and A’ are again isometric. By Lemma 3.4.2, JA(Q0.1,Q0,2) =
jA’(Qo/,la Qa’,Q)-

In summary if z and 2’ are related by an element g € G, i.e., 2’ = gz, then A and
A’ are isometric and Ja(Qa.1, Qa,2) = Ia(Qar 1, Qo 2). For isometric A and A', if A
is a rectangular lattice, then A’ is also a rectangular lattice of the same ratio of longer
side to shorter side; if A is a rhombic lattice, then A’ is also a rhombic lattice of the
same acute angle. Therefore to prove Theorem 1.1, it suffices to find every minimum
of f, in Wy and identify its associated lattice.

In the exceptional case b = 1, since f; is invariant under I'; it suffices to maximize
f1 in a smaller set

(3.12) Ug={z€H: 0<Rez<1/2, |2] >1}
which is the closure of

1
(3.13) U:{zec: |z|>1,0<Rez<§}.

This fact was used critically in [6], but it is not valid if b # 1. The approach of this
paper works for all b € [0,1], giving a different proof for the b =1 case as well.

One of the most important properties of f;, is the following duality relation be-
tween fp and f1_p.

LEMMA 3.5. Under the transform z — w = zﬁ of H,

-1
i) = folw) and fo(z) = filw), z€H, and w="—7 cH.
Consequently, for all b € R,
z—1
= fi— , € H, d w= € H.
frlw) = fie(z), = and w P

More generally, if h: 2/ — w' = j,—ji and g1 : z — 2, go : W' — w are transforms
in G, then
folw) = fip(2), z€H, and w=gyohogi(z) € H.

z
z+1

fi(z) = fi(w')

by the invariance of fi; under I'. On the other hand substitution shows

Proof. The transform z — w' = isin I, so

/

w 1 1 1
= o rrr) = o8 (s ) (rsa) | = 11 ()

fol2) fo(fw’Jrl) os |\ = )N S 3) | = M S

Now apply another transform w’ — w = 2w’ — 1 which is not in I" to find
w+1
fi(z) = fi (T) = fo(w)
and )
@) = h( =) = Ailw),

where the last equation follows from the invariance of f; under w — 7w1 = €l

The composition of the two transforms is z — w’ = ST W= 2u'—1 = jj& 0

Although b is supposed to be in [0, 1] throughout this paper, some properties of
fv, like Lemma 3.5, hold for b € R. If this is the case we state so explicitly.
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Let us write z = = + yi henceforth, and set

(3.14)
Xy(2) = a%iz) = bX1(2) + (1 — b)Xo(2), Yi(z) = 6%@5’2) = bYi(2) + (1 — b)Yo(2),
where
(3.15)

) = g log| (), i) = 5 log T(a)n()]

)= gptos | (S5 o ()| vate) = g e (S5 ) ()

These functions can be written as the following series:

oo

8mn sin 2wnx

3.17 X =
(3.17) 1(2) ; 2™y 4 2™y — 9 cos 2mna’

1 >\ —8mne 2™ 4 87n cos 2mna
3.18 Y ==-—-3
( ) 1(2) y 3 — e2m™y 4 e—2mY _ 2 cos 2mnx’

> drnsinmTn(z + 1)
3.19 X = ’
( ) 0(2) ; ™Y + =Y — 2cosmn(z + 1)
(3.20) Yo(s) = LT g e ™t dmncosmn(x + 1)

y 6 “em™viem —2cosmn(r+1)
We end this section with two formulas that relate f;, on the upper half of the unit
circle to f1_, on the upper half of the imaginary axis.

LEMMA 3.6. Let the upper half of the unit circle be parametrized by u+iv'1 — u2,
uw € (=1,1). Then ¥ 1—u?; parametrizes the upper half of the imaginary axis, and

1—u
92 2
(3:21) Xo(urivi— ) = U=y (V2
1—wu 1—u
— 02
(3.22) Y(u+iv/1—u?) = - “ YH,( Vll 4 z)
— U — U

hold for uw € (—1,1).

Proof. Consider the transform in Lemma 3.5, z - w = jj& With z = x4 yi
and w = u + vi,

22 4+y? -1 2y
3.23 = = .
52 ey U er s
Conversely,
(3.24) _ 1—u?—? _ 2v
’ x_(l—u)z—l—vz’ y_(l—u)2+v2'
Differentiate fi,(w) = f1_s(z) with respect to u and v to find
ox oy
X =X_ — 4+ Y —
b(w) = Xi-p(2) 5+ Yip(2) 5 0,
ox Ay
Y =X_ —+Y_ ==.
b(w) = Xi-p(2) 5+ Yi4(2) 57
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When w is on the unit circle, z is on the imaginary axis. Since fj_; is invariant under
the reflection about the imaginary axis, X7_;(z) = 0 on the imaginary axis. Also

0 V1i—u2 0 —
(3.25) i Y -w % _ _~u
Ou l|w|=1 1—u lwl=1 1—u

from which the lemma follows. 0

4. fp on the imaginary axis. The behavior of f, on the imaginary axis is
studied in this section. Let us record some of the derivatives of f; and fy on the
imaginary axis for easy reference. Let

(4.1) r=e Y.

Then by (3.18) and (3.20),

' I o
(4.2) H(yz)_§_§+;m7
Mi(yi) 1 1672n2r2"
(43) ay - _y2 - nz:l (1 o 7,2”)2 )
%Y ( yz 327303 (120 + A1)
(4.4) o gt Z T T2n)3 ’
(4.5) Vi (yi) — 72 _ Z 64mtnd(r2n 4 4pin 4 67
' dy? =] (1 —r2nyd )
1 7 = dmn(=r)"
(4.6) Yolyi) = - = 5+ Z —
9Yo(yi) 1 = 4772712(—7“)"
4.7 _ ArTn )"
(4.7) dy y2 ; (1—(=r)n)2
(4.8) PYoli) _ 2 & AT ()
6y2 y3 — (1 _ (_T)n)g ’
(4.9) Pholyi) 65 i (=) + 40 4+ (<)
. oy - y — (1— (=r)n)

LEMMA 4.1. For all b € R,
. )
Aty =h(). v>0
Consequently,

Yi(yi) = (—y—ﬂ)n(%), y>0.

Yi(i) = 0.

In particular

Proof. Apply the invariance of f,(z) under z — —1 with z = yi, y > 0. Then
differentiate with respect to y and set y = 1. 0
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LEMMA 4.2. The function y — f1(yi), y > 0, has one critical point at y = 1.
Moreover
Yi(yi) > 0 ify € (0,1),
Yi(yi) <0 if y € (1,00).

Proof. Lemma 4.1 asserts that y = 1 is a critical point of y — f1(yi), y > 0, i.e.,
Y1(i) = 0. Define

(4.10) A(z) = arg(zn(z)) = arg(z) + arg(n(z)).
Note
(4.11) Re(log(zn(2))) = log|zn(2)[, Im(log(zn(2))) = A(z).

Hence A is a harmonic function. We consider A(z) in U and and its closure Uy given
in (3.13) and (3.12), respectively.
On the imaginary axis, for y > 0, since 7(yi) is real and positive,

. ) . ™ 7r
(4.12) Alyi) = arg(yi) + arg(n(yi)) = 5 +0= 2,
On the line z = 1, arg(n(z)) = Z since e2m(zHvii g real, and
1 . m
(4.13) A<§ + yz) = arctan(2y) + 5

In particular

&

1 . T .
(4.14) A(5 +yz) >3 ity >

Asy — oo in z = x + yi,

1
(4.15) lim A(x + yi) = T, uniformly with respect to z € [O, f]
y—00 2 3 2

Now consider A on the unit circle. By the functional equation (3.2) one has, in polar
coordinates z = re*?,

tog(rln(re®))) = log (+[n( ~ ~e=)|).

By the definition of 7, one sees that |n(—¢)| = [n(¢)| for all ¢ € H. Therefore

log(r|n(re?)|) = log (}’n<lei9> D

r r

Differentiating the last equation with respect to r and setting r = 1 afterwards, one
derives

0 o))y
| _ tog(rln(re®))) = 0.

One of the Cauchy—Riemann equations in polar coordinates for log(zn(z)) is

& Re(log(zn(=))) = + o Im(log(2n(2))).
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By (4.11) ;
—A 0

80 ( ) )
namely, A is constant on the unit circle. Since 7(i) is real and positive, A(i) = 7.
Hence
(4.16) A(z) =2 if|z|=1and = < argz < ~.

2 3 2
By (4.12), (4.14), (4.15), (4.16), and the maximum principle,
(4.17) A(z) > g, zeU;
by the Hopf lemma,
(4.18) 9 A(z) >0
’ 0z lz=0,y>1 ’
By a Cauchy—Riemann equation
(4.19) Y7 ( z‘)——2 A(z) <0, y e (1,00)
’ WY = "5 =0,y>1 4 e
For y € (0,1), by Lemma 4.1,

1
(4.20) Yi(yi) = (f —2)}’1( ) >0, ye(0,1).

Y Y
This completes the proof. 0

LEMMA 4.3. The function y — fo(yi), y > 0, has three critical points at ?, 1,
and /3. Moreover
yi) >0 if y € (0,V3/3),
yi) (V3/3,1),
yi) >0 ify € (1,V3),
yi)<0¢fye(f 00).

Yo
Yy <0ifye
Yo
Yo

(
(
(
(

—l—yitoé—i—ﬁ,so

1 . 1 1 )
log’y"(ﬁ “”)’ = k’g\@”(é + @)\

Differentiation with respect to y shows that

(4.21) Yl( + yz) - —4—;21/1 (% + Z—y)

One consequence of (4.21) is that

(4.22) Yo(i) = %Yl (% + %) = 0;

namely, that 1 is a critical point of y — fo(yi).
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The combined transform of z — w = —l € I'and w — —w maps the line L 5 tyito
1, the unit circle centered at 1. The invariance of f; under this transform

2 dyi
fl( +y’) _f1<4y2+1 + 4y2+1)'

Differentiation with respect to y shows that
1 2 4yi 0 2
(g +v) =x( )3 (1)
g v N v T 1oy \m2+ 1

2 4yi 0 4
(g1 e ) oy (e 1)
dy? +1 42+ 1/ 0y \4y? +1

4y2+1 + 4y2+1 )
yields

By (3.17)
1
X1(§+vi) —0, v>0.

Hence, with y = ?, one deduces
1 1 3
(4.23) Yo(V3i) = 511 (7 + gz) —0,
e., V3 is a critical point of y — fo(yi). By (4.21), i is also a critical point of
y — fo(yi).
Now show that
(4.24) Yo(yi) < 0 if y € (V/3,00).

This fact was established by Chen and Oshita in [6]. Here we give a more direct
alternative proof.
Consider the expression for 2XeW? n (4.7). Note that the series

Oy
4.25 i i)
4:29) 2= =

is alternating. The only nontrivial property to verify is that the absolute values of
the terms decrease, and this follows from the following estimate:

n27,.n (n+1)2rn+1 (n+1)2 n+1< n2 ( ( 7,) ) )
(

A=(=rm2 @A=(nm)2 Q= (=2 \(n+1)2r (1 (-r)"H
(n+1)2 n+1 (efw (1_|_e—\f7r)
(A= (=r)m)2\ 4 (1—e2v3)2
(7’L+1) n+1
(4.26) -— —— x56.68...>0.
(L= (=r)m)?
This allows us to estimate 8Y377(j’i) as follows:
Yo (yi) 1 Am2e ™Y 1 9 _
JONYY) - PR T oy Ty
oy < 2+(1+e‘”y)2< y2+ e
1
= —| — -y
2 ( 1+ 4my’e )
1
< —( = 2 —‘n'\/g
S ( 1 +47r )
1
(4.27) < E x (—0.8388...) < 0.
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Here, to reach the fourth line, one notes that
(=1 +4myPe” ™) = dme ™y(2 —my) < 0 if y > V3.

Since Yp(v/314) = 0, (4.27) implies (4.24).
By (4.24) and Lemma 4.1, one deduces

3
(4.28) Yolyi) >0 if ye (0,£).
3
Next consider Yy (yi) for y € (1,v/3). By (4.8)
?Yo(yi) 2 ) +rn) o
(429) T = 73 g )n)3 , r=e y.

It turns out that the series

(4.30) i (=)

n=1

which is part of (4.29) is alternating. To see that the absolute values of the terms in

(4.30) decrease, note

n3rm (n+1)3pn+1 _(n+ 1)3pntt n? (1—(=r)")3

(T A=) A= ()P L+ 13 (1= (—r)H)3

and it suffices to show that the quantity in the brackets is positive. For y > 1,
(1+e ™)

n? 1—(—r)™)3 e
(n+1)3r - (1( _ (E,r)v)z-&-)l)?) > e ﬁ =2.8925...—1.1417... > 0.

An upper bound for (4.30) is available if one chooses two terms from the series:

o~ (=) —r 82
4.31 < '
o ; (I=(=r))* =~ (1+7r) N (1—172)3
Then (4.29) becomes
PYolyi) 2 43y 397372
o rolyr) 4 43
o e - Z
2 4m3r 327372 3 2n
<E_(1+r)3+(1_r2 Zn
_ 2 A n 32m3r? N 471'37“2(1 + 4T + )
3 (143 (1—r2)3 (1= rp3(1—r2)
<2 {L}H { 327 N AmS(1+de > e 7))
y3 (1 + e—W)3 (1 _ 6—277)3 (1 _ 6—77)3(1 — €_2W)4
2
= E —Air+ A27’2
(4.32) =7 K(Y),
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where we have used the summation formula
o0
1 t(1 + 4t + t2)
4.33 3n :t(t[t(—) } ) = 7 |t/ <1,
(4.33) ;n 1—t/ude/e (1—-1t)* i

to reach the third line, A; and As are given by

473

3273 A73(1 + 4e~27 4 ¢—47)
Ay = TPt 0PI et = 1,141.50. ..,
and & is
2 2e™ .
(4.35) k(y) = P A+ Aor = i Ay + Ase™ ™Y,

Regarding x, one finds

K (y) = e™ (2n%y ™% — 12my~ ! + 2471y ~0) + w7 Age™ ™Y
=2e"y P ((my — 3)2 +3) + Az ™ > 0

and
k(1) = —13.63... <0, k(V3)=—-1547...<0.
Hence
(4.36) k(y) <0, yel[1,V3],
and by (4.32)
(4.37) 82?(;(2“) <0, yell,V3

Since Yy(1) = Yp(v/3) = 0 by (4.22) and (4.23), (4.37) implies
(4.38) Yo(yi) > 0 if y € (1,v3).
By (4.21), (4.38) implies

3
(4.39) Yolyi) <0 if ye <£,1).
3
The lemma follows from (4.28), (4.39), (4.38), and (4.24). d

For b between (0,1), the next lemma shows that the shape of f, is similar to fo
if b is small and similar to f; if b is large. The borderline is B given by

e 0.2082...

o(D) _ 9%:()  0.2982...— (—1.298...)

oy Jy

=0.1867....

(4.40) B=

The numerical values in (4.40) are computed from the series (4.3) and (4.7). One

interpretation of B is that if b = B, the second derivative of y — fg(yi) vanishes at

y=1,ie.,

Y (i)
dy

(4.41) = 0.
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LEMMA 4.4. The following properties hold for y — fp(yi), y € (0,00).
1. When b € [0, B), the function y — fp(yi), y > 0, has exactly three critical
points at é, 1, and qy, where gy € (1,+/3]. Moreover

(a) Yo(yi) >0 ify € (0, ),
(b) Ya(yi) <0 ify € (5, 1),
Yy(yi) >0 ify € (1,q0),

()
(d) Yu(yi) <0 ify € (g, 00).
As b increases from 0 to B, q, decreases from /3 towards 1.
2. When b € [B,1], the function y — fp(0,y), y > 0, has only one critical point
at 1, and
(a) Yy(yi) >0 if y € (0,1),
(b) Yi(yi) <0 ify € (1,00).
Proof. The shapes of fi; and fy are already established in Lemmas 4.2 and 4.3.
These lemmas imply that y = 1 is a critical point of y — fi(yi), y > 0, i.e.,

(4.42) Y,(i) =0 for all b € [0,1]
and, moreover,
(4.43) Yy(yi) <0 ifbe (0,1 and y > V3.

To study Yy (yi) for y € (1,v/3) and b € (0,1), write Y, = bY; + (1 — b)Y} as

) , 1 — b\ Yo(yi)
4.44 V(i) = 0¥ (i) (1+ (=) 52 )
(149 i) = i) (1 () 32
Recall Y1(yi) < 0 for y > 1 from Lemma 4.2. Regarding the quotient )}283’ since

Yo(i) = Y1(i) = 0, 28; is understood as the limit

Yoli) . Yolyi) ot 02982,

Vi) weiYi(yi) 250 T —1298.
Y

(4.45) =-0.2297...<0

evaluated by L’Hépital’s rule. Since Yy(v/34) = 0 by Lemma 4.3,

Yo (V/314)
V3

(4.46) 50

=0.

Lemmas 4.2 and 4.3 also assert that Y;(yi) < 0 and Yo(yi) > 0 if y € (1,/3), so

Yo(yi)
Y1 (yi)

(4.47) <0, ye(1,V3).

However the most important property of this quotient is its monotonicity on (1,+/3),
namely,

(4.48) %(283) >0, ye(1L,V3).

The proof of (4.48) is long and brute force. We leave it to the appendix. The first
time reader may wish to skip this part.
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Return to (4.44). Since Y;(yi) < 0 on (1,00) and 152 € (0, 00) when b € (0,1),
(4.48) implies that Y;(yi) can have at most one zero in (1, /3) at which Y3 (yi) changes
sign. Because of (4.46),

(4.49) 1+<1bb)§?§\/\§21+0>0, be (0,1).

Hence Y (yi) admits a zero in (1,+/3) if and only if

(4.50) 1+ (IT_b) }Y,‘l’gi <o.

The condition (4.50) is equivalent to
(4.51) b< B

by (4.45). We denote this zero in (1, v/3) of Y3 (yi) by ¢, when b € (0, B). It is also clear
from (4.44) and (4.48) that as b increases from 0 to B, g, decreases monotonically from
/3 towards 1. This proves parts 1(c), 1(d), and 2(b) of the lemma. The remaining
parts follow from Lemma 4.1. 0

5. fp on upper half-plane. We start with a study of the singular point z = 1.
Recall the set W from (3.10).
LEMMA 5.1.

lim sup X (z) = 0.
W3z—1

Proof. Note that if z = 2 4+ yi € W, then, when y < 1,

(5.1) 0<l—a<1l—+1-92

So W 5 z — 1 is equivalent to that z € W and y — 0.
We first show that

(5.2) lim sup X;(z) < 0.
W3z—1

Namely, for every € > 0 there exists § > 0 such that if z = x4+ yi € W and y <,
then X3(2) < e.

Recall .
8mn sin 2mnx
X =
1(2) ; e2m™y 4 e=2mnY _ 9 cos 2mna

from (3.17). Separate this infinite sum into two parts according to whether ny* < 1
or ny2 > % Write

8mn sin 2mnx

(5.3) an(2) = €27y 4 e—27ny — 2 cos 2mna’
s = S o

n<1/(2y?)
(5.5) A) = > anl2),

n>1/(2y?)
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so that
(5.6) X1(2) = A(2) + A(z).
Consider the case n < ﬁ Since 1 —+/1 — y2 < y®> when y € (0,1) , (5.1) implies
(5.7) 0<1—z<y?

Then 0 < 2mn(1 — z) < 2mny? < 7 and sin27mnz = —sin2mn(1 — x) < 0. Hence,
every term a,(z) in A(z) is negative and, consequently,

(5.8) A(z) <0.
When n > ﬁ,

8mn 1
< .
627rny — 92 T ey

(5.9) lan(2)| <

To see the last inequality, note

8mn 8mn 2(211 2) o 167 (ny)?

< = ="
eQﬂ'ny -9 — 627rny _ eQTrny -1

. 2 .
There exists tg > 0 such that for all ¢ > tg, 61227{21 < e—,lr, Since n > ﬁ, ny > %
1

By choosing y < 555 We have ny > to and the last inequality of (5.9) follows. Then

_ _1_
e ﬂ—yhyz]

1—e ™

(5.10) EIBTER e

n=1/(2y?)

—0 asy —0,

where [ﬁ} is the integer part of i The claim (5.2) now follows from (5.8) and
(5.10).
Next we claim that

(5.11) lim sup Xo(z) < 0.
Woz—1

This is proved by a similar argument whose details are omitted. By (5.2) and (5.11)
we obtain that

(5.12) lim sup X;(z) < 0.
W3z—1

From the series (3.17) and (3.19),
(5.13) Xp(1+yi)=0, y>0.
This turns (5.12) into

(5.14) lim sup X (z) =0,
Woz—1

proving the lemma. 0
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Recall that for b € [0, B), the largest of the three critical points of the function
y — fu(yi), y > 0, is denoted q,. This g is a maximum and 1 < ¢, < v/3. By
convention if b € [B, 1], we set g, = 1 which is the unique critical point (a maximum)
of y = fu(vi), y > 0.

If b € [B,1], then 1 —b € [0,1 — B] and ¢1_ is defined as above. The transform
4y —14+2q1-pi

z=x+yi = w=u+viin (3.23) sends the point z = ¢1_pi to w = PR
1-b

Define

. q%—b_ 1

5.15 pp= b~
(5.15) TR+

Then

2 .
qi_p — 1+ 2q1pt . 5
5.16 =py+iy/1—p;.
( ) q%—b 1 Db by

LEMMA 5.2. Let b € [0,1 — B] and W be given in (3.10). Then Xp(z) < 0 for all
zeW.

Proof. From (3.17) and (3.19) one deduces

(5.17) Xp(yi) =0 and Xp(1+yi) =0, y>O0.

Also

(5.18) li_>m Xp(2) =0 uniformly with respect to z € R.
y—00

On the unit circle, we know from (3.21)

1—=z

V1 — 22 V122
(5.19)  Xp(z+iv/1—a2) = 1_; YH,( z z) ze(~1,1).
When b€ [0,1 - B],1—-0b¢€ [B,1]. By Lemma 4.4.2,

V1—2a?

o
1-b 1—2

z) <0 if =€ (0,1).
This shows

(5.20) Xp(z +iv/1—a2) <0 if ze(0,1).

Since X, is harmonic in W, the lemma follows from (5.17), (5.18), (5.20), and Lemma
5.1 by the maximum principle. 0
We are now ready to prove the main theorem.

Proof of Theorem 1.1.

CramM 1. Let b € [0,1 — B]. Then f,(z) on the upper half-plane is maximized at
qpt and the points in the orbit of g7 under the group G.

The second plot of Figure 3 demonstrates our argument. By Lemma 3.4.3 it
suffices to consider f, in Wy. In W Lemma 5.2 asserts that fj, is strictly decreasing
in the horizontal direction, so it can only attain a maximum in Wy on the part of the
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unit circle in the first quadrant, i.e., {w € C: |w| =1, 0 < Rew < 1, Imw > 0}, or
on the part of the imaginary axis above ¢, i.e., {z€ C: Rez =0, Imz > 1}.
First rule out the unit circle. By Lemma 3.5

z—1
z+1

(5.21) fo(w) = fie(2), z€eH, w= eH

Take z = yi to be on the imaginary axis. Then

y? —1 2y
w=5— i
y2+1 0 241

is on the unit circle. As z moves from 7 to oo upward along the imaginary axis, w
moves from ¢ to 1 clockwise along the unit circle. When b € [0,1— B],1—-0b € [B,1].
Since y — f1_p(yi) is strictly decreasing for y € (1,00) by Lemma 4.4.2, fp(w) is
strictly decreasing when w moves from ¢ to 1 clockwise along the unit circle. Then f;
cannot attain a maximum on {z € C: |w|=1, 0 < Rew < 1, Imw > 0}.

Therefore in Wy, f, can only achieve a maximum on

{z€C: Rez=0, Imz > 1}.

By Lemma 4.4.1, it does so at gyi. This proves Claim 1.

By Lemma 4.4.1 and the convention that ¢, = 1 if b € [B, 1], three possibilities
exist for g, when b € [0,1 — B]. When b = 0, ¢, = /3, which proves part 1 of the
theorem. When b € (0, B), q, € (1,v/3), which proves part 2 of the theorem. When
b e [B,1— B], g =1, which proves part 3 of the theorem.

Now consider the case B € (1 — B, 1].

Cram 2. If b € (1 — B, 1], then f; on the upper half-plane is maximized at
py +iy/1 — pi and the points in its orbit under the group G.

By Lemma 3.5, the duality property, we have

z—1
=J1- €H, and w= € H.
fo(w) = fip(2), = cand w ="
If w, maximizes fp, then z, = _“’Tj_ll maximizes fij_p. Since b€ (1—-B,1],1—-b €

[0, B). By Claim 1, z, = q1_p¢ or a point in the orbit of ¢;_p¢ under G. Under the

transform w = zﬂ, Zx = q1_pt corresponds to
. 2 .
q1—pt — 1 _p — 1421yt . 2
5.22 Wy = - = =pp+iy/1—
( ) * q1-pi + 1 qgib +1 Po Py

by (5.16). This proves Claim 2.

When b € (1 — B,1), ¢1- € (1,v/3) by Lemma 4.4.1. Then by (5.
py + iy/1 — p7, identified as a maximum of f, in Claim 2, is in {z € C : |
1, § <argz < §}. This proves part 4 of the theorem. Finally when b =1, g0 = V3
and

. 1++/3i
(5.23) p1+iy/1—pf = —

by (5.16). This proves part 5 of the theorem. d
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Appendix.

Proof of (4.48). Here we prove the monotonicity of the function y — 1}283’ y €

(1,4/3), by showing

(A1) gy@?gg) >0, y € (1,V3).

Our proof uses the following L’Hoépital’s rule like criterion for monotonicity. See [2]
for more information on this trick.

CLam 3.
0 (Yo(yi) 6Yg(?ﬂ)
A2) —(=2 0 on (1,V3) if Y__ s strictly i i 1,V3).
@2 0y<Y1(yz’)> on (1,V3) if y — ayéglyl) is strictly increasing on (1, v/3)

Let y € (1,4/3). There exist y; € (1,y) and y2 € (1,y) such that

9 (Yo(yi)) _ ay?)iif’“iﬁ(yz‘) —yo(yi)aYéi;yi)

Ay \Y1(yi) Y (yi)
2 (W N Yo(yi)>
Yi(yi) \ 23 Yi(yd)
o5 (8’%” _ Yo(yi) —Yo@)
Yi(yi) — Yi(2) %‘Ejyi) Yi(yi) — Y1 (i)
Y1 (yi) <8Yo(yi) OYo (ya21) )

Jy o9y 9y
2% 3 Y7 (yi Y1 (y21
18(511) (y _ 1) él}i/yl) 16(521)

since Y7 (i) = Yy(i) = 0. Because ayéiglyi) does not change sign in (1,/3),

8Y1 (y’L)

A3 —% .
(A.3) ayé(ém) y—1)

Moreover, since

8YO (’le)

_9y

8Y1 (y’L)
Oy

is strictly increasing,

Yy (yi) Yo (y21)

oy Jy
(A4) AYi(yi))  9Yi(y2i) > 0.
oy Oy

Claim 3 then follows from (A.3) and (A.4).
We proceed to show that

(A.5) o O ) - _ % % W W 50, ye(1,V3)

P ( dYo (yi) ) *Yo(yi) OYa(yi) _ 9Yolyi) 9%Ya(yi)
Y, (1) N2
Tyy? (33%?(;/1))
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Define

_ 0%Yo(yi) OV (yi)  9Yo(yi) 9*Yi(yi)

By (4.3), %gj’i) < 0 on (0,00). Therefore to prove (A.5), it suffices to show

(A7) T(y) >0, y € (1,V3).

We divide (1,+/3) into two intervals: (1,3) and [3,v/3), where 8 € (1,/3) is to
be determined. First consider T'(y) on (1,3). Lemma 4.1 asserts that for j =0, 1,

Vi) = (- )% ().

Differentiation shows that

OYi(yi) o _au iy, _40%i(2)
(A8) b =) reeg

Vi) _ o ay (Y _gs0% ) (ONi(5)
(4.9) -~ () —e Tt v e

Taking y = 1 in (A.9) and using Y} (i) = 0, one obtains

0%Y; (i) 0Y;(4)

A.10 =-3 j =1,0.
(A.10) R oy T
In particular (A.10) implies that
(A.11) T(1) =0.

Next consider the derivative of T,

_ 0Yo(yi) M (yi)  9Yo(yi) 9°Yi(yi)

A.12 T’
(A12) (1) = T T - SR

It is clear from (4.3) and (4.5) that

(A13) dY1 (yi) <0, 231 (yi)

oy By3 <0, y>0.

Similarly to the argument following (4.30), one finds the series in (4.7) to be
alternating when y > 1. Therefore,

Yo (yi) 1 4xZe™y 16m2e=2my

> —— .
A e A

(A.14)
We will later choose 3 € (1,v/3) so that when y = 3, the right side of (A.14) is
positive, namely, choose 5 to make

1 N 4r2e—h 1672e—278
B2 (e (1-e2)

(A.15) 5> 0.
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Since
(A.16) ag?y(jﬂ) <0, ye(1,V3)
by (4.37), the condition (A.15) implies that
(A.17) 8Yg(yyi) >0, ye(LA).
Regardmg (3 V) write it as
(As 18) ; oo 4 n(
= X g o Y X G
where
(A.19) r=e Y

as before. Clearly, the second series in (A.18) is positive for all y > 0. One can also
show as before that when y > 1, the first and the third series in (A.18) are both
alternating. Pick three leading terms from the first series and one term from each of
the second and the third series to form an upper bound:

1 *Yo(yi) - 6 Lo 1672 N 81r®  4r? N 3
47t Oy? drtyt - 1+t 1—=r2)* Q1+t Q+r)?* (1474
6 r 1672 4r?
- - gord -
4riqyt + (14+r)* (1—r2)* +oar (1+7r)*
6 r

_47r4y4 + (1 —r2)4
: (1 — 24r 4 10472 — 2873 — 3117 — 415 + 49710 — 328,° + 82r10)

_ 6 n T (
drtyt (1 —r2)4
6 1

2
(A.20) e M (=T (1 —24r +10472).

1 — 24r 4 104r?)

Denote the last line by

6 1 -7 —27 —3m
(A.21) oW) =~ s T T (67 — 24072 4 1040737,
Compute
24 e
/ _ -7 —2m
(A.22) o'W = s + T ( S 14 48e7™ — 312 y)

and consider the quantity in parentheses,

(A.23) P(y) = —1 + 48~ ™ — 312¢ 2™V,
Since ¢'(y) = me” ™Y (—48 + 624e" ™) < 0 if y > 1,

(A.24) o(y) > 6(8) if y € (1,5).
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If one can make ¢(8) > 0, namely, if

(A.25) —1+48¢™™ — 31272 > 0,
then
(A.26) ¢(y) >0, ye(LB).

Consequently, by (A.22)

(A.27) a'(y) >0, ye(1,0),
and
(A.28) a(y) <a(B), ye(l,p).

This shows that

23Yo(yi)

(A.29) 5

< 47r40(ﬂ), y € (1,8).

If one can choose § so that o(8) < 0, namely,

6 1 - —27 —3m
(A.30) " arigl + (1—e 2r)s (e 7 —24e7 1+ 104e ﬁ) <0,
then
¥V (yi)
A.31 —_— 1,5).
(A.31) <o ye )

Following (A.13), (A.17), and (A.31), one has that
(A.32) T'(y) >0, ye(1,p).
y (A.11), (A.32) implies that
(A.33) T(y) >0, ye(1,8)

provided (A.15), (A.25), and (A.30) hold.
Next consider T'(y) for y € [3,00). Introduce

. A (2k — 1)r2k1
(A.34) d(y) = Yo(yi) — Yi(yi) = ~ — Z Wv
= 42 (2k — )27“%_1
(A.35) d'(y) = Z %-1\2
— (L4l
) 47T3 2% — 1) ( p2k—1 _’_7,2(21971))
(A.36) d"(y Z (1 + r2h—1)3 '

k=1
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Then by (4.3), (4.4), (A.35), and (A.36),

Y1 (yi) Y1 (yi)
T _qn ori(y:) I Yi(yi)
W) =2 ) T
- o 472 (2k — 1)%p2k—1 (W(Qk —1)(1 — 721 - g)
= 2 y2(1 + 712k—1)2 1+ 7-21@71 y
(A.37)
+ i i 167°(2k — 1) (2n)*r> 7271 ((% —D(L - (14 7“2”))
o P2 1)2(1 = r2n)2 14 2kt 1 —r2n
(A.38)
=N+ 30N drn,
k=1 k=1n=1

where ¢; and dy,, are defined by the terms in (A.37).
Regarding cy, because, with y > 1,

T2k —1)(1—r2*-1 2  x(1l-7) m(l—e™7)
_Z> ) —2>0
1+ r2k-1 y 147 o 1+e ™ >0
one has
(A.39) ¢, >0 for all k.

The terms dy,, have the following property:
(A.40) din >0 ifk>n, di, <0 if k<n.
To see (A.40), define

J(+(=r)’)
A4l i(r) =—=——7——
( ) p] (T) 1— (—T)j

so that the quantity in the second parenthesis pair of (A.37) is pax—1(r) — p2n(r). The
claim (A.40) follows if p;(r) is increasing with respect to j. To this end consider

_ 1= (25 +1)(r+ 1)(—r)j + 20+l
(A.42) pi+1(r) — p;(r) = (1 — (=r)it) (1 = (—=r)9)

This is clearly positive when j is odd since 0 < » < 1. When j is even, denote the
numerator in (A.42) by

() =1—(2j + 1)(r + 1)1 4 r2+L,

Then ' 4
Wir)y =i+’ (=i — G+ r+r77.

AsO<r<1,
= GH+Dr+r T < —j— G+ Dr+r=—j—jr<0.
Hence y(r) < 0 for 7 € (0,1). Moreover

i(r) > 1= 2(2j + 1),
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SO
pi(e™™) >1-2(2j+1)e ™ >0

for all j > 1. Therefore p;(r) > 0 since r € (0,e~ ™) and (A.40) is proved.
By (A.40) drop the positive di,’s to bound the double sum in (A.34) from below
by

=1 n=1 = k=1n=k+1

First consider >~ d

1675 (2k — 1)2(2k)2r* =1 /(2k — 1)(1 — r2F=1)  2k(1 + r?F)
(A.44) drr = H—1\2 2%\ 2 ( 2k—1 - 2k )
(14 r2k=1)2(1 — r2F) 1+ 1—r
For y > 1,
Q421 =) =147 (1 —r =)
>1+4+r2 11 —r —1?)
>1+ 7“%_1(1 —e T — 6_2”)
=1+7r*71x09549... > 1.
Also, when y > 1, both (4I;+2%; — and 4’" % are decreasing with respect to k. Hence

(k-1 —r*7h) 2k 4 (k-2 Ak

1 + p2k—1 11— 2k 14 p2k=1 ] _ 42k
2r 472

> —1-— -

- 1+r 1—172

S 2e7T 4e~2"

l+e ™ 1—e 27
- (1 +e*”)
o\l —e /)

One estimates

T4e ™Y e—
I;dkk>—167r (1 )Z%_l )2(2k) 274k
:—647r5(1+e ”) r3(1 + 31r% + 5578 + 9r12)
1—e (1 —r4)3

(A.45)

with the help of the summation formula

(A.46) i(Qk)Q(Qk —1)2ptk=l = %(T(T_l (7“(1 _1T4>7,),)T)T

k=1

4r3(1 + 31r* + 5578 + 9r12)
(1—ri)> '
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Next consider the double sum on the right of (A.43). Dropping the first term in
the second parenthesis pair of (A.37) one obtains

2= 167°(2k — 1)2(2n)2p2n 2Rt on(1 4 120)
(A.47) Z Z d’m>z Z 1+T2k D)2(] — y2n)2 (_ 1_ 20 )
k=1n=k+1 k=1n=k+1

Forn>k+1,

(1 + T2k_1)(1 _ ,,,271) =14+ ,,,2’6—1(1 _ ,,,2n—2k+1 o 712n)

e I e

Consequently

12" - 1

(14 r2F=1)2(1 — p20)3 = (1 4 p2k=1)(1 — r2n)2
1
1 4 2kl ((1 —r2n)2 4 p2n—2k+1(_2 4 rzn))

1

< < L
T 1421 = r2)2 = 2r3)

Return to (A.47) to deduce

i i din > — i i 167°(2k — 1)2(2n)3r2n+2k-1

k=1n=k+1 k=1n=k+1
[o olENNe o}
> — Z Z 1287°(2k — 1)2pSyp2nt2k-1
k=1n=2
r3(8 — 5r? + 4rt — )
= — 1287° Qk )2 2k
kz:l ( (1 _ 7n2)4 )
3 8
e Z 1287° (2k — 1)%p2k+3 ﬁ)
k=1 <(1 —e )
102475 5(1 2 4
(1—e2m)4 (1—r2)3

We have used the summation formulas

nan) S (o)), = T
) 3ok 1 = () ) = O

=
I

1

to reach the third line and the last line, respectively.
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By (A.38), (A.39), (A.43), (A.45), and (A.48), taking two terms from >, cx
and using 1 < y < v/3, we find

2 _ 2,3 _ 23
() > 42y (77(1 r) g) 36mr (371'(1 ) g>
y2(14+7r)2\ 1+7r Y 21 +7r3)2\ 143 y
64 5(1 + e‘”)r?’(l + 317 + 5578 + 9r12) 3 10247° (1"5(1 + 672 + 7“4)>
T\l (1— 1) (1—e 2t (1—12)3
- 42y <7r(1 -r) g) 36723 (37r(1 —e ) 2)
Y2 (14+7r)2\ 147 y 3(14+e3m)2\ 14e37
1 - 3 1 1 —4r —8m —127
—6471'5( +e )7‘( + 3le™*™ 4 55¢757 + 9e )
l—e ™ (1 —e—4m)5
B 10247° (7“36_2”(1 +6e72" + 6_4”))
(1—e2r)i (I—e2m)3
(A.51)
_ 43y (7‘(‘(1 -r) 2) A,
A+ T4r oy
where
B 3672 (371'(1 —e73m) B 2)
- 3(1 + ef?m)z 14 e-37
o (1 + e‘”) (1 + 31e™47 4+ 55¢=57 4 9e~127)
l1—e " (1 —e=4m)5
10247 (e*%(1 + 62 4 e*4ﬂ)>
(1—c2r)t (1—e2m)3
(A.52) = —21,07761....
Continuing from (A.51), one has
mir? dr 8 dr 8 Ar(1+r)3
b () (3 )
(A.53) (y) > 1+r3\\yz  y8)" 2 + v T

Bound the last term by

Ar(1+7)3 < Ae™™B(1 4 e7™8)3

(A.54)

2 - 2
and define
4 8 47 8 Ae™™B(1 4 ¢778)3

(A.55) v(y) (y2 yg)e (y2 y3> n S
so that

202
A. T .
(A.56) (y) > (Hr)gV(y)
Regarding v(y), one finds

2 \2 8 8T 24
A. / — oY, —3 4 2 = ° on o= ]
(A.57) V() = ey~ (4 (v 2ﬂ)+y)+y+y4>o
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Then (A.56) implies

22
(A.58) T(y) > e v(B),
where
4 8\ 47 8 Ae~TB(1 + e~ 83
(A.59) v = (- 55)e - (G + ) + e

Therefore if we can find 8 so that v(3) > 0, namely,

4 4 Ae~™B —mB)3
wo () () AT
then
(A.61) T(y) >0, yel[B,V3].

In summary, to invoke (A.33) and (A.61) one must choose § so that (A.15),
(A.25), (A.30), (A.60) all hold. Our choice is

(A.62) B =1.08

at last. One readily checks the four conditions:

1 Am2e—B 16m2e—278
A.63 - - =0.2058... > 0;
(A.63) 32 + (1+e )2  (1—e278)2 [g=1.08 -
(A.64) —1+48¢™™F — 312¢72"F =0.2608 - -- > 0;
B=1.08
(A.65)
6 1
- —B _ 94e=278 | 104 —3”5) = —0.0007930. .. < 0;
4mrd B4 + (1—e2m)4 (e ¢ 0% 3=1.08 <5
(A.66)
4r 8 4r 8 Ae™™B(1 + e78)3
S ”ﬁ—(— —) =35.20... > 0.
(52 53)6 )T 72 =108 ”
The proof of (4.48) is complete. d
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