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Abstract—Extensibility is an important design goal for soft-
ware frameworks that are expected to evolve in a vari-
ety of dimensions. Callback mechanism is utilized extensively
in large frameworks to achieve extensibility. However, call-
back mechanism introduces implicit control-flow dependencies
that make program comprehension and analysis difficult. This
paper presents an automated approach for detecting deep
bugs/vulnerabilities that involve callbacks. Our approach consists
of several stages to balance scalability and precision. Specifically,
it uses a light-weight static analysis for extracting callback related
interactions between the application modules and the framework
modules. This information is used to extend the basic call graph
of the application modules to incorporate implicit call chains due
to callbacks. The second stage, summary mode, summarizes bug
relevant data-flow facts for paths that start at callbacks. The
third stage, summary-aware mode, uses the extended call graph
to incorporate data-flow facts due to implicit paths that lead
to the callbacks and detects deep bugs. We have implemented
the presented model extraction and bug detection approach
in a framework called MOXCAFE and applied it to Linux
device drivers. Using our approach, we could detect several deep
vulnerabilities.

Index Terms—Deep bugs, API misuse, callbacks, static analysis,
inter-procedural, path-sensitive, model extraction, Linux kernel,
vulnerability.

I. INTRODUCTION

Large frameworks use the callback mechanism to support
extensibility. A typical application module1 defines a set of
callbacks and communicates with the framework through a
well-defined Application Programming Interface (API), which
provides functionalities such as registering the callbacks and
requesting various services. An important aspect of the call-
back mechanism is introduction of implicit control-flow and
data-flow dependences. As any implicit programming mecha-
nism, callbacks make program comprehension and automated
analysis difficult, which can potentially give rise to deep
bugs. We can broadly define deep bugs as those that may
be triggered by a specific input or system state and cannot
be easily spotted via code reviews due to various types of

This work was partially funded by the National Science Foundation under
grant CNS-1815883 and by the Semiconductor Research Corporation.

1We use the term application module to denote any component that imple-
ments a customized functionality in the context of a framework. Depending
on the framework, an application module can be a user-level or a kernel-level
component.

indirection, e.g., long call chains, or implicit dependencies,
e.g., callback execution.

Recent studies on API usability [1]–[7] report various
difficulties faced by the developers when using APIs and how
API misuses may lead to vulnerabilities. The focus in these
studies has been mostly on the misuse of the cryptographic
APIs.

In this paper, we analyze a new class of API misuses
that involves callbacks. Our experiments on the Linux drivers
indicate that kernel developers may not be fully aware of the
side effects of the kernel API functions in terms of the callback
functions that may get executed. In some cases, the call chain
that starts from an API function and ends at a driver callback
function may be quite long as in the case of the double-free
vulnerability that was found in the USB midi driver [8], which
we explain in detail in Section II as a motivating example. The
misuse of such API functions may lead to deep vulnerabilities,
which involve execution of application specific callbacks by
the API functions and result in an undesirable interaction with
what gets executed before or after the API function, e.g.,
double-free.

The Linux operating system provides a callback based
framework and, therefore, may be susceptible to deep bugs
and vulnerabilities. However, there has been relatively little
interest [9], [10] w.r.t. callbacks in the context of the Linux
kernel. A major concern with regards to Linux is the existence
of vulnerabilities that can be exploited to compromise the
security of the host and the peripheral devices. Considering
the role of Linux in the mobile domain and in the emerging
world of Internet of Things, it is imperative to detect deep
bugs and vulnerabilities in its components.

Static analysis techniques developed for detecting bugs in
the Linux kernel do not handle function pointers properly [9],
[11]–[23], which prevents them from finding deep bugs that
involve callbacks. Although, in theory, one can use a general
points-to analysis to resolve targets of function pointers, it
is challenging to strike a balance between precision and
scalability. Precise points-to analyses that have been shown to
scale [15], [24], [25] often make various engineering decisions
to achieve scalability and provide sufficient precision only for
the specific types of client analyses that they get evaluated for
such as code optimization. We are not aware of any scalable
and precise points-to analyses that have been evaluated for the
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Fig. 1: The architecture of MOXCAFE: Model Extraction for Callback based Frameworks. Arrows denote data-flow.

precision of call graphs for the C language. In this paper, we
show that, for detecting deep bugs, a call graph construction
algorithm that focuses only on the function pointers performs
better than the call graph construction approach by Lattner et
al. [15], which uses a context-sensitive points-to analysis (see
Section IV-C).

In this paper, we present a staged static analysis approach
to detecting deep bugs that involve callbacks. Our approach,
as shown in Figure 1, consists of several stages to balance
scalability and precision. Specifically, it uses a light-weight
static analysis for extracting callback related interactions be-
tween the application modules and the framework modules.
This information is used to extend the basic call graph of the
application modules to incorporate implicit call chains due to
callbacks. We show that a general points-to analysis is not
necessary for extracting an extended call graph to guide the
detection of deep bugs.

We use the extended call graph to guide the second and
third stages of our approach, which use inter-procedural path-
sensitive analyses to detect specific types of deep bugs. The
second stage, summary mode, summarizes bug relevant data-
flow facts for implicit paths that start at the callbacks reachable
from the API functions. The third stage, summary-aware
mode, uses the extended call graph to incorporate data-flow
facts due to the implicit paths and detects deep bugs. Our
contributions can be summarized as follows:

• A scalable algorithm for generating extended call graphs
of callback-based framework applications,

• A generic two-pass static program analysis algorithm that
uses an extended call graph to detect deep bugs and its
instantiation for double-free and double locking, which
may be exploited to execute arbitrary code and to cause
denial of service, respectively,

• Discussion of the detected real deep vulnerabilities (4
new, including CVE-2017-17975, CVE-2018-20961, and
CVE-2019-14763, out of a total of 6) with recommenda-
tions for the developers and API designers of extensible
frameworks.

The rest of the paper is organized as follows. Section II
presents the details of a callback related deep vulnerability
as a motivating example. Section III presents the technical
details of extracting an extended call graph and using that
extended call graph in callback-aware analysis for detection
of deep bugs. Section IV evaluates our approach in terms
of its effectiveness in extracting extended call graphs as well
as in detecting deep bugs in Linux device drivers. Section V
provides recommendations for secure development for frame-
works that use the callback mechanism. Section VI discusses
related work. Finally, Section VII provides a conclusion and
directions for future work.

II. MOTIVATING EXAMPLE

In this section, we present a double-free vulnerability
CVE-2016-2384 [8] found in the Linux USB midi driver.
Figure 2 shows a snippet of code from the driver. The
bug gets manifested inside the function snd_card_free
(callsite at line 23) that gets executed as part of handling
the hot-plug event of the audio device by the function
usb_audio_probe. The umidi object is freed inside
the function snd_usbmidi_free (line 62) and both the
first and second free are performed by this function. The
bug is difficult to identify via code reviews as the func-
tion snd_usbmidi_free seems to be executed from the
usb_audio_probe (via snd_usb_create_streams)
just once (via the call chain line 17 → line 29 → line 33).
However, as seen in Figure 3, snd_usbmidi_free also
gets called from the function snd_card_free through a
mixed series of explicit and implicit calls as illustrated by
Figure 3.

It is interesting to note that the function
snd_usbmidi_free, which performs memory
deallocation, is not even a callback function.
However, it gets called by the callback function
snd_usbmidi_rawmidi_free (line 53). In Figure
3, all functions except snd_usbmidi_free and
snd_usbmidi_rawmidi_free are framework functions
belonging to various kernel layers.



1 // in sound/usb/midi.c
2 // assigns the callback function
3 int snd_usbmidi_create_rawmidi(...)
4 {
5 ...
6 rmidi->private_free = snd_usbmidi_rawmidi_free;
7 ...
8 }
9

10 // in sound/usb/card.c
11 // 1st free by snd_usb_create_streams
12 // 2nd free by snd_card_free
13 int usb_audio_probe(struct usb_interface ...)
14 {
15 ...
16 if (err > 0) {
17 err = snd_usb_create_streams(chip,...);
18 if (err < 0) goto __error;
19 ...
20 __error:
21 if (chip) {
22 if (!chip->num_interfaces)
23 snd_card_free(chip->card);
24 ...
25 }
26

27 // in sound/usb/midi.c
28 // called by snd_usb_create_streams
29 int snd_usbmidi_create(...)
30 {
31 ...
32 if (err < 0) {

33 snd_usbmidi_free(umidi);
34 return err;
35 }
36 ...
37 }
38

39 // called by snd_card_free in a chain of function calls
40 // executes the callback
41 static int snd_do_card_free(struct snd_rawmidi *rmidi)
42 {
43 ...
44 rmidi->private_free(rmidi);
45 ...
46 }
47

48 // in sound/usb/midi.c
49 // the callback function
50 int snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
51 {
52 struct snd_usb_midi *umidi = rmidi->private_data;
53 snd_usbmidi_free(umidi);
54 ...
55 }
56

57 // in sound/usb/midi.c
58 // helper function performing the deallocation
59 void snd_usbmidi_free(struct snd_usb_midi *umidi)
60 {
61 ...
62 kfree(umidi);
63 }

Fig. 2: Code snippets from the Linux USB midi driver (Linux kernel v4-4) that get executed as part of handling the hot-plug
event. Memory deallocation at line 62 is executed twice by usb_audio_probe: first via snd_usb_create_streams
(line 17) and then via snd_card_free (line 23).
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Fig. 3: A partial call graph of the Linux USB midi driver
that relates to the double-free bug. The dashed arrows denote
calling callback functions via function pointers while the solid
arrows denote explicit calls.

The main challenge for static analysis tools in dealing
with scenarios like this is the incomplete call graph due to
callbacks. For instance, the dashed arrows in Figure 3 would

be absent in the basic call graph, which does not include call
dependencies due to function pointers. Therefore, any static
analysis tool that considers the basic call graph only would
miss the second deallocation that is triggered at line 23 in
Figure 2, and, hence, would not be able to detect the double-
free vulnerability. This vulnerability was initially detected by
a combination of two tools: a dynamic memory error detection
tool, KASAN [26], and a USB fuzzer, vUSBf [27]. Although
fuzzing can be used to generate inputs that may trigger such
bugs, it requires access to the device or to an emulation
environment. However, static analysis requires neither of these
and can be easily incorporated to the development environment
for automated regression analysis.

The goal of this paper is to present a model extraction
technique that discovers implicit edges in the call graph of an
application component that is embedded in a framework so that
potential client static analysis on the application component
can leverage these inferred edges to find deep bugs that
involve callbacks as in the case of the USB midi double-free
vulnerability.

III. APPROACH

In this section, we present the technical details of our
approach using the USB Midi double-free vulnerability from
Section II as an example. Our approach uses component-



level analysis. It first summarizes the interaction between
the application modules and the framework modules in what
we call an extended call graph. Figure 4 shows the ex-
tended call graph for the code snippet given in Figure 2.
An extended call graph extends a basic call graph by adding
special edges, denoted by the dashed arrows, from the API
functions to the callbacks of the application modules. As an
example, the snd_card_free API function may call the
snd_usbmidi_rawmidi_free callback function of the
USB midi driver as shown in Figure 3. In an extended call
graph, we summarize this type of side effect by creating an
edge from the API function to the callback of the application
module. The idea is to embed sufficient information in the
extended call graph to enable a precise and a scalable deep
analysis; use path-sensitive analysis on the application mod-
ules only while leveraging the implicit dependencies recorded
in the extended call graph. Specifically, we compute the side
effects of the callback functions and store them as path
summaries. As we analyze the application modules to detect
bugs, we utilize the dashed edges in the extended callgraph
and the path summaries to simulate the side effects of callback
functions at API callsites. We present our extended call graph
generation algorithm in Section III-A and the details of our
path-sensitive static analysis in Section III-B.

A. Extended Call Graph Generation

In this section, we will explain the Collect Metadata and
the Extract Implicit Calls stages shown in Figure 1 using the
example code given in Figure 5 and the case study presented in
Section II. In the Collect Metadata stage both the application
and the framework modules are parsed. Metadata per module
M includes the basic call graph, M.CG, the functions, M.F ,
and the callback types. We identify the type of callbacks in
two ways: 1) By the type of the data structure that points to
callbacks, callback type (Type), 2) By the signature of the
callback functions, callback signature (Sig).

It is very common in frameworks to define callback types
as part of the interface. In the Linux kernel this is achieved
by defining function pointer fields of structs. So, the first
way is represented by a tuple (type, field), where type
denotes the type of the data structure and field denotes the
identifier for the field of the data structure that represents
a function pointer. An example for this type of metadata is
(struct snd_rawmidi, private_free), where the
field private_free of struct snd_rawmidi repre-
sents a callback, which is used in Figure 2.

Another type of metadata for this type of callbacks is the
bindings of actual functions to the callback types. We collect
this information by processing the assignment statements in
the data structure initializations, e.g., line 2, and inside the
function bodies, e.g., line 16, as shown in Figure 5a. The
callback types and their targets are listed in the top table (the
first three rows) in Figure 5b. The callback type (T,f1) is
bound to {cb1} as cb1 is the only function that is assigned
to this callback type whereas (T,f2) is bound to the set
{cb2,cb5} due to the assignments on lines 3 and 16.

The second way of using signatures is needed as callbacks
may be represented by their signatures, i.e., a combina-
tion of return type and the parameter types, and may not
be embedded inside a struct type. As an example, the
kobject_release function in Figure 3 is a callback that
is passed to the kref_put function as a parameter. To track
such callbacks, we parse callback sites that pass function
pointers and record the function names that are passed as
actual parameters. The top table (the last three rows) in Figure
5b also shows the callback signatures and their targets, which
are collected from the call sites at lines 49, 50, and 54. Another
type of metadata that is recorded is the information about call
sites at which function pointers are passed and denoted by
SP . As an example, (a3,cb4) is included in SP to reflect
the call site on line 49.
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(API) 

snd_usbmidi_
rawmidi_free 
(CALLBACK)

snd_usb_create_
streams

usb_audio_probe

snd_usbmidi_create

snd_usbmidi_free

kfree
(API)

Fig. 4: Part of the extended call graph for the example given
in Figure 2. The dashed edge does not exist in the basic call
graph.

Algorithm 1 implements the Extract Implicit Calls stage in
Figure 1 and gets as input an application module, A, a set
of framework modules, FM , and a bound N . It traverses
the global call graph and propagates the function pointer
calls to identify the call chains that include callbacks. The
global call graph, CG, is a combination of the application call
graph, A.CG, and the call graphs of the framework modules,⋃

fm∈FM fm.CG, and is constructed at line 3. The other steps
of the initialization captures the direct calls to function pointers
and initializes the call chains for the callback types, TC, (line
4) and for the callback signatures, SC, (line 5). A tuple (a, b)
in TC (SC) denotes the fact that a may call a callback of
(signature) type b in a sequence of calls of length one, i.e.,
calls directly, or more. For the example in Figure 5, the tuple
(a0,(T,f1)) gets included in SC and the tuple (a1,void
(*)()) gets added to TC at this stage.

The loop (lines 6-14) propagates the discovered call chains



1 struct T t1 = {
2 .f1 = cb1,
3 .f2 = cb2,
4 .f3 = 0,
5 };
6 void a0(struct T *t0)
7 {
8 t0->f1(...);
9 }

10 void a1(void (*p)())
11 {
12 p();
13 }
14 void a2(struct T *t2)
15 {
16 t2->f2 = cb5;
17 }
18 void a3(void (*p)())
19 {

20 a1(p);
21 }
22 void a4(struct T *t7,
23 void (*p)(char))
24 {
25 t7->f3(p);
26 }
27 void a5(void (*p)(int),
28 struct T *t2) {
29 t2->f2 = p;
30 }
31 void a6(struct T *t5)
32 {
33 t5->f2();
34 }
35 void a7(void (*p)(int),
36 struct T *t7) {
37 a5(p,t7);
38 }

39 void cb3(void (*p)..)
40 {
41 p(...);
42 }
43 void cb4() {
44 t1.f1(...);
45 }
46 int main(...) {
47 t1.f3 = cb3;
48 a0(&t1);
49 a3(cb4);
50 a4(&t1,cb6);
51 a6(&t1);
52 a2(&t1);
53 a6(&t1);
54 a7(cb7,&t1);
55 a6(&t1);
56 }

(a) An example code that uses function pointers.

CB Type/Sig Targets
(T,f1) {cb1}
(T,f2) {cb2,cb5}
(T,f3) {cb3}
void (*)() {cb4}
void (*)(char) {cb6}
void (*)(int) {cb7}

API Callbacks
(source) (destination)

N = 1 N = 2
a0 {cb1} {cb1}
a2 ∅ ∅
a3 {cb4} {cb4,cb1}
a4 {cb3} {cb3}
a5 ∅ ∅
a6 {cb2,cb5} {cb2,cb5}
a7 ∅ ∅

(b) Metadata for the call-
backs of the sample code
(the top table) and the in-
ferred call graph edges (the
bottom table). N denotes
the number of iterations per-
formed by Algorithm 1.

Fig. 5: An illustration of inferring implicit edges of the extended call graph.

Algorithm 1 An algorithm for extending the call graph of an
application module A with edges that represent implicit call
sequences to the callbacks of A.
1: ExtendCallGraph(A: MODULE, FM : P(MODULE),N :Z)
2: Output: An extended call graph that includes edges from API functions

to the callbacks of A
3: CG← A.CG ∪

⋃
fm∈FM fm.CG

4: Let TC denote the set of all tuples (a, b) s.t. a directly calls a callback
of type b

5: Let SC denote the set of tuples (a, b) s.t. a directly calls a callback of
signature type b

6: for i: 1 to N do
7: Let Π denote all possible simple paths in CG
8: TC′ ← {(c, b) | (a, b) ∈ TC ∧ (c, Type(a)) ∈ TC}
9: TC′′ ← {(c, b) | (a, b) ∈ TC′ ∧ ∃(c, a) ∈ Π}

10: SC′ ← {(c, b) | (a, b) ∈ SC ∧ (c, Sig(a)) ∈ SC ∧ (c, a) ∈ SP}
11: SC′′ ← {(c, b) | (a, b) ∈ SC′ ∧ ∃(c, a) ∈ Π}
12: CG′ ← CG ∪ {(a, b) | (a, Sig(b)) ∈ SC ∧ (a, b) ∈ SP}
13: (TC, SC,CG)← (TC′, SC′′, CG′)
14: end for
15: return A.CG ∪ {(a, b) | ∃c.(c, a) ∈ A.CG ∧ b ∈ A.F ∧

((a, Type(b)) ∈ TC ∨ ((a, Sig(b)) ∈ SC ∧ (a, b) ∈ SP )}

across every function that is used as a callback (lines 8 and
10) as well as across the call graphs (lines 9 and 11). These
two propagation steps are performed for the callback types
(lines 8 and 9) as well as for the callback signatures (lines 10
and 11) until the input bound, N , is reached.

Line 8 propagates the callback chains that start at a function
that is a callback to its implicit callers. For the example
in Figure 3, at some point in the computation, TC will
include (release_card_device,(snd_rawmidi,
private_free) and (kobject_release,
(device,release)). Since the function
release_card_device is bound to the callback

type (device, release), it will infer the callback
call chain (kobject_release, (snd_rawmidi,
private_free)), which will be added to TC. Line
10 performs a similar callback chain propagation for the
callbacks that are identified by the signature types.

Lines 9 and 11 propagate the callback chains in TC and
SC, respectively, across the call graph. For the example in
Figure 3, line 9 will use the tuple (snd_do_card_free,
(snd_rawmidi, private_free)) in TC
and the fact that release_card_device
calls snd_do_card_free to infer the tuple
(release_card_device,(snd_rawmidi,
private_free)), which will be added to TC. For the code
in Figure 5a, line 11 will use the tuple (a1,void(*)())
in SC and the fact that a3 calls a1 to infer the tuple
(a3,void(*)()), which will be added to SC.

An important step in each iteration of the loop (line
12) is updating the global call graph, CG, based on the
call sites that pass function pointers that are identified by
their signatures, which are recorded in the metadata SP . So
(a, b) ∈ SP means b is passed to a at some call site as
an actual parameter of a function pointer type. As an exam-
ple, kobject_release is passed as a function pointer to
the kref_put function inside the kobject_put function,
i.e., (kref_put, kobject_release) in SP . Since
kref_put has also been found to call a callback of signature
type equivalent to the signature of kobject_release,
i.e., (kref_put, void(*)(struct kref*)) in SC,
an edge from kref_put to kobject_release is added
in the global call graph, CG. So the updated global call
graph helps construct implicit call chains that may involve



callbacks that are defined as fields of struct types, e.g.,
snd_usbmidi_rawmidi_free, as well as those that are
identified by their signatures, kobject_release, as in the
case of the USB midi example.

The output of Algorithm 1 is the extended call graph for
the application module, in which implicit calls to callbacks
via API functions are made explicit. On line 15, the call
chains from the API functions to the callback types and to the
callback signatures are used to infer the implicit edges of the
extended call graph. It is important to note that the destinations
of these implicit edges are the callbacks of the application
module. So, for the USB midi driver, this means that an edge
from the node for the snd_card_free function to the node
for the snd_usbmidi_rawmidi_free function is added
to the basic call graph of the USB midi driver. Note that we
bypass snd_do_card_free as there is no direct call from
the driver to this function whereas snd_card_free is called
as a framework API function (line 23, Figure 2).

For the code in Figure 5a, Algorithm 1 infers the edges
shown by the bottom table in Figure 5b. It infers (a3,cb4)
in the first iteration whereas it infers (a3,cb1) in the second
iteration. Our approach avoids some of the potential false
positives by 1) restricting the scope of the analysis to the
application module, A, and the framework modules, FM , that
A depends on and 2) binding a callback c to a function pointer
signature as a possible target only if c has been passed as an
actual parameter to a function that accepts such a signature by
checking the SP metadata.

B. Callback-aware Analysis

After collecting the metadata and extracting an extended call
graph for the application modules, we perform inter-procedural
path-sensitive program analysis on the application modules
only. This is performed in two passes: 1) Summary Mode, 2)
Summary-Aware Mode. The pass in Summary Mode performs
program analysis on the basic call graph to summarize paths
that start with callback functions. The pass in Summary-Aware
Mode considers the extended call graph along with the exact
program locations that happen to be the callback callsites
and uses path summaries to detect bugs and to propagate
summaries on the paths that involve callbacks. So for the USB
midi example, the first pass would record the fact that a path
starting with the snd_usbmidi_rawmidi_free function
would deallocate a memory object of type snd_usb_midi
without a prior allocation. The second pass would realize that a
path on which a memory object of type snd_usb_midi has
already been freed (due to snd_usb_create_streams
on line 17) frees a memory object of type snd_usb_midi
a second time due to a chain of calls that is initiated by
snd_card_free at line 23 and end up executing the
snd_usbmidi_rawmidi_free callback.

In our MOXCAFE tool, we have used the Clang static

analyzer [28]2, which implements the inter-procedural path-
sensitive analysis algorithm presented in [29] using a region-
based memory model [30]. So, the elements of aggregate types
such as the elements of arrays and the fields of structures can
be tracked precisely on each path explored by the analysis.
The challenge in our approach is that in the summarized call
chains we abstract away the data-flow from the API functions
to the callbacks. Although the underlying inter-procedural
path-sensitive analysis is context-sensitive, we are not able to
preserve context-sensitivity at API call sites at the precision
level of the region based memory model. This is because we
do not analyze the API functions as the framework modules
are excluded from these stages of the analysis. So, we cannot
relate the memory objects that are used by a callback function
to the memory objects that are passed to the API function. We
handle this problem by using the type information, Type(o),
for bug-relevant objects, o, in the path summaries. So, in the
summary-aware mode when a bug-relevant operation, e.g.,
kfree, is encountered at a callsite, the type of the object,
rather than the region-based memory representation, is used
to update the bug relevant metadata.

To demonstrate the utilization of the extended call graphs
in deep bug detection, we focus on two types of bugs:
Double-free and Double-locking. Our approach extends an
inter-procedural path-sensitive analysis by adding bug relevant
metadata, E , to the generic state representation, IPS , which
stores a representation of the memory locations that belong to
the global scope, the stack, or the heap, and the concrete or
symbolic values that these memory locations are associated
with. Table I presents the description of the the metadata
that is kept track of during the inter-procedural path-sensitive
analysis.

The main idea in our extension is to record two types of
data-flow facts. The first type is related to a specific operation
such as AL for memory allocation and ACQ for lock acquires
and represents the state on a given code location on the current
path. The second type relates an operation with its reverse
operation such as ALR that records allocations without a
prior freeing and ACQR that records acquires without a prior
release. The first type is fundamental to keeping track of data-
flows w.r.t. specific bug-related operations on a path, whether
in the summary-mode or summary-aware mode. However, the
second type is important for detecting deep bugs that get mani-
fested at API call sites as metadata in the path summaries such
as FRA and ACQR precisely reveal conflicting operations,
e.g., consecutive freeing of the same memory object, from the
part of the path explored in the summary-aware mode and the
part explored in the summary-mode.

Figure 6 shows the rules of the analysis that are common
to both modes. Here, the novelty of our approach is keeping

2Our deep bug detection depends on the Clang static analyzer’s handling
of loops and recursion. For loops, it sets a bound on the maximum number
of iterations (set to 10 in our experiments). There is no special treatment of
recursive calls. However, it enforces the maximum number of nodes (set to
default in our experiments) in the exploded super graph, which may bound
recursive calls that add new nodes to this graph.



TABLE I: Description of metadata that is kept track of during
the Summary and Summary-Aware Modes.

Metadata Description
AL Type of objects that have been allocated and not freed
FR Type of objects that have been freed
FRA Type of objects that have been freed without any prior

allocation
ACQ Type of objects acquired and not released
ACQR Type of objects acquired without a prior release
RL Type of objects released

track of ALR and FRA to be able to detect conflicts with
data-flow in the implicit paths. To avoid the clutter, we did
not show the components of E that remain the same, e.g.,
E ′.ACQ = E .ACQ for alloc. Figure 7 shows an additional
rule of the analysis for the Summary Mode, in which we
analyze paths that start from a callback function recorded in
Callback. If any action that is relevant to a specific bug has
been performed on such a path, we record this bug relevant
metadata along with the callback identifier in what we call a
path summary. All path summaries are stored in PS . In Figure
7, return exp denotes the return statement of the callback
function and Context(return exp) denotes the name of the
callback function.

Figure 8 shows the rules of the analysis exclusive to
the Summary-Aware Mode. In this mode, while analyzing
a path in the program, we treat call sites that may start a
chain of calls to a callback in a special way as specified
by the callback-aware rule in Figure 8. Specifically, for call
statements, fexp(args), there are two possibilities that need
special treatment: a) The callee is an API function and the
corresponding node has an outgoing edge to the node of
a callback function in the extended call graph, CGextended,
(C1) , b) The callee is represented by a function pointer that
corresponds to a callback type (C2) or a callback signature (C3)
and the caller or context of the callsite has an outgoing edge
to a matching callback function in the extended call graph. We
use C1,2,3 to represent C1 ∨ C2 ∨C3. Note that C1,2,3 evaluated
on the call expression, fexpr, and the extended call graph.
We use CB(fexp) to denote the set of callback functions
that may get executed according to the extended call graph.
As an example, in Figure 5 for the callsite a0(&t1) at line
48, CB(a0) consists of cb1 as the API function a0 has an
outgoing edge to the callback function cb1 in the extended
call graph generated by Algorithm 1.

A key step in the callback-aware analysis is propagating
the metadata of every qualifying path summary to the current
path (see the definition of propagate in Figure 8). Ideally, this
requires precise knowledge of whether the callback has been
executed on the current path. Our analysis cannot precisely
decide this as we do not analyze the API function bodies.
However, assuming that the callbacks perform some bug
relevant operations and, hence, are associated with some path
summaries, we need to incorporate this implicit data-flow to
the data-flow tracked at the application component level. We
do this nondeterministically in the callback-aware rule by also

Fig. 6: Rules common to the Summary Mode and the
Summary-Aware Mode in Callback-Aware Analysis.

〈stmt;S, IPS〉, stmt is the first statement
〈stmt;S, IPS, E〉

,

E.AL = E.FR = E.FRA = ∅
E.ACQ = E.RL = E.ACQR = ∅

〈o = alloc;S, IPS〉 −→ 〈S, IPS′〉
〈o = alloc;S, IPS, E〉 −→

〈S, IPS′, E ′〉

,where

E ′.AL = E.AL ∪ {Type(o)},

〈free o;S, IPS〉 −→ 〈S, IPS′〉
〈free o;S, IPS, E〉 −→

〈S, IPS′, E ′〉

,where

E ′.AL = E.AL \ {Type(o)}, E ′.FR = E.FR ∪ {Type(o)},
E ′.FRA = if Type(o) ∈ E.AL then
E.FRA else E.FRA ∪ {Type(o)}

(Double-free) E ′.DF = if Type(o) ∈ FR then
E.DF ∪ {(t, free o)} else E.DF

〈acquire o;S, IPS〉 −→ 〈S, IPS′〉
〈acquire o;S, IPS, E〉 −→ 〈S, IPS′, E ′〉

,where

E ′.ACQ = E.ACQ ∪ {Type(o)},
E ′.ACQR = if Type(o) ∈ E.RL then E.ACQR

else E.ACQR ∪ {Type(o)}

(Double-locking) E ′.DL = if Type(o) ∈ ACQ then
E.DL ∪ {(t, acquire o)} else E.DL

〈release o;S, IPS〉 −→ 〈S, IPS′〉
〈release o;S, IPS, E〉 −→ 〈S, IPS′, E ′〉

,where

E ′.ACQ = E.ACQ \ {Type(o)}
E ′.RL = E.RL ∪ {Type(o)}

Fig. 7: An additional rule for the Summary Mode in Callback-
Aware Analysis.

〈return exp;S, IPS〉 ⇓ 〈S, IPS′〉
〈return exp;S, IPS, E〉 ⇓

〈S, IPS′, E ′〉

,where

PS′ = if Context(return exp) ∈ Callback then
PS ∪ {(Context(return exp), E ′)} else PS

considering to keep the metadata unchanged (see the definition
of ignore in Figure 8) to model the fact that the callback may
not be executed at the given call site.

If one of the conditions C1, C2, and C3 in Figure 8 holds and
we consider to propagate the data-flow in the path summary,
we consider each path summary of the qualifying callback



Fig. 8: Rules exclusive to the Summary Aware Mode in
Callback-Aware Analysis.

callback-aware:

〈fexp(args);S, IPS〉 ⇓ 〈S, IPS′〉,
C1,2,3 ∧ ∃cb. cb ∈ CB(fexp) ∧ ∃ps ∈ PS. ps = (cb, E1)

nondet choose(propagate, ignore)

, where

propagate ≡ 〈fexp(args);S, IPS, E〉 ⇓ 〈S, IPS′, E ′〉, where

E ′.AL = E.AL ∪ ps.E.AL
E ′.FR = E.FR ∪ ps.E.FR

E ′.ACQ = E.ACQ ∪ ps.E.ACQ
E ′.RL = E.RL ∪ ps.E.RL

(Double-free) E ′.DF = if ∃t. t ∈ FR. t ∈ ps.E.FRA then
E.DF ∪ {(t, fexp(args))} else E.DF

(Double-locking) E ′.DL = if ∃t. t ∈ ACQ. t ∈ ps.E.ACQR then
E.DL ∪ {(t, fexp(args))} else E.DL

ignore ≡ 〈fexp(args);S, IPS, E〉 ⇓
〈S, IPS′, E〉

function to check for a manifestation of a deep bug by combin-
ing it with the metadata collected so far on the current path as
explained in the bug detection section (see labels Double-free
and Double-locking) in Figure 8. Note that our algorithm also
handles bugs manifested as a result of a conflicting operation
after a callback gets executed as in the case of the usbtv
double-free vulnerability found by MOXCAFE and presented
in Section IV. Such bugs are detected by the checks shown in
Figure 6 during the Summary-Aware Mode.

Considering the running example given in Figure 2,
we have an edge from the snd_card_free API func-
tion to the driver’s snd_usbmidi_rawmidi_free call-
back function in the extended call graph for the USB
midi driver. In summary mode, our algorithm analyzes the
paths that start from snd_usbmidi_rawmidi_free and
checks for bug-relevant operations. It realizes that on such
a path kfree is called on a snd_usb_midi type ob-
ject (line 62). So a path summary that is associated with
snd_usbmidi_rawmidi_free gets stored with both FR
and FRA set to {snd_usb_midi}. In summary-aware
mode, on the error path that traverses the lines 16, 17,
18, 20, 21, 22, and 23 the algorithm has recorded that
snd_usb_midi is in FR of the current path. At line 23,
it realizes that snd_card_free is an API function that has
an outgoing edge to the snd_usbmidi_rawmidi_free
callback function according to the extended call graph.
When it applies the propagate rule and incorporates the
data-flow facts in the path summary, ps, that starts at
snd_usbmidi_rawmidi_free, it detects the double-free

TABLE II: Time (in secs) taken by each stage of Extended
Call Graph generation.

Stages Min Max Median
Metadata 9.65 749.30 207.53
Collection
Extract 0.06 19.40 3.62
Implicit Calls

by finding out that snd_usb_midi appears in both FR of
the current path and the path summary’s FRA, ps.E .FRA.

IV. EVALUATION

We have applied the presented approach to a diverse
set of Linux drivers with the goal of detecting deep
bugs/vulnerabilities that involve callbacks. We have imple-
mented the presented approach using the LLVM compiler
framework [31], version 5.0.0. MOXCAFE has a total of 6.5K
SLOC. Our approach works on the source code. We have used
LLVM’s AST Analyzer component to implement the metadata
collection and its static analyzer [28] to implement detection
of the two types of deep bugs we considered. We have used
version v4.14-rc2 of the Linux kernel as recommended by the
clang-kernel-build project [32] to benefit from the provided
patches that made compilation of Linux possible.

We have used 40 Linux drivers to evaluate our approach.
We have included a total of 12 framework components/layers
that these drivers use. These framework components belong to
the following kernel layers: video (v) , sound (s), gadget
(g), dwc3 (d), serial (r), tty (t), block (b), scsi (c),
network (n), usb core (u), input (i), and hid (h). In
this section, we summarize the experimental results and refer
the reader to Table IV in the Appendix for more details.

Table II summarizes the timing results for Extended Call
Graph generation. As the data shows, much more time is spent
on the metadata collection than on the extraction of implicit
calls. This is especially more significant for larger frameworks
such as the sound layer. However, metadata collection for
framework modules needs to be performed only once and can
be reused each time the call graph inference algorithm needs
to be run for a new driver.

To determine the feasibility of the inferred paths, we used
the capability of our tool to list all possible simple paths
from each API function to the callback it may call. For
each inferred edge, we have gone through the list of possible
paths and analyzed the implementation of each function on
the chain to determine the feasibility. Once we found a path
that we thought was feasible, we skipped the other possible
explanations for the inferred edge and continued analyzing the
next inferred edge, and so on. When the code was complicated,
e.g., it was difficult to trace the data-flow dependencies, we
conservatively concluded as infeasible.

The false positive rate for our extended call generation is
18% on average. The major reason for false positives is due to
infeasibility of data-flow constraints on the inferred call chains.
Some of these data-flow constraints are due to consolidation of
a variety of functionalities inside the same function and using



function parameters, e.g., states or configuration information,
to implement the relevant functionality. In our experience
the longer the callback chain the higher the chance of it
being a false positive. Another source of infeasible data-
flow constraints is functions that involve the generic struct
device and inferring call chains by mistaking the parent
device as the device being manipulated by the device driver.

We were able to detect real bugs/vulnerabilities in 6
of the benchmarks. 3 of these were double-free (usbtv,
f_loopback, and f_midi) and 3 of them were double-
locking (f_hid, f_printer, and renesas_usb3). 4 of
these were new3, denoted with an * appended to the driver
name, and 2 of them were recently fixed in the newer
versions. Table III shows the unique API to generic callback
function call paths that have been detected by our extended
call graph generation algorithm, Algorithm 1, and have been
found to involve in an API misuse bug as detected by our
callback-aware analysis. Specifically, AC1 got involved in the
usbtv double-free vulnerability, AC2 got involved in the
f_loopback double-free vulnerability, AC3 got involved
in the f_midi double-free vulnerability, the f_hid double-
locking bug, and the f_printer double-locking bug, and
AC4 got involved in the renesas3 double-locking bug.
What is common to these API to callback paths is that a
framework callback, as denoted by FCB, also gets involved.
So, any static analysis that targets callback related API misuse
bugs must also resolve function pointers in the framework
code. Although the f_printer and the renesas3 double-
locking bugs were previously known and fixed, the API to
callback chains were not explicitly provided in the relevant
discussion forums. So, to our knowledge, MOXCAFE is the
first static analysis tool to reveal these four API to callback
chains for which the developers should guard their code and
prevent a potential API misuse.

A. False Positive Analysis

MOXCAFE reported an average of 0.35 false positives per
benchmark in our data set and achieved an average false
positive rate of 60%. Although the false positive rate is high,
it should be evaluated in the context of the framework and the
applications we targeted: the Linux kernel subsystems and the
drivers. Other static analysis work that detect vulnerabilities
in the Linux kernel report high false positive rates, either
explicitly as in [33] (a false positive rate of 76.4%-83.30%)
or implicitly as in K-Miner [34] (29 true positives out of 539)
and APISan [22] (54 true positives out of 445). We analyzed
the false positives reported by MOXCAFE and identified three
main root causes as we explain below.

a) Missing context information: API functions have
additional side effects that need to be captured to pre-
cisely reason about whether an API function ends up ex-
ecuting a callback. For instance, some API functions, e.g.,

3These bugs have been confirmed by the kernel developers. For some
we have provided the patches and for others we have participated in the
discussions for the right patch.

video_register_device, may register certain frame-
work callbacks, e.g., v4l2_device_release, only when
the API function returns a success return value. Such side
effects determine whether the callback gets called by another
related API function, e.g., v4l2_device_unregister.
To eliminate this type of false positives, more data-flow facts
must be captured from the API functions and incorporated
into the extended call graph generation as well as to the
application-level bug detection. 70% of the false positives falls
into this category.

b) Type-based alias analysis: The summary information
for callbacks are represented using types of the manipulated
data structures. During summary-aware bug detection, conflict-
ing operations were matched based on the type. This type of
false positives can be eliminated by performing path-sensitive
analysis for the the callbacks and incorporating the precise
context information from the API call sites. 30% of the false
positives falls into this category.

TABLE III: The API to callback paths that are detected by
Algorithm 1 and are involved in the deep bugs detected by
our callback-aware analysis. FCB and CB represent framework
callbacks and driver callbacks, respectively.

Implicit API to Callback Chain
Path

AC1

v4l2_device_put
kref_put
v4l2_device_release (FCB)
(struct v4l2_device,

release) (CB)

AC2

usb_ep_disable
dwc3_gadget_ep_disable (FCB)
__dwc3_gadget_ep_disable
dwc3_remove_requests
dwc3_gadget_giveback
usb_gadget_giveback_request
(struct usb_request,

complete) (CB)

AC3

usb_ep_queue
dwc3_gadget_ep_queue (FCB)
__dwc3_gadget_ep_queue
__dwc3_gadget_kick_transfer
dwc3_gadget_giveback
usb_gadget_giveback_request
(struct usb_request,

complete) (CB)

AC4

usb3_disconnect
composite_disconnect (FCB)
reset_config
afunc_disable
free_ep
usb_ep_dequeue
(struct usb_ep_ops,

dequeue) (CB)

B. Discussion

The deep bugs we have found using MOXCAFE suggest
that the developers may not be fully aware of the driver
callback functions that may get called from the kernel API



functions. We think that this would be an issue with any large
framework that uses callbacks. Some of the API function to
callback chains in our examples were of length 7. We believe
that this much complexity is challenging for developers to
understand the side effects of every single API function they
need to use by reviewing the framework code.

err = usb_ep_queue(midi->out_ep, ...); // 1st free
if (err) {

ERROR(midi, ...);
free_ep_req(midi->out_ep, req); // 2nd free
return err;

}

Fig. 9: The double-free found in the f_midi driver.

We recommend the API designers and developers to pro-
vide sufficient documentation on the behavior of the API
functions regarding the callbacks. One thing we have ob-
served by reading the patch discussions and reviewing the
code is that the kernel developers have better awareness
on the side effects of certain API functions such as the
usb_gadget_giveback_request function, which ac-
quires a lock before calling a callback and appears deep in
some of the call chains, e.g., in AC2 and AC3 in Table III.
This awareness develops as bugs get manifested. However,
developing an understanding of a complex framework as bugs
get manifested leaves the system at risk for long periods of
time. Also, developing awareness on certain API functions
does not prevent similar bugs from being manifested using
different API chains, e.g., the double-free shown in Figure
9. In this one, on an error path in the f_midi_set_alt
function, the API function usb_ep_queue fails to queue
a request and may potentially free the request buffer via the
f_midi_complete callback of the driver if the underlying
device controller is implemented as in dwc3 (see AC3 in Table
III for the API to callback chain). In the error handling code
(inside the if statement), the request buffer is freed this time
via the helper function free_ep_req. This vulnerability was
introduced to fix a memory leak regarding the request buffer
[35]. We think that tools like MOXCAFE can help developers
to detect deep bugs early on in the development stage.

C. Comparison with DSA

We have compared our approach with a points-to analysis,
Data Structure Analysis (DSA) [15], that is context-sensitive,
flow-insensitive, and field-sensitive. DSA has been used to aid
compiler optimization including memory allocation for heap-
based data structures. As a by-product of its analysis, DSA
also provides a call graph with concrete callees for call sites
that involve function pointers. We have chosen DSA as it has
been previously applied to the Linux kernel and has been
shown to scale to such large code bases. We have used DSA’s
implementation [36] for LLVM 3.7.

Figure 10 shows the timing results of the summary mode
(Pass I) and the summary-aware mode (Pass II) of our staged
static analysis. We ran Pass I and Pass II with the extended call
graph generated by Algorithm 1 as well as with the extended
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Fig. 10: Comparison of using the Extended Call Graph gener-
ated by Algorithm 1 with using that derived from DSA’s Call
Graph during staged static analysis.

call graph derived from the call graph generated by DSA.
As the results show, the performance with these two types
of extended call graphs are comparable. However, when we
run Pass I and Pass II using DSA’s call graph, we could only
detect two of the deep bugs that were found by MOXCAFE.

We think that there are two main issues related to the call
graphs generated by DSA: imprecision and incompleteness.
The imprecision concerns DSA’s field sensitivity being pre-
served only for type homogenous cases. So this causes pointer
assignments that involve type casting to collapse the associated
nodes and stop tracking individual fields, practically losing
field sensitivity in such cases (see the explanation for the
collapsed flag in [15]) and leading to spurious cycles and
SCCs. DSA generates more targets for function pointers than
our inference algorithm. We are not sure for the reason for the
incompleteness. However, we suspect that DSA is not able to
handle the container_of macro used in the Linux kernel.
This macro uses a pointer to an embedded data structure to
derive a pointer to the embedding data structure using pointer
arithmetic. It basically subtracts an offset from the given
address. We think that any general points-to analysis algorithm
has to handle this construct properly to generate a complete
call graph for the Linux kernel. Our inference algorithm works
at the source code level instead of the bitcode level. Therefore,
it can precisely extract the type information of callbacks at the
callsites that use function pointers.

V. SECURE DEVELOPMENT WITH CALLBACKS

Secure software development requires incorporating secu-
rity at the design stage. This should be the case for the
development of applications as well as for the development
of the software framework. In this section, we would like to
discuss several ways through which the callback mechanism
can be made more secure.

a) Documentation: We would like to note that ideally
sufficient documentation should be provided for every function



whether it executes a callback or not. However, due to the
implicit nature of callbacks, it is even more critical to provide
documentation for any function that gets called on a chain
that involves callbacks and, hence, may execute conflicting
operations with those performed by the callbacks.

As we mentioned in Section IV-B, kernel developers seem to
be sensitive to the known side effects of API functions and are
relatively more effective in using such API correctly, e.g., in
contexts that use the usb_gadget_giveback_request
as discussed in Section IV-B. For all the API misuse vulnera-
bilities we detected, there was a lack of documentation w.r.t.
callback related side effects in the source files of the kernel
subsystems. We think that any API function that executes a
callback must be accompanied with proper documentation on
this aspect. At a minimum, the documentation must specify
the type of callback, either as a type and field combination or
as a function signature. Ideally, the documentation should also
specify the specific cases and conditions in which the callback
gets executed, e.g., only on success paths, for specific input
values, while holding a specific lock, etc.

The applications, on the other hand, should provide doc-
umentation for the callbacks they implement and for the
functions that end up executing callbacks. For callback func-
tions, specifying the pre and post conditions and the API
functions from which they may get executed would help
identify specific API misuse issues. For the functions that may
execute callbacks, information on the called API functions
with callback side effects should be specified, e.g., acquires
lock X due to execution of callback Y . This information can
help developers better understand the impact of their changes.

b) Secure Interface and Data Structure Design: The
major challenge with callbacks is that it is an implicit mecha-
nism. However, it would be possible to minimize the security
risk associated with callback execution if callbacks could be
implemented in a defensive way; that is secure programming
practices can be applied for the callbacks. As an example, it
is a secure programming practice to set a pointer to NULL
after deallocating the memory pointed by that pointer. As an
example, a callback that deallocates memory should ideally
set the pointer(s) to the deallocated memory to NULL so that
use-after-free and double-free vulnerabilities can be prevented.
However, since callbacks are not designed with security in
mind, typically they are provided with the address of the
memory to be deallocated and not with the address of the
pointers to such memory. As an example, it would be ideal
for the snd_usbmidi_rawmidi_free callback in Figure
2 to be able to set the pointer to NULL after kfree. For
this specific case, passing a double pointer does not work
as the snd_usbmidi_rawmidi_free function uses the
argument pointer rmidi to derive the address of the memory
to be deallocated (umidi) (line 52 in Figure 2). A possible
solution would be to change the type of private_data
field in struct snd_rawmidi to a double pointer to
the snd_usb_midi type. However, there may be several
pointers for the same memory location and possibly different
sets of aliases depending on the context. One way to deal with

this type of complication is to define an auxiliary data structure
to hold callback relevant data and pass such auxiliary data to
the API functions that calls the relevant callback function. So
the auxiliary data needs to be passed down the complete call
chain. Another way is to store a pointer to the auxiliary data
in the data structure that the callback will manipulate. Either
of these cases requires incorporating security at the design
stage and baking security into the interfaces of the APIs as
well as the data structures used by such APIs. Otherwise, it
would simply be impractical to change the existing code base
to minimize the security risk.

VI. RELATED WORK

Applications of model checking to system software [12]–
[14], [18], [20], [37] expect the user to provide an environment
model that includes the life-cycle of a component and analyzes
the component behavior in the context of this environment
model. Similar to SDV [13], the Linux Driver Verification
(LDV) framework [20] statically verifies device drivers by
combining a manually specified environment model with the
device driver source code and using software model checkers
[14], [18]. Unlike SDV [13] and LDV [20], our analysis han-
dles function pointers defined and/or used by the framework
components and incorporates callback chains into the analysis.
We believe that our call graph inference algorithm can be
used to support approaches as in [12]–[14], [18], [20] with
an automatically generated environment model.

Our results support the empirical evidence provided by
Milanova et al. in [38] that for the purposes of call graph
construction in the presence of function pointers, inexpensive
pointer analyses, i.e., flow and context insensitive, can provide
very good precision. In this paper, we further showed that
for detecting callback related deep bugs, a general points-to
analysis is not needed and a field-based, flow-insensitive, and
context-insensitive analysis that handles only function pointers
may work sufficiently well.

DSA [15] is a scalable points-to analysis algorithm that
is context-sensitive, field-sensitive, and flow-insensitive. DSA
loses field sensitivity when it finds that a type is not used
consistently and collapses all the fields, which is performed to
achieve scalability as mentioned in [15]. As we have shown in
this paper, our approach provides better precision than DSA
for call graph inference as it maintains field sensitivity. Also,
our approach handles function target resolution correctly even
in the presence of cyclic dependencies in the call graph.

Function pointers are considered by Gunawi et al. [16] and
by Rubio-González et al. [17], which use static analysis to
detect incorrect error propagation in file systems. Function
pointers are identified by handling initializations of global
structures and assignments performed inside the function
bodies. However, unlike our approach, they do not consider
indirect chain of calls due to function pointers, which requires
computing a transitive closure as we presented in this paper.

Detection of misuse of error codes that represent pointer
values in Linux file systems is presented in [19]. Relying
on the assumption that function pointers are used in a fairly



restrictive manner in the file system, they do not perform
points-to analysis and instead hard-code possible candidates. It
is reported that 80% of the function pointers could be resolved
this way, which indicates that errors that involve the remaining
20% of the function pointers might be missed.

A technique for detecting race conditions in drivers is
presented in [9]. The entry points of Linux device drivers are
extracted using a tool called Chauffeur [39], which is used to
identify threads that may run concurrently. So they consider
identification of asynchronous callbacks only. As we show in
this paper, synchronous callbacks, which get executed from
the API functions, do play an important role in the formation
of a complete call graph and, hence, their incorporation into
the analysis would potentially detect more races.

An inter-procedural path-sensitive program analysis is used
in [21] to detect deep semantic bugs on different implemen-
tations of file systems. Their treatment of function pointers
is limited to identification of entry points to the analyzed file
system implementations.

Tree-adjoining language reachability is used in [40] to sum-
marize library calls in the presence of callbacks. The goal is to
be able to perform precise context-sensitive data-dependence
analysis that incorporates data-flow through the library code.
Our approach abstracts away the data-flow through the library
code and summarizes APIs in terms of the callback functions
they may execute.

Ramos et al. [33] use under-constrained symbolic execution
to detect deep bugs that get manifested in functions deep
within a program. Their approach enables analysis of functions
by abstracting the specific calling contexts. Our approach, on
the other hand, abstracts the data-flow in API functions while
keeping track of callback related side effects.

Apisan [22] detects bugs that are due to incorrect usage of
APIs in large code bases. It uses relaxed symbolic execution
to infer semantic beliefs for API usage and reports bugs when
a deviation from the inferred beliefs is detected. We believe
that this work is complementary to our work as stronger and
richer semantic beliefs can be inferred when implicit paths
are incorporated to the analysis. Also, our approach does not
rely on any generalization, which may not be applicable or
available for certain bugs.

DR. CHECKER [23] presents a scalable static analysis
approach that, similar to our work, focuses on the analysis of
drivers. Similar to our approach, their function pointer target
resolution is type-based. Unlike our approach, their function
pointer resolution is performed at the scope of the driver only,
and, hence, their analysis does not consider implicit driver
code paths due to interaction with the kernel layers.

DIFUZE [41] uses a combination of static analysis and
fuzzing to analyze device drivers as they execute on the device.
It automatically recovers data structures to craft tests that
exercise the ioctl entry points. Our approach can provide
feedback to tools like DIFUZE and fuzzers such as vUSBf
[27] to identify the entry points of the driver that may host
specific type of vulnerabilities.

K-Miner [34] detects memory corruption vulnerabilities in
the Linux kernel by partitioning the kernel code around the
system call interface and using inter-procedural static analysis.
MOXCAFE also uses inter-procedural analysis. However, it
focuses on callback related API misuses and achieves scala-
bility by abstracting the way drivers interact with the kernel.

Although our staged analysis uses LLVM framework’s
implementation of the algorithm presented in [29], it can be
based on any path-sensitive analysis including those presented
in [42] and [43].

VII. CONCLUSIONS

We have presented a multi-stage static analysis approach
for detecting deep vulnerabilities that involve callbacks. Our
approach leverages the programming model of frameworks
that use the callback types and the signatures for handling
callbacks. Scalability is achieved by summarizing the inter-
action of application modules with the framework compo-
nents through implicit edges in the extended call graph of
the application module. We have shown the effectiveness of
the approach by applying it to several Linux drivers and
kernel layers. Using the presented approach, we were able
to detect two known and four new callback related deep
bugs/vulnerabilities. In future work, we are planning to explore
more types of bugs and incorporate more precise context
information into the analysis.
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APPENDIX
DETAILED EXPERIMENTAL RESULTS

Table IV shows our experimental results on extended call
graph generation and callback-aware analysis for deep bug
detection. FT, #F , N, MT, and EIC denote the type of
the framework modules, the number of framework modules,
the number of iterations after which the extended call graph
stabilized (maximum # iterations was set to 15), the time for
metadata collection, and the time for generating the extended
call graph using the metadata, respectively.

The columns F and T in the Extended CG Inference
section of Table IV shows the number of false and true
inferences, respectively.

MOXCAFE columns in Table IV represent the data for
our callback-aware analysis that uses the extended call graph
generated using Algorithm 1. Real bugs/vulnerabilities are
shown in bold. S, #P, P I, and P II denote the number of
path summaries, the number of paths explored, the time for
the summary mode and the time for the summary-aware mode,
respectively. The Bugs column presents the # of false, F, and
the # of real, R, deep bugs detected. DSA CG Extended +
Callback Aware column of Table IV shows the results of
callback-aware analysis that uses the call graph generated by
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TABLE IV: Extended Call Graph Generation and Callback-aware bug detection for various Linux drivers. Driver names in
bold represent the drivers in which real deep bugs have been detected.

Extended CG Inference MOXCAFE DSA CG Extended + Callback Aware
Driver FT #F N Time (s) Inferred S #P P I P II Bugs S #P P I P II Bugs

MT EIC F T F R F R
usbtv* v,s 72 4 255.96 4.95 22 24 3 140 21.57 23.56 0 1 1 2490 21.97 30.52 0 0

airspy v 33 3 134.42 1.79 0 8 3 153 10.12 10.15 1 0 0 153 11.75 11.80 0 0

em28xx v,s 72 3 252.75 4.40 4 7 9 1022 297.46 301.14 4 0 2 786 295.60 298.27 0 0

hackr v 33 3 133.06 2.60 2 7 3 220 11.08 11.20 2 0 2 220 11.72 11.77 1 0

hdpvr v 33 3 155.79 19.40 1 4 1 305 26.19 26.57 0 0 2 304 25.72 26.75 0 0

stkweb v 33 3 136.70 4.67 0 3 1 633 47.45 47.86 1 0 9 3519 47.20 48.13 1 0

zr364 v 33 3 129.85 4.31 2 31 3 396 16.78 16.92 2 0 3 609 17.20 17.92 2 0

f acm d,g 45 3 207.53 4.27 5 12 5 64 0.71 0.72 0 0 4 4183 0.95 8.17 0 0

f eem d,g 45 3 207.53 3.60 0 5 1 656 8.03 8.24 0 0 6 1648 8.48 9.92 0 0

f fs d,g 45 2 207.53 3.64 4 23 8 1284 103.39 103.60 0 0 8 7549 100.64 122.51 0 0

f hid* d,g 45 3 207.53 3.64 0 8 5 3220 10.81 18.03 2 1 7 446 10.41 10.48 0 1

f loo* d,g 45 3 207.53 3.60 0 6 3 3923 0.79 9.90 0 1 8 15224 1.15 11.49 0 0

f mass. d,g 98 3 749.30 9.70 1 21 7 469 112.93 114.22 0 0 12 9169 110.06 122.30 0 0

b, c

f mid* d,g 82 3 255.94 6.31 6 11 4 3029 30.06 37.02 0 1 6 30962 30.93 43.19 0 0

s

f ncm d,g 45 3 207.53 3.65 0 14 5 159 11.13 11.29 0 0 6 4728 11.55 22.04 0 0

f obex d,g 45 2 207.53 3.70 0 4 1 34 0.54 0.54 0 0 4 212 0.87 1.06 0 0

f phon. d,g 45 3 207.53 3.59 0 7 5 274 17.99 19.58 0 0 6 3366 18.34 33.17 0 0

f print. d,g 45 2 205.30 3.22 0 7 5 884 40.02 48.23 0 1 10 10867 40.55 55.39 0 1

f seri. d,g 59 2 244.90 4.40 0 1 1 28 0.52 0.52 0 0 4 266 0.82 1.12 0 0

r, t

f tcm d,g 45 3 207.53 3.78 2 43 7 11942 10.32 20.02 0 0 13 56907 11.88 50.46 0 0

renes. g 37 6 203.72 1.95 13 26 9 613 34.06 45.59 1 1 6 762 32.70 54.01 1 0

vudc g 37 4 209.86 6.57 14 18 11 298 5.09 12.95 0 0 12 404 5.33 22.63 0 0

6fire s 39 4 129.78 2.49 9 7 6 236 41.75 42.06 0 0 8 236 41.21 41.49 0 0

caiaq s 39 2 129.95 2.27 2 2 2 143 68.33 68.57 0 0 3 143 67.40 67.70 0 0

hiface s 39 4 129.07 2.70 2 7 4 1727 3.78 10.10 0 0 6 5105 4.02 10.00 0 0

midi s 39 4 169.08 3.16 13 123 3 1454 206.90 209.30 0 0 9 971 207.14 208.98 0 0

usx2y s 39 4 129.85 3.53 5 28 4 8833 107.10 119.45 0 0 7 5408 107.04 130.26 0 0

mass. b,c 53 2 243.06 4.70 11 8 3 155 110.23 111.30 0 0 1 194 44..83 45.09 0 0

uas b,c 53 2 222.35 3.32 3 3 3 486 46.11 107.51 0 0 1 472 106.61 107.83 0 0

io edg. r,t 14 3 43.82 1.19 3 8 5 893 63.23 63.42 0 0 11 1405 61.24 62.49 0 0

mxupo. r,t 14 2 43.84 0.54 0 2 1 303 35.40 35.70 0 0 9 303 34.24 36.23 0 0

usbser r,t 14 2 43.80 0.83 3 16 3 203 37.73 37.87 1 0 0 203 37.80 38.54 0 0

cdcacm t 11 2 28.22 0.42 5 12 5 462 30.62 30.64 0 0 8 454 29.58 29.83 0 0

hso n 46 3 337.06 5.97 4 7 2 644 60.41 60.68 0 0 10 4447 62.69 70.12 0 0

pegasus n 47 2 344.40 6.46 1 3 1 1492 10.56 10.09 0 0 3 118 10.73 10.89 0 0

r8152 n 47 2 344.40 8.89 4 28 5 2017 79.22 79.82 0 0 9 2017 79.73 80.30 0 0

usbnet n 49 2 359.05 10.38 0 2 1 823 53.62 54.13 0 0 0 820 53.70 54.25 0 0

hdc u 23 2 99.34 1.08 0 2 1 783 61.24 61.93 0 0 0 781 61.10 61.86 0 0

hidco. i,h 10 3 36.14 0.34 0 9 3 1201 44.89 44.88 0 0 0 303 35.58 35.76 0 0

usbkbd i 2 2 9.65 0.06 1 3 1 24 7.54 7.65 0 0 - - - - - -

DSA, which could detect only two of the deep bugs that were
found by MOXCAFE.


