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Abstract

We present the first plasma simulations obtained with the code dHybridR, a hybrid particle-in-cell code with fluid
electrons and both thermal and energetic ions that retain relativistic dynamics. dHybridR is constructed to study
astrophysical and space-physics problems where a few energetic nonthermal particles (i.e., cosmic rays, CRs)
affect the overall dynamics of a nonrelativistic plasma, such as CR-driven instabilities, collisionless shocks,
magnetic reconnection, turbulence, etc. In this method paper we provide some applications to linear (resonant/
nonresonant CR streaming instability) and strongly nonlinear (parallel shocks) problems that show the capabilities
of the code. In particular, we provide the first self-consistent hybrid runs that show the acceleration of relativistic
ions at nonrelativistic shocks; CRs develop a power law in momentum, which translates into a broken power law in
energy that exhibits a steepening around the ion rest mass, as predicted by the theory of diffusive shock
acceleration. We present examples of 2D dHybridR runs relevant for fast shocks in radio supernovae, whose
evolution can be followed in real time, and 3D runs of low-Mach-number heliospheric shocks, which can be
compared with in situ spacecraft observations.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Shocks (2086); Cosmic rays (329); Galactic
cosmic rays (567); Space plasmas (1544); Plasma physics (2089); Magnetohydrodynamical simulations (1966)

1. Introduction

Understanding the generation and dynamical effects of
nonthermal high-energy particles (cosmic rays, CRs) in
astrophysical plasmas has been an important question since
their discovery in the early 20th century (see, e.g., Baade &
Zwicky 1934; Fermi 1949; Chen & Armstrong 1975; Axford
et al. 1977; Krymskii 1977; Bell 1978a, 1978b; Blandford &
Ostriker 1978, for some representative seminal papers on the
acceleration of Galactic CRs). CRs are ubiquitous throughout
the universe and in the Galactic interstellar medium are in
equipartition with the thermal plasma and the magnetic fields,
despite being very few in number, about 10−9 times less
abundant than thermal protons (e.g., Yoast-Hull et al. 2014,
and references therein).

Self-consistent modeling of the nonlinear interplay between
CRs, thermal plasma, and magnetic fields is a challenging
problem and requires kinetic numerical approaches; moreover,
such a nonlinear physics inherently spans multiple length and
timescales. For instance, the gyroradius of a GeV particle is
about 1012 cm in the μG magnetic field typical of heliospheric
and interstellar media, significantly larger than electron/ion
skin depths, which are on the order of 105–107 cm for typical
densities of about 1 cm−3. Accelerators can be several orders of
magnitude larger: ∼109 cm for the Earth bow shock, a fraction
to a few astronomical units for interplanetary shocks, tens of
parsec for Galactic supernova remnants, and even a few
megaparsec for radio relics in galaxy clusters.

Fully kinetic plasma models (like particle-in-cell, hereafter
PIC, or Vlasov codes) can accurately model all of the relevant
physics in collisionless systems by evolving the six-dimen-
sional phase-space distribution function of both ions and
electrons (e.g., Birdsall & Langdon 1991; Bell et al. 2006;
Valentini et al. 2007; Lapenta 2012; Palmroth et al. 2018).
However, these fully kinetic simulations require grid sizes and
time steps that resolve both the electron and ion dynamics, and
because an electron is a factor of 1836 lighter than a proton, the

characteristic scales of the electron dynamics are significantly
smaller than those of the ions. Having to resolve the electron
scales limits the ability of these approaches to model the long-
term evolution of the ions, and especially, of the CRs.
The hybrid model, which treats ions as kinetic macroparti-

cles that satisfy the Vlasov equation with phase-space
trajectories evolved by the Lorentz force equation and electrons
as a fluid that keeps the system charge neutral, can bridge
thermal and nonthermal regimes at the expense of the detailed
kinetic electron physics. Hybrid models (see Winske &
Omidi 1996; Lipatov 2002, for reviews) have been used to
study many different plasma problems, including shocks (e.g.,
Winske 1985; Quest 1988; Burgess 1989; Giacalone et al.
1992; Giacalone 2004; Gargaté & Spitkovsky 2012; Burgess &
Scholer 2013; Caprioli 2015; Burgess et al. 2016), turbulence
(e.g., Karimabadi et al. 2014; Matthaeus et al. 2015; Pecora
et al. 2018; Arzamasskiy et al. 2019), and magnetic reconnec-
tion (e.g., Mandt et al. 1994; Shay et al. 2001; Le et al. 2009).
An implicit assumption of the hybrid model, however, is that

the speed of light is taken to be infinitely high, in order to
neglect Maxwell’s correction in the Ampère law (see Section 2
for more details), which forces the ion dynamics to be
nonrelativistic. This restriction is significant for modeling the
physics of CRs and may raise concerns when simulations are
compared with observations.
Alternative approaches have used a kinetic description of

CRs, while treating the thermal population as a magnetohy-
drodynamical (MHD) fluid (e.g., Zachary & Cohen 1986;
Lucek & Bell 2000; Bai et al. 2015; Mignone et al. 2018; van
Marle et al. 2018; Dubois et al. 2019). While these MHD-PIC
simulations can capture some CR physics, the gap between
thermal and energetic particles requires the injection of CRs in
the system to be externally prescribed, rather than modeled
from first principles.
In this work we present the first—to our knowledge—hybrid

code that includes relativistic ion dynamics, dHybridR, which
is built upon the massively parallel Newtonian code dHybrid
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(Gargaté et al. 2007). In Section 2 we outline the basics of the
code, and we argue that the set of systems with both thermal
and CR populations can be modeled in this way without
violating any of the hybrid approximations. In Section 3 we
compare dHybridR simulations of CR streaming instabilities
with linear theory predictions and show that the physics of CRs
and thermal plasma interaction are being correctly modeled. In
Section 4 we investigate the acceleration of CRs in parallel
shocks and the lack thereof in oblique shocks. Finally, in
Section 5, we show a 3D simulation of an oblique low-Mach-
number shock with parameters comparable to the Earth’s bow
shock, which exhibits features consistent with very recent
in situ observations (Johlander et al. 2016, 2018).

2. Hybrid and dHybridR

The hybrid model for simulating collisionless plasma
physics is fundamentally a Monte Carlo approach to solving
the Vlasov–Maxwell system of equations:
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where E and B are the electric and magnetic fields, x vf t, ,s ( )
is the phase-space distribution function for a given species s of
particles with charge qs and mass ms, òºn f d vs s

3 is the
number density of species s, and º åJ Vq ns s s s is the total

current, where òºV vf d v ns s s
3 is the bulk velocity of each

species. In this work only electron–proton plasmas are
considered, but ions with arbitrary mass and charge can be
easily accounted for (e.g., Caprioli et al. 2017).

The motivation of the hybrid model is to simulate kinetic ion
dynamics (i.e., Equation (1)) on larger length and timescales at
the expense of kinetically modeling electron dynamics. In
practice this is done by assuming that the electron mass is
negligibly low compared to the ion mass. In this way, electrons
are treated as a massless charge-neutralizing fluid that enforces
quasi-neutrality in a system. This corresponds to ni=ne and
hence to  =E 0· (Equation (5)) and = -J V Veni i e( ).

The evolution of the ions in time is described by
Equation (1). In practice this is done by approximating the
ion distribution function with a large number of macroparticles
whose motion in phase space is determined by the Lorentz
force. For a given set of electromagnetic fields, the macro-
particle position and velocity can be advanced in time. The
updated positions and velocities can be interpolated onto a grid
and return a fluid density and bulk flow; note that because the
electrons are taken to be massless, they do not contribute to the
bulk flow.

The electric field, E, is determined by multiplying the
Vlasov equation for the electrons (Equation (1)) by vme and

integrating it over all of velocity space, which yields
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Here we introduced the (isotropic) electron pressure Pe, which
encompasses higher order moments of the electron distribution
function. Reapplying the assumption that ni=ne in the limit
me=mi, we derive an effective Ohm’s law for the electric
field,

= - ´ -E B
c en

P
V 1

7e
e ( )

= - ´ + ´ -B
J

B
c enc en

P
V 1

. 8i
e ( )

The next assumption required for the hybrid model is to
neglect the displacement current in Ampère’s law (i.e., the time
derivative of the electric field) such that  ´ = pB J;

c

4 this
usually referred to as the radiation-free limit, or the Darwin
approximation. This assumption is often equated with taking
the speed of light to be much higher than any other velocity in
the system; however, we show below that it may hold even
when a small number of relativistic particles are present.
Ultimately, omitting this term from the hybrid model neglects
the role of light waves. Finally, the electron pressure is
prescribed by an equation of state, often taken as isotropic and
polytropic. This electric field can then be used in Faraday’s law
to update the magnetic field and thus yields a closed set of
equations describing the evolution of the systems.
While the behavior of the ions is fully detailed in the hybrid

model, the physical description and evolution of the electrons is
less well defined. This is evident in choosing the most physically
appropriate value of γeff for a polytropic electron equation of
state, µ gP ne eff . It could be argued that the electrons should be
adiabatic and so γeff=5/3. However, if the adiabatic descrip-
tion is used in shocks with a large Mach number, electrons
cannot increase their entropy at the shock and the downstream
electron pressure may end up being orders of magnitude lower
than the ion pressure. When we assert that the electron and ion
downstream pressure should be in equipartition, the Rankine–
Hugoniot (RH) jump condition may be used to calculate γeff (see
the appendix of Caprioli et al. 2018, for more details). More
complicated anisotropic prescriptions may be needed for
magnetic reconnection (e.g., Le et al. 2009). In this work we
use the equipartition equation of state for shock simulations and
the adiabatic equation of state for CR streaming simulations.
Along with the disparate length and timescales, plasma

systems can also span multiple scales in velocity space, ranging
from thermal particles that make up the bulk of the plasma to
CRs with kinetic energies orders of magnitude higher than their
rest mass. An implicit assumption of the Darwin model is that
the bulk velocities of the system are low relative to the speed of
light, and because of this, hybrid codes have traditionally not
included relativistic effects for the macroparticle ions. How-
ever, because this approximation is based on bulk speeds being
low relative to the speed of light, even plasma systems with a
nonrelativistic background and a small number of relativistic
particles (or CRs) can be modeled in this limit. This can be seen
from a scaling argument of Ampère’s law with Maxwell’s
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where derivatives have been replaced by λ and τ, which
correspond to characteristic length and timescales of the
systems we are interested in studying, and the colon (:)
denotes an order-of-magnitude comparison. We can see from
the scaling of Faraday’s law that E/B∼V/c, where V=λ/τ
is the characteristic velocity of the system. Using this and that
J∼enV, we can simplify our scaling equation to
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Neglecting the displacement current is no longer appropriate
when the third term becomes comparable to the other two, and
so we find that this approximation is good as long as

V

c

Vv

c
1, and 1, 11

2
A
2

( )⎜ ⎟⎛
⎝

⎞
⎠  

where we used 1 for λ/di, which is the strictest value that can
be used for hybrid simulations. The systems that we aim to
study are composed of a background ion thermal population
with number density ni, characteristic velocity V cbkg  , and a
high-energy CR population with n nicr  and vcr∼c. The
composite background + CR population bulk flow speed can
be estimated as
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.From Equations (11) and (12), we find three conditions that the
systems must meet for this approximation to be valid:

1. Vbkg=c, i.e., bulk flows cannot be relativistic;
2. n nncr i , i.e., the CR number density must be negligible

relative to the gas number density;
3. vA=c, i.e., the magnetic field energy density must be

much lower than the rest-mass energy density.

The last condition is derived by taking the bulk flow velocity to
be Alfvénic; note that pB m n4 i can even exceed c, in which
case the dispersion relation for an Alfvén wave needs to be
modified by including the displacement current term, thus
violating one of the previously outlined assumptions for hybrid
(Krall & Trivelpiece 1973). These conditions are satisfied for
many systems in space and astrophysical plasmas where CR
acceleration, transport, and scattering are important.

To study these types of problems, we have developed
dHybridR, a hybrid simulation code that retains the fully
relativistic ion dynamics. dHybridR is a generalization of the
dHybrid code (Gargaté et al. 2007), where the relativistic
Lorentz force is used for the ion macroparticle evolution, i.e.,

g
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where γ is the Lorentz factor of a given macroparticle and
given by g = - v c1 1 2( ) . This is implemented in the code

using the well-documented relativistic Boris algorithm (see
Birdsall & Langdon 1991, for details).
The equations that govern both the electromagnetic fields and

the particle dynamics are normalized to arbitrary magnetic field,
B0, and number density, n0. Lengths are scaled to the ion inertial
length based on this density, wº =L d ci0 0 pi0, and time to
the inverse ion gyrofrequency based on this magnetic field,
º W =-t ci

cm

eB0 0
1 i

0
. Velocities are normalized to the ratio of the

length and time normalizations, and so a velocity of unity
corresponds to the Alfvén speed in the reference magnetic field
and density, pº =v L t B m n4 i0 0 0 0 0 . Electric fields are
normalized to B v c0 0 and temperatures and energies to m vi 0

2.
Throughout this work, simulations are initialized such that the
unshocked/background plasma has a magnetic field, density,
and ion/electron temperature of unity, and so the simulation units
are effectively normalized to the background/upstream plasma
parameters, i.e., = =v v v0 A th and w= = =d d c ri i g0 pi ,th, the
gyroradius of the thermal ions. By normalizing the discretized
equations in this way, the speed of light only appears as the
ratio c/v0 and then only occurs in the Lorentz factor, g =v( )

- v v v c1 1 A
2

A
2( ) ( ) , in the Lorentz force equation.

The magnetic field is evolved using a two-step Lax-
Wendroff scheme that is second-order accurate in space and
time (Hockney & Eastwood 1988; Birdsall & Langdon 1991).
Further details about the nonrelativistic implementation of
dHybridR are described in Gargaté et al. (2007). The grid size
is selected to resolve both the ion inertial length and the thermal
ion gyroradius. The time step is chosen so that the fastest ions
in the system do not move more than a single grid space in a
time step, i.e., D Dt v v xA max( ) in code units. For systems
with relativistic ions, vmax≈c, and so the time step is
D Dt xv cA .

The remainder of this paper is dedicated to the demonstration
and validation of dHybridR simulating CR generation and
transport for selected plasma systems, in which a small number
of highly energetic ions affects the dynamics. We examine the
nonresonant streaming instability (commonly referred to as
the Bell instability), the resonant streaming instability, and
different regimes of collisionless shocks.
In particular, we study the transition from nonrelativistic to

relativistic CR energies in fast nonrelativistic shocks; because
the required time step is inversely proportional to c/vA, we
initially focus on shock environments where vA is rather large,
such as radio supernovae, where Vsh∼0.1c, B0∼0.1 G and
n0∼103 cm−1 at the peak of the synchrotron emission (e.g.,
Chevalier & Fransson 2006). These parameters correspond to
Alfvénic mach numbers MA≡Vsh/vA∼10 and c/vA∼100.
Then, we show simulations of lower Mach number shocks,
which are more applicable to heliospheric systems, such as
planetary bow shocks and interplanetary shocks triggered by
coronal mass ejections, where plasma speeds vary between
several hundreds to thousands of km s−1, corresponding to
Mach numbers ranging from 1 to 10 and c/vA  104 (Sheeley
et al. 1985; Cane & Richardson 2003). Despite the limited
spatial extent of these heliospheric systems, transrelativistic and
even relativistic particles can be produced in these environ-
ments as well (e.g., Reames 1999; Tylka et al. 2005; Reames
2013; Desai et al. 2016; Wilson et al. 2016).
There are numerous astrophysical systems where c vA and

c/vsh are considerably larger than the simulations presented in
this work; however, as long as there is a clear separation of
scales between the thermal/Alfvénic speed, the speed of the
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shock, and the speed of light, the underlying physics can be
studied fruitfully. This idea implies that the physical results
from these simulations, and dHybridR in general, are
potentially applicable to many different astrophysical systems.

3. Resonant and Nonresonant Streaming Instability

To verify that dHybridR correctly simulates the physics
relevant to systems with CRs, we present two simulations of
the CR-driven streaming instability. This occurs when a
population of low-density energetic CRs drift relative to a
thermal population, driving the amplification of magnetic
fluctuations perpendicular to the mean field. The characteristics
of the instability are controlled by the CR current density: in
the weak current limit, CRs trigger the growth of modes that
are gyroresonant with themselves (resonant streaming instabil-
ity; e.g., Kulsrud & Pearce 1969; Skilling 1975; Bell 1978a;
Zweibel 2003). In the strong current limit, instead, the return
current in background electrons that is needed to enforce
charge neutrality drives modes with wavelengths shorter than
the CR gyroradius (nonresonant or Bell instability; e.g.,
Bell 2004; Weidl et al. 2019).

The kinetic theory of these instabilities and the transition
between the two has been detailed, e.g., by Amato & Blasi
(2009) for a CR distribution ∝p−4 in momentum. In this case,
the boundary between the two regimes is defined by the
parameter (see Amato & Blasi 2009)

s
p
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where rL is the gyroradius of the particles with the minimum
momentum in the CR distribution, pmin, and =J en vdcr cr is the
CR current, defined by the CR number density ncr and their
drift velocity vd. For s 1¯  the nonresonant mode grows faster
than the resonant one, while for s 1¯  , they grow at the same
rate (Bell 2004; Amato & Blasi 2009). In the resonant regime,
because CRs have a velocity spread much higher than the drift
velocity, both right- and left-handed magnetic fluctuations are
driven, while in the nonresonant case, only electron-driven
right-handed modes are amplified.

We set up dHybridR simulations of the CR streaming
instabilities with different sµnCR ¯ and test both the strong and
the weak current regimes. This allows us to probe the nontrivial
coupling between CRs, magnetic fields, and thermal back-
ground plasma both in a MHD-like (nonresonant) and a purely
kinetic (resonant) scenario.

We consider two simulations in periodic domains of size
=L L d, 10 , 5x y i

4[ ] [ ] with a uniform magnetic field =B xB0
and a stationary background population of protons with thermal
speed equal to vA. Superimposed on the background population
is a lower density CR population with a power-law distribution
in momentum space f (p) ∝ p−4 extending from =p m c 1imin
to =p m c 10imax

4, which is isotropic in a frame moving with
a drift velocity vd=10vA. The box transverse size makes the
simulations effectively 2D for the thermal background, i.e., it is
larger than the gyroradius of thermal ions, but actually 1D in
terms of the CR length scales. In both simulations, the speed of
light is set to be c=100vA and there are two grid cells per di;
with 225 and 100 macroparticles per cell used for the
background and CR populations, respectively. The CR number
density relative to the background population is adjusted to

trigger either the nonresonant ( = -n n 10icr
2) or the resonant

( = -n n 10icr
4) instability (Bell 2004; Amato & Blasi 2009).

Each simulation is initialized with a mean magnetic field and
no electric fields. However, because of numerical noise inherent
to the finite sampling of the ion distribution, there are initially
density and bulk flow fluctuations. These fluctuations generate
electric fields through Ohm’s law (Equation (8)), which
produces perpendicular magnetic perturbations that act as seeds
for the unstable modes. The amplitude of this noise is controlled
by the number of macroparticles per cell, and for the simulations
presented in this work, the noise floor is on the order of
á ñ ~^

-B B102
noise

4
0
2. From Parseval’s theorem and our normal-

ization of F, á ñ ~^
-B B 102

0
2 4 corresponds to á ñ ~^

-F 10 8,
which is consistent with the earliest times (dark blue lines) in the
top panels of Figures 1 and 2. Changing the number of particles
per cell alters the initial noise and changes the time that it takes
to achieve saturation, but does not affect either the wavelength or
the growth rate of the fastest growing modes.
For the nonresonant (or Bell) regime, the fastest growing

mode is right-handed (hereafter +kmax), and its corresponding
growth rate, g+max, reads (Bell 2004)

g
W

= =
+

+k d
n

n

v

v

1

2
. 15i

i

dmax

ci
max

cr

A
( )

Figure 1. Perpendicular magnetic energy spectrum, +F Fy z
2 2∣ ∣ ∣ ∣ , as a function

of wave number k and time for a 1D simulation of the nonresonant streaming
instability. Top panel: spectrum as a function of kdi, where each color
corresponds to a different time in the simulation; the vertical black dashed line
corresponds to the kmax predicted by the linear theory (Equation (15)). Middle
and bottom panels: magnetic power in both right-handed ( = ++F F iFx z

2 2∣ ∣ ∣ ∣ )
and left-handed ( = --F F iFx z

2 2∣ ∣ ∣ ∣ ) modes as a function of time; the dashed
lines show the growth rates predicted by the linear theory (Equation (28) of
Amato & Blasi 2009).

4

The Astrophysical Journal, 887:165 (13pp), 2019 December 20 Haggerty & Caprioli



Instead, in the resonant regime, the fastest growing modes have
no preferential helicity, and their wave numbers and growth
rate read

g p
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W
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k d
m v
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v
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i

d
max

A
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where the±superscripts refer to the right- and left-handed
modes, respectively; Equation (16) is calculated by Taylor-
expanding Equation (28) in Amato & Blasi (2009) in terms of
the small parameter n v p n m vd i icr 0 A

2( ) and keeping only the
linear term. Note that in the derivation of the dispersion relation
in Amato & Blasi (2009), the drift speed is assumed to be much
higher than the Alfvén speed, and so the growth rate depends
on v vD A, rather than -v v 1D A , as found in Kulsrud &
Cesarsky (1971) and Zweibel (2003); for the parameters of the
simulations presented here, this is a correction of only ∼10%.

To compare these predictions with the simulations, we
introduce =F B NFFTi i[ ] for i=y, z, where FFT is the
discreet fast Fourier transform calculated along the x direction
and N is the number of grid points in the x direction. The
magnetic power spectrum +F Fy z

2 2∣ ∣ ∣ ∣ is plotted in the first
panels of Figures 1 and 2 for the nonresonant and resonant
cases, respectively. In both figures the color corresponds to
different times in the simulation and the black dashed line
shows kmax predicted by Equations (15) and (16). There is good
agreement between theory and simulation for the location of
the fastest growing modes.

The second and third panels of Figures 1 and 2 show the value
of the magnetic power in right-handed ( = ++F F iFy z

2 2∣ ∣ ∣ ∣ ) and
left-handed ( = --F F iFy z

2 2∣ ∣ ∣ ∣ ) modes as a function of time for
the value of kmax denoted by the black dashed line in the first

panel. The magnetic energy is expected to increase exponentially
in time as µ g




F e t2 2 max∣ ∣ , and the black dashed line corresponds
to the 2γmax given by Equations (15) and (16); there is a general
agreement between theory and simulations in both the
nonresonant and resonant cases. Note that the black dashed line
in the bottom panel of Figure 1 is calculated using Equation (28)
in Amato & Blasi (2009).
It is worth noting the differences in the time and length scales

of the two instabilities we simulated. The resonant instability
stems from a gyroresonant interaction with the CR population
(e.g., Kulsrud & Pearce 1969) and amplifies magnetic fluctua-
tions on scales comparable to the CR gyroradius.
Note that because s 1¯  for the resonant instability, the

growth rates are low compared to the cyclotron frequency of
the background population (Equation (16)); but dHybridR
can accurately capture this phenomenon over more than 104

cyclotron times (about 4×106 time steps).
Recent works have tackled the study of the nonresonant

instability with PIC and hybrid simulations (e.g., Ohira et al.
2009; Riquelme & Spitkovsky 2009; Gargaté et al. 2010) and
of the resonant instability with PIC and PIC-MHD simulations
(e.g., Bai et al. 2019; Holcomb & Spitkovsky 2019; Weidl et al.
2019); these studies have generally found results consistent
with theory for the fasting growing mode and corresponding
growth rate for the linear phase. Nevertheless, the saturation of
the CR streaming instability is a complex and nonlinear
physical phenomenon that is not yet completely understood. A
detailed examination of the properties of the two CR streaming
instabilities using dHybridR, as well as a more thorough
comparison with previous works, is in preparation (see
Haggerty et al. 2019; Zacharegkas et al. 2019, for preliminary
results). The agreement between simulations and the linear
theory verifies that dHybridR can accurately model the
physical coupling of the thermal background plasma and a
drifting CR population for quasi-linear problems, both in the
strong and week current regimes.

4. Nonrelativistic Shocks

4.1. Setup and Simulation Parameters

Shock simulations were performed with dHybridR follow-
ing the setup described in Gargaté & Spitkovsky (2012). The
simulations are performed in 2.5D (2D in real space, and 3D in
momentum space) on a regular Cartesian grid, with periodic
boundary conditions in the y direction (transverse to the shock),
open on the right boundary (+x direction or normal and
upstream of the shock), and a conducting reflecting wall on the
left boundary (-x direction and downstream of the shock). The
derivative along x of E B B, , andx y z through the left boundary is
zero, while Ey=Ez=0 and Bx=Bx(t=0) in the wall. The
shock is formed by initializing the plasma with a bulk flow in the
-x direction; the plasma closest to the left wall is reflected and
begins streaming in the +x direction. This configuration is
unstable, and within ~ W-10 ci

1, a shock forms and travels
upstream. Across the shock, fluid quantities satisfy the RH
jump conditions. For the simulations in this study, the initial/
upstream magnetic field and density are set to unity and the
initial magnetic field points in the first quadrant of the x, y plane,
the shock angle is measured relative to the positive x direction
(normal to the shock) JBn (e.g., for a parallel shock =B xB0 ˆ
and J = 0Bn ). The initial ion thermal velocity is equal to the
upstream Alfvén speed and the electron temperature is equal to

Figure 2. As in Figure 1 for a 1D simulation of the resonant streaming
instability. The theoretical expectations are from Equation (16).
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the ion temperature (T0=Ti=Te). Following previous hybrid
shock simulations (e.g., Gargaté & Spitkovsky 2012; Caprioli &
Spitkovsky 2014a), a polytropic index for the electron equation
of state is selected so that the downstream electron thermal
energy will be half of the upstream kinetic energy in the shock
frame (also see Caprioli et al. 2018, for more details).

Shocks are parameterized by their Alfvénic and sonic Mach
numbers, =M v vA sh A and g= =M v v v k T m2s s B ish sh 0 ,
where vsh is the upstream velocity in the laboratory/simulation
frame (i.e., in the frame where the downstream medium is at
rest). The choice of temperature in these simulations links the
two Mach numbers, =M M10 3 sA , and in this work, we
reference the Mach number as simply ºM M MsA  . We use
two grid cells per di and four particles per cell. For a parallel
shock simulation, the time step is set by the speed of light, as
discussed in Section 2, but for quasi-perpendicular shocks,
where particles do not undergo diffusive shock acceleration
(DSA), the maximum velocity is much lower than the speed of
light ( ~v v3max sh), and the time step is chosen accordingly.

Simulations were run for thousands of cyclotron times to model
the CRs transition from nonrelativistic to relativistic energies. The
largest and longest run of these simulations is shown in Figure 3 at
the end of the simulation, which shows various plasma/fluid
quantities around the shock. For this run we used M=20,
c=200VA0, and = ´L L d, 8 10 , 200x y i

5
0[ ] [ ] . The speed of

light limiting the fastest speed in our simulation allowed us to run
unprecedentedly long hybrid simulations of nonrelativistic shocks,
up to ~ W-6000 ci

1 before the highest energy CRs began to escape
from the box.

4.2. Momentum and Energy

Consistent with results from previous nonrelativistic hybrid
simulations of parallel shocks (e.g., Giacalone et al. 1997; Burgess
et al. 2012; Caprioli & Spitkovsky 2014a, 2014b, 2014c), we find
that thermal ions can be spontaneously energized into an extended
power-law distribution. Figure 4 shows the post-shock distribution
function as a function of both the ion velocity normalized to c
(first panel) and the ion momentum normalized mic (second
panel). The majority of ions are thermally heated by the shock,
forming the Gaussian peak around ~ ~p m v c0.1 ;i the black
dashed lines correspond to a Gaussian with temperature reduced
by 20% with respect to the one predicted by the RH conditions for
a mono-atomic ideal gas. The deviation form the prediction is
consistent with the amount of energy (about 10%–20% of the
shock ram energy) that is channeled in the nonthermal power-law
distribution that develops beyond v∼0.2c, whose extent
increases with time (color code). The velocity spectra are cut
off at v�c, as expected, but the momentum continues to extend
with the same slope beyond pmi c. The distributions shown in
Figure 4 are multiplied by v−4 and p−4. The very reason why the
spectrum looks slightly steeper than p−4 has profound physical
reasons that will be discussed in a forthcoming paper (see Caprioli
& Haggerty 2019, for a preliminary discussions).

While the momentum spectra show a nearly constant power-
law slope, the energy spectrum should have different slopes in the
nonrelativistic and relativistic regimes. The energy distribution is
linked to the momentum distribution through the conservation
of the phase-space volume: p=f E p f p dp dE4 2( ) ( ) . In the
nonrelativistic regime, E∝p2, and so for a momentum power-law
index of q, the energy distribution should go as µf E( )

-E q1 2( ) , i.e., E−1.5 for q=4. In the relativistic regime, E∝p,

and thus the kinetic energy distribution should scale as µf E( )
-E q2 , i.e., the canonical E−2 for q=4.
The energy spectrum for our benchmark simulation is shown

in Figure 5, where the spectrum is multiplied by E1.5 in the top
panel and E2 in the bottom panel in an attempt to emphasize the
agreement with the expected slopes in both the nonrelativistic
and the relativistic regimes. In this run some particles became
relativistic, with γ5, but running such a large simulation long
enough for the power-law tail to extend beyond ~ m c10 i

2 is
computationally impractical. Thus, in order to see the transition
in the energy power-law slope more clearly, we performed a
simulation with a lower speed of light relative to the shock
velocity and Alfvén speed (Run B in Table 1); the reduced
separation of scales allows us to investigate the transrelativistic
regime more easily. Figure 6 shows the momentum and energy
distribution for Run B at = W-t 2000 ci

1 (top and bottom
panels, respectively). In the first panel the distribution is fit with
to a power law ∝p−4 multiplied by an exponential cutoff at

=p m c9 imax . The bottom panel shows the energy distribution,
multiplied by E2; the black and red dashed lines correspond to
the relativistic and classical power-law predictions based on the
fit curve from the top panel. In essence, the black line shows the
shape of the distribution if = + -E m c p c 1 1i

2 2 2( ) and
the red line for =E p m2 i

2 . In the nonrelativistic regime, both
the black and red predictions agree well with the measured
spectrum; as the distribution extends into the relativistic regime
( E m c2 i ), however, there is a clear steepening of the slope to
−2, followed by the exponential cutoff, which agrees well with
the black line prediction. The classical prediction (red line),
however, continues to increase for nearly an order of magnitude
in energy beyond the actual energy cutoff.
This analysis shows, for the first time in hybrid simulations,

how nonrelativistic shocks can accelerate particles to ultra-
relativistic energies (with Lorentz factors up to γ20 in our
case), also confirming that DSA produces power laws in
momentum space across the nonrelativistic and relativistic
regimes. These results are consistent with those obtained for
both electrons and ions in 1D full-PIC simulations of
nonrelativistic shocks (Park et al. 2015) and for electrons in
full-PIC simulations of transrelativistic shocks (Crumley et al.
2019).
One important astrophysical application that stems from

these preliminary runs is relevant for young supernovae (SNe).
When we consider the typical values for the magnetic field
inferred in SN Ib and SN Ic with Wolf–Rayet star progenitors
(Chevalier & Fransson 2006), the inverse cyclotron time W-

ci
1

would be on the order of milliseconds. Both the A and B runs
have MA and c/vA typical of these systems, and so physically,
these simulations are modeling a few seconds of fast radio SNe.
Notably, in these simulations, thermal protons are accelerated
to multi-GeV energies in a matter of seconds, which has
implications for the generation of γ-rays and neutrinos, as
discussed below.

4.3. Rate of Maximum Energy Increase

An important question regarding DSA is the maximum
energy, E tmax ( ), of the particles produced by a shock with a
given speed and magnetic field in a finite amount of time (e.g.,
Lagage & Cesarsky 1983; O’C. Drury 1983; Blasi et al. 2007).
When the magnetic field perturbations responsible for particle
diffusion is self-generated by the CRs, Emax is determined by
the current in CRs streaming in the upstream medium, J ;cr such
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Figure 3. Two-dimensional plasma/fluid quantities around the shock at = W-t 5560 ci
1 from Run A in Table 1. From top to bottom: the three components (x, y and z) of

the magnetic field in excess to the background ( -B B0), magnitude of the magnetic field, density, normal (x), and transverse (y) bulk flow. All of the quantities are
normalized to the upstream values.
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a current can be estimated as the number density ncr of particles
close to the instantaneous Emax, times their velocity, vcr. For a
momentum spectrum µ -f p p 4( ) , in the nonrelativistic
regime, one has µ µ -n p f p Ecr max

3
max

1 2( ) and µv Ecr max
1 2 , so

that =J en vcr cr cr is constant in time. Conversely, in the
relativistic regime µ -n Ecr max

1 and v ccr  , so that µ -J E ;cr max
1

therefore, the current decreases when the maximum CR energy
increases, and one may expect a slower amplification of the
magnetic field and in turn a slower rate of increase of Emax.
Note that this effect may be partially compensated for by the
fact that the CR precursor becomes larger when Emax increases,
so that the time available for the growing of the field (on the
order of one advection time on a CR diffusion length) also
increases. The net effect in general depends on whether most of
the field growth is provided by escaping or diffusing particles,
and on the details of the instability saturation (Caprioli &
Spitkovsky 2014b).
A change in the rate of increase of Emax when ions become

relativistic was first investigated by Bai et al. (2015) using an
MHD-PIC approach. Note that this framework requires
specifying a priori the fraction of particles that effectively
become CRs, but when acceleration becomes efficient, this

Figure 4. Velocity and momentum spectra calculated downstream of the shock
(top and bottom panels) for Run A. Different colors correspond to different
times in the simulation, as detailed by the color bars. Velocity and momentum
are normalized by c and mic, and spectra are multiplied by v4 and p4 for
comparison with the standard DSA prediction. The black dashed line shows a
Gaussian with temperature ∼20% lower than the temperature predicted by the
RH conditions, which compensates for the energy that goes into accelerated
ions in the power-law tail.

Figure 5. Post-shock spectra as a function of the kinetic energy spectrum
normalized to mic

2 (i.e., γ−1) for Run A in time. Distributions are multiplied
by Eq, where q is the expected power law in the nonrelativistic (E1.5) and
relativistic (E2) regimes (top and bottom panels, respectively).

Table 1
Parameters for the Shock Simulations Presented in This Work

Run M c VA L dx i L̂ di Dx di D Wt ci JBn

A 20 200 8×105 200 0.5 .0025 0
B 15 50 105 150 0.5 .005 0
C 30 10000 104 2700 0.5 .0025 70
3D 5 100 1000 100 0.5 .02 70

Note. From left to right: Alfvénic mach number (i.e., v Vsh A), speed of light,
longitudinal (Lx) and transverse (L⊥) box sizes, spacial grid resolution, time
step, and angle of the initial magnetic field relative to the upstream plasma bulk
flow. Note that the time steps in simulations C and 3D are set by the speed of
the fastest particles in the simulation, not by the speed of light.

Figure 6. Post-shock momentum and energy distributions in Run B at
= W-t 2000 ci

1 (top and bottom panels, respectively). The high-momentum tail is
well fit by a distribution µ --f p p p pexpq

max
2( ) ( ) with q=4 and pmax=8mi

c. Such a fitting curve is converted into an energy fitting using either the classical
( =E p m2 i

2 , red line) or the relativistic ( = + -E m c p c 1 1i
2 2( ), black

line) scalings. The energy distribution is multiplied by E2 to emphasize the
transition from -E 1.5 to -E 2.
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fraction has to decrease with time to avoid an energy runaway.
Because a quantitative theory of how this occurs is still lacking,
MHD-PIC methods cannot self-consistently investigate the
long-term evolution of the shock.

To quantify the change in the maximum energy, we define
Emax as the exponential cutoff of the CR distribution, taken in
the form ~ - -f E E eq E Emax( ) . Following Bai et al. (2015), we
calculate Emax by integrating over the energy distribution
function,

ò
ò

~E
E f E dE

E f E dE
. 17max

4

3

( )

( )
( )

Because f (E) has an energy slope between 1.5 and 2, the integral
differs from Emax by a constant of about unity. Figure 7 shows
the maximum energy as a function of time for Run A, where

µE t tmax ( ) can be fit with a broken linear function with a change
of slope in the transrelativistic regime. The rate of the increase of
Emax is about ´ W- m c3.9 10 i

4 2
ci and ´ W- m c2.4 10 i

4 2
ci below

and above the rest-mass energy, respectively. This decrease by
nearly a factor of two is quantitatively consistent with the
reduction found in Bai et al. (2015), further supporting the idea
that the decrease is due to a reduction in CR current in the
relativistic regime.

The connection between the self-generated diffusion and the
growth of the maximum CR energy can be made more explicit
by measuring the average diffusion coefficient upstream of the
shock. For DSA, the return time upstream is typically the
bottleneck of the acceleration rate. Such a diffusion coefficient
D(E) is estimated using the approach outlined in Caprioli &
Spitkovsky (2014c), namely

òD E
v

f E
f x E dx, , 18

x
sh

sh shock

0

( )
( )

( ) ( )

where x0 is a position far enough upstream that the CR
population is negligible and f Esh ( ) is the CR distribution
function just downstream of the shock.

Figure 8 shows the time evolution of the diffusion coefficient
normalized to the Bohm diffusion coefficient ( ºD vr 2B L ) for
Run A. As discussed in Caprioli & Spitkovsky (2014c), for
M=20, the diffusion coefficient is about an order of magnitude
larger than the Bohm coefficient, which is consistent with having
self-generated magnetic fluctuations —at scales resonant with
the CRs—that are approximately an order of magnitude smaller

than the initial upstream magnetic field. As the simulation
evolves in time and the maximum energy transitions into the
relativistic regime, we can see a change in the diffusion
coefficient. We find that the value of the diffusion coefficient is
consistently higher at relativistic energies, ~D m c D10 20i B

2( ) – ,
than at nonrelativistic energies, ~D m c D5 5 10i B

2( ) – . The rate
of maximum CR energy increase for nonrelativistic shocks can
be written as (Caprioli & Spitkovsky 2014c)

» W
E t

m v

D E

D E
t

1

3
. 19

i

Bmax
1

2 sh
2

max

max
ci

( ) ( )
( )

( )

The increase in the diffusion coefficient as CRs transition to
relativistic energies is consistent with the reduction in the rate
of change of Emax, as seen in Figure 7. The increase of the
diffusion coefficient by an approximate factor of 2 agrees with
the reduction of the slope by a comparable factor.
In previous hybrid simulations, the self-generated diffusion

coefficient normalized to the Bohm coefficient has been linked to
the Mach number by µD D M1B (Caprioli & Spitkovsky
2014b, 2014c). Using this scaling along with the measured rate of
increase of the maximum energy from our simulation, we can
calculate a prediction for the maximum energy as a function of
time,

b»
-

E n B t

sGeV
20

cm Gauss
, 20max

sh
5

3

1 2

( )⎜ ⎟⎛
⎝

⎞
⎠

where b º v csh sh . Again, for the typical values of fast radio
supernovae, with b  0.01sh , CRs with GeV energies will be
reached within seconds, and TeV CRs will be produced in
about an hour. If the circumstellar medium is dense enough,
multi-TeV neutrinos1 in the range of sensitivity of Ice Cube
could be produced in a matter of days after the SN explosion.

4.4. Acceleration Efficiency

We consider the evolution of the fraction of shock energy
that is transferred to CRs as a function of time. Following
Caprioli & Spitkovsky (2014a) and Caprioli et al. (2015), we

Figure 7. Evolution of the maximum CR energy (Equation (17) in units of
m ci

2) for Run A in Table 1.

Figure 8. Effective diffusion coefficient (Equation (18)) normalized to the
Bohm diffusion coefficient as a function of energy for Run A in Table 1. The
different color lines correspond to different times in the simulation.

1 Hadronic neutrinos and γ-rays of energy E are produced by parent protons
of energy ~ E10 .
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distinguish the CRs as the ions that achieved energies
E E10 sh and define the acceleration efficiency ecr as the

fraction of the energy density in these particles normalized by
the total energy density,

ò

ò
e =

¥

¥

Ef E dE

Ef E dE
. 21cr

E10

0

sh
( )

( )
( )

Figure 9 shows that an acceleration efficiency on the order of
10% is reached within the first hundred inverse cyclotron times,
and then remains nearly constant throughout the entire
simulation, consistent with what was seen in the nonrelativistic
case (Caprioli & Spitkovsky 2014a). The vertical black dashed
line denotes when ~E m cimax

2, and the color corresponds to
E m cimax

2 as shown in Figure 7.
From this it is clear that ecr is unaffected as the CR

population transitions from nonrelativistic to relativistic
energies, and that the canonical value of ∼10% quoted by
Caprioli & Spitkovsky (2014a) should be considered the
asymptotic value. In this respect, it is worth stressing that in the
nonrelativistic regime the efficiency e µ µE f E Ecr

2 1 2( ) is
typically dominated by the highest energy CRs, while in the
relativistic regime there is about the same energy density per
decade. Because ecr saturates well before CRs become
transrelativistic, it is necessary for the shock to “be aware” of
the efficient CR acceleration; this CR feedback will be
discussed in greater detail in forthcoming works, but here we
mention that the pressure in the CR precursor affects the
dynamics shock front, which reacts by injecting fewer particles
into the DSA.

Until this moment, we have not discussed oblique or
perpendicular shocks. This is because it has previously been
found in classical hybrid simulations that shocks with
J  50Bn , thermal ions are not energized enough to initiate
the DSA process (Caprioli & Spitkovsky 2014a; Caprioli et al.
2015). Note that if the injection issue is overcome, for instance,
when preenergized CR seeds are present (Caprioli et al. 2018),
or the presence of external plasma turbulence, acceleration at
oblique shocks proceeds unhindered, even more rapidly than at
quasi-parallel shocks (e.g., Jokipii 1987; Giacalone 2005)

Recently, PIC-MHD simulations of very oblique shocks
(J  70Bn ) have suggested that thermal particle injection and
DSA will eventually occur for simulations that are run long
enough (van Marle et al. 2018). We have tested this claim with the

full-hybrid dHybridR code and did not recover such a result.
Figure 10 shows a simulation perform with the same initial
parameters as the quasi-perpendicular M=30 simulation dis-
cussed in van Marle et al. (2018). The simulation is

= ´^L L d; 10 ; 2.7 10x i
4 3

0[ ] [ ] in size with two cells per skin
depth in each direction and was run for a comparable amount of
time ( W-600 ci

1). Using four particles per cell, the dHybridR
simulation has approximately ´ ´ ´ ´M4 3 16 2700 1.72
106 macroparticles impinging on the shock per unit cyclotron
time, where the factor of -r r 1 4 3( )  comes from the
conversion of the upstream flow speed from the simulation to the
shock frame. For the canonical 1% injection efficiency (Caprioli
et al. 2015), in our simulation ~ ´1.7 104 CR particles are
produced per unit time, which returns a statistics comparable with
the ~104 rate used by van Marle et al. (2018). The top panel
shows the energy density distribution as a function of x, in which
energy is normalized to the shock energy. Downstream of the
shock ( <x 0), ions are heated up to suprathermal energies
( E E10 sh), but there is no DSA tail, and no energetic particles
are found upstream (x>0). The bottom panel of Figure 10 shows
a 2D plot of the magnitude of the magnetic field, which reveals
the canonical downstream compression, with some additional
small-scale deviations (which we discuss below); the upstream
magnetic field, instead, is unperturbed. These results stress that a
self-consistent model for ion injection can only be provided by
full-hybrid simulations.

5. 3D Simulations

Finally, we present a quasi-perpendicular 3D shock simula-
tion with a smaller Mach number (M= 5), identified as Run 3D
in Table 1. The conditions in this simulation are quite similar to

Figure 9. CR acceleration efficiency (fraction of energy in particles with
>E E10 sh) as a function of time for Run A. The black dashed vertical line

corresponds to the time when the highest energy particles become relativistic.
The color of each point corresponds to E m cimax

2, as shown in Figure 7.

Figure 10. Quantities from the quasi-perpendicular shock simulation described
by Run C in Table 1. Top panel: energy spectrum at each position x. Bottom
panel: 2D plot of the magnitude of the magnetic field. There is no evidence of
DSA and of magnetic field amplification upstream.
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typical heliospheric shocks, such as the Earth’s bow shock,
which is formed by the supersonic/super-Alfvénic solar wind,
traveling at speed 100 km s−1 and impinging on the Earth’s
magnetosphere (Sheeley et al. 1985; Cane & Richardson 2003).
For typical solar wind conditions, the ion temperature is about
10 eV, and thermal and magnetic pressure are comparable to
each other, which corresponds to M≈5–10 (e.g., Schwartz
et al. 1988; Wilson et al. 2018); moreover, interplanetary
shocks triggered by coronal mass ejections typically span the
same range of Mach numbers (e.g., Wilson et al. 2019).
dHybridR is well suited to study low-Mach-number helio-
spheric shocks because in this system, ions can be accelerated
to transrelativistic energies and because the relevant sizes and
scales can be modeled to scale at a reasonable computational
cost. In Figure 11 we present an orthographic projection of Bz,
where z is the direction normal to the upstream flow and the
mean upstream magnetic field; therefore, Bz is the self-
generated component of the magnetic field. Upstream of the
shock there are no indications of magnetic field amplification,
in agreement with the 2D simulation. However, downstream,

some magnetic structures can be observed: there is a clear
rippling of the magnetic field along the shock interface, which
is produced by shock reformation, consistent with what has
previously been found in observations (Johlander et al.
2016, 2018) and simulations (Lowe & Burgess 2003; Caprioli
et al. 2015; Burgess et al. 2016).
The black line in Figure 11 represents the trajectory of a

synthetic probe through the simulation box, mimicking in situ
spacecraft observations, and Figure 12 shows the magnetic field
measured by such a probe. The trajectory is diagonal through the
shock interface, with only a small component normal to the
upstream magnetic field ( + -x y z0.681 0.727 0.091ˆ ˆ ˆ intersect-
ing a point in the middle of the y–z plane at =x d312.5 i). From
this cut, the periodic structure of the ripples can be clearly seen;
considering that the direction of propagation is primarily in the y
direction, the wave number can be estimated to be on the order
of W ~ ~k v kr 1gci sh , where rg is the gyroradius of the
downstream population. This is a great example of how
dHybridR simulations can be directly compared with in situ
measured heliospheric plasma phenomena.

Figure 11. Orthographic projection of Bz (self-generated component normal to the upstream flow and mean magnetic field) around the shock from Run 3D. Four views
of the 3D structure, with the following views from bottom right in clockwise order: viewing along +ŷ, along -x̂, along -ẑ , and an isometric view along
- + -x y z 3( ˆ ˆ ˆ) . Slices of Bz in the x, y and x, z direction are plotted along the edge of the plotting domain. The black line represents the trajectory of the 1D cut
shown in Figure 12.
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6. Conclusion

In this work we presented the first results from dHybridR,
a hybrid plasma simulation code that includes relativistic ion
dynamics. We detailed how relativistic ion motion is included
in the code and how for specific systems of interest, the
assumptions required for hybrid simulations are not violated.
This novel simulation software can be used to help understand,
from first principles, numerous different open problems
involving space and astrophysical plasmas. The code is well
suited to study many astrophysical systems where a high-
energy, low-density CR population interacts with a nonrelati-
vistic thermal background population.

To verify that dHybridR can correctly model physical
systems of interest, we simulated CR-driven nonresonant and
resonant streaming instabilities. In both test cases, the location
in k space and the value of the maximum growth rate found in
simulations agreed remarkably well with the linear prediction.
Then, we moved to use dHybridR to model strongly
nonlinear problems such as DSA at nonrelativistic collisionless
shocks, similar to those found in the heliosphere, in SN
remnants, and in galaxy clusters. In particular, we presented
simulations with parameters relevant to fast SN shocks (radio
SNe, Figure 3) as well as heliospheric shocks, such as the
Earth’s bow shock (Figure 11).

We performed unprecedentedly long simulations of parallel
shocks in which ions achieve Lorentz factors as large as γ 
20, attesting for the first time in hybrid simulations that DSA
produces a power-law tail in momentum across the transrela-
tivistic regime, which implies an energy distribution that
follows a broken power law that steepens by 0.5 in slope.
When CRs become relativistic, the increase of the maximum
particle energy is still linear in time, but with a rate reduced by
a factor of ∼2; this reduction is a consequence of the saturation
of the velocity of escaping particles to c.

The acceleration efficiency (i.e., the fraction of the shock
energy channeled into nonthermal particles with energy
E10Esh) was found to reach about 10% within tens of
cyclotron times and to remain nearly constant as the high-
energy population transitions into the relativistic regime. These
results are directly applicable to fast radio SNe, where we
predict GeV/TeV CRs to be produced within seconds/days.

With the current sensitivity of γ-ray and neutrino telescopes,
this delay could be measured for a Galactic SN.
Finally, we presented a 3D simulation produced with

dHybridR with conditions comparable to the Earth’s bow
shock with a quasi-perpendicular configuration. We showed
that dHybridR reproduces both qualitatively and quantita-
tively the shock rippling that has been found with in situ
satellite observations (Johlander et al. 2018).
In summary, this work presents, to the authors’ knowledge,

the first hybrid simulations to include relativistic ion dynamics,
which is a critical tool for studying the inherently multiscale
nature of CR/thermal ion interplay in space and astrophysical
plasmas.
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resources provided by the University of Chicago Research
Computing Center, the NASA High-End Computing Program
through the NASA Advanced Supercomputing Division at
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