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The radiation-pressure driven interaction of a
coherent light field with a mechanical oscillator
induces correlations between the amplitude and
phase quadratures of the light. These correla-
tions result in squeezed light — light with quan-
tum noise lower than shot noise in some quadra-
tures, and higher in others. Due to this lower
quantum uncertainty, squeezed light can be used
to improve the sensitivity of precision measure-
ments. In particular, squeezed light sources based
on nonlinear optical crystals are being used to im-
prove the sensitivity of gravitational wave (GW)
detectors. For optomechanical squeezers, ther-
mally driven fluctuations of the mechanical oscil-
lator’s position makes it difficult to observe the
quantum correlations at room temperature, and
at low frequencies. Here we present a measure-
ment of optomechanically (OM) squeezed light,
performed at room-temperature, in a broad band
near audio-frequency regions relevant to GW de-
tectors. We observe sub-poissonian quantum
noise in a frequency band of 30 kHz to 70 kHz
with a maximum reduction of 0.7 + 0.1 dB below
shot noise at 45 kHz. We present two indepen-
dent methods of measuring this squeezing, one of
which does not rely on calibration of shot noise.

Measurements whose sensitivity is limited by quan-
tum noise can be improved by modifying the distribution
of quantum noise. For example, the shot noise limit of
optical measurements using coherent states of light can
be improved by using squeezed states [1-3]. Squeezing
methods employ light with uncertainty below shot noise
in the signal quadrature at the expense of increased noise
in orthogonal quadratures. As a result of this redistri-
bution of uncertainty, squeezed states can enhance the
precision of measurements otherwise limited by quantum
noise. The preeminent example is interferometric GW
detectors where squeezed state injection lowers the noise
floor below shot noise [1, 2, 4-6].

Squeezed states of light suitable for GW detectors have
been successfully generated using nonlinear optical ma-
terials [5—9]. The OM interaction is similarly an effective
nonlinearity [10] for the light field, which can squeeze its
quantum fluctuations [4, 11-14]. Optomechanical squeez-
ing has some advantages over squeezed state generation
using nonlinear optical media. OM squeezing can be gen-

erated independent of the optical wavelength, with a tun-
able frequency dependence of the squeezing quadrature
via the optical spring [14, 15], and in the long term OM
squeezers have great potential to be miniaturized.

Previously, OM squeezing has been observed [16-19]
in systems operated close to the mechanical resonance
(within an octave). While these experiments laid impor-
tant foundations for OM squeezed light, some important
challenges for practical OM squeezed light sources re-
mained. For GW detection, for example, the squeezed
light source needs to be broadband over three decades in
the audio-frequency band, compact, and operating stably
24/7 at room temperature. Here, we present a measure-
ment of squeezing produced by an OM system comprising
a Fabry-Perot interferometer with a micro-scale mirror
as a mechanical oscillator at room temperature, where
for the first time OM squeezing has been observed in a
room temperature system, at frequencies as low as tens of
kilohertz and extending more than a decade away from
the mechanical resonance. This observation of broad-
band OM squeezing at room temperature presents a new
avenue for building quantum OM resources at room tem-
perature that are independent of laser wavelength.

Overcoming thermal noise [20] has been a fundamen-
tal challenge to observing optomechanically generated
squeezing beyond cryogenic temperatures. Reducing the
quantum noise below shot noise in such a system is
only possible if the motion of the oscillator has a signifi-
cant contribution from quantum radiation pressure noise
(QRPN), and is not overwhelmed by thermal fluctuations
[15, 21]. Our mechanical oscillators are designed to have
extremely low broadband thermal noise [21-25] and have
been used to observe QRPN [26]. The thermal noise of
these oscillators is sufficiently low to not overwhelm the
effect of QRPN. Even so, thermal noise does limit the
amount of measurable squeezing generated. In addition
to the limitation set by thermal noise, our locking and
detection scheme introduces losses that degrade some of
the quantum correlations created by the OM coupling.
Thermal noise, lossy detection, and cavity-feedback noise
together limit the amount of squeezing and the frequency
band in which it is observed.

A precise calibration of shot-noise has been the basis
for all prior demonstrations of optomechanical squeezing.
We demonstrate a technique based on photocurrent cor-
relations that obviates the need for such a calibration.



LIGO-P1800385

Intensity
Stabilization

Faraday | gger A B
Isolator

FIG. 1: An overview of the main subsystems in the
experiment. First, the classical intensity noise of an 1064 nm
Nd:YAG laser is suppressed by an intensity stabilization
servo using an amplitude modulator (AM) as the actuator.
The light is then sent to an optomechanical cavity — the
input mirror is a mechanically rigid macro-mirror, and the
output mirror is a low-noise micro-scale mirror supported by
a single-crystal micro-cantilever. The light inside this cavity
gets squeezed due to the radiation pressure interaction
between the circulating light and the movable micro-mirror.
The cavity is locked by picking off 15% of the transmitted
power through BS; on PDj,ck, and feeding back that signal
to a phase modulator (PM). The remaining 85% of the light
is interfered with a local oscillator on BSs which reflects
96.5% and transmits 3.5% of the light. The phase between
the LO and signal is locked by feeding back the DC part of
the fringe detected on PDsqy, to a piezo mirror in the LO
path. The signal from PDgg, is also sent into the spectrum
analyser for measurement.

This technique may be useful on its own for future stud-
ies of squeezing in general.

Our experimental setup consists of two main subsys-
tems — the optomechanical cavity and the detection sys-
tem, as shown in Fig. 1. The optomechanical system is
a Fabry-Perot cavity pumped with a 1064 nm Nd:YAG
NPRO laser. One of the two mirrors of this cavity is
supported by a low-noise single-crystal micro-cantilever
(similar to that employed in [26]), with a mass of 50 ng,
a fundamental frequency of 876 Hz, and a mechanical
quality factor of 16,000. The other mirror is a 0.5 inch
diameter mirror with radius of curvature 1 cm. The cav-
ity is just under 1 cm long, has a finesse of around 11,500,
and a HWHM linewidth () of 650 kHz.

We lock the cavity slightly blue detuned, at around
0.33y away from resonance by using the strong optical
spring (145 kHz) created by the detuned operation [14].
The optical spring by itself is unstable, so an electronic
feedback in frequencies near the optical spring is used to
stabilize the system using the transmitted light for the
error signal. We use radiation pressure as the actuator
for locking, as detailed in detail in Ref. [27], with one
difference: in this experiment, we use a phase modulator
as our actuator instead of an amplitude modulator. We
can treat the instability of the optical spring in the same
way, except for a slightly modified plant transfer function
[28]. The open loop gain of the cavity locking loop is be-
low one at all frequencies less than 140 kHz. Since we
must obtain a signal to stabilize the optical spring while

leaving the squeezed light available to be independently
measured, we split the light exiting the cavity at a beam-
splitter (BSy), using 15% of the total light to obtain the
feedback error signal. This method introduces some com-
mon phase noise between the local oscillator and cavity
field, which is included in our noise budget.

Traditionally, balanced homodyne detection is used to
characterize squeezing, since it cancels classical intensity
noise of the local oscillator and does not introduce loss.
In our setup, however, we use a different method to mea-
sure the squeezing. This is because the classical intensity
noise is sufficiently small to not require cancellation, and
the level of squeezing we expect is low, making it insen-
sitive to a small loss. The beam transmitted from the
cavity (signal) is combined with a local oscillator (LO)
beam on a 96.5%-3.5% beam splitter (BSs), as shown in
Fig. 1. We then measure the port that has 96.5% signal
and 3.5% LO on a photodetector (PDg,,). The output of
PDgq, is low-pass filtered, amplified, and then fed back to
a piezoelectric crystal driving the length of the LO path.
This loop suppresses relative path length fluctuations be-
tween the signal and the LO, but only at frequencies well
below the measurement band. The loop has a unity gain
frequency of less than 1 kHz, and has an open loop gain
of less than -40 dB at the measurement frequencies, as
shown in Fig. 9 in the Supplemental Information (SI).
This eliminates the need to correct the squeezing spec-
trum for the response of the feedback loop. Additionally,
there is no cross over between the homodyne loop and
the cavity loop because their frequency regions of actu-
ation are disjoint. Note that since PDg, is an out-of-
loop detector for both the cavity-locking as well as the
homodyne-locking loop, a sub-shotnoise measurement on
it is an indication of squeezing [29]. The lock maintains
PDsyq, at a constant DC voltage level, which we use to
calibrate the shot noise level. The measurement quadra-
ture is determined by the relative path length between
the signal and LO. In the laboratory, the measurement
quadrature can be tuned by changing either the lockpoint
level, or the LO power, or both, see Fig. 8 and Eq. (11)
in SI.

In order to compare the measured noise to shot noise,
we measure the shot noise level by turning off the homo-
dyne lock, blocking the signal port, and tuning the LO
power to get the same voltage on PDy, as our lockpoint.
This allows us to measure a spectrum of PDgq, that con-
tains shot noise of the light, classical intensity noise, and
the dark noise of PDgg,. We then average this spectrum
over our measurement band to obtain the reference level
(0 dB). Classical relative intensity noise (RIN) is sup-
pressed by an intensity stabilization servo (ISS) to about
8 x 1079 /+/Hz, and contributes less than —40 dB of the
noise on PDggy,. The RIN level is independently mea-
sured by performing a correlation measurement between
PDyq, and another pick-off between the ISS and the PM.
Dark noise accounts for about -12 dB of the shot noise
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FIG. 2: Measured spectrum and modeled noise budget at
12.3 degrees quadrature. All quadrature angles are
referenced so that 0 degrees corresponds to the amplitude
quadrature of the cavity transmission. This figure shows the
measured spectrum relative to shot noise. We show the shot
noise measurement in blue, which is used to obtain an
average shot noise level. All the data in the paper is scaled
to this average shot noise level. The spectrum for total
measured noise at 12.3° is shown in orange, showing
squeezing from 30 kHz to 60 kHz, with maximum squeezing
of 0.7 £ 0.1 dB (corresponding to a 15 + 2% reduction in
PSD) near 45 kHz. We also show the total budgeted noise in
dashed green which is a quadrature-sum of quantum noise,
thermal noise, classical laser noise, cavity-feedback noise,
and differential phase noise.

level, and is not subtracted.

The result of the homodyne measurement of the signal
is shown in Fig. 2. For a quadrature angle of 12.3° from
the amplitude quadrature, we observe up to 0.7 = 0.1 dB
of squeezing (equivalent to a 15 + 2 % reduction in the
PSD), from 30 kHz to 60 kHz.

The distribution of squeezing is studied in detail by
measurements of other quadratures of the homodyne sig-
nal. In order to do this without changing the locking
loop or shot noise, we keep the homodyne locking off-
set the same, and vary the LO power. This allows us
to change the measurement quadrature in a shot noise
invariant way. In the top panel of Fig. 3, we show this
measurement as a function of sideband frequency and
quadrature.

To understand the observed squeezing, a detailed noise
budget of the system is developed. The total budgeted
noise in the squeezing quadrature is shown in Fig. 2, and
in a quadrature dependent way in the bottom panel of
Fig. 3. This noise budget includes a model [30] that
predicts the contribution of quantum noise and previ-
ously measured thermal noise [26] for the measured cavity
and homodyne parameters; measured cavity-feedback in-
jected noise and differential phase noise between the LO
and the cavity. Finally, the extra loss in the detection
path is obtained by comparing measurement and noise
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FIG. 3: Top: Measured noises on PDyq, at fourteen
different quadratures, distributed more densely near the
squeezing quadrature, and sparsely elsewhere. The black
contour line corresponds to shot noise. The regions inside it
are squeezed (shown by the lower colorbar), and the region
outside it are antisqueezed (shown by the upper colorbar).
‘We observe squeezing from 10° to 17° and from 30 kHz to 70
kHz. We can also see one of the mechanical modes of the
cantilever at 27 kHz.

Bottom: Budgeted noise relative to shot noise. The color
scheme is same as the top panel. As is characteristic of OM
squeezing below the optical spring frequency [15], the higher
quadrature shot noise crossing for all frequencies occurs at
the same quadrature. The upper part of the shot noise
contour is nearly perfectly horizontal.

budget at all frequencies and quadratures. Further de-
tails on the noise budget can be found in the SI. As we
see, the overall behavior of the system is similar in the
measurement as well as noise budget, most importantly
the squeezing quadrature.

For additional evidence of squeezing, we have also per-
formed a correlation measurement on the squeezed light.
Extending the approaches in Refs. [31-35], we demon-
strate that these correlations are a way to characterize a
squeezed light source without measuring shot noise. The
light exiting the cavity, after combination with the LO,
is split equally between two photodetectors, as shown in
Fig. 4a. As described in the SI, if the light is limited by
classical noise, positive correlations should be observed
in the two photocurrents. Shot noise limited light should
produce zero correlations, and intensity squeezed light
should produce negative correlations. We measure the
cross power spectrum between the two photodetectors
and confirm that negative correlations are observed, as
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FIG. 4: (a) Setup for correlation measurement: We set the
LO such that the field after BS; is amplitude squeezed and
pass it through a 50-50 (BSs3). We then perform a
cross-spectrum measurement of the two outputs and
normalize it to the individual spectra. This quantity can
only be negative if the input beam is squeezed in the
amplitude quadrature (see Eq. (3) in SI). (b) Measurement
of negative correlations. The existence of these negative
correlations provides a verification of squeezing, and allows
for a shot-noise independent way of verifying the existence
of amplitude squeezing. (c) Squeezing spectrum obtained by
using the negative correlations shown in (b) (see Eq. (7) in
SI). This spectrum is inherently calibrated to shot noise.

shown in Fig. 4b. The cross-spectrum is negative from 33
kHz to 62 kHz, and positive elsewhere, which agrees with
the measured spectrum in Fig. 2. For explicit compari-
son, we convert this correlation to the squeezing factor
(using Eq. (7) in ST). This squeezing factor is shown in
Fig. 4c. This provides unconditional evidence that the
light is squeezed at these frequencies and at this quadra-
ture.

To summarize, we report the first observation of room
temperature, broadband optomechanical squeezing at
frequencies as low as 30 kHz. This measurement not
only paves the way for building miniature, wavelength-
agnostic devices to improve the performance of quantum
measurements like GW measurements, but also opens
up possibilities of exploring broadband quantum corre-
lations at room temperature.
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SUPPLEMENTARY MATERIAL

Application to precision measurements

In addition to being all-wavelength and compact, an
OM squeezer innately generates a bright squeezed field.
This means an OM squeezed field comes with its own
internal phase reference, hence eliminating the need for
an extra coherent phase locking field (CLF) [5, 36]. For
instance, if the state after BSo was sent to a precision
measurement setup, it would include the carrier field
which provides a self-referenced signal to allow locking
to the correct squeezing quadrature. In contrast, vacuum
squeezed states generated by a nonlinear crystal have to
be accompanied by an extra, usually frequency shifted
optical beam that keeps track of the squeezing quadra-
ture [5, 36).

While the current amount of squeezing in our setup
is limited by extraneous technical noises, in the absence
of those noises, the squeezing would be limited by intra-
cavity losses. This expected squeezing in the absence of
extraneous noise is shown in Fig. 5. After elimination
of differential phase noise between the LO and cavity,
the squeezing would extend to much lower frequencies.
The differential phase noise injected into the system can
be reduced by picking-off and recombining the LO in-
side the vacuum where the OM cavity is situated. The
feedback noise can be subtracted by monitoring the ac-
tuator signal. A more optimized feedback scheme could
also be implemented that injects lower noise, e.g. a feed-
back tuned for the measured quadrature’s transfer func-
tion with respect to an appropriate input quadrature that
would couple minimum noise to the squeezing signal [28].
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FIG. 5: Expected squeezing with lower loss and in the
absence of technical noises. The differential phase noise
masks the squeezing at low frequencies, whereas the noise
injected by the cavity feedback electronics degrades the high
frequency side of the correlations. Once these technical
noises have been suppressed, and the optical losses have
been lowered, we would expect to see about 1.5 dB of
squeezing from this system. This limit comes from a
combination of escape efficiency and thermal noise [15].

Noise budget

The measurement is also compared to a noise budget,
shown in the bottom panel of Fig. 3. The total budgeted
noise shown is the quadrature sum of individual contribu-
tions from measured thermal noise, quantum noise, clas-
sical laser noises, cavity-feedback noise, and differential
phase noise between the signal and LO. It uses experi-
mentally measured cavity parameters, thermal noise, BS;
and BSs reflectivities and homodyne visibility, listed in
Table I. The quadratures for which squeezing is obtained
depend on the various OM parameters of the cavity, such
as the detuning, circulating power, losses, as well as the
thermal noise. We measure the cavity detuning, intracav-
ity power and losses by measuring transfer functions from
amplitude modulations on input to transmitted light.
The thermal noise is measured by a cross-spectrum mea-
surement in the amplitude quadrature without the local
oscillator [37]. We have also separately calibrated all the
beam splitters, the mirror reflectivities, and the homo-
dyne visibility. These measured quantities are then used
to predict the squeezing using a numerical model based
on Ref. [30]. In this model, we also include the effect
of the unbalanced homodyne with an imperfect visibility
and common-mode laser noises.

We then characterize the impact of technical noises by
measuring their contribution. First, we measure the con-
tribution of noise injected by the cavity locking system.
The dominant source of this noise is shot noise at PDjqcx
due to 15% transmission of BS;. In order to measure this
feedback noise, we measure the coherence between PDg,
and the amplifier output that is fed to the phase modu-
lator at input. This coherence when multiplied with the
spectrum of PDgg, gives us the contribution of feedback
noise. We do this at all measurement quadratures inde-
pendently. We find that the impact of feedback noise is
minimized at 17 degrees, akin to other intracavity dis-
placement noises like thermal noise.

In principle, this cavity-feedback noise could be sub-
tracted from the final result, as it is a measured quan-
tity, but we choose not to do so for the sake of simplicity.
Instead, we chose to pick-off the LO beam just after the
cavity-feedback phase modulator, so that there is com-
mon mode rejection of this locking loop phase noise at the
homodyning stage at BS;. The common mode rejection
by the homodyne detection also allows us to cancel fre-
quency noise originating from the NPRO laser, without
requiring a frequency stabilization servo. Any scheme to
measure squeezing not purely in the amplitude quadra-
ture requires mixing the signal beam with an LO that is
phase coherent with it, and so one always has the ability
to reject common mode noise in this fashion. Also note
that there is no risk of generating apparent squeezing af-
ter BSy by deriving the LO from the cavity locking field
(e.g. from feedback-squashing of the in-loop field), be-
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BS; reflectivity 85 %

BS: reflectivity 96.5 %

Input coupler transmission 50 ppm
Cantilever mirror transmission 250 ppm
Cavity losses 250 4+ 20 ppm
Cavity linewidth HWHM () 650 kHz
Cavity detuning 0.33vy

Homodyne visibility 0.93

Intracavity power 260 £ 30 mW
~ |2
Signal power (‘tEs ) 58 + 4 pW
L2
LO power <’rELo‘ 0-30 43 W
Detected power (|Esqz\2) 49 £ 3 yW

Detection inefficiency and extra losses|21 £ 8 %

TABLE I: Experimental parameters determined from
measurements in the lab

cause the LO and signal fields are both out-of-loop [29].

Additionally, displacement fluctuations that are rela-
tive between the LO and the signal path cause an effec-
tive phase noise in the measurement. We refer to this as
the differential phase noise, and we measure it by ana-
lyzing the measured noise at 17°. At this quadrature, all
displacement noises including the feedback noise are can-
celed, and the quantum noise contribution is at the shot
noise level. So we attribute all noise above shot noise
at 17 degrees to this relative phase noise. We calculate
the contribution of phase noise in all other quadratures
by assuming that it is maximum at 90°quadrature and
scaling it sinusoidally.

Finally, we are left with excess loss in the detection
path. We fit this loss by adding a frequency and quadra-
ture independent loss to the noise budget. We find an
excess loss of 22 4+ 1%, which agrees with the measured
loss of 21 + 8%. Note that optical loss is the only effect
where a single scalar would be sufficient to explain the
measurement over all quadratures and frequencies. All
of the above contributions to the noise budget are shown
in Fig. 6: as a function of measurement quadrature in
Fig. 6a, and as a function of frequency in the squeezing
quadrature in Fig. 6b.

Correlations

Consider splitting an intensity squeezed beam onto two
photodetectors. For convenience, let’s split it as 50%.
The amplitude quadrature of the two fields hitting the
photodetectors may then be written as

e "r1+c—uy1
V2

blze xl\—/l—ic—&—yl’ (2)
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FIG. 6: Noise budget: (a) Measurement and noise budget
as a function of quadrature, averaged over a 1 kHz bin. (b)
Measurement and full noise budget at the squeezing
quadrature. The measured noise at 12.3°is shown in orange.
Also shown are the contributions from quantum noise (with
excess loss) in purple, thermal noise in red, differential phase
noise in brown, and cavity-feedback noise in pink. The
quadrature sum of all these contributions is shown in dashed
green. All noises are relative to shot noise and are shown in
dBs.

where z7 is the vacuum that has been squeezed by the
factor e™", ¢ represents any classical noise that might be
present, and y; is the vacuum that enters at the beam-
splitter.

If we measure the the averaged cross power spectrum of
the resulting photocurrents, but don’t take the absolute
value, we find

1
<Sa > = 5 (672T + 5. — ]-) aﬁv (3)
where we have normalized shot noise to 1, and assumed
detector a has a relative gain of «, and detector b has
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FIG. 7: Classical laser intensity noise and dark noise,
shown relative to shot noise. Since we always keep the total
detected power on PDgg, constant (and just change the LO
power to change the measurement quadrature), the relative
dark noise and classical laser intensity noise can just be
scaled to that power. In this figure, 25 dB is added to the
measured RIN so that it is viewable on the same graph as
the other noise measurements.

a relative gain B, and S, is the power spectrum of the
classical noise scaled to shot noise. All the cross terms
between x1, y; and ¢ will average to 0, as they are un-
correlated. If the original field is squeezed, then that re-
quires e 2" + S, < 1, which would then imply (Sq) < 0.
Note that if this is not satisfied, such that we have classi-
cal noise that destroys the squeezing, then e 2"+ S, > 1,
which requires (Sz;) > 0. Therefore, by looking at the
sign of the average cross power spectrum, one can defini-
tively prove whether squeezing is present or not.

To interpret this, when the beam is limited by classical
noise, the power fluctuations hitting both PDs are identi-
cal and positively correlated. If the beam is exactly shot
noise limited, the power fluctuations hitting the two PDs
are uncorrelated. With a perfectly amplitude squeezed
beam, the power fluctuations are exactly anti-correlated.

We may write the individual power spectra as

—2r
Sa = Sb = ﬁ. (4)
a2 B2 2

Then define the normalized correlation as

= <Sab> . e 2r +S.—1 (5)
V5.5, e+ S. 417

This is convenient because it supplies a unitless measure
of the nature of the noise, and is independent of the rel-
ative gain of the photodetectors. This C' is similar to the
square root of coherence, but retains phase information.
In fact, the coherence may be written as CC*.

We can see that if the field is entirely classical so that
S. dominates, then C' = +1. Likewise if the beam is
exactly shot noise limited without squeezing, then C = 0.

0
rELO p
A >
// - ¢S tES \\
/ Esq \
/ \

FIG. 8: A phasor diagram showing how the tunable
homodyne detector selects the measurement quadrature.
The sum of the LO field (blue) and the signal field (red)
selects the quadrature that is being measured (green). In
the entire manuscript, we report this angle ¢gs as the
measurement quadrature. We determine the quadrature by
knowing the power in all the three fields, and the visibility.
The dashed green circle represents a contour of constant
detection power. In order to keep the shot noise reference
unchanged, we choose to always lock PDgq, with a constant
total detected power, and vary the LO power to change the
measurement quadrature. This has the effect of changing
the angle 0 of the LO.

Finally, for an infinitely squeezed field with no classical
noise, C' = —1.

To simplify, let’s call the total noise PSD of the original
beam relative to shot noise R = e~2" + S,, in which case

<Sab> R—-1
C = = —. 6
S.Sy R+1 ( )
This leads to
1+C
h=1—¢ @

Thus, by measuring C, we have a method to measure the
amount of noise relative to shot noise independent of our
ability to calibrate shot noise.

This treatment is simplified by not propagating the DC
carriers of the fields. The final physical result becomes
invariant of the beam splitter convention if one keeps
track of the DC carrier fields. The cross spectrum (Sgp)
is negative for a squeezing beam =z, irrespective of the
beam splitter convention, as long as the carrier of the
field y is smaller than the carrier of the field x. This
condition is trivially satisfied in our measurement, since
y is coming from vacuum fluctuations, with a zero DC
field.

To include the effects of uncorrelated electronics noise
on the photodetectors, we may rewrite the power spec-
trums for each detector as

2R+

S, = + o? Sda (8)

2R+1

Sy =5 + B%Sa, 9)

where Sy, and Sy, are the PSDs of each detector from
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Open loop gain for homodyne loop

|
N
o

Magnitude, (dB)
&
o

|
©
o

30 40 50 60 70 80 90 100

—1001

Phase, (deg)

30 40 50 60 70 80 90 100
Frequency (kHz)

FIG. 9: Measurement of the open loop transfer function of
the homodyne locking loop around the squeezing frequency
band. Since this loop is designed only to suppress large path
length fluctuations between the local oscillator and the
signal at low frequencies (<1 kHz), this loop has close to
zero gain at our measurement frequencies.

electronics noise. The resulting normalized correlation is

<Sab> R—-1
C: =
\/SaSb \/(R+1+Sda)(R+l+Sdb)
~1/2
R—1 Sda\/ Sab
= — 1 1
R+l \/+1+R "1 R
R—-1
10
"R+1 (10)

where 1 < 1 is an effective efficiency of the measurement.
In our experiment, since the dark noise is far below shot
noise (Fig. 7), the efficiency 7 is close to 1. If instead
one had a lower efficiency, we can see from Eq. (10) that
electronics noise will make observed correlations trend
towards 0, and the inferred quantum noise level to shot
noise.

Tunable homodyne detector

In our experiment, we opt to use a single-photodiode
homodyne detection. Instead of combining the signal
beam with the local oscillator (LO) on a 50-50 beam
splitter, we combine it on a highly asymmetric beam
splitter. We measure on the output port which trans-
mits the larger signal fraction and reflects the smaller
fraction of the LO. While this scheme introduces some
loss of signal, it works with just a single photodetector
and eliminates the need for performing perfect subtrac-
tion that is needed in a balanced homodyne. Since the
amount of squeezing expected in this experiment is rel-
atively low, the reduction in squeezing due to this beam
splitter loss is small.

We show below that the signal quadrature in which the
measurement is performed is given by the angle made by
the resultant of vector addition of the carrier of signal
and LO with respect to the signal, as displayed in Fig. 8.
Similarly, the LO quadrature measured is given by the
angle this resultant makes with the LO.

Eqz = tEs +TR() ELo (11a)
TELQ sin 6
tan ¢ rEyLo cosf + tEg (11b)
—tFEgsinf
t = 11
an.¢Lo rEro + tEs cosf (11c)
sqz |Esqz| U(¢S) (11d)

Here E represents the strength of the carrier of the sig-
nal(S), LO and the resultant (sqz). ¢ is amplitude trans-
mitivity (v/0.965) and r is amplitude reflectivity (1/0.035)
of the beam splitter. We define a unit vector U (¢g) which
represents a vector in the direction of the resultant, and
determines the measured quadrature. Using [30], we can
also calculate the loss effect of the beam splitter. We
define € as the fluctuations on the field, normalized such
that the shot noise is |E[? [28]. We then propagate these
fluctuations from the signal and the LO as they interfere
on the beam splitter :

Esqr = tés +1e'’R(0) éro
EuqpCeqy = |Baqu| U(5)" o
SSCIZ(¢S) = ( )T é'sqz éng [j(¢S)
= ( ps)t. t2€s€s

() LeLO ()) (¢S)
t Ss(¢s) + 72

(12e)

where we have assumed that the LO is shot noise lim-
ited, and defined Ss(¢s) = U(¢ps)' - é’seg U(¢s) as the
spectral density of the signal if measured perfectly with a
balanced homodyne detector at the quadrature ¢g. The
above equations show that the total spectral density mea-
sured, Ssqs(¢s) is a combination of Sg(¢g) and 1, in the
ratio of the beam splitter’s reflectivity.
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