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Machine learning approach to dynamical properties of quantum many-body systems
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Variational representations of quantum states abound and have successfully been used to guess ground-state
properties of quantum many-body systems. Some are based on partial physical insight (Jastrow, Gutzwiller-
projected, and fractional quantum Hall states, for instance), and others operate as a black box that may contain
information about the underlying structure of entanglement and correlations (tensor networks, neural networks)
and offer the advantage of a large set of variational parameters that can be efficiently optimized. However, using
variational approaches to study excited states and, in particular, calculating the excitation spectrum, remains
a challenge. We present a variational method to calculate the dynamical properties and spectral functions of
quantum many-body systems in the frequency domain, where the Green’s function of the problem is encoded in
the form of a restricted Boltzmann machine (RBM). We introduce a natural gradient descent approach to solve
linear systems of equations and use Monte Carlo to obtain the dynamical correlation function. In addition, we
propose a strategy to regularize the results that improves the accuracy dramatically. As an illustration, we study
the dynamical spin structure factor of the one dimensional J; — J, Heisenberg model. The method is general and

can be extended to other variational forms.
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I. INTRODUCTION

In the past couple years, machine learning has permeated
many areas of physics and found numerous applications in
condensed-matter physics and chemistry. These ideas acquire
a very special meaning in the context of the quantum many-
body problem where one deals with data sets that are exponen-
tially large. Sophisticated techniques have been developed to
tackle this difficult challenge, such as compressing the data by
using information theory and machine-learning tools [1], very
similar in spirit to algorithms to compress images and videos.
In our case, data sets are comprised of all possible electronic
configurations and cannot be stored in the memory of the
largest supercomputer. This is an “extreme data science” prob-
lem from an information processing perspective, and can be
approached by means of importance sampling using stochas-
tic methods such as Monte Carlo techniques. This process can
be greatly simplified if one recognizes complex patterns in the
data, which has led to a line of research now called quantum
machine learning [2] that uses machine-learning algorithms to
extract insightful information about quantum systems.

Even though approaches based on tensor networks [3]
hold promise for developing efficient and accurate algorithms
to solve two-dimensional many-body problems, the density-
matrix renormalization group (DMRG) [4-8] method has
remained the method of choice. Although understood in
the context of quantum information theory, these methods
share the same underlying structure and are strongly rooted
in machine-learning ideas such as the low rank approxima-
tion behind principal component analysis. However, despite
the success of DMRG for one-dimensional and quasi-one-
dimensional geometries, extensions to actual two-dimensional
systems remain challenging and applications are constrained
to long cylinders and strips. The main hurdle is the fact
that the number of states required to accurately represent a
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quantum many-body state is determined by the behavior of
the entanglement entropy, the so-called area law.

Neural networks have successfully been used as variational
wave-function approximators to model the ground state of
many-body quantum systems. The most promising results
so far were achieved with restricted Boltzmann machines
(RBMs) [9-12]. RBMs are a type of artificial neural network
which are widely used in machine learning to model the
probability distribution of a given data set of binary vectors
drawn from an unknown probability distribution. The com-
ponents of these vectors comprise the visible layer of the
neural network. In addition to the visible layer, one intro-
duces a hidden layer which corresponds to the components
of another set of binary vectors. These hidden vectors are
auxiliary variables that expand the space of parameters and
are ultimately factored out. The probability distribution of
the visible vectors is formulated by first introducing a joint
probability distribution for pairs of visible and hidden vectors
from an energy function and Boltzmann weighting. Finally,
the probability distribution for visible vectors is taken to be
the sum of the joint probability distribution over all possible
configurations of the hidden vectors: Carleo and Troyer [9]
introduced a variational wave function for a spin—% system of
N sites, which is inspired by the functional form of RBM.
The visible layer corresponds to the spin configurations 6° =
(0f,05,--+,0%). Then the coefficients of the wave function
[Y) =D 5. ¥(G9)|of, 05, -, oy) are represented as
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where h; € {—1, 1} are hidden spin variables, and a;, b;, W;;
are the weights. The terms in the exponents then correspond
to the negative energies for pairs of hidden and visible vectors
and determine the coefficients of the wave function. The range
of values the variational wave function can take on increases
as the number of the hidden spin variables M increases. The
summation over hidden layer vectors can be factored out,
which reduce the wave function coefficients ¥ (6%, 4, l;, W)=
PISTLS ]_[jjw=1 2cosh (6;), where 6, = b; + YN, Wjof.

We propose to generalize this approach to the calculation
of excited states. A simple naive idea would be to utilize
(H — w)* as the new Hamiltonian, where w is the target
energy. However, we will take an unconventional route that
will yield more valuable information: the spectral function of
the problem.

The knowledge of the excitation spectrum of a system
allows for direct comparison with experiments, such as pho-
toemission or neutron scattering, for instance. The numerical
evaluation of dynamical correlation functions remains a very
difficult task, since most computational methods are usually
capable of calculating the ground state and maybe some low-
energy excitations. A number of techniques have been used
in the past: exact diagonalization [13] is limited to small
clusters, quantum Monte Carlo suffers from the sign problem
and requires uncontrolled analytic continuations and the use
of the max entropy approximation [14-21], and dynami-
cal DMRG [22-25] is computationally very expensive. The
time-dependent DMRG and recent variations using Cheby-
shev expansions have been important developments, giving
access to accurate spectra for very large one-dimensional
systems [26-33]. Matrix product states can also be used to
propose variational forms for excited states [34,35]. Similar
ideas were explored with variational Monte Carlo that can be
easily extended to higher dimensions and are free from the
sign problem [36-38].

The method we introduce is derived from the so-called
dynamical DMRG [24] (DDMRG) and correction vector
DMRG [23]. We plan to extract the entire dynamics of the
problem by calculating the Green’s function

Gij(z) = (Y|A] AjlW),

:—H

where A is some operator of interest and z = w + Ey + in. We
derive an optimization approach based on quantum geometry
concepts that will allow us to solve a large system of equations
stochastically with RBMs. The method is described in great
detail in Sec. II and we present results for the frustrated
Heisenberg chain in Sec. III. We finally close with a discus-
sion.

II. METHOD

A. Variational solution

The variational wave-function |¥(oy, o0p,---)) s
parametrized by a number N, of coefficients @. In the
case of an RBM, & represents set entire set of parameters

a, B W. The variational calculation of the ground state is

carried out by minimizing the energy functional,

(Ve [H|¥a)
(Ya:lVa)

Evar(&*a &) =

ey

with respect to the variational parameters &. A serious diffi-
culty that plagues these calculations is the optimization proce-
dure, due to the fact that (i) the space of configurations grows
exponentially with the number of spins and (ii) the number
of model parameters to be optimized increases quadratically
with the system size, making calculations prone to be trapped
in local metastable solutions. Since the number of configu-
rations is exponentially large, the estimators are carried out
by means of variational Monte Carlo. For this purpose, the
variational energy is recast as

Ear(@,8@) =) P3(5)Eie(3),

where the sum runs over all possible spin configurations ¢ and

Yo [Wa (G

(GIH|Y)

Py(d) Ec(0) Va(3) >

with ¥5(6) = (G|¥(@)) (we omit for now the z superscript,
since these considerations are generic and the variables &
may represent arbitrary degrees of freedom). The quantity
P(0) has the properties of a probability distribution, i.e., it
is positive and normalized. This enables us to carry out a
stochastic sampling of spin configurations according to P. In
practice, since S, is conserved, we generate new states by
randomly picking a pair of antiparallel spins, and accepting or
rejecting the new configuration with a transition probability
w = min (1, Pyew/Poid).- The expectation value of an observ-
able such as the energy is then obtained by averaging over
all the sampled configurations (0) = Nl ZQ’ (3,10\3,). This
process can be efficiently parallelized, with many Markov
chains running simultaneously on different threads.

B. Wave-function optimization

The number of variational parameters typically grows ex-
tensively with system size as L or as L?, translating into
a very complex energy landscape Ey, (&) with many local
maxima/minima, and one global minimum that we seek.
Many minimization/optimization methods can be found in the
literature [39—42] and here we settle for the so-called stochas-
tic reconfiguration (SR) [40,42,43] with the optimizations
proposed in Ref. [44]. We refer the reader to a pedagogical
description in Ref. [12] that we summarize and extend here
for completeness and future reference using the concept of
natural gradient descent [45] (NGD) (both concepts, SR and
NGD, are equivalent).

Solving for the variational parameters using Euclidean
gradient descent results in each «; being updated iteratively
as

oF
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where 7 is a small number (the “learning rate”). Ey,, and its
derivatives are estimated by sampling over states

0Fvi ata s
= oot = (O/H) — (0, ){H), (2)
a;

fi

where the operators O; are formally defined as the log deriva-
tives:

1 Ay,
O 1oy

Y e day

By approximating the ground state as a variational wave
function, we are restricting our possible wave functions to a
submanifold of the overall Hilbert space. This submanifold
will be in general highly nonlinear and thus have varying cur-
vature in different directions of @. This can cause Euclidean
gradient descent to have poor convergence.

To account for this particular geometry, we utilize NGD.
The gradient of a function is dependent on the metric of its
domain. The vector of partial derivatives is only the gradient
for the Euclidean metric (metric tensor equal to the iden-
tity). For a non-Euclidean metric, the gradient is obtained by
multiplying the inverse of the metric tensor to the vector of
partial derivatives (i.e., the Euclidean gradient). The basic idea
behind NGD is to carry out gradient descent with the metric
corrected gradient [46].

Since the variational parameters o map to points on a sub-
manifold of the Hilbert space, we use the metric imposed by
this Hilbert space, which is the Fubini-Study metric [47,48],
with distance between wave functions |1) and |¢) given by

~ W1V
v 9) = arecos o ola)

This distance accounts for the fact that the Hilbert space is a
projective space: wave functions that differ only by magnitude
or an overall phase are equivalent. Solving for a distance
would be an unnecessary constraint on the problem which
is already constrained by the variational representation of the
wave function. In differentiable form, the Fubini-Study metric
is given by
s = y(0. ¥ + 59) = (Sploy) _ 6vly) (Widy)
(V) (Uly) (Vi)

Using this, we can calculate the induced metric tensor on our
variational parameters by equating the differentiable distances
given by the metric tensor on & and the differentiable dis-
tances in the Hilbert space of the wave functions,

ij

The solution is given by

g = (019;9)  (3ylyr) (Y9 ¢)
ij =

(1Y) (i) (ly)

where |0;¢) = %W/). Reformulating this matrix in terms of
sampling over states & results in the covariance matrix of the
log deratives O;:

A

gij = (0]0,) — (0)(0)). 3)

Now, at each iteration the change in variational parameters is
given by solving the system of equations

A T 9E )
Al = — .
Zj 8ij dar

The optimization procedure consists of calculating the
forces f; in Eq. (2) and the covariance matrix g;; in Eq. (3) and
solving Eq. (4). This is carried out iteratively until converged.
In practice, we follow the accelerated SR method proposed in
Ref. [44], where it is shown that the construction and storage
of the matrix g can be bypassed, translating into a remarkable
speedup.

C. Correction vector

To calculate the Green’s function,

Gij(z) = (Y]A]

=A;|Y),
— )
where A is some operator of interest and z = Ey + w + in, we
follow a procedure pioneered in the context of matrix product
states, known as dynamical DMRG [23,24]. It requires the
calculation of the following auxiliary states:

N 1
|A;) = Ay, Ix(@) = Z_—I_filAj)5 Q)

where |x;(z)) is called the correction vector. Explicitly,
| x;(z)) can be obtained by solving the equation

(z—H)xj@) =Ajl¥) = IA)). (6)
The spectral function is defined as the imaginary part of the
Green’s function, A;;(w) = —nlImGij (z), or
1
Ajj(@) = ——=Im(A;|x;(2)). (7N
g

By Fourier transforming the spatial dependence to momen-
tum, one obtains the entire excitation spectrum of the problem
resolved in both momentum and frequency.

An alternative way to solve for A;; is to directly target the
imaginary part,

(H — Ey — o) + 1)I%,) = —nlA;)), ®)
such that

1
Ajj(w) = _;<Ai|)~(j>- 9

However, this form is typically more unstable: If |%;) is
close to an eigenstate of the Hamiltonian, the quantity in the
square can become very small when approaching a pole in
the spectrum. The fact that we are dealing with variational
wave functions implies that the results obtained by these two
approaches will not necessarily be the same. We discuss the
consequences below.

D. Solving for the Green’s function

As previously discussed, we need to solve the following
system of equations for |x;(z)):

(z—H)lx;(2) = IA;), 10)
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where |A;) = A il¥r), and |x;(z)) is parametrized by another
set of variational parameters &. The Green’s function can then
be obtained as G;;(z) = (A;|x;(z)). We hereby introduce a
similar natural gradient descend procedure to the one outlined
in Sec. II B to solve the generic system of equations Q|x) =
|A) (we later will apply this method to the particular case with
0=z-H).

We solve for |x) by first minimizing the Fubini-Study
metric between O|x) and |A) :

y(Ox,A) = arccos 4/x, (11)

= xIQT1A)AIQ1x) (12)

(x10T0Ix)(AIA)

As discussed above, the NGD method will yield a state O] )
that is parallel (or as parallel as possible), to |A), but with
unconstrained phase and norm. Therefore, the resulting wave
function |x) is not quite the one we seek, but it is off by a
constant |x) = B|¥%), (wWhere |¥) is the actual solution) that
can readily be obtained.

The derivatives of 2 are given by

ot _ | x_[<aix|QTQ|x> B <aix|Q*|A>] a3
daf I=x[ (x10'010)  (IQ"1A) [

with

.
o) = 3 22D (14)

8ai
o

The parameters & are updated at each iteration using
SR/NGD, which gives

dy?
E A = —A——, 15
: 8ij Al 805;‘ (15)

where A is the learning rate (a small number) and the metric
tensor g is derived from Q| x )(rather than |x)) and is given by

o = (@ix107010,x)  (3:x10'Qlx) (x10"01d;x) a6
T (x10701x) (x10701x) (x1070lx)

Overlaps are estimated using Monte Carlo sampling over
probability distributions Py(3) = |(5|A)|>/(A]A) and P (3) =
1G101x)12/(x10T0lx). The two probabilities will become
equivalent as the wave function converges. However it is
important to sample over both distributions to account for
states that have much greater weight in one distribution than
the other. For each sampled configuration &, the following
quantities are calculated:

. @101
R@) == (17)
(31019:x)
O.(0) = ¥ 18
@) ="G 1000 (1%)

Then, Egs. (12),(13), and (15) can be expressed in terms of
sampling as

_ KRGl
(IR@)P)o’
a0y> X .- (OF(5)R*(5))o
dar ¥ 1—x[<0i(0)>1_ (R*())o ]

gij = (07 (6)0;(G)M — (07 (0))1({0;(0))1. 19)

Notice that R becomes constant when the states become
parallel and thus the sampling variance goes to zero, just as the
local energies become constant when solving for the ground
state.

Finally, the wave-function normalization (the constant g)
is obtained as

_ (x10714)
(x10*QIx)’

which in terms of sampling is given as
5 (RO

(IR(@)*)o

E. Error correction

The Green’s function can be obtained by solving either one
of the two equations:

Olx™) = 14) (20)

or
O0'1x7) = 1A), 1)
where [A) = A|Y), O =Ey+w+in—H, and O = Ey +

A

o — in — H. We can then solve for G in three different ways:

1 | | A
G=——Alx") =—=(x"1A) = —={x"10Ix"). (22
T T T
As we discussed earlier, the NGD method will allow us to
find a wave function as close as possible to the one we seek.
However, it is possible that this wave function does not accept
a faithful representation in terms of the proposed variational
form. As a consequence, regardless of the sampling error,
there always will be an inherent error due to the limitations
of the wave-function representation. Now let |§ ) and |% ™)
be the variational wave function approximations with errors
€T|pT) and € |¢p ™), respectively, so

%) = 07 MA) + eTlp™),
1%7) = (0N 7A) + € |p7). (23)

Then we calculate G all three ways, each with different but
related error terms:

1 1
AlxT) =G~ ;€+(AI¢+>,

1
(X714) =G ——e (¢ ]A), (24)

n
1
14

1 A 1
——{(X7101Ix") =G~ ClereriA+ € (Alp™)

T
+ete (710191 (25)
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Combining all three estimates, we can get the first-order
error terms to cancel:
101% )]

oo -
—;[(A|X Y+ (X714 — (X

1
—G——6 € (@101, (26)

However, we can improve upon this by isolating another
second-order error term. To do this, we also calculate (A]A) in
three different ways:

(AlQ1xT) = (A|A) + €T (A|Qlg™),
(x7101A) = (AlA) + € (¢~ |0IA), 27
(Z710M%T) = (AJA) + €T (AI1Qlp™)

+e (@7 10IA) + ete (3710% ™). (28)
Combining the above equations, we obtain
(AIA) + (X T10°1%T) — (AI0I% ) — (X 10IA)
=ete (97 |Q9"). (29)

Then, to get our best estimate for G we multiply Eq. (30) by
1/(inm) and add it to Eq. (26), which results in

1
G+ — [E € —(¢ 10%1p) —ete (@™ |Q|¢>+)] (30)
To understand why this makes an improvement over the

estimate Eq. (26), we expand the wave functions and their
errors in terms of eigenstates,

A Ay
07 MA) =) ———1n),

AE, +in
A

+ipty — n +

et )_;<AEn+in)€" In),

A,

=Y ——1n),

- AE, —in

- A, _
€ |¢>—Z<AE_ ) In),
where AE, = Ey + w — E,. Then the error term of Eq. (26) is

P | A, |
——eteT(g7I0lp") = nZ(—

2
)(en_)*e+
n

AE, +i
(€1))

Multiplying the isolated error Eq. (30) by 1/(inm) yields

_ Ly (AP e
‘n2<l )( yer. (32)

n

(0H7A)

Finally, the error of Eq. (30) is then

. [6+6‘.l(¢>‘IQ2|¢+> —ete
T in

_ 1 |An|2 AEV! —\k +
LE (8 (e

n

<¢>—|Q|¢+>}

We see that Eq. (31) has a contribution that increases
as AE, approaches zero. The effect of this last correction
Eq. (34) is to introduce an additional AE, in the numerator,
correcting for this effect. As a consequence, both the first-
order error and the greatest component of the second-order
error are eliminated. However, it should be noted that the
errors from the other eigenstates no longer decay as AE, goes
away from zero, as they do in Eq. (31). As a result, in some
situations, such as points far from a peak, where the errors
are spread more evenly about the eigenstates, the last error
correction step can be omitted. However, in most situations it
makes a significant improvement in accuracy.

III. RESULTS

For illustration purposes, we will focus on the one-
dimensional spin-% Heisenberg model with nearest- and next-

nearest-neighbor interactions, the so-called J; — J, model,
L1
A=Y (S Si1+ 1S - Sipa), (34)
i=0

where § = (8¥, 8§, §%) are spin operators. We consider peri-
odic boundary conditions and chose J; as our unit of energy.

o (@) k== 12| (b) k=4n/5
2.5 10
0.8
2.0
»3,; —— Exact
- —— VMC o6
1.5 .
554
1.0 0.4
0.5 0.2
0.0 ‘/L 0.0
0.8 0.5
(c) k=3r/5 (d) k=2r/5
0.7 i
0.4
0.6
0.5
— 0.3
3
<& 04
S—
N 0.3 0.2
0.2
0.1
0.1
0.0 : r ™ 0.0
0 1 2 3 0 1 2 3
w w

FIG. 1. Spin-structure factor of a Heisenberg chain of size L =
10 with periodic boundary conditions for some representative values
of momentum k. Exact results obtained with exact diagonalization
are also included for comparison. An artificial broadening n = 0.1
was introduced in all cases. Notice that change of scale between
panels in the y axis.
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FIG. 2. Spin-structure factor of a Heisenberg chain of size L =
30 with periodic boundary conditions for some representative values
of momentum k. We show results obtained without error correction,
and first- and second-order regularizations. Dynamical DMRG data
is also included for comparison. An artificial broadening n = 0.1 was
introduced in all cases. Notice that change of scale between panels
in the y axis.

We calculate the spin structure factor, defined as

4 _ 1 ikn <z 1 Qz
Sk, @) = —— Ian:e WIS —5Silv).
where we have used translational invariance, since the system
has periodic boundary conditions. To calculate the correlation
function, we solve the following system of equations for
| (z, j)) using the prescription described in the previous
section:

=l (z ))) = 4)), (35)

where |A;) = §;|¢0>. Finally, G;;(z) = (A;|¥ (2, j)).

We typically carry out computations taking 20 000 mea-
surements for each optimization step, leaving 100 iterations in
between measurements to make sure they are independent and
uncorrelated. We took 10° samples for the overlaps. We then
solve for the wave functions |x*) and calculate the Green’s
functions using error correction as described in the previous
section.

To benchmark the method, we first study chains of length
L = 10 with 40 hidden variables. Results comparing to exact
diagonalization are shown in Fig. 1. We assume that the Monte
Carlo sampling error is very small for this system size and that
most of the differences are attributed to the fidelity of the wave

4 (a) J,=0 (DDMRG)

(b) J,=0.2 (DDMRG)

0
B (c) J,=0 (VMC) (d) J,=0.2 (VMC)

25

LT

0.5

kiw R

FIG. 3. Momentum- and frequency-resolved spectra for the frus-
trated Heisenberg chain in the gapless regime with J, = 0 and J, =
0.2, obtained with both (a), (b) DDMRG and (c), (d) variational
Monte Carlo using error correction.

function. The position and magnitude of the peaks is clearly
and remarkably reproduced and the results are practically
indistinguishable (some small differences can be found near
the maxima). This indicates that the RBM wave function can
accurately represent excited states in small chains.

We proceed to study chains of length L = 30, larger than
the largest system achievable using exact diagonalization, but
still smaller than what DMRG can solve. We used 120 hidden
variables in the hidden layer that translates into ~3000 varia-
tional parameters. As a benchmark, we compare our results to
dynamical DMRG calculations with m = 600 DMRG states
using a broadening n = 0.1.

We first show results obtained with first-order and second-
order error corrections in Fig. 2 for several representative
values of momentum k and J, = 0. While the range and
position of low-energy poles agrees quite well, the level of
accuracy does not resemble the previous case for L = 10, with
considerable deviations from the exact results in the entire
frequency range. We observe a remarkable improvement upon
introducing the second-order correction that is particularly
marked around the cusp of the peaks/poles. The range in
frequency in between poles is not so accurately matched.
While we observe some oscillations that we attribute to
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numerical errors, the main source of discrepancy is likely due
the limitations of the variational wave function utilized. This
is understood using the arguments discussed in the previous
section: the second-order error gets practically suppressed
when the frequency corresponds to an eigenstate w ~ E, —
Ey. It is expected that as the system size L increases and the
spectrum becomes continuous, the errors will be practically
canceled and the accuracy will improve over the entire range
of frequencies. We next show the spectrum for J, = 0 and
J» = 0.2J; in Figs. 2 and 3, both in a color scale and frequency
cuts for a couple of momenta. The width and the edge of
the spinon continuum are very well described, as well as the
magnitude of the excitation peaks.

IV. CONCLUSIONS

We have presented a variational approach to calculate
Green’s functions and dynamical structure factors of many-
body quantum systems directly in the frequency domain us-
ing RBMs. The method, inspired in dynamical DMRG and
machine-learning concepts, allows one to obtain the entire
spectrum of excitations, which in the Heisenberg model con-
sists of deconfined domain walls (spinons). To solve for the
Green’s functions, we introduce a NGD method to solve

complex systems of equations where the solution is encoded
in RBM form. The problem is solved stochastically and can
be parallelized to run different frequencies on different com-
puting threads or nodes. Unlike the VMC method of Ferrari
et al. [38] which can provide a few hundred discrete poles,
our method yields the entire spectrum with full frequency
resolution. These ideas are not limited to a particular form of
variational wave function and is completely general (DDMRG
does it with matrix product states). In particular, we show that
RBMs are not able to faithfully represent excited states as the
system size increases but, nonetheless, we are able to recon-
struct the spectral functions very accurately by introducing a
regularization scheme that eliminates first and second order
errors. We demonstrate the application of the technique to
the frustrated case away from integrability, where our results
accurately describe the position of the poles (especially low
frequency ones) and the continuum. The approach can be
naturally extended to higher dimensions, where both quantum
Monte Carlo and the DMRG have shortcomings.
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