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Abstract
Given any pair (L, A) of Lie algebroids, we construct a differential graded man-
ifold (L[1] ⊕ L/A, Q), which we call Fedosov dg manifold. We prove that the
homological vector field Q constructed on L[1] ⊕ L/A by the Fedosov iteration
method arises as a byproduct of the Poincaré–Birkhoff–Witt map established in [18].
Finally, using the homological perturbation lemma, we establish a quasi-isomorphism
of Dolgushev–Fedosov type: the differential graded algebras of functions on the dg
manifolds (A[1], dA) and (L[1] ⊕ L/A, Q) are homotopy equivalent.
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1 Introduction

Fedosov resolutions—we call them Fedosov dg manifolds later in the paper—played
a key role in globalizing Kontsevich’s formality theorem to smooth manifolds [8].
One can expect deformation quantization of geometric objects other than smooth
manifolds to require the development of analogues of Fedosov resolutions for these
other geometric objects. The leaf space of a foliation on a smooth manifold is one
instance of such other geometric objects. In general, the leaf space may not be a
smooth manifold—it is in a certain sense a noncommutative manifold. However, it
can be considered as a particular example of Lie pair.

By a Lie pair (L, A), we mean an inclusion A ↪→ L of Lie algebroids over a
smooth manifold M . Lie pairs arise naturally in a number of areas of mathematics
such as Lie theory, complex geometry, and foliation theory. For instance, a complex
manifold X determines a Lie pair over C with L = TX ⊗C and A = T 0,1

X . A foliation
F on a smooth manifold M determines a Lie pair over R: this time L is the tangent
bundle to M and A is the integrable distribution TF on M tangent to the foliation F .
A g-manifold also gives rise to a Lie pair in a natural way [20].

The purpose of this paper is to construct analogues of Fedosov resolutions for Lie
pairs. More precisely, for any Lie pair (L, A), we present two equivalent constructions
of a dg manifold, called Fedosov dg manifold, and we establish a quasi-isomorphism
of Dolgushev–Fedosov type. The first construction relies on the Poincaré–Birkhoff–
Witt map introduced in [18], a generalized symmetrization map, while the second
construction is based on Fedosov’s iteration method.

Given a Lie pair (L, A), the quotient L/A is naturally an A-module [7]. When L
is the tangent bundle to a manifold M and A is an integrable distribution on M , the
infinitesimal A-action on L/A reduces to the classical Bott flat connection [5]. In [18],
together with Laurent-Gengoux, we showed that, for any Lie pair over R, each choice
of (1) a splitting of the short exact sequence of vector bundles

0 → A → L → L/A → 0

and (2) an L-connection ∇ on L/A extending the Bott A-connection determines an
exponential map

exp : L/A → L /A .

HereL andA are local Lie groupoids corresponding to the Lie algebroids L and A,
respectively. Considering the (fiberwise) infinite-order jet of this exponential map, we
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obtained an isomorphism of filtered R-coalgebras (with R = C∞(M))

pbw : �(S(L/A)) → U(L)
U(L)�(A)

,

which we called Poincaré–Birkhoff–Witt map. In particular, if L is a Lie algebra g and
A is the trivial Lie algebra of dimension 0, there exists a natural choice of connection
and the resulting pbw map is precisely the symmetrization map S(g) → U(g). These
PBW maps arising from Lie pairs admit an explicit recursive characterization valid
for Lie pairs over any field k of characteristic zero and not just R. Hence these PBW
maps can be considered as algebraic formal exponential maps.

Transferring the canonical infinitesimal action of L on the coalgebra U(L)
U(L)�(A)

—
this is an infinitesimal action by coderivations—through the map pbw, we obtain a flat
L-connection ∇� on S(L/A):

∇�
l (s) = pbw−1 (l · pbw(s)

)
,

for all l ∈ �(L) and s ∈ �(S(L/A)). The covariant Chevalley–Eilenberg differential

d∇�

L : �(�•L∨ ⊗ Ŝ
(
(L/A)∨

)
) → �(�•+1L∨ ⊗ Ŝ

(
(L/A)∨

)
)

of the induced flat L-connection on the dual bundle Ŝ
(
(L/A)∨

)
is a derivation of

degree (+1) of the algebra �(�•L∨⊗ Ŝ
(
(L/A)∨

)
) of smooth functions on the graded

manifold L[1] ⊕ L/A. As a consequence, (L[1] ⊕ L/A, d∇�

L ) is a dg manifold. We

prove that, when ∇ is torsion-free, the homological vector field d∇�

L coincides with
a homological vector field Q constructed by Fedosov’s iteration method. We elect to
call a dg manifold (L[1] ⊕ L/A, Q) constructed in this way a Fedosov dg manifold.

It is a well known theorem of Dolgushev [8] that, for a smooth manifold M , the
Fedosov dg manifold TM [1]⊕ TM (associated with the Lie pair (L, A) where L is the
tangent bundle to M and A is its trivial subbundle of rank 0) gives rise to a resolution
�•(M; Ŝ(T∨

M )
)
of C∞(M). Our second main theorem extends this result to Lie pairs.

Note that, for a Lie pair (L, A), the space of functions on the Fedosov dg manifold
(L[1]⊕L/A, Q) is the differential graded algebra

(
�(�•L∨⊗ Ŝ((L/A)∨)), Q

)
while

the space of functions on the dg manifold (A[1], dA) is the differential graded algebra(
�(�•A∨), dA

)
. We construct an explicit quasi-isomorphism of Dolgushev–Fedosov

type from
(
�(�•A∨), dA

)
to

(
�(�•L∨ ⊗ Ŝ((L/A)∨)), Q

)
. More precisely, using

homological perturbation, we establish a contraction of
(
�(�•L∨ ⊗ Ŝ((L/A)∨)), Q)

onto
(
�(�•A∨), dA

)
:

(
�(�•A∨), dA

) (
�(�•L∨ ⊗ Ŝ((L/A)∨)), d∇�

L

)τ̆

σ
h̆ .

As an application, we obtain an alternative proof of a theorem of Emmrich–
Weinstein [10, Theorem 1.6]. Given a smooth manifold M and a torsion-free

123

Author's personal copy



M. Stiénon, P. Xu

affine connection ∇ on it, Emmrich–Weinstein [10] constructed a dg manifold
(TM [1]⊕ TM , Q) using Fedosov’s iteration method (see [8,11]). Emmrich–Weinstein
[10] explained that (1) the derivation

Q : �•(M; Ŝ(T∨
M )

) → �•+1(M; Ŝ(T∨
M )

)

determines a formal flat (nonlinear) Ehresmann connection on some neighborhood of
the zero section of T M → M and (2) the leaves of this flat Ehresmann connection are
transversal to the zero section. Hence, this formal flat Ehresmann connection induces
a ‘formal exponential map’ EXP—see [10, Section 7]. Emmrich–Weinstein proved
that the map EXP coincides with the infinite-order jet of the geodesic exponential
map exp associated with the affine connection ∇—see [10, Theorem 1.6]. Their proof
resorted to an indirect argument involving analytic manifolds. In this paper, we present
a simple and direct proof based on (1) our result that the homological vector fields Q
and d∇�

are equal, (2) the contraction

C∞(M)
(
�•(M; Ŝ(T∨

M )), d∇�)τ̆

σ
h̆

mentioned earlier, and (3) the geometric interpretation of the PBW map described at
length in [18]. Indeed, when L = TM and A is its trivial subbundle of rank 0, the map

τ̆ : C∞(M) → �0(M; Ŝ(T∨
M )

)

is precisely the pull-back by the formal exponential map EXP studied by Emmrich–
Weinstein [10].

In fact, we obtain an extension of the Emmrich–Weinstein theorem to the context of
matched pairs—seeTheorem5.6.Amatched pair of Lie algebroids is a Lie algebroid L
with twoLie subalgebroids A and B such that L = A⊕B as vector bundles.We use the
notation L = A 	
 B to denote such a situation. In the special case of matched pairs,
we obtain an explicit formula for the map τ̆—see Eq. (20)—generalizing Emmrich–
Weinsteins’s interpretation of τ̆ (the pull-back by EXP in the terminology of [10]) as
the infinite-order jet of an exponential map.

The Dolgushev–Fedosov type resolutions for Lie pairs, which we establish in the
present work, play a crucial role in the proof of two results expounded in a subse-
quent work [22]: a formality theorem and a Kontsevich–Duflo type theorem for Lie
pairs. While the spaces of polyvector fields and polydifferential operators on a smooth
manifold both carry obvious dgla structures, there is generally no such obvious L∞
algebra structure on either of the spaces of polyvector fields and polydifferential oper-
ators associated with a Lie pair. However, there exist natural L∞ algebra structures
on the spaces of polyvector fields and polydifferential operators on a dg foliation of
the Fedosov dg manifold arising from the Lie pair. Our Dolgushev–Fedosov resolu-
tions for Lie pairs allow for the homotopy transfer of these L∞ structures from the
Fedosov dgmanifold to the Lie pair. This was done in [2], where the dg foliation of the
Fedosov dg manifold is called Fedosov dg Lie algebroid. The Fedosov dg manifold
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construction was recently extended to Z-graded manifolds by Liao–Stiénon [19] (see
also [21]).

2 Terminology and notations

Natural numbers We use the symbol N to denote the set of positive integers and the
symbol N0 for the set of nonnegative integers.

Field k and ring R We use the symbol k to denote the field of either real or com-
plex numbers. The symbol R always denotes the algebra of smooth functions on the
manifold M with values in k.

Completed symmetric algebra Given a module M over a ring, the symbol Ŝ(M )

denotes the m-adic completion of the symmetric algebra S(M ), where m is the ideal
of S(M ) generated by M .

Duality pairing For every vector bundle E → M , we define a duality pairing

�(S(E)) × �(Ŝ(E∨)) → R

by

〈
v1 � · · · � vp

∣∣ν1 � · · · � νq
〉 =

{∑
σ∈Sp

∏p
k=1

〈
vk
∣∣νσ(k)

〉
if p = q,

0 otherwise.

The symbol � denotes the symmetric tensor product.

Multi-indices Let E → M be a smooth vector bundle of finite rank r , let (∂i )i∈{1,...,r}
be a local frame of E and let (χ j ) j∈{1,...,r} be the dual local frame of E∨. Thus, we
have

〈
∂i
∣∣χ j

〉 = δi, j . Given a multi-index J = (J1, J2, . . . , Jr ) ∈ N
r
0, we adopt the

following multi-index notations:

J ! = J1! · J2! · · · Jr !
|J | = J1 + J2 + · · · + Jr
∂ J = ∂1 � · · · � ∂1︸ ︷︷ ︸

J1 factors

� ∂2 � · · · � ∂2︸ ︷︷ ︸
J2 factors

� · · · � ∂r � · · · � ∂r︸ ︷︷ ︸
Jr factors

χ J = χ1 � · · · � χ1︸ ︷︷ ︸
J1 factors

� χ2 � · · · � χ2︸ ︷︷ ︸
J2 factors

� · · · � χr � · · · � χr︸ ︷︷ ︸
Jr factors

(1)

We use the symbol ek to denote the multi-index all of whose components are equal to
0 except for the k-th which is equal to 1. Thus χek = χk .

Shuffles A (p, q)-shuffle is a permutation σ of the set {1, 2, . . . , p + q} such that

σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(p + q).
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The symbol Sq
p denotes the set of (p, q)-shuffles.

Gradation shift Given a graded vector space V = ⊕
k∈Z

V (k), the notation V [i]
denotes the graded vector space obtained by shifting the grading on V according to
the rule (V [i])(k) = V (i+k). Accordingly, if E = ⊕

k∈Z
E (k) is a graded vector bundle

over M , the notation E[i] denotes the graded vector bundle obtained by shifting the
degree in the fibers of E according to the above rule.

Dg manifolds A dg manifold is a Z-graded manifold endowed with a homological
vector field, i.e. a vector field Q of degree (+1) such that [Q,Q] = 0. Dg manifolds
are also known as Q-manifolds. For details and further references, see [1,25,26].

3 Preliminaries

3.1 Lie algebroids and Lie pairs

Lie algebroids We use the symbol k to denote either of the fields R and C.
A Lie algebroid over k is a k-vector bundle L → M together with a bundle map
ρ : L → TM ⊗R k called anchor and a Lie bracket [−,−] on sections of L such that
ρ : �(L) → X(M) ⊗ k is a morphism of Lie algebras and

[X , f Y ] = f [X ,Y ]+ (
ρ(X) f

)
Y

for all X ,Y ∈ �(L) and f ∈ C∞(M, k). In this paper ‘Lie algebroid’ always means
‘Lie algebroid over k’ unless specified otherwise. A k-vector bundle L → M is a Lie
algebroid if and only if �(L) is a Lie–Rinehart algebra [30] over the commutative
ring C∞(M, k).

Lie pairs By a Lie pair (L, A), we mean an inclusion A ↪→ L of a Lie subalgebroid
A into a Lie algebroid L , both having the same smooth manifold M as base.

Examples 3.1 (1) Let h be a Lie subalgebra of a Lie algebra g. Then (g, h) is a Lie pair
over the one-point manifold {∗}.

(2) Let X be a complex manifold. Then (TX ⊗ C, T 0,1
X ) is a Lie pair over X .

(3) Let F be a foliation on a smooth manifold M . Then (TM , TF ) is a Lie pair over
M .

Matched pairs A matched pair of Lie algebroids is a Lie algebroid L with two Lie
subalgebroids A and B such that L = A ⊕ B as vector bundles. We use the notation
L = A 	
 B to denote such a situation—see [23,24,28] for more details.

Examples 3.2 (1) If X is a complex manifold, then TX ⊗ C = T 0,1
X 	
 T 1,0

X is a
matched pair of complex Lie algebroids over X .

(2) Let G be a Poisson Lie group and let P be a Poisson G-space, i.e. a Poisson
manifold (P, π) endowed with a G-action G × P → P which happens to be a
Poisson map. According to Lu [23], the cotangent Lie algebroid A = (

T∨
P

)
π
and

the transformation Lie algebroid B = P�g form amatched pair of Lie algebroids
over the manifold P .
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3.2 Chevalley–Eilenberg differentials, connections, and representations

Let L be a Lie algebroid over a smooth manifold M , and R be the algebra of smooth
functions on M valued in k. The Chevalley–Eilenberg differential

dL : �(�k L∨) → �(�k+1L∨)

defined by

(
dLω

)
(v0, v1, . . . , vk) =

n∑

i=0

(−1)iρ(vi )
(
ω(v0, . . . , v̂i , . . . , vk)

)

+
∑

i< j

(−1)i+ jω(
[
vi ,v j

]
, v0, . . . , v̂i , . . . , v̂ j , . . . , vk)

and the exterior product make
⊕

k≥0 �(�k L∨) into a differential graded commutative
algebra.

The following proposition is an immediate consequence of the definitions.

Proposition 3.3 Let L be a Lie algebroid and let A and B be two vector subbundles
of L such that L = A ⊕ B. Let p : L � A and q : L � B denote the canonical
projections, let p∨ : A∨ ↪→ L∨ and q∨ : B∨ ↪→ L∨ denote their respective dual
maps, and set

�u,v = �(p∨(�u A∨) ∧ q∨(�vB∨)).

The following assertions hold:

(1) In general, we have

dL(�u,v) ⊂ �u+2,v−1 ⊕ �u+1,v ⊕ �u,v+1 ⊕ �u−1,v+2.

(2) The vector subbundle A is a Lie subalgebroid of L (i.e. (L, A) is a Lie pair) if and
only if

dL(�u,v) ⊂ �u+1,v ⊕ �u,v+1 ⊕ �u−1,v+2.

(3) Both vector subbundles A and B are Lie subalgebroids of L (i.e. L = A 	
 B is
a matched pair) if and only if

dL(�u,v) ⊂ �u+1,v ⊕ �u,v+1.

Now let E
�−→ M be a vector bundle over k. The traditional description of a (linear)

L-connection on E is in terms of a covariant derivative

�(L) × �(E) → �(E) : (l, e) �→ ∇l e
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characterized by the following two properties:

∇ f ·l e = f · ∇l e, (2)

∇l( f · e) = ρ(l) f · e + f · ∇l e, (3)

for all l ∈ �(L), e ∈ �(E), and f ∈ R. The covariant differential associated with an
L-connection ∇ on a vector bundle E → M is the operator

d∇
L : �(�k L∨ ⊗ E) → �(�k+1L∨ ⊗ E)

that takes a section ω ⊗ e of �k L∨ ⊗ E to

d∇
L (ω ⊗ e) = (dLω) ⊗ e +

n∑

j=1

(ν j ∧ ω) ⊗∇v j e,

where n is the rank of L , and v1, v2, . . . , vn and ν1, ν2, . . . , νn are any pair of
dual local frames for the vector bundles L and L∨. Then d∇

L ◦ d∇
L = R∇ , where

R∇ ∈ �(�2L∨ ⊗ End E) is the curvature of ∇.

Remark 3.4 An L-connection ∇ on E induces a covariant derivative

∇ : �(L) × �(S(E)) → �(S(E))

through the relation ∇l1 = 0 and the Leibniz rule

∇l(b1 � · · · � bn) =
n∑

k=1

b1 � · · · � bk−1 � ∇lbk � bk+1 � · · · � bn,

for all l ∈ �(L), n ∈ N and b1, . . . , bn ∈ �(E).

Remark 3.5 A covariant derivative

∇ : �(L) × �(S(E)) → �(S(E))

induces a covariant derivative

∇ : �(L) × �(Ŝ(E∨)) → �(Ŝ(E∨))

through the relation

ρ(l) 〈s|σ 〉 = 〈∇l s|σ 〉 + 〈s|∇lσ 〉

for all l ∈ �(L), s ∈ �(SE), and σ ∈ �(Ŝ(E∨)).

123

Author's personal copy



Fedosov dg manifolds associated with Lie pairs

A representation of a Lie algebroid L on a vector bundle E → M is a flat L-
connection ∇ on E , i.e. a covariant derivative ∇ : �(L) × �(E) → �(E) satisfying

∇a1∇a2e − ∇a2∇a1e = ∇[a1,a2]e, (4)

for all a1, a2 ∈ �(L) and e ∈ �(E). A vector bundle endowed with a representation of
the Lie algebroid L is called an L-module. More generally, given a left R-moduleM ,
by an infinitesimal action of L onM , wemean ak-bilinearmap∇ : �(L)×M → M ,
(a, e) �→ ∇ae satisfying Eqs. (2), (3), and (4). In other words, ∇ is a representation
of the Lie–Rinehart algebra (�(L), R) [30].

Examples 3.6 ([7]) Let (L, A) be a Lie pair. The Bott representation of A on the
quotient L/A is the flat connection defined by

∇Bott
a q(l) = q

(
[a,l]

)
, ∀a ∈ �(A), l ∈ �(L),

where q denotes the canonical projection L � L/A. Thus the quotient L/A of a Lie
pair (L, A) is an A-module.

The Chevalley–Eilenberg differential associated with a representation ∇
of a Lie algebroid L on a vector bundle E is the covariant differential operator
d∇
L : �(�k L∨⊗ E) → �(�k+1L∨⊗ E) corresponding to the connection∇. Because

the connection ∇ is flat, d∇
L is a coboundary operator: d∇

L ◦ d∇
L = 0.

3.3 Torsion-free connections

Let (L, A) be a Lie pair over k. Consider the short exact sequence of vector bundles

0 A L L/A 0i q
. (5)

An L-connection ∇ on L/A is said to extend the Bott A-representation on L/A
(see Example 3.6) if

∇i(a)q(l) = ∇Bott
a q(l) = q

(
[i(a),l]

)
, ∀a ∈ �(A), l ∈ �(L).

Given an L-connection∇ on L/A, its torsion is the bundle map T∇ : �2L → L/A
defined by

T∇(l1, l2) = ∇l1q(l2) − ∇l2q(l1) − q
(
[l1,l2]

)
, ∀l1, l2 ∈ �(L).

If ∇ is an L-connection on L/A extending the Bott A-representation on L/A, its
torsion descends to a bundle map

β∇ : �2(L/A) → L/A,

123

Author's personal copy



M. Stiénon, P. Xu

making the diagram

�2L L/A

�2(L/A)

q

T∇

β∇

commute. According to [18, Lemma 5.2], if ∇ is torsion-free, it must be an extension
of the Bott A-representation on L/A. Torsion-free L-connections on L/A always
exist—see [18, Proposition 5.3].

3.4 Poincaré–Birkhoff–Witt isomorphisms

Let L be a Lie k-algebroid over a smooth manifold M with anchor map ρ, and let R
denote the algebra of smooth functions on M taking values in k. By U(L) we denote
the universal enveloping algebra of the Lie algebroid L—see [30]. Essentially,U(L) is
the quotient of the (reduced) tensor algebra

⊕∞
n=1

(⊗n
k
((R⊕�(L))

)
by the two-sided

ideal generated by all elements of the following four types:

X ⊗ Y − Y ⊗ X − [X ,Y ] f ⊗ X − f X

X ⊗ g − g ⊗ X − ρ(X)(g) f ⊗ g − f g

with X ,Y ∈ �(L) and f , g ∈ R.
The notion of the universal enveloping algebra U(L) of a Lie algebroid L unifies

that of the universal enveloping algebra of a Lie algebra (when L is a Lie algebra)
and that of the algebra of differential operators on M (when L is the tangent bundle
Lie algebroid TM ). For a Lie algebroid L over R, given any local Lie groupoid L
having L as its associated Lie algebroid, the universal enveloping algebra U(L) of L
can be identified in a canonical way with the algebra of target-fiberwise1 differential
operators on L invariant under left translations [27,29]. The universal enveloping
algebra of L admits a natural filtration

R ↪→ (U(L)
)≤1

↪→ (U(L)
)≤2

↪→ (U(L)
)≤3

↪→ · · · (6)

corresponding to theorderfiltrationondifferential operators—inparticular,
(U(L)

)≤1 =
R ⊕ �(L). The universal enveloping algebra U(L) of the Lie algebroid L → M is a
(left) coalgebra over R. Its comultiplication

� : U(L) → U(L) ⊗R U(L)

1 We adopt the following convention for the multiplication in a groupoid L ⇒ M with source map
s : L → M and target map t : L → M : given two elements g and h of L , their product gh is defined
only if the target of h coincides with the source of g, i.e. if s(g) = t(h) in M . With this convention, we
have s(gh) = s(h) and t(gh) = t(g). Hence, left translation by g maps the target-fiber t−1(s(g)

)
to the

target-fiber t−1(t(g)
)
. Consequently, the left invariant vector fields on L are necessarily tangent to the

fibers of the target map.
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is given explicitly by

�(b1 · b2 · · · · · bn) = 1⊗ (b1 · b2 · · · · · bn)
+

∑

p+q=n
p,q∈N

∑

σ∈Sq
p

(bσ(1) · · · · · bσ(p)) ⊗ (bσ(p+1) · · · · · bσ(n))

+(b1 · b2 · · · · · bn) ⊗ 1,

for all n ∈ N and b1, . . . , bn ∈ �(L), and is compatible with its filtration (6). Indeed,
U(L) is more than just an algebra and a coalgebra; it is a Hopf algebroid—see [31].

Now let (L, A) be a Lie pair over k. Writing U(L)�(A) for the left ideal of U(L)

generated by�(A), the quotient U(L)
U(L)�(A)

is automatically a filtered R-coalgebra since

�
(U(L)�(A)

) ⊆ U(L) ⊗R
(U(L)�(A)

)+ (U(L)�(A)
)⊗R U(L),

and the filtration (6) on U(L) descends to a filtration

R ↪→
( U(L)

U(L)�(A)

)≤1

↪→
( U(L)

U(L)�(A)

)≤2

↪→
( U(L)

U(L)�(A)

)≤3

↪→ · · ·

of U(L)
U(L)�(A)

. We will use the symbol 1 to denote the image in U(L)
U(L)�(A)

of the constant

function 1 ∈ R under the canonical map R ↪→ U(L) � U(L)
U(L)�(A)

. We note that
U(L)

U(L)�(A)
is naturally a left module over the associative algebra U(L).

Similarly, �(S(L/A)) is an R-coalgebra with the deconcatenation

� : �(S(L/A)) → �(S(L/A)) ⊗R �(S(L/A))

as its comultiplication:

�(b1 � b2 � · · · � bn) = 1⊗ (b1 � b2 � · · · � bn)

+
∑

p+q=n
p,q∈N

∑

σ∈Sq
p

(bσ(1) � · · · � bσ(p)) ⊗ (bσ(p+1) � · · · � bσ(n))

+(b1 � b2 � · · · � bn) ⊗ 1,

for all n ∈ N and b1, . . . , bn ∈ �(L/A).
The following theorem, which was obtained in [18], is an extension to Lie pairs of

the Poincaré–Birkhoff–Witt isomorphism of classical Lie theory.

Theorem 3.7 ([18, Theorem 2.1]) Let (L, A) be a Lie pair. Given a splitting
j : L/A → L of the short exact sequence 0 → A → L → L/A → 0 and an
L-connection ∇ on L/A extending the Bott A-representation, there exists a unique
isomorphism of filtered R-coalgebras

pbw : �(S(L/A)) → U(L)
U(L)�(A)
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satisfying

pbw(1) = 1, (7)

pbw(b) = j(b) · 1, (8)

pbw(bn+1) = j(b) · pbw(bn) − pbw
(∇ j(b)(b

n)
)

(9)

for all b ∈ �(L/A) and n ∈ N.

Remark 3.8 Equation (9) is equivalent to

pbw(b0 � · · · � bn) = 1
n+1

n∑

i=0

(
j(bi ) · pbw(b0 � · · · � b̂i � · · · � bn)

− pbw
(∇ j(bi )(b0 � · · · � b̂i � · · · � bn)

))
(10)

for all b0, . . . , bn ∈ �(L/A).

Note that Eqs. (7), (8), and (9) (or (10)) define inductively a unique R-linear map
pbw.

The following lemma will be needed later on. Its proof is straightforward and is
therefore omitted.

Lemma 3.9 For all Y , Z in �(L/A), we have

pbw(Y � Z) = j(Y ) · pbw(Z) − pbw
(∇ j(Y )Z

)+ 1
2 pbw

(
β∇(Y , Z)

)
,

where β∇ is the bundle map defined in Sect. 3.3.

Remark 3.10 When L = TM and A is the trivial Lie subalgebroid of L of rank 0, the
pbw map of Theorem 3.7 is the inverse of the so-called ‘complete symbol map,’ which
is an isomorphism from the space U(TM ) of differential operators on M to the space
�(S(TM )) of fiberwise polynomial functions on T∨

M . The complete symbol map was
generalized to arbitrary Lie algebroids over R by Nistor–Weinstein–Xu [29]. It played
an important role in quantization theory [13,16,17,29].

4 Fedosov dgmanifolds for Lie pairs

Given a Lie pair (L, A) with quotient B = L/A, the graded manifold L[1] ⊕ B can
be endowed with a homological vector field. We give two equivalent constructions of
this homological vector field.

4.1 First construction by way of the PBWmap

Making use of the Poincaré–Birkhoff–Witt isomorphism pbw of Theorem 3.7, one
can endow the graded manifold L[1] ⊕ B with a homological vector field.
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Every choice of a splitting j : B → L of the short exact sequence of vector
bundles (5) and an L-connection ∇ on B extending the Bott A-connection determines
an isomorphism of R-coalgebras

pbw : �(SB) → U(L)
U(L)�(A)

.

Being a quotient of the universal enveloping algebra U(L) by a left ideal, the R-
coalgebra U(L)

U(L)�(A)
is naturally a left U(L)-module. Hence U(L)

U(L)�(A)
is endowed with

a canonical infinitesimal L-action by coderivations. Pulling back this infinitesimal
action through pbw, we obtain an infinitesimal L-action on �(S(B)) by coderivations.
The latter defines a flat L-connection ∇� on S(B):

∇�
l (s) = pbw−1 (l · pbw(s)

)
, (11)

for all l ∈ �(L) and s ∈ �(SB).
The L-connection ∇� on S(B) induces an L-connection on the dual bundle

Ŝ(B∨)—see Remark 3.5. We denote the corresponding Chevalley–Eilenberg differ-
ential by

d∇�

L : �(�•L∨ ⊗ Ŝ(B∨)) → �(�•+1L∨ ⊗ Ŝ(B∨)). (12)

Since the covariant derivative

∇�
l : �(SB) → �(SB)

is a coderivation of �(SB) for all l ∈ �(L), the covariant derivative

∇�
l : �(Ŝ(B∨)) → �(Ŝ(B∨))

is a derivation of the symmetric algebra �(Ŝ(B∨)). Therefore, the operator d∇�

L on

�(�•L∨⊗ Ŝ(B∨)) is a derivation of degree (+1) satisfying d∇�

L ◦d∇�

L = 0, i.e. it is a

homological vector field on L[1]⊕ B. Note however that ∇�
l need not be a derivation

of �(SB) for any l ∈ �(L).

Proposition 4.1 Given a Lie pair (L, A) with quotient B = L/A, the choice of (1) a
splitting j : L/A → L of the short exact sequence 0 → A → L → B → 0 and (2)
an L-connection ∇ on B extending the Bott representation determines an operator
d∇�

L as above making (L[1] ⊕ B, d∇�

L ) a dg manifold.

Remark 4.2 The Kapranov dg manifolds of [18, Theorem 5.7] inspired the con-
struction of the dg manifold of Proposition 4.1. Indeed, the Kapranov dg manifold
(A[1]⊕B, D) constructed in [18, Theorem 5.7] is a dg submanifold of the dgmanifold
(L[1]⊕ B, d∇�

L ) of Proposition 4.1 as can be readily observed by comparing Eq. (11)
with [18, Equation (46)].

We will see in Theorem 4.7 that, when ∇ is torsion-free, the homological vector
field d∇�

L is exactly the homological vector field Q constructed by Fedosov’s iteration
method as described in Sect. 4.3.
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4.2 Dependence of the construction on the choice of splitting and connection

Now we consider two different choices j1,∇1 and j2,∇2 of a splitting B → L and
a torsion free L-connection on B as before, and the two induced homological vector

fields d
∇�
1

L , d
∇�
2

L on L[1] ⊕ B. There are also two induced Poincaré–Birkhoff–Witt

isomorphisms pbw1, pbw2 : �(SB) → U(L)
U(L)�(A)

, and the composition

ψ := pbw−1
1 ◦ pbw2 : �(SB) → �(SB)

is an automorphism of the R-coalgebra�(SB) intertwining the two induced L-module
structures. Hence, the dual ψ∨ : �(Ŝ(B∨)) → �(Ŝ(B∨)) is an automorphism of the
R-algebra �(Ŝ(B∨)) intertwining the two induced L-module structures. It follows
immediately that the isomorphism of differential graded algebras

id⊗ψ∨ : (�(�•L∨ ⊗ Ŝ(B∨)), d
∇�
1

L

) → (
�(�•L∨ ⊗ Ŝ(B∨)), d

∇�
2

L

)

defines an isomorphism of dg manifolds (L[1] ⊕ B, d
∇�
2

L ) → (L[1] ⊕ B, d
∇�
1

L ).

4.3 Second construction by way of Fedosov’s iterationmethod

Consider the bundle of graded commutative algebras�•B∨⊗ Ŝ(B∨) and the fiberwise
derivation δ̇ of degree (+1) defined by its action on generators of �•B∨ ⊗ Ŝ(B∨) as
follows:

δ̇(1⊗ χ) = χ ⊗ 1 and δ̇(χ ⊗ 1) = 0 for all χ ∈ B∨.

It is clear that δ̇2 = 0. Likewise, let Ḋ be the fiberwise derivation of degree (−1)
defined on generators by

Ḋ(1⊗ χ) = 0 and Ḋ(χ ⊗ 1) = 1⊗ χ for all χ ∈ B∨.

Obviously, we have Ḋ2 = 0. It is also clear that
[
δ̇,Ḋ

]
is a derivation of degree 0 of

�•B∨ ⊗ Ŝ(B∨) satisfying
[
δ̇,Ḋ

]
(1⊗χ) = 1⊗χ and

[
δ̇,Ḋ

]
(χ ⊗ 1) = χ ⊗ 1 for all

χ ∈ B∨. Thus, it follows that

[
δ̇,Ḋ

] = (v + j) id on �vB∨ ⊗ S j (B∨).

Consider the operator ḣ on �•B∨ ⊗ Ŝ(B∨) defined by the relation

ḣ =
{

1
(v+ j) Ḋ on �vB∨ ⊗ S j (B∨) with v + j > 0,

0 on �0B∨ ⊗ S0(B∨).

123

Author's personal copy



Fedosov dg manifolds associated with Lie pairs

Then δ̇ḣ + ḣδ̇ is the canonical projection of �•B∨ ⊗ Ŝ(B∨) onto �0B∨ ⊗ S0(B∨),
which shows that the (fiberwise) Koszul2 complex

(
�•B∨ ⊗ Ŝ(B∨), δ̇

)
is acyclic

except in degree 0 where its cohomology is �0B∨ ⊗ S0(B∨).
Choose a splitting i ◦ p + j ◦ q = idL of the short exact sequence

0 A L B 0i

p

q

j

(13)

and its dual

0 B∨ L∨ A∨ 0
q∨

j∨

i∨

p∨
.

Tensoring the cochain complex
(
�•B∨ ⊗ Ŝ(B∨), δ̇

)
with the cochain complex(

�•A∨, 0
)
with trivial differential, and identifying �A∨ ⊗ �B∨ with �L∨ by the

vector bundle isomorphism

�A∨ ⊗ �B∨ � α ⊗ β
μ�−−−→ p∨(α) ∧ q∨(β) ∈ �L∨,

we obtain the cochain complex

· · · �k−1L∨ ⊗ Ŝ(B∨) �k L∨ ⊗ Ŝ(B∨) �k+1L∨ ⊗ Ŝ(B∨) · · ·δ δ

whose coboundary operator δ is the operator id�A∨ ⊗δ̇ conjugated by the isomorphism
μ ⊗ id Ŝ(B∨)

. Let r be the rank of the bundle B. Given a local frame {χk}rk=1 for the
vector bundle B∨ and a multi-index J = (J1, J2, · · · , Jr ) ∈ N

r
0, we make use of the

notation χ J defined by Eq. (1). The differential δ satisfies

δ(ω ⊗ χ J ) =
r∑

m=1

(
q∨(χm) ∧ ω

)⊗ Jm χ J−em ,

for all ω ∈ �L∨ and J ∈ N
r
0—we declare that Jmχ J−em = 0 if Jm = 0.

Now consider the pair of cochain maps

τ : �•A∨ → �•L∨ ⊗ Ŝ(B∨) and σ : �•L∨ ⊗ Ŝ(B∨) → �•A∨

respectively defined by

τ(α) = p∨(α) ⊗ 1,

2 We are grateful to an anonymous referee for pointing out the relation between the Koszul complex—
see [12]—and our initial construction as set forth in an earlier version of our manuscript.
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for all α ∈ �•A∨, and

σ(ω ⊗ χ J ) =
{
i∨(ω) ⊗ χ J if |J | = 0

0 otherwise,
(14)

for all ω ∈ �•L∨ and all multi-indices J ∈ N
r
0. They realize a homotopy equivalence

between the cochain complexes
(
�•L∨ ⊗ Ŝ(B∨), δ

)
and

(
�•A∨, 0

)
since we have

στ = id and id−τσ = δh+ hδ, where the symbol h denotes the homotopy operator

h : �•L∨ ⊗ Ŝ(B∨) → �•−1L∨ ⊗ Ŝ(B∨)

obtained by conjugating the operator id�A∨ ⊗ḣ by the isomorphism μ⊗ id Ŝ(B∨)
. We

note that, for all ω = μ(α ⊗ β) with β ∈ �vB∨ and all multi-indices J ∈ N
r
0, we

have

h(ω ⊗ χ J ) =
{

1
v+|J |

∑r
k=1(ι j(∂k)ω) ⊗ χ J+ek if v ≥ 1,

0 if v = 0.
(15)

Clearly, the maps δ, σ , τ , and h respect the exhaustive, complete, descending
filtrations

F0 ⊃ F1 ⊃ F2 ⊃ F3 ⊃ · · · and F0 ⊃ F1 ⊃ F2 ⊃ F3 ⊃ · · ·

on �•A∨ and �•L∨ ⊗ Ŝ(B∨) defined respectively by

Fm =
⊕

k≥m

�k A∨ and Fm =
∏

k+p≥m

(
�k L∨ ⊗ S p(B∨)

)
.

Observing that hτ = 0; σh = 0; and h2 = 0, we conclude that

Proposition 4.3 The vector bundle maps δ, h, σ , and τ defined above determine a
filtered contraction

(
�(�•A∨), 0

) (
�(�•L∨ ⊗ Ŝ(B∨)),−δ

)τ

σ
h .

Remark 4.4 Unlike δ, the operator h is not a derivation of the bundle of graded com-
mutative algebras �•L∨ ⊗ Ŝ(B∨).

Lemma 4.5 Let (L, A) be a Lie pair, let d∇
L denote the Chevalley–Eilenberg differ-

ential associated with the covariant derivative ∇ : �(L) × �(Ŝ(B∨)) → �(Ŝ(B∨))

determined (as in Remarks 3.4 and 3.5) by an L-connection ∇ on B, and let T∇ be
the torsion of the latter (see Sect. 3.3). Then T∇ = 0 if and only if δd∇

L + d∇
L δ = 0.
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Proof The operators δ and d∇
L being two derivations of degree+1 of the graded algebra

�(�•L∨ ⊗ Ŝ(B∨)), so is their graded commutator δd∇
L + d∇

L δ.
This derivation δd∇

L + d∇
L δ vanishes on the subalgebra �(�•L∨ ⊗ S0(B∨)) of

�(�•L∨ ⊗ Ŝ(B∨)) since δ(ω ⊗ 1) = 0 and d∇
L (ω ⊗ 1) = (dLω) ⊗ 1 for all

ω ∈ �(�•L∨).
For all χ ∈ �(B∨), we have

δ(1⊗ χ) = q∨(χ) ⊗ 1 and d∇
L (1⊗ χ) =

∑

k

νk ⊗∇vkχ

and hence

(
d∇
L δ + δd∇

L

)
(1⊗ χ) = (

dL(q∨χ) +
∑

k

q∨(∇vkχ) ∧ νk
)⊗ 1.

Furthermore, we have

dL(q∨χ) +
∑

k

q∨(∇vkχ) ∧ νk = (
T∇)∨(χ),

where the symbol
(
T∇)∨ denotes the vector bundle morphism

(
T∇)∨ : B∨ → �2L∨

dual to the torsion T∇ : �2L → B. Indeed, for all X ,Y ∈ �(L), we have

〈

dL (q∨χ) +
∑

k

q∨(∇vkχ) ∧ νk

∣
∣
∣
∣
∣∣
X ∧ Y

〉

= ρ(X)
〈
q∨χ

∣∣Y
〉− ρ(Y )

〈
q∨χ

∣∣X
〉− 〈

q∨χ
∣∣[X ,Y ]

〉

+
∑

k

( 〈
q∨(∇vkχ)

∣
∣X

〉 · 〈νk |Y 〉 − 〈
q∨(∇vkχ)

∣
∣Y

〉 · 〈νk |X〉
)

= ρ(X) 〈χ |q(Y )〉 − ρ(Y ) 〈χ |q(X)〉 − 〈χ |q([X ,Y ])〉
+

〈
∇∑

k 〈νk |Y 〉·vkχ
∣∣
∣q(X)

〉
−

〈
∇∑

k 〈νk |X〉·vkχ
∣∣
∣q(Y )

〉

= ρ(X) 〈χ |q(Y )〉 − 〈∇Xχ |q(Y )〉 − ρ(Y ) 〈χ |q(X)〉 + 〈∇Yχ |q(X)〉 − 〈χ |q([X ,Y ])〉
= 〈

χ
∣
∣∇X

(
q(Y )

)〉− 〈
χ
∣
∣∇Y

(
q(X)

)〉− 〈χ |q([X ,Y ])〉
=

〈
χ

∣
∣∣T∇ (X , Y )

〉
.

Thus, we obtain

(
d∇
L δ + δd∇

L

)
(1⊗ χ) = (

T∇)∨(χ) ⊗ 1, ∀χ ∈ �(B∨).

The desired result now follows immediately since the algebra �(�•L∨ ⊗ Ŝ(B∨))

is generated by its subalgebra �(�•L∨⊗ S0(B∨)) and its elements of type 1⊗χ with
χ ∈ �(B∨). ��
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The sections of the vector bundle Ŝ(B∨) ⊗ B may be interpreted as fiberwise
formal vertical vector fields on B—they act as derivations of the algebra �(Ŝ(B∨))

of fiberwise formal functions on B in a natural fashion. Tensoring the maps δ, h, σ ,
and τ with idB , we obtain a filtered contraction

(
�(�•A∨ ⊗ B), 0

) (
�(�•L∨ ⊗ Ŝ(B∨) ⊗ B),−δ�

)τ�

σ�

h� ,

where τ� = τ ⊗ idB ; σ� = σ ⊗ idB ; δ� = δ ⊗ idB ; and h� = h ⊗ idB .
We are now ready to present a second construction of a homological vector field Q

on the graded manifold L[1] ⊕ B, which relies on Fedosov’s iteration method.

Proposition 4.6 Let (L, A) be a Lie pair. Given a splitting i ◦ p + j ◦ q = idL of
the short exact sequence (13) and a torsion-free L-connection ∇ on B, there exists a
unique 1-form valued in the formal vertical vector fields on B:

X∇ ∈ �(�1L∨ ⊗ Ŝ≥2(B∨) ⊗ B)

satisfying h�(X∇) = 0 and such that the derivation

Q : �(�•L∨ ⊗ Ŝ(B∨)) → �(�•+1L∨ ⊗ Ŝ(B∨))

defined by

Q = −δ + d∇
L + X∇

satisfies Q2 = 0. Here X∇ acts on the algebra �(�•L∨ ⊗ Ŝ(B∨)) as a derivation in
a natural fashion. As a consequence, (L[1] ⊕ B, Q) is a dg manifold.

Proof Suppose there exists such a X∇ and consider its decomposition X∇ = ∑∞
k=2 Xk ,

where Xk ∈ �(�1L∨ ⊗ Sk(B∨) ⊗ B). Then Q = −δ + d∇
L + X2 + X≥3

with X≥3 = ∑∞
k=3 Xk . Since δ2 = 0;

[
δ,d∇

L

] = 0 according to Lemma 4.5; and
d∇
L ◦ d∇

L = R∇ , we have

Q2 = δ2 − (
δd∇

L + d∇
L δ

)+ {
d∇
L d

∇
L − δX2 − X2δ

}

+ {
d∇
L X∇ + X∇d∇

L + (X∇)2 − δX≥3 − X≥3δ
}

= {
R∇ − [δ,X2]

}+ { [
d∇
L + 1

2 X
∇ ,X∇]− [

δ,X≥3
] }

.

With respect to the bigrading on �(�•L∨ ⊗ S•B∨), the respective bidegrees of the
operators δ, d∇

L , and X2 are (1,−1), (1, 0), and (1, 1). Furthermore, the operator X≥3

maps�(�k L∨⊗S pB∨) to�(�k+1L∨⊗ Ŝ≥p+2(B∨)). As a consequence, the operator
R∇ − [δ,X2] has bidegree (2, 0)while the operator

[
d∇
L + 1

2 X
∇ ,X∇]−[

δ,X≥3
]
maps

�(�k L∨ ⊗ S pB∨) to �(�k+2L∨ ⊗ Ŝ≥p+1(B∨)). Hence, since their sum Q2 is zero
by assumption, they must vanish separately.
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In other words, the requirement Q2 = 0 is equivalent to the pair of equations

[δ,X2] = R∇ and
[
δ,X≥3

] =
[
d∇
L + 1

2 X
∇ ,X∇] .

Note that σ�(X2) = 0 and σ�(X≥3) = 0 since X2, X≥3 ∈ �(�1L∨ ⊗ Ŝ≥2(B∨) ⊗ B)

and also that h�(X2) = 0 and h�(X≥3) = 0 as h�(X∇) = 0 by assumption. Therefore,
since δ�h� + h�δ� = id−τ�σ�, we obtain h�δ�(X2) = X2 and h�δ�(X≥3) = X≥3.

It follows that

X2 = h�δ�(X2) = h�([δ,X2]) = h�(R
∇)

X≥3 = h�δ�(X≥3) = h�(
[
δ,X≥3

]
) = h�

[
d∇
L + 1

2 X
∇ ,X∇] .

Projecting the second equation onto �(�1L∨ ⊗ Sk+1(B∨) ⊗ B), we obtain

X2 = h�(R
∇) (16)

Xk+1 = h�

(
d∇
L ◦ Xk + Xk ◦ d∇

L +
∑

p+q=k+1
2≤p,q≤k−1

X p ◦ Xq

)
, for k ≥ 2. (17)

The successive terms of X∇ = ∑∞
k=2 Xk can thus be computed inductively starting

from X2 = h�(R∇). Therefore, if it exists, the derivation X∇ is uniquely determined
by the torsion-free connection ∇ and the splitting j : B → L .

Now, defining Xk inductively by the relations (16) and (17) and setting
X∇ = ∑∞

k=2 Xk , we have h�(X∇) = h�(X2 + X≥3) = h2�
(
R∇ + δ�(X≥3)

) = 0

since h2� = 0. Moreover, we have X2 = h�(R∇) ∈ �(�1L∨ ⊗ S2(B∨) ⊗ B) as

R∇ ∈ �(�2L∨⊗ B∨⊗ B). Making use of Eq. (17), one proves by induction on k that
Xk ∈ �(�1L∨ ⊗ Sk(B∨) ⊗ B). This completes the proof of the existence of X∇ . ��

We elect to call a dg manifold (L[1] ⊕ B, Q) constructed in this way a Fedosov dg
manifold.

We note that Proposition 4.6 was proved independently by Batakidis–Voglaire [3].

4.4 Equivalence of the two constructions

The aim of this section is to prove the following theorem, which is one of the main
results of this paper.

Theorem 4.7 Let (L, A) be a Lie pair, let i ◦ p + j ◦ q = idL be a splitting of the
short exact sequence (13), and let ∇ be an L-connection on B extending the Bott
A-connection. If ∇ is torsion-free, then the dg manifold (L[1] ⊕ B, d∇�

L ) described
in Proposition 4.1 coincides with the dg manifold (L[1] ⊕ B, Q) constructed by the
Fedosov iteration described in (the proof of) Proposition 4.6.
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Consider the bundle map

� : L ⊗ SB → SB

defined in [18] by the relation

�(l; s) = ∇�
l s − ∇l s − q(l) � s, ∀l ∈ �(L), s ∈ �(SB).

Lemma 4.8 ([18, Lemma 5.13]) For all l ∈ �(L), we have �(l; 1) = 0.

Proposition 4.9 ([18, Lemma 5.16]) For all l ∈ �(L), the map s �→ �(l; s) is a
coderivation of the R-coalgebra �(SB) which preserves the filtration

· · · ↪→ �(S≤n−1B) ↪→ �(S≤n B) ↪→ �(S≤n+1B) ↪→ · · · .

Lemma 4.10 ([18, Lemma 5.17]) For all n ∈ N and all b0, b1, . . . , bn ∈ �(B), we
have

n∑

k=0

�
(
j(bk); b0 � · · · � b̂k � · · · � bn

) = 0.

Lemma 4.11 Provided the L-connection ∇ on B extends the Bott representation, the
bundle map � associated with the connection ∇ and a splitting i ◦ p + j ◦ q = idL
satisfies the relation

�(l; b) = − 1
2β

∇(q(l), b)

for all l ∈ �(L) and b ∈ �(B).

In particular, if the L-connection ∇ on B is torsion-free, we have �(l; b) = 0 for
all l ∈ �(L) and b ∈ �(B).

Proof We may rewrite Lemma 3.9 as

j(Y ) · pbw(Z) = pbw
(
Y � Z +∇ j(Y )Z − 1

2 β∇(Y , Z)
)

or

∇�
j(Y )Z = Y � Z +∇ j(Y )Z − 1

2 β∇(Y , Z)

for all Y , Z ∈ �(B).
On the other hand, according to [18, Lemma 5.11], we have

∇�
i(X)Z = ∇Bott

X Z
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for all X ∈ �(A) and Z ∈ �(B). Furthermore, since the L-connection ∇ on B is
assumed to extend the Bott representation, we have

∇Bott
X Z = ∇i(X)Z

for all X ∈ �(A) and Z ∈ �(B).
Therefore, for all l ∈ �(L) and b ∈ �(B), we have

∇�
l b = ∇�

i◦p(l)b + ∇�
j◦q(l)b

= ∇i◦p(l)b + {
q(l) � b + ∇ j◦q(l)b − 1

2 β∇(q(l), b)
}

= q(l) � b +∇lb − 1
2 β∇(q(l), b).

The result then follows from the definition of �. ��

Let

�(SB) ⊗R �(Ŝ(B∨))
〈−|−〉−−−→ R

be the duality pairing defined by

〈
b1 � · · · � bp

∣∣β1 � · · · � βq
〉 =

{∑
σ∈Sp ιb1βσ(1) · ιb2βσ(2) · · · ιbpβσ(p) if p = q

0 if p �= q

for all b1, . . . , bp ∈ �(B) and β1, . . . , βq ∈ �(B∨).
A straightforward computation yields the following

Lemma 4.12 Let (∂i )i∈{1,...,r} be a local frame of B and let (χ j ) j∈{1,...,r} be the dual
local frame of B∨. We have

〈
∂ I

∣∣∣χ J
〉
= I ! δI ,J , ∀I , J ∈ N

n
0

and

σ =
∑

I∈N
n
0

1

I !
〈
∂ I

∣∣∣σ
〉

χ I , ∀σ ∈ �
(
Ŝ(B∨)

)
.

Lemma 4.13 For any l ∈ �(L), and all s ∈ �(SB), and σ ∈ �
(
Ŝ(B∨)

)
, we have

〈s|ιlδ(σ )〉 = 〈q(l) � s|σ 〉 .
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Proof It suffices to prove the relation for s = ∂ I and σ = χ J . We have

〈
∂ I

∣
∣
∣ιlδ(χ J )

〉
=

〈

∂ I

∣
∣
∣
∣
∣

r∑

k=1

ιq(l)χk · Jkχ J−ek

〉

=
r∑

k=1

ιq(l)χk

〈
∂ I

∣
∣
∣Jkχ J−ek

〉

=
r∑

k=1

ιq(l)χk Jk I ! δI ,J−ek =
r∑

k=1

ιq(l)χk J ! δI+ek ,J =
r∑

k=1

ιq(l)χk

〈
∂ I+ek

∣
∣∣χ J

〉

=
〈

r∑

k=1

ιq(l)χk · ∂k � ∂ I

∣
∣
∣
∣
∣
χ J

〉

=
〈
q(l) � ∂ I

∣
∣
∣χ J

〉
.

��
Consider the map

� : �(Sk B∨) → �(�1L∨ ⊗ Ŝ≥k+1(B∨)), ∀k ≥ 0,

defined by
〈s|ιl�(σ)〉 = 〈�(l; s)|σ 〉 , (18)

for all l ∈ �(L), s ∈ �(SB), and σ ∈ �(Ŝ(B∨)).
The L-connections ∇ and ∇� defined on S(B) induce L-connections on the dual

bundle Ŝ(B∨)—see Remark 3.5.

Proposition 4.14 d∇�

L = −δ + d∇
L − �

Proof According to Remark 3.5, we have

〈
∇�
l s

∣∣∣σ
〉
+

〈
s
∣∣∣∇�

l σ
〉
= ρ(l) 〈s|σ 〉 = 〈∇l s|σ 〉 + 〈s|∇lσ 〉 ,

for all l ∈ �(L), s ∈ �(SB), and σ ∈ �(Ŝ(B∨)). From there, we obtain

〈
∇�
l s − ∇l s

∣∣
∣σ

〉
=

〈
s
∣∣
∣∇lσ −∇�

l σ
〉

〈q(l) � s + �(l; s)|σ 〉 =
〈
s
∣∣∣ιl
(
d∇
L σ − d∇�

L σ
)〉

and, making use of Lemma 4.13 and Eq. (18),

〈
s
∣∣ιlδ(σ ) + ιl�(σ)

)〉 =
〈
s
∣∣∣ιl
(
d∇
L σ − d∇�

L σ
)〉

or, equivalently,

d∇�

L = −δ + d∇
L − �.

��

123

Author's personal copy



Fedosov dg manifolds associated with Lie pairs

Proposition 4.15 For every l ∈ �(L), the operator ιl� is a derivation of the R-algebra
�
(
Ŝ(B∨)

)
which preserves the filtration

· · · ↪→ �
(
Ŝ≥n+1(B∨)

)
↪→ �

(
Ŝ≥n(B∨)

)
↪→ �

(
Ŝ≥n−1(B∨)

)
↪→ · · · .

Proof The result follows immediately from Proposition 4.9 since the R-algebra
�
(
Ŝ(B∨)

)
is dual to the R-coalgebra �(S(B)) and ιl� is the transpose of �(l;−)

according to Eq. (18). ��
Therefore,�may be regarded as an element of the subspace�

(
�1L∨⊗ Ŝ(B∨)⊗B

)

of the space of derivations of the algebra �
(
�•L∨ ⊗ Ŝ(B∨)

)
.

Given any pair of dual local frames (∂i )i∈{1,...,r} and (χ j ) j∈{1,...,r} for the vector

bundles B and B∨ and any pair of dual local frames (lm)
rk(L)
m=1 and (λm)

rk(L)
m=1 for the

vector bundles L and L∨, we have

� =
rk(L)∑

m=1

r∑

k=1

λm ⊗ ιlm�(χk) ⊗ ∂k,

since each ιlm� is a derivation of the R-algebra �
(
Ŝ(B∨)

)
, which is generated locally

by χ1, . . . , χr . Furthermore, for all l ∈ �(L), we have

ιl�(χk) =
∑

I∈N
r
0

1

I !
〈
∂ I

∣
∣∣ιl�(χk)

〉
χ I by Lemma 4.12,

=
∑

I∈N
r
0

1

I !
〈
�(l; ∂ I )

∣∣
∣χk

〉
χ I by Eq. (18).

Lemma 4.16 We have � ∈ �
(
�1L∨ ⊗ Ŝ≥1(B∨) ⊗ B

)
. Furthermore, if the L-

connection ∇ on B is torsion-free, then � ∈ �
(
�1L∨ ⊗ Ŝ≥2(B∨) ⊗ B

)
.

Proof If the connection∇ is torsion-free, then ιl� ∈ �
(
Ŝ≥2(B∨)⊗B

)
as�(l; ∂ I ) = 0

for |I | ≤ 1 according to Lemma 4.8 and Lemma 4.11. However, if the torsion of ∇ is
not zero, we can only say that ιl� ∈ �

(
Ŝ≥1(B∨) ⊗ B

)
as �(l; ∂ I ) need not vanish

for |I | = 1. ��
We note that, for every pair of dual local frames (∂i )i∈{1,...,r} and (χ j ) j∈{1,...,r} for

B and B∨, we have

� =
r∑

k=1

∑

J∈N
r
0

1

J !
〈
∂ J

∣∣∣�(χk)
〉
χ J ∂k .

Lemma 4.17 For all λ ∈ �(L∨) and J ∈ N
r
0, we have

h(λ ⊗ χ J ) = 1

1+ |J |
r∑

k=1

ι j(∂k )λ ⊗ χ J+ek ,
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where (∂i )i∈{1,...,r} is any local frame of B and (χ j ) j∈{1,...,r} is the dual local frame of
B∨.

Proof For λ ∈ �(q∨B∨), the result follows immediately from Eq. (15), the very
definition of h. The result holds for λ ∈ �(p∨A∨) as well since, for all α ∈ �(A∨),
we have h(p∨(α) ⊗ χ J ) = 0 by the very definition of h and ι j(∂k ) p

∨(α) = 0 as
p ◦ j = 0. ��
Proposition 4.18 h�(�) = 0

Proof Let (∂i )i∈{1,...,r} be a local frame of B and let (χ j ) j∈{1,...,r} be the dual local
frame of B∨.

From

� =
r∑

k=1

∑

J∈N
r
0

1

J !
〈
∂ J

∣∣∣�(χk)
〉
χ J ∂k,

we obtain, using Lemma 4.17,

h�(�) =
r∑

k=1

∑

J∈N
r
0

h

{
1

J !
〈
∂ J

∣∣
∣�(χk)

〉
χ J

}
∂k

=
r∑

k=1

∑

J∈N
r
0

1

1+ |J |
r∑

p=1

1

J !
〈
∂ J

∣∣∣ι j(∂p)�(χk)
〉
χpχ

J ∂k

=
r∑

k=1

∑

J∈N
r
0

1

1+ |J |
r∑

p=1

1

J !
〈
�( j(∂p); ∂ J )

∣∣∣χk

〉
χ J+ep∂k

=
r∑

k=1

∑

M∈N
r
0

1

|M |
1

M !

〈
r∑

p=1

Mp �( j(∂p); ∂M−ep )

∣∣∣
∣∣∣
χk

〉

χM∂k .

It follows directly from Lemma 4.10 that

r∑

p=1

Mp �( j(∂p); ∂M−ep ) = 0

for every M = (M1, . . . , Mr ) ∈ N
r
0. ��

We are now ready to complete the proof of Theorem 4.7.

Proof of Theorem 4.7 Since� ∈ �
(
�1L∨⊗Ŝ≥2(B∨)⊗B

)
provided T∇ = 0 (Proposi-

tion 4.16), h�(�) = 0 (Proposition 4.18), and d∇�

L = −δ+d∇
L −� (Proposition 4.14)

satisfies d∇�

L ◦ d∇�

L = 0, the uniqueness statement in Proposition 4.6 asserts that

X∇ = −� and Q = d∇�

L . ��
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5 Dolgushev–Fedosov quasi-isomorphisms

5.1 Contraction of the Fedosov dgmanifold

Our second main result, Theorem 5.1 below, extends the Dolgushev–Fedosov quasi-
isomorphism [8, Theorem 3] to the context of Lie pairs. This section is devoted to
its proof; Theorem 5.1 is an immediate consequence of Proposition 5.4 below (and
Theorem 4.7).

Theorem 5.1 Given a Lie pair (L, A), let d∇�

L be the homological vector field on
L[1]⊕ B determined by the choice of a splitting i ◦ p+ j ◦ q = idL of the short exact
sequence (13) and an L-connection ∇ on B as in Proposition 4.1. Then the natural
inclusion (A[1], dA) ↪→ (L[1] ⊕ B, d∇�

L ) is a quasi-isomorphism of dg manifolds.

Remark 5.2 In particular, if L is the tangent bundle to a smooth manifold M and A is
its rank-zero subbundle, Theorem 5.1 reduces to the part of [8, Theorem 3] pertaining
to functions on the manifold M .

Dolgushev established the quasi-isomorphism [8, Theorem 3] by a direct
verification. Here we will prove the stronger result that the cochain complexes(
�(�•L∨ ⊗ Ŝ(B∨)), d∇�

L

)
and

(
�(�•A∨), dA

)
are indeed homotopy equivalent.

Homological perturbation—see Appendix A—provides a quick and easy proof of this
result: the operator � = d∇�

L + δ can be understood as a perturbation of the cochain
complex

(
�(�•L∨ ⊗ Ŝ(B∨)),−δ

)
appearing in the contraction of Proposition 4.3.

Lemma 5.3 While the operator δ respects the filtration

· · · ⊆ Fm+1 ⊆ Fm ⊆ Fm−1 ⊆ · · ·

defined by

Fm =
∏

k+p≥m

�
(
�k L∨ ⊗ S p(B∨)

)
,

the operator � = d∇�

L + δ raises the filtration degree by 1, i.e. �(Fm) ⊆ Fm+1.
Moreover, the operator � is a perturbation of the filtered cochain complex

· · · �(�k−1L∨ ⊗ Ŝ(B∨)) �(�k L∨ ⊗ Ŝ(B∨)) �(�k+1L∨ ⊗ Ŝ(B∨)) · · ·−δ −δ

Proof According to Proposition 4.14, we have � = d∇�

L + δ = d∇
L −�. With respect

to the bigrading on �
(
�•L∨⊗ S•(B∨)

)
, the operator δ has bidegree (1,−1)while the

operator d∇
L has bidegree (1, 0). Furthermore, according to Lemma 4.16, the operator

�maps �(�k L∨⊗ S p(B∨)) to �(�k+1L∨⊗ S≥p(B∨)). Therefore, the differential δ
satisfies δ(Fm) ⊆ Fm and the operator � satisfies �(Fm) ⊆ Fm+1. Finally, we have
(−δ + �)2 = (d∇�

L )2 = 0 since the connection ∇� is flat. ��
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Proposition 5.4 Given a Lie pair (L, A), let dA denote the Chevalley–Eilenberg dif-
ferential of the Lie algebroid A regarded as a homological vector field on A[1] and
let d∇�

L be the homological vector field on L[1] ⊕ B determined by the choice of a
splitting i ◦ p+ j ◦ q = idL of the short exact sequence (13) and an L-connection ∇
on B as in Proposition 4.1. Then, there exists a contraction

(
�(�•A∨), dA

) (
�(�•L∨ ⊗ Ŝ(B∨)), d∇�

L

)τ̆

σ
h̆ .

where

τ̆ =
∞∑

k=0

(h�)kτ, h̆ =
∞∑

k=0

(h�)kh, � = d∇�

L + δ,

and the maps δ, τ , σ , and h are those defined in Sect. 4.3. In particular, σ is the natural
inclusion of graded manifolds A[1] ↪→ L[1] ⊕ B defined by Eq. (14).

Proof We proceed by homological perturbation (see Lemma A.1). Starting from the
filtered contraction of Proposition 4.3, it suffices to perturb the coboundary operator
−δ by the operator � (see Lemma 5.3) to obtain the new contraction

(
�(�•A∨), ϑ

) (
�(�•L∨ ⊗ Ŝ(B∨)),−δ + �

)τ̆

σ̆
h̆ .

We have σ�h = 0 as, for all n, p ∈ N0,

�(�nL∨ ⊗ S pB∨) �(�n−1L∨ ⊗ S p+1B∨) �(�nL∨ ⊗ Ŝ≥p+1(B∨)) 0.h � σ

Therefore, we obtain

σ̆ :=
∞∑

k=0

σ(�h)k = σ

and

ϑ :=
∞∑

k=0

σ(�h)k�τ = σ�τ = σ(d∇
L − �∇)(p∨ ⊗ 1) = σ

(
(dL ◦ p∨) ⊗ 1

) = dA.

The result follows immediately since −δ + � = d∇�

L (Proposition 4.14). ��
We note that a similar construction of a Fedosov resolution of the algebra of smooth

functions on a manifold based on homological perturbation was described by Hans-
Christian Herbig in [14].
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5.2 Matched pairs

In this section, we establish an explicit expression for the quasi-isomorphism

τ̆ : �(�•A∨) → �(�•L∨ ⊗ Ŝ(B∨))

defined in Proposition 5.4 valid only in the special case of matched pairs. This formula
can be considered as an extension to the matched pair case of the augmentation map

τ̆ : C∞(M) → �0(M; Ŝ(T∨
M )

)

arising from the Emmrich–Weinstein ‘formal exponential map’—see Sect. 6 and [10,
Theorem 1.6].

Suppose the short exact sequence (13) admits a splitting j : B → L whose image
j(B) is a Lie subalgebroid of L—i.e. L = A 	
 B is a matched pair. Then B is a Lie
algebroid and the composition of themorphism of associative algebrasU(B) → U(L)

induced by j with the canonical projection U(L) � U(L)
U(L)�(A)

yields a canonical

isomorphism of left R-coalgebras U(B) ∼= U(L)
U(L)�(A)

.
Since L = A 	
 B is a matched pair, we have a Bott B-representation on A:

∇Bott
b a = p

(
[ j(b),i(a)]

)
, ∀b ∈ �(B), a ∈ �(A).

The dual B-connection on A∨ extends to the exterior algebra �A∨ by derivation:

∇Bott
b α = i∨

(L j(b)(p
∨α)

)
, ∀b ∈ �(B), α ∈ �(�A∨). (19)

The symbolL denotes the Lie derivative in the setting of the Lie algebroid L . Applying
p∨ to both sides of Eq. (19), we conclude that the diagram

�(�•A∨) �(�•A∨)

�(�•L∨) �(�•L∨)

∇Bott
b

p∨ p∨

L j(b)

commutes for every b ∈ �(B). The Bott representation of B on �A∨ extends to a
U(B)-representation on �(�A∨). The action

U(B) × �(�A∨)
�−→ �(�A∨)

satisfies

p∨
(
b1b2 · · · bn � α

) = L j(b1)L j(b2) · · ·L j(bn)(p
∨α),

for all b1, b2, . . . , bn ∈ �(B) and α ∈ �(�A∨).
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In the matched pair case, the chain map τ̆ : �(�•A∨) → �(�•L∨ ⊗ Ŝ(B∨))

defined in Proposition 5.4 admits a simple description in terms of the splitting
j : B ↪→ L , the associated left U(B)-module structure � on �(�A∨), and the
map pbw : �(S(B)) → U(B) corresponding to the B-connection on B induced by j
and ∇.

Consider the derivation D of the subalgebra �(p∨(�A∨) ⊗ Ŝ(B∨)) of
�(�L∨ ⊗ Ŝ(B∨)) defined on generators by the identities

D(p∨α ⊗ 1) =
r∑

k=1

p∨(∇Bott
∂k

α) ⊗ χk, ∀α ∈ �(A∨),

D(1⊗ χ) =
r∑

k=1

1⊗ χk · ∇ j(∂k)χ, ∀χ ∈ �(B∨).

In general, for all α ∈ �(�•A∨) and χ J ∈ �(Ŝ(B∨)), with J ∈ N
r
0, we have

D(p∨α ⊗ χ J ) =
r∑

k=1

{
p∨(∇Bott

∂k
α) ⊗ χk · χ J + p∨α ⊗ χk · ∇ j(∂k)(χ

J )
}

.

Remark 5.5 An analogue of the derivationD was introduced recently in [4, Section 2.1
and Remark 2.3]. It would be interesting to understand the precise relation between
these two derivations.

The remainder of this section is devoted to the proof of the following theorem.

Theorem 5.6 If L = A 	
 B is a matched pair, then the cochain map

τ̆ : �(�•A∨) → �(�•L∨ ⊗ Ŝ(B∨))

defined in Proposition 5.4 satisfies

τ̆ = exp(D) ◦ τ

and

τ̆ (α) =
∑

J∈N
r
0

1

J ! p
∨( pbw(∂ J ) � α

)⊗ χ J , ∀α ∈ �(�A∨). (20)

The following lemma is an analogue of Lemma 4.18, which is proved mutatis
mutandis.

Lemma 5.7 For all α ∈ �(�A∨) and J ∈ N
r
0, we have h�(p∨α ⊗ χ J ) = 0.

Lemma 5.8 For all α ∈ �(�A∨) and J ∈ N
r
0, we have

h�(p∨α ⊗ χ J ) = 1

1+ |J |D(p∨α ⊗ χ J ).
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Proof Since L = A 	
 B, Proposition 3.3 asserts that, if α ∈ �(�u A∨), then

dL(p∨α) ∈ �u+1,0 ⊕ �u,1,

where �u,v = �(p∨(�u A∨) ∧ q∨(�vB∨)). Therefore, if α ∈ �(�u A∨), we have

d∇
L (p∨α ⊗ χ J ) = dL(p∨α) ⊗ χ J

+
∑

t

νt ∧ (p∨α) ⊗ ∇vt (χ
J ) ∈ (�u+1,0 ⊕ �u,1) ⊗R �(S|J |(B∨)),

where v1, v2, . . . , vn and ν1, ν2, . . . , νn are any pair of dual local frames for the vector
bundles L and L∨, and it follows from Eq. (15) that

hd∇L (p∨α ⊗ χ J ) = 1

1+ |J |
∑

k

{
i j(∂k )dL (p∨α) ⊗ χ J+ek +

∑

t

(i j(∂k )νt ) · p∨α ⊗ χk · ∇vt (χ
J )

}

= 1

1+ |J |
∑

k

{
L j(∂k )(p

∨α) ⊗ χ J+ek + p∨α ⊗ χk · ∇∑
t (i j(∂k )νt )vt

(χ J )

}

= 1

1+ |J |
∑

k

{
p∨(∇Bott

∂k
α) ⊗ χ J+ek + p∨α ⊗ χk · ∇ j(∂k )(χ

J )

}
.

The desired result follows from Lemma 5.7. ��
Proof of Theorem 5.6 Reasoning by induction on k, one proves that

Dk ◦ τ(α) ∈ �(p∨(�A∨) ⊗ Sk(B∨))

for all α ∈ �(�A∨) and k ∈ N. Using Lemma 5.8 and reasoning by induction on k
once again, one proves that

(h�)k ◦ τ = 1

k!D
k ◦ τ

for all k ∈ N. It follows that

τ̆ =
( ∞∑

k=0

(h�)k
)

◦ τ =
( ∞∑

k=0

1

k!D
k
)

◦ τ = exp(D) ◦ τ.

Set  α" = ∑
J∈N

r
0

1
J ! p

∨( pbw(∂ J ) � α
)⊗ χ J for all α ∈ �(�A∨). We claim that

(id−h�)  α" = τ(α).

It then follows from Proposition A.2 that τ̆ (α) =  α"—the desired result.
It remains to establish our claim. From

0 = ρ( j(∂k))
〈
∂K

∣∣∣χ J
〉
=

〈
∇ j(∂k)(∂

K )

∣∣∣χ J
〉
+

〈
∂K

∣∣∣∇ j(∂k)(χ
J )
〉
,
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we obtain

∇ j(∂k )(χ
J ) =

∑

K

1

K !
〈
∂K

∣∣∣∇ j(∂k )(χ
J )
〉
χK = −

∑

K

1

K !
〈
∇ j(∂k)(∂

K )

∣∣∣χ J
〉
χK . (21)

From Lemma 5.7, Lemma 5.8, and Eq. (21), we obtain

h�  α" =
∑

J

1
J !

1
1+|J |

∑

k

{
p∨

(
∇Bott

∂k

(
pbw(∂ J ) � α

))⊗ χk · χ J

−p∨
(
pbw(∂ J ) � α

)⊗ χk ·
∑

K

1
K !

〈
∇ j(∂k)(∂

K )

∣∣
∣χ J

〉
χK

}

This can be rewritten as

h�  α" =
∑

J

1
J !

1
1+|J |

∑

k

p∨
(
j(∂k) · pbw(∂ J ) � α

)⊗ χ J+ek

−
∑

K

1
K !

1
1+|K |

∑

k

p∨
(
pbw

(∇ j(∂k)(∂
K )

)
� α

)
⊗ χK+ek

and then

h�  α" =
∑

M∈N
r
0|M|≥1

1

M ! p
∨

×
(

1

|M |
∑

k

Mk

(
j(∂k) · pbw

(
∂M−ek

)− pbw
(∇ j(∂k)∂

M−ek
))

� α

)
⊗ χM .

Finally, it follows from Eq. (10) that

h�  α" =
∑

M∈N
r
0|M|≥1

1

M ! p
∨( pbw(∂M ) � α

)⊗ χM =  α" − p∨(α) ⊗ 1 =  α" − τ(α).

��

6 Application: the ‘formal exponential map’ of Emmrich–Weinstein

In this section, we give a simple and direct proof of a result—see [10, Theorem 1.6
and Section 7] and Theorem 6.1 below—which Emmrich–Weinstein proved by way
of an indirect argument involving real analytic manifolds.

According to Proposition 4.6, given a torsion-free affine connection ∇ on M , one
can construct a homological vector field Q on the graded manifold TM [1] ⊕ TM
by Fedosov’s iteration method. This is essentially what [10, Theorem 1.1]—more
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precisely the special case when a = 0—and [8, Theorem 2] assert. One obtains
a derivation Q of �•(M; Ŝ(T∨

M )
)
such that Q2 = 0. Identifying �(Ŝ(T∨

M )) to the
algebra of functions on the formal neighborhood (TM )∞ of the zero section of the
tangent bundle to M , Emmrich–Weinstein regard the derivation Q as vector fields
determining a distribution on (TM )∞ transverse to the fibers of (TM )∞ → M , i.e. a
(nonlinear) formal Ehresmann connection on (TM )∞. Since Q2 = 0, this distribution
is involutive and the Ehresmann connection is flat. Those sections ς ∈ �(Ŝ(T∨

M ))

such that Q(ς) = 0 are interpreted as functions on (TM )∞ which are constant along
the leaves of the foliation tangent to the flat Ehresmann connection. As explained
by Emmrich–Weinstein, the Ehresmann connection is transverse to the zero section
and each one of its leaves intersects the zero section in a unique point. The leaves
of the foliation given by the flat Ehresmann connection are the fibers of a ‘mapping’
EXP : (TM )∞ → M , which Emmrich–Weinstein call ‘formal exponential map.’
Identifying M with the zero section of (TM )∞, functions defined on M can be
extended to functions on (TM )∞ constant along the leaves. The resulting map
C∞(M) → �(Ŝ(T∨

M )) is the pull-back of functions through EXP.

Theorem 6.1 ([10, Theorem 1.6]) Given a torsion-free affine connection ∇ on M, the
‘formal exponential map’ EXP described above coincides with the infinite-order jet
of the geodesic exponential map exp determined by the connection ∇.

Proof By definition, the ‘formal exponential map’ EXP is completely determined by
Q in the following sense: the pull-back ς = EXP∗( f ) of a function f ∈ C∞(M) by
EXP is the unique solution ς ∈ �(Ŝ(T∨

M )) of the initial value problem

Q(ς) = 0, σ (ς) = f .

We think of the map σ : �(Ŝ(T∨
M )) → C∞(M) as the pull-back of functions through

the zero section of (TM )∞ → M . On the other hand, Proposition 5.4 applied to the
Lie pair (L, A) where L is the tangent bundle to M and A is its rank-zero subbundle
yields the contraction

C∞(M)
(
�•(M; Ŝ(T∨

M )), d∇�)τ̆

σ
h̆

where C∞(M) is seen as a cochain complex concentrated in degree 0. In particular,
for all f ∈ C∞(M), we have

τ̆ ( f ) ∈ �(Ŝ(T∨
M )), d∇�(

τ̆ ( f )
) = 0, and σ

(
τ̆ ( f )

) = f .

According to Theorem 4.7, we have Q = d∇�
. Therefore, EXP∗ = τ̆ . Let n denote

the dimension of the manifold M . It follows from Eq. (20) in Theorem 5.6 that

τ̆ ( f ) =
∑

J∈N
n
0

1

J ! pbw(∂ J ) f ⊗ χ J .
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According to [18, Theorem 3.11], the Poincaré–Birkhoff–Witt isomorphism pbw
(described in Theorem 3.7) is the infinite-order jet of the geodesic exponential map
exp : TM → M arising from the connection ∇. Hence, we obtain

EXP∗( f ) = τ̆ ( f ) =
∑

J∈N
n
0

1

J !∂
J ( exp∗( f )

)⊗ χ J .

This concludes the proof that EXP is the infinite-order jet of exp. ��
In fact, Theorem 5.6 above can be seen as an extension of Emmrich–Weinstein’s

result [10, Theorem 1.6] to the case of matched pairs.
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Appendix A. Homological perturbation

A contraction of a cochain complex (N , δ) onto a cochain complex (M, d) consists
of a pair of cochain maps σ : N → M and τ : M → N and an endomorphism
h : N → N [−1] of the graded module N satisfying the following five relations:

στ = idM , τσ − idN = hδ + δh,

σh = 0, hτ = 0, h2 = 0.

We symbolize such a contraction by a diagram

(M, d) (N , δ)
τ

σ
h .

If, furthermore, the cochain complexes N and M are filtered and the maps σ , τ , and
h preserve the filtration, the contraction is said to be filtered [9, §12].

A descending filtration

· · · ⊆ Fp+1N ⊆ FpN ⊆ Fp−1N ⊆ · · ·

on a cochain complex N is said to be exhaustive if N = ⋃
p FpN and complete if

N = lim←−p
N

FpN
.

A perturbation of the filtered cochain complex

· · · Nn−1 Nn Nn+1 · · ·δ δ

123

Author's personal copy



Fedosov dg manifolds associated with Lie pairs

is an operator � of degree +1 on N , which raises the filtration degree by 1 (i.e.
�(FpN ) ⊆ Fp+1N ) and satisfies (δ + �)2 = 0 so that δ + � is a new coboundary
operator on N .

We refer the reader to [15, §1] for a brief history of the following lemma.

Lemma A.1 (Homological Perturbation [6]) Let

(M, d) (N , δ)
τ

σ
h

be a filtered contraction. Given a perturbation � of the cochain complex (N , δ), if the
filtrations on M and N are exhaustive and complete, then the series

τ̆ :=
∞∑

k=0

(h�)kτ h̆ :=
∞∑

k=0

(h�)kh =
∞∑

k=0

h(�h)k

σ̆ :=
∞∑

k=0

σ(�h)k ϑ :=
∞∑

k=0

σ(�h)k�τ =
∞∑

k=0

σ�(h�)kτ

converge, ϑ is a perturbation of the cochain complex (M, d), and

(M, d + ϑ) (N , δ + �)
τ̆

σ̆
h̆

constitutes a new filtered contraction.

Proposition A.2 Under the same hypothesis as in Lemma A.1, the chain map τ̆ is
entirely determined by τ , h� and the relation (id−h�)τ̆ = τ . Likewise, the homotopy
operator h̆ is entirely determined by h, h� and the relation (id−h�)h̆ = h.

Proof Since the filtration on N is complete and � raises the filtration degree by 1 while
h preserves it, the geometric series

∑∞
k=0(h�)k converges and its sum is the inverse

of the operator id−h�. The result follows immediately. ��
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