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ABSTRACT
High-energy neutrinos are a promising tool for identifying astrophysical sources of high and ultra-
high energy cosmic rays (UHECR). Prospects of detecting neutrinos at high energies ( >∼ TeV) from
blazars have been boosted after the recent association of IceCube-170922A and TXS0506+056.
We investigate the high-energy neutrino, IceCube-190331A, a high-energy starting event (HESE)
with a high likelihood of being astrophysical in origin. We initiated a Swift/XRT and UVOT tiling
mosaic of the neutrino localisation, and followed up with ATCA radio observations, compiling a
multiwavelength SED for the most likely source of origin. NuSTAR observations of the neutrino
location and a nearby X-ray source were also performed. We find two promising counterpart in the
90% confidence localisation region and identify the brightest as the most likely counterpart. However,
no Fermi/LAT γ-ray source and no prompt Swift/BAT source is consistent with the neutrino event.
At this point it is unclear whether any of the counterparts produced IceCube-190331A. We note
that the Helix Nebula is also consistent with the position of the neutrino event, and we calculate
that associated particle acceleration processes cannot produce the required energies to generate a
high-energy HESE neutrino.

Key words: neutrinos — galaxies: active — BL Lacertae objects: general — quasars:
general — galaxies: jets

1 INTRODUCTION

Cosmic rays arriving at Earth have been detected up to the
extreme energies of 1021 eV since more than a century ago
– yet their origin remains elusive (e.g., Norman et al. 1995).
A promising tool for identifying the astrophysical sources

? E-mail: Felicia.Krauss@psu.edu
† ecalamari@gradcenter.cuny.edu
‡ azadeh.keivani@columbia.edu

of high and ultra-high energy cosmic rays are high-energy
neutrinos as they are not deflected in interstellar and in-
tergalactic magnetic fields. Consistent with these expecta-
tions, a diffuse extraterrestrial flux of high-energy neutri-
nos has been observed by the IceCube neutrino observatory
over more than a decade of observation (Aartsen et al. 2013;
IceCube Collaboration 2014; Haack & Wiebusch 2017). Lo-
calisation uncertainties mean that the nature of these neu-
trinos is still unknown.

Blazars and other types of AGN have been predicted
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to produce neutrinos in jets (Biermann & Strittmatter
1987; Mannheim et al. 1991; Mannheim 1993, 1995) and/or
in their cores (Eichler 1979; Berezinskii & Ginzburg 1981;
Begelman et al. 1990; Stecker et al. 1991; Stecker 2013).
TeV and PeV neutrinos are expected from flat-spectrum
radio quasars, while BL Lacs are expected to produce neutri-
nos at EeV energies. Recently, progress has also been made
in explaining neutrinos from BL Lac objects (Murase et al.
2014; Dermer et al. 2014; Tavecchio & Ghisellini 2015).
We have shown that blazars can calorimetrically explain
IceCube neutrinos (Krauß et al. 2014), low-significance
coincidence between a blazar outburst and an astrophysical
neutrino, IC 35 (and PKS1424−418; Kadler et al. 2016). To
date, the neutrino candidate, IceCube-170922A has only
been the second >∼ 3σ association of neutrino emission to
an astronomical source (SN1987A; blazar TXS 0506+056;
IceCube Collaboration, Fermi-LAT Collaboration et al.
2018; Keivani et al. 2018). However, it has also been shown
that for realistic neutrino spectra, blazars can account for
all IceCube high-energy neutrinos (Krauß et al. 2018); this
is in disagreement with the 30% limit on the contribution
of blazars found by Aartsen et al. (2017b) for all IceCube
neutrinos. More stringent limits of 5–15% have been placed
by Hooper et al. (2019); Yuan et al. (2020), which would
still be consistent with a significant contribution of AGN,
including blazars, to the PeV neutrinos (Murase & Waxman
2016). It is possible that non-blazar AGN produce the entire
or a large fraction of the astrophysical neutrino flux seen by
IceCube (Hooper et al. 2019). Some authors have argued
for a combination of BL Lac and pulsar wind nebula as the
origin of the IceCube neutrinos (Padovani & Resconi 2014).

While blazars and other active galactic nuclei (AGN)
are excellent candidates for accelerating cosmic rays to
ultra-high energies, significant contributions from other
types of sources are not yet ruled out. Suggested pop-
ulations include starburst galaxies (Murase et al. 2013;
Senno et al. 2015; Bechtol et al. 2017), and (choked) GRBs
(Murase & Ioka 2013; Senno et al. 2016; Tamborra & Ando
2016; Aartsen et al. 2017c).

IceCube and the Astrophysical Multimessenger Obser-
vatory Network (AMON)1 started a real-time program in
2016 (Aartsen et al. 2017a) to identify and localise high-
energy neutrinos in order to distribute them to follow-up
observatories. Since 2019 IceCube provides these alerts at
“bronze”, “silver” and “gold” levels. There have been 17 such
alerts as of February 2020 (10 “bronze” alerts and 7 “gold”
alerts), several of which resulted in extensive multimessenger
campaigns to observe the location of the neutrino candidate
in different wavelengths/messengers. IceCube-170922A has
so far been the only event with a >∼ 3σ source identification
(IceCube Collaboration, Fermi-LAT Collaboration et al.
2018).

On March 31, 2019, the IceCube Neutrino Observa-
tory identified a high energy neutrino candidate (labelled
IceCube-190331A), likely produced by a muon neutrino.
This event was publicly distributed through the gamma-ray
coordinates network (GCN; Barthelmy et al. 1995) within
34 seconds (GCN/AMON NOTICE IceCube-190331A
2017). A subsequent search by Fermi/LAT determined

1 see https://www.amon.psu.edu/ for details.

there were no known γ-ray sources within the 90% IceCube-
190331A localisation error (Buson & Garrappa 2019).
Given the event direction, this paper seeks to investigate a
possible origin for this high-energy neutrino candidate by
conducting follow-up observations of known sources within
the uncertainty region.

We report the multiwavelength observations (radio,
optical, UV, X-ray) of possible counterparts detected by
Swift/XRT during follow-up observations of the IceCube-
190331A high-energy neutrino candidate (Sec. 2) and discuss
possible associations with the IceCube event (Sec. 3).

Throughout the paper we use the standard cosmolog-
ical model with Ωm = 0.3, Λ = 0.7, H0 = 70 km s−1 Mpc−1

(Beringer et al. 2012).

2 OBSERVATIONS

In this section, we review the detection of the IceCube-
190331A neutrino event, and present observations and data
analysis of electromagnetic follow-up observations from
Swift (X-ray, ultraviolet/optical, γ-ray), ATCA (radio),
X-shooter (ultraviolet, optical, near-infrared), and NuSTAR

(X-ray).

2.1 IceCube Detection

On March 31, 2019, the IceCube Neutrino Observa-
tory identified a high-energy neutrino candidate through
its High Energy Starting Event (HESE) stream. This
event had a high probability of being produced by a
muon neutrino of astrophysical origin with a deposited
charge of about 198736.44 photoelectrons in the detec-
tor (GCN/AMON NOTICE IceCube-190331A 2017). This
event was recorded as having one of the highest de-
posited energies ever seen, making it a promising as-
trophysical neutrino candidate (Kopper & Blaufuss 2017).
After conducting a ground-based analysis using offline
reconstruction algorithms, IceCube was able to report
an event direction at RA=337.◦68+0.23

−0.34
, Dec=−20.◦70+0.30

−0.48
(J2000; 90% containment ellipse; Kopper & Blaufuss 2017;
Ice Cube Collaboration 2019). Subsequently, an additional
search for track-like muon neutrino events arriving from the
direction of IceCube-190331A was performed by IceCube for
two days after the initial event time, as well as a search to
include the previous month of data. No additional track-like
events were found within the 90% spatial containment region
in either search (Icecube Collaboration 2019).

Several multiwavelength follow-up observations were
conducted in order to find potential EM counterparts to
the very high energy neutrino candidate. Although these
searches did not find any high-confidence EM counterpart
(Buson & Garrappa 2019), we discuss two possible counter-
parts below (see Sect. 3).

2.2 Swift/BAT prompt observations

At the time of arrival of IceCube-190331A (T0), the neu-
trino localisation region was serendiptidously located near
the highest sensitivity location of the coded field-of-view
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Multiwavelength counterparts to IceCube-190331A 3

[tbh]

Table 1. Source found by Swift/XRT with their best fit centroid
position, as well as source significance. Source #4 is at the lowest
significance.

Sources R.A. Dec. Significance

ID [J2000] [J2000] σ

1 337.3551 −20.31325 5.56
2 337.5285 −21.0994 5.06
3 338.0251 −21.0493 4.52
4 338.0184 −21.1199 4.16

(89% partial coding fraction) of the Swift Burst Alert Tele-
scope (BAT; Barthelmy et al. 2005). This allows us to set
sensitive upper limits on the existence of a prompt gamma-
ray transient coincident with (or directly preceding or suc-
ceeding) the high-energy neutrino emission. We perform a
blind search on the BAT raw light curves with time-bins of
64 ms, 1 s, and 1.6 s. We find no evidence for any short or
long GRB-like emission within T0 ± 500 s of the neutrino
arrival time, and set a conservative 5σ upper limit for any
short GRB of ∼1.5 × 10−7 erg s−1cm−2.

We also performed a search for longer time-scale emis-
sion, on a survey image produced by the BAT from T0-580s
to T0+ 660s. We find no new or uncatalogued hard X-ray
sources within the neutrino localisation region, and set a 3σ
flux upper limit of ∼15 mCrab assuming a powerlaw spectral
index of Γ = 2.15.

2.3 Swift/XRT observations

IceCube-190331A triggered the Neil Gehrels Swift Ob-
servatory in automated fashion via the AMON cyberin-
frastructure (Ayala Solares et al. 2019), however prompt
observation of the neutrino localisation was not possi-
ble with Swift as it was initially within the satellite’s
Sun avoidance region. Swift observations of the IceCube-
190331A field began on April 9, 2019, nine days after the
event. Swift was able to observe a region of approximately
33′ radius centred on the event direction of RA=337.◦68,
Dec=−20.◦70 (J2000), using an on-board 7-point tiling pat-
tern (Keivani et al. 2019). During this initial observation,
Swift/XRT collected approximately 800 seconds of data per
tile for a total of ∼5540 seconds the morning of April 9
and was able to detect four X-ray sources (see Table 1)
with the new XRT detection system (Evans et al. 2019).
The highest significance (source #1) found during these ob-
servations is catalogued at RA=337.◦35513, Dec=−20.◦31324

(J2000; 90 % containment region), matching the known
X-ray source 1WGAJ2229.4−2018 from ROSAT/WGACAT
catalogue (15.37′′ distance; White et al. 1994). Another
source, 5.3′′ away from X-ray source # 1 is listed in
the Milliquas catalogue (Flesch 2017) as the likely AGN
WISEAJ222925.59−201846.0 and is consistent with the
J=16.74mag 2MASS source (2MASS J22292559−2018462,
see Fig. 1; Skrutskie et al. 2006; Keivani et al. 2019).
WISEAJ222925.59−201846.0 is not listed in the most re-
cent ALLWISE catalogue, so the WISEA detection might
not be real (Wright et al. 2010).

Although it seems that the sources
(WISEAJ222925.59−201846.0 /2MASSJ22292559−20184
and 1WGAJ2229.4−2018) are the same, it is

R.A.: 337.35678

Dec.: -20.312555
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Figure 1. K-Band 2MASS image of the region surrounding
2MASSJ22292559−2018462.

possible that neither 1WGAJ2229.4−2018 nor
WISEAJ222925.59−201846.0 are real source detections, but
rather background fluctuations, given their low detection
significance and distance from the 2MASSJ22292559−20184
coordinates.

Swift/XRT performed a further observation centred on
the location of source #1. The X-ray analysis following the
observation period 58582.323 - 58582.471 MJD focused on
data from the most significant sources and did not con-
sider the lower-significance X-ray sources. The data used in
analysis were from Swift/XRT observations of the position
of 1WGAJ2229.4−2018 (source #1) on April 9, 2019 and
April 16, 2019. The newest calibration was applied using
the xrtpipeline to the raw data using HEASoft (V. 6.26).
Spectra were extracted from the reprocessed image using
a source region with 54.218′′radius and an annulus for the
background region of 82.506 and 235.721′′using XSELECT
(V. 2.4). Due to the low count rate, data were binned to a
signal-to-noise-ratio (SNR) of 1 in the Interactive Spectral

Interpretation System (ISIS; V. 1.6.2-44; Houck & Denicola
2000). Due to the low SNR we use Cash statistics to find
a best fit (Cash 1979). The data were fit with an absorbed
power law with a convolution model to calculate the flux.
For the absorption model we use tbnew2 with the vern

cross-sections (Verner et al. 1996) and the wilm abundances
(Wilms et al. 2000). The hydrogen equivalent absorption
column density was frozen to a value of 3.55 × 1020 cm−2

(HI4PI Collaboration et al. 2016a).
The photon indices for the observations on April 9 and

April 16 were found to be Γ1 = 2.4+4.3
−1.4

and Γ2 = 2.4+1.6
−0.8

,

respectively, with corresponding flux values of (1.1+0.7
−0.9

) ×
10−13 and (1.6+1.0

−0.9
) × 10−14 erg s−1 cm−2, indicating a possi-

ble change in flux. Uncertainties for both the photon index
and flux were calculated at the 90% confidence level. Both
observations are combined in the SED and shown with a
signal-to-noise ratio binning of 2 (see Fig. 2).

2 online at: http://pulsar.sternwarte.uni-erlangen.de/

wilms/research/tbabs/
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Figure 2. Multiwavelength SED of source #1, including our ATCA, X-Shooter, and Swift/XRT data. Archival data is shown in purple.

2.4 Swift/UVOT follow-up observations

The Swift/UltraViolet-Optical Telescope (UVOT)
(Roming et al. 2005) also participated in both the tiling
and targeted follow-up in response to IceCube-190331A.
Only source #2 was within the field of view of the initial
tiled UVOT observations (see Fig. 3). An additional
follow-up observation on April 16 provided a UVOT image
for source #1 for a cleaned exposure time of 2829 s in
the uvw2 filter. UVOT images in one observations were
summed using uvotimsum. Source counts were extracted
using uvot2pha with a 5′′region at an updated source
position of RA=337.◦5298451, Dec=−21.◦09967127 and
annulus for the background region of 13 and 26′′, centred
on the source position while ensuring no contamination
from background sources. Source #1 was extracted with
regions of the same size, centred on RA=337.◦3566258,
Dec=−20.◦3127867. Additionally, uvw2 images detected
WISEA J222925.59-2201846.0 at an AB magnitude of

19.64
±0.08(stat)
±0.03(sys) . No flux variability or changes were detected

in the four observations.
We performed a search for uncatalogued sources in the

UVOT u-band with observations taken during the 7-point
tiling follow-up. No new or uncatalogued sources were found
down to an average 5σ upper limit of u=20.3 mag AB.

2.5 X-Shooter Observation

Medium-resolution spectroscopy of 1WGA J2229.4-2018 was
obtained with the X-shooter spectrograph (Vernet et al.
2011) of the Very Large Telescope (VLT) UT2 at the ESO
Paranal Observatory on 2019 April 26. The three arms
of X-shooter, (UV: UVB, optical: VIS and near-infrared:
NIR) were used with slit widths of 1.′′0, 0.′′9, and 0.′′9,
respectively. These data provide quasi-simultaneous 300–
2400 nm spectral coverage with average spectral resolutions
λ/∆λ of 5400, 8900, and 5600, respectively, in each arm.
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Figure 3. Swift/UVOT mosaic follow-up of the localisation re-
gion of IceCube-190331A. The Helix nebula, NGC 7293, is clearly
visible in the west. It is not detected at X-ray energies. The cyan

cross shows the best fit position of the neutrino event. The 90%
containment region is given in cyan, following the values from

Ice Cube Collaboration (2019).

Observing conditions were intermediate, with a clear sky,
a seeing of ∼1.′′5, and an airmass of 1.7. Individual ex-
posure times are 445 s, 352 s, and 200 s for the UBV,
VIS, and NIR arms, respectively, which lead to a total
integration times of 3560 s, 2816 s, and 3200 s. Stan-
dard ABBA nodding observing mode was used to allow
for an effective background subtraction. Data were reduced
using the ESO X-shooter pipeline (Goldoni et al. 2006;
Modigliani et al. 2010) (v.2.9.3), producing a background-
subtracted, wavelength-calibrated spectrum. The extracted
1D spectrum was flux calibrated with the X-shooter pipeline
using a response function produced by observing the white
dwarf standard LTT 3218 (R.A. 08h 41m 32s.43, Dec. -32◦

56′ 32.9′′, J2000) during the same night. The spectrum was
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Å

−
1
]

Figure 4. X-Shooter spectrum of 1WGAJ2229.4−2018.

corrected from telluric absorption lines using the Molecfit
package (Smette, A. et al. 2015), and the flux was dered-
dened using (Cardelli et al. 1989) with AV=0.1358 mag and
RV=3.1.

The reduced 1D spectrum is shown in Figure 4. It
is dominated by strong MgII (279.8 nm - rest frame) and
Balmer Hα, β, γ, δ emission lines that allow to derive
a source redshift of z = 0.27. Forbidden lines of [O III]
(495.9 nm; 500.7 nm), [NeV] (342.6 nm), [Ne III] (386.9 nm),
[N II] (658.3 nm), [S II] (671.6 nm) and [S III] (953.1 nm) are
also present. While HI and MgII broad allowed emission lines
presumably form within the accretion disk or close to it, nar-
row forbidden lines of neon, oxygen and sulfur are supposed
to come from lower density regions further away from the
supermassive black hole. The X-shooter rest-frame spectrum
of 1WGAJ2229.4-2018 matches with the optical spectrum
of a Seyfert 1.2 AGN with [O III] lines weaker than the Hα
one. The νFν optical/near-infrared spectral energy distribu-
tion of 1WGAJ2229.4-2018 displays a deep trough around
1014.8 Hz which probably indicates the transition between
the dusty torus and the disk contributions strengthening the
classification of the source as a Seyfert 1.2 AGN.

Fig. 4 shows our spectrum of 1WGAJ2229.4−2018. We
derive a source redshift of z = 0.27 using the emission lines
of Mg II, Ne V, Hβ, and Hα and we use this number to
calculate the absolute luminosity of the source and its SED.
Based on the optical spectrum the source can be identified
as Seyfert type I AGN.

2.6 ATCA Observation

Following the detection of the neutrino candidate IceCube-
190331A, we requested radio observations with the Aus-
tralia Telescope Compact Array (ATCA; under project
code CX433) targeting the four X-ray sources found by
Swift/XRT within the neutrino location error region. The
ATCA observations were carried out on 2019 April 21 and
22. On the first night ATCA observed X-ray sources 1, 3,
and 4, while on the second night it targeted X-ray sources
1 and 2. The observations were recorded simultaneously at
central frequencies of 5.5 and 9GHz, with 2GHz of band-
width at each frequency. We used PKS 1934−638 for band-

Table 2. The ATCA flux upper limits and the corresponding
coordinates. The ID gives the Swift /XRT source ID. Right as-

cension and declination give the centre of the region that was used
for determining the upper limit. The coordinates for source # 2
are offset due to flux from a nearby source. The uncertainties on
the right ascension and declination are 0.2′′ and 0.5′′, respectively.

ID RA Dec Flux UL
[J2000] [J2000] [µJy/beam]

1 337.35513 −20.31324 12.36
2 337.53187 −21.10525 27.62
3 338.02441 −21.04247 46.72

pass and flux calibration, while the nearby source J2203−188
was used for phase calibration. The data were edited, cal-
ibrated, and imaged following standard procedures within
the Common Astronomy Software Application (CASA, ver-
sion 5.1.0; McMullin et al. 2007). Imaging was done using a
Briggs robust parameter of 2 to maximise sensitivity. Since
X-ray source #1 was observed on both days, the two obser-
vations were combined to maximise sensitivity.

No radio counterpart was detected at any of the X-ray
source positions. Upper limits were determined by stacking
the 5.5 and 9GHz data and taking three times the mea-
sured rms over the source position. They were extracted
from regions of 30′′centred on the source positions. The flux
densities of nearby sources are reported as the peak pixel
flux density. To determine the position of these nearby ra-
dio sources, we fit for point sources in the image plane. The
resulting values are given in Table 2.

ATCA finds no source consistent with the X-ray detec-
tion of source 1 (see Fig. 5); it only finds a source offset from
the X-ray position. Source 2 shows a possible ATCA coun-
terpart with a faint jet feature in the stacked image (Fig. 6).
Source 3 shows a very faint source south of the X-ray co-
ordinates, which is likely unrelated to the X-ray source. A
brighter AGN is visible, east of the coordinates.

The derived flux upper limit for source #1 is shown in
the multiwavelength SED (Fig. 2).
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Figure 5. Stacked ATCA image near source 1. No radio source is detected that corresponds to the X-ray source. A radio source - likely

a previously unknown AGN - is visible to the east of Source 1, at a distance of 2.52′.
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Figure 6. Stacked ATCA image near source #2, a radio source

is visible to the north-west. It is unclear whether it is connected
to the X-ray detection.
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Figure 7. Stacked ATCA image near source 3. No bright coun-
terparts is visible.

2.7 NuSTAR observations

Following the detection of IceCube-190331A we requested
target of opportunity observations using the NuSTAR X-
ray satellite (Harrison et al. 2013) to search for hard X-ray
sources coincident with the neutrino event.

Two observations were performed: the first (ObsID
90502615001, started on 2019 April 2 UT) targeting
the best-fit neutrino position, and the second (ObsID

90502616001, 2019 April 3) on the nearby Fermi/LAT source
4FGL J2232.6-2023, associated with the hard X-ray source
1RXS J223249.5-202232, a BL Lac object at a redshift of
0.386 (Jiménez-Bailón et al. 2012). A sky map containing
data from both exposures plus their relative locations with
respect to the neutrino event and Swift pointings is shown
in Fig.8.

Both focal plane modules (FPMs A and B) were used to
collect data, which were then processed using version 1.9.2
of the NuSTARDAS software included in HEASOFT v6.27.2 and
analysed using XSPEC v12.11.0.

2.7.1 Observation of the IceCube-190331A position

A total exposure of 5.5 ks per FPM was collected at the
IceCube-190331A position. The observations did not reveal
any new X-ray sources and therefore we derive a flux up-
per limit at the best-fit neutrino location. The observations
from both FPMs were first combined and a 3σ count rate
upper limit was calculated using the uplimit routine in XIM-

AGE which implements the Bayesian approach of Kraft et al.
(1991). This upper limit was calculated for a circular region
with a 30” radius centred at the best-fit neutrino location,
but given the homogeneity of the field we expect it to be
illustrative of the entire NuSTAR exposure. The count rate
upper limit is 4.66 counts / ks, which corresponds to a flux
upper limit of 1.604 × 10−13 erg cm−2 s−1 in the 3-10 keV
range as calculated using the WebPIMMS tool3 for a pho-
ton index of Γ = 2.0.

3 https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/

w3pimms.pl
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2.7.2 Observation of 1RXS J223249.5-202232

An exposure of 5.1 ks per FPM was obtained targeting 1RXS
J223249.5-202232. The spectral data from both FPMs were
combined using the addspec routine following the proce-
dure recommended by the NuSTAR science team and then
grouped requiring at least 30 counts in each spectral bin.
The resulting spectrum covers the 3-15 keV range with good
statistics after bad channels are excluded. The spectrum was
then fit with an absorbed power-law model (phabs × pow-

erlaw, PL hereafter) where the absorption was kept fixed
at the Galactic HI column contribution of 3.33 × 1020 cm−2

obtained from HI4PI Collaboration et al. (2016b)4.
The best-fit PL parameters (for the form N(E) =

N0 E−Γ) were a flux normalisation N0 = (1.88 ± 0.76) × 10−3

cm−2 keV−1 s−1, at a normalisation energy of 1 keV, and a
photon index Γ = 2.87±0.24. These parameters yield a good
fit, with a χ2/dof = 6.33/7 (p-value of 0.502). A second fit
was attempted to test for intrinsic absorption at the source
using the zphabs model and the source redshift but this
failed to constrain the intrinsic absorption given the limited
statistics of the data set.

Using the best-fit model we calculate a flux of F =

(1.39+0.09
−0.27

) × 10−12 erg cm−2 s−1 in the 2-10 keV range. This
flux is significantly lower and has a softer photon index than
the values reported by Jiménez-Bailón et al. (2012) based
on hard-band XMM-Newton EPIC observations obtained in
2008 in the same energy range (FXMM = (5.05± 0.04) × 10−12

erg cm−2 and ΓXMM = 2.06 ± 0.03).

2.7.3 Summary of NuSTAR results

No new sources were identified in the NuSTAR observations
near the best-fit neutrino position. Similarly, the known
source 1RXS J223249.5-202232 was observed in a low flux
state, and no evidence of gamma-ray activity is visible in
the online Fermi All Sky Variability Analysis (FAVA)5, nor
was reported at the time of the neutrino alert detection6.

We therefore claim no connection between this source
and the observation of the IceCube-190331A event. The
NuSTAR pointings do not cover the new Swift sources so
no constraints can be derived on their hard X-ray fluxes
from these observations.

2.8 Helix Nebula

We note that the planetary nebula NGC 7293, more com-
monly known as the Helix Nebula, is detected on the western
side of the UVOT mosaic, within neutrino localisation area.
The expected particle energies in a planetary nebula, how-
ever, are too low to explain a TeV neutrino event. Planetary
nebulae can have fast winds up to ∼ 1100 km s−1 with a mass
loss rate of Ûm ∼ 10−11M� year−1 (Huarte-Espinosa et al.
2012). Using the kinetic luminosity of Lk = Ûm v

2, this yields

4 https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.

pl
5 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/

LightCurve.php?ra=338.1725&dec=-20.3909
6 https://gcn.gsfc.nasa.gov/gcn3/24040.gcn3

the following magnetic luminosity (Blandford 2000)

LB = εB Lk = 4 π r2 · v ·
(

B2

8 π

)

=

1

2
r2 · vB2 , (1)

with the magnetic energy fraction εB < 1, the magnetic field
B and the radius of the moving wind r. After solving for r ·B
and using the previously calculated kinetic luminosity, we
can use it in

E < e · r · B · v
c

, (2)

using the Hillas condition (v/c; Hillas 1984), with the ele-
mentary charge e and the speed of light c, to yield

E <
√

2 Ûmv (3)

This yields a maximum particle energy of

E < 0.41 TeV . (4)

The peak energy of neutrinos for E2 dN/dE for inci-
dent protons with single energy injection is about 3–5%
of the energy of the proton (e.g., Waxman & Bahcall 1997;
Kelner et al. 2006; Murase et al. 2006). We would therefore
not expect neutrinos above ∼10–20GeV from the Helix neb-
ula. For this reason, planetary nebulae have not been con-
sidered as sources for high-energy IceCube neutrinos.

3 RESULTS & DISCUSSION

We found four X-ray sources in the Swift/XRT observa-
tions. No new sources, or evidence of X-ray activity in a
known source, were identified in the NuSTAR observations.
We perform follow-up observations on all of them, particu-
larly the brightest three sources. We note that only source
#2 is strictly within the IceCube 90% confidence uncertainty
region.

We performed detailed follow-up observations of
Source # 1, the a priori most likely counterpart based
on source brightness. The data has been gathered and
collected in Fig. 2. With no radio detection and no
Fermi/LAT detection, but a moderate X-ray luminosity
(L2−10 keV = 1.3+2.1

−0.9
× 1043 erg s−1), we conclude that this

source is a possible radio-quiet quasar. A X-Shooter optical
spectrum confirms that this object is a type 1 Seyfert
galaxy. Neutrinos have been predicted from the cores
of AGN in the 10–100TeV energy range (Murase et al.
2019). The flare contribution may be subdominant while
the core contribution can be dominant in the bulk flux
(Murase et al. 2019). This would change the current picture
that particle acceleration in AGN jets is the dominant
way to produce neutrinos from AGN (Kadler et al. 2016;
IceCube Collaboration, Fermi-LAT Collaboration et al.
2018), and potentially counterindicated by the high
observed energy of this neutrino event.

Neither of the other X-ray sources show obvious coun-
terparts in Fermi/LAT or in ATCA observations. Radio
sources are detected close to source #2 and source #3, but
are not obviously counterparts to the XRT detections. As
they have no known counterparts and the X-ray spectrum
cannot distinguish between relevant models, we cannot spec-
ulate on what source type they are. They could be AGN,
or Galactic X-ray sources, such as compact binary objects.
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Figure 8. NuSTAR follow-up observations of the region around IceCube-190331A. The image shows the two NuSTAR pointings, with a
strong detection of 1RXS J223249.5-202232. The cyan marker and egg-shape indicate the IceCube best fit and 90% containment region

for the neutrino event, respectively.

However, IceCube-190331A was detected at a Galactic lat-
itude of −57.◦31, which shows that a Galactic origin is un-
likely.

3.1 X-ray coincidences

Here, we examine whether observing 1 X-ray sources within
and 3 other near the neutrino uncertainty is noteworthy.
Given the uncertainties in the right ascension and the dec-
lination ra+, ra−, dec+, and dec−, the equation for the area
of the uncertainty region is given by

Aunc =
π

2
·
(

1

2
dec+ · (ra+ + ra−) +

1

2
dec− · (ra+ + ra−)/2

)

(5)

which yields 0.35 deg2 for IceCube-190331A. Currently,
there is no deep full scan of the sky available in the Swift X-
ray band. A full catalog would give us a precise estimate of
the number of X-ray sources expected in this region. As an
approximation, we use the ROSAT catalogue as a compar-
ison tool (Boller et al. 2016). The 2RXS catalogue includes
135,118 sources. We select sources above Galactic latitudes
of ±10◦ to give an estimate of the number of extragalactic
sources, which yields 117,094 sources. The surface area of the
night sky is 41253 deg2. The Galactic plane area that we ex-
clude is given by Aexcl = 2 · π · r · h = 7200◦, with the radius
r = 57.3◦ and the height h = 20◦. This yields a total area for
the ROSAT sources of Atotal = 34053 deg2. For the IceCube
neutrino event, we’d therefore expect ∼ 1.2 ROSAT sources
within the uncertainty region of 0.35 deg2. While we do find
exactly one X-ray source within the uncertainty region, it
is not a ROSAT source. This is acceptable considering the
low number statistics, and therefore does not point towards
an association of the neutrino event and the X-ray source.
Given that Swift/XRT has a wider energy range and more
sensitivity, and that the observations were pointed, it is not
surprising to find more X-ray sources in the near vicinty.

4 CONCLUSIONS

We have performed Swift/XRT, Swift/UVOT and NuS-

TAR follow-up observations of the IceCube neutrino alert
IceCube-190331A. This event is important as it has a high
likelihood of being astrophysical in origin (higher than
IceCube-170922A). We find four X-ray sources in the tiled
Swift/XRT mosaic observations, with two having high de-
tection significance, while no new sources, or activity in a
known one, were identified in the NuSTAR observations.

The brightest Swift/XRT source (#1) is consistent with
2MASS J22292559−20184. Due to its known optical counter-
part and its X-ray brightness it seemed to be the most likely
source of neutrinos. A high X-ray brightness is required
to explain the expected electromagnetic emission from sec-
ondary cascades of hadronic particles. The lack of γ-ray
emission from the source is not fully consistent with this
picture. The inconsistency may be explained if the high den-
sities required for neutrino production in the source cause γ
pair production of the high-energy photons (Zhang & Cheng
1997). Additionally, we performed follow-up observations of
source #1 with X-Shooter and ATCA. The source is not de-
tected in ATCA with strong constraints on the radio flux,
and it is not detected by Fermi/LAT. Given the radio-
quietness, the low γ-ray flux and the X-ray detection, the
source is either not a blazar or a very faint/distant one. Our
X-Shooter spectra has confirmed that source #1 is a type
1 Seyfert galaxy. ATCA follow-up of sources #2 and #3
show possible radio counterparts near the X-ray position.
However, neither of them has been detected by Fermi/LAT
and they are not in any catalogue. We therefore conclude
that there is no blazar counterpart and no other obvious
high-energy source counterparts as such, and its likely as-
trophysical origin remains a mystery. The neutrino locali-
sation region was serendiptidously located near the high-
est sensitivity location of the field-of-view of Swift/BAT.
This constrains and rules out a bright GRB at the time
and location of the neutrino. For future IceCube events at
high signalness (high probability of being astrophysical in
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origin), a more rapid multiwavelength response with quasi-
simultaneous data will help greatly in identifying the sources
of high-energy neutrino alerts.
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Huerta E. M., Krongold Y., 2012, AJ , 143, 64

Kadler M., et al., 2016, Nature Physics, 12, 807

Keivani A., Murase K., Petropoulou M., Fox D. B., et al., 2018,

ApJ , 864, 84

Keivani A., Santander M., Kennea J. A., Evans P. A., Fox D. B.,

Krauss F., 2019, GRB Coordinates Network, 24094, 1

Kelner S. R., Aharonian F. A., Bugayov V. V., 2006, Phys. Rev.
D. , 74, 034018

Kopper C., Blaufuss E., 2017, GRB Coordinates Network, Circu-
lar Service, No., 21916

Kraft R. P., Burrows D. N., Nousek J. A., 1991, ApJ , 374, 344

Krauß F., et al., 2014, A&A , 566, L7

Krauß F., et al., 2018, A&A , 620, A174

Mannheim K., 1993, A&A , 269, 67

Mannheim K., 1995, Astroparticle Physics, 3, 295

Mannheim K., Biermann P. L., Kruells W. M., 1991, A&A , 251,
723

McMullin J. P., Waters B., Schiebel D., Young W., Golap K.,
2007, in Shaw R. A., Hill F., Bell D. J., eds, Astronomical
Society of the Pacific Conference Series Vol. 376, Astronomical
Data Analysis Software and Systems XVI. p. 127

Modigliani A., et al., 2010, in Observatory Operations: Strategies,
Processes, and Systems III. p. 773728, doi:10.1117/12.857211

Murase K., Ioka K., 2013, Phys. Rev. Lett., 111, 121102

Murase K., Waxman E., 2016, Phys. Rev. D. , 94, 103006

Murase K., Ioka K., Nagataki S., Nakamura T., 2006, ApJL ,
651, L5

Murase K., Ahlers M., Lacki B. C., 2013, Phys. Rev. D. , 88,

121301

Murase K., Inoue Y., Dermer C. D., 2014, Phys.Rev., D90, 023007

Murase K., Kimura S. S., Meszaros P., 2019, arXiv:1904.04226,
pp 1–10

Norman C. A., Melrose D. B., Achterberg A., 1995, ApJ , 454,
60

Padovani P., Resconi E., 2014, MNRAS , 443, 474

Roming P. W. A., et al., 2005, Space Sci. Rev. , 120, 95
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DATA AVAILABILITY

Data from Swift and NuSTAR data are publicly avail-
able on HEASARC (https://heasarc.gsfc.nasa.gov/).
2MASS and WISE data are available publicly at https://
irsa.ipac.caltech.edu/frontpage/. Raw ATCA data are
available at https://atoa.atnf.csiro.au/query.jsp. X-
Shooter data are available on request.
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