

WILEY

MICROBES FOLLOW HUMBOLDT: TEMPERATURE DRIVES PLANT AND SOIL MICROBIAL DIVERSITY PATTERNS FROM THE AMAZON TO THE ANDES

Author(s): Andrew T. Nottingham, Noah Fierer, Benjamin L. Turner, Jeanette Whitaker, Nick J. Ostle, Niall P. McNamara, Richard D. Bardgett, Jonathan W. Leff, Norma Salinas, Miles Silman, Loeske E. G. Kruuk and Patrick Meir

Source: *Bulletin of the Ecological Society of America*, Vol. 100, No. 1 (JANUARY 2019), pp. 1-4

Published by: Wiley on behalf of the Ecological Society of America

Stable URL: <https://www.jstor.org/stable/10.2307/26554320>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at <https://about.jstor.org/terms>

JSTOR

Wiley and Ecological Society of America are collaborating with JSTOR to digitize, preserve and extend access to *Bulletin of the Ecological Society of America*

MICROBES FOLLOW HUMBOLDT: TEMPERATURE DRIVES PLANT AND SOIL MICROBIAL DIVERSITY PATTERNS FROM THE AMAZON TO THE ANDES

Andrew T. Nottingham , Noah Fierer, Benjamin L. Turner, Jeanette Whitaker, Nick J. Ostle, Niall P. McNamara, Richard D. Bardgett, Jonathan W. Leff, Norma Salinas, Miles Silman, Loeske E. G. Kruuk, and Patrick Meir

Study Description

More than 200 years ago, Alexander von Humboldt reported that tropical plant species richness decreased with increasing elevation and decreasing temperature. However, evidence for similar biogeographic patterns for plant, bacterial, and fungal communities together has remained elusive. Using an Andes-to-Amazon study transect traversing 3.5 km in elevation, we provide evidence demonstrating co-ordinated temperature-driven patterns in the diversity and distribution of all three major biotic groups in tropical ecosystems: soil bacteria, fungi, and plants.

Nottingham, A. T., N. Fierer, B. L. Turner, J. Whitaker, N. J. Ostle, N. P. McNamara, R. D. Bardgett, J. W. Leff, N. Salinas, M. Silman, L. E. G. Kruuk, and P. Meir. 2019. Microbes Follow Humboldt: Temperature Drives Plant and Soil Microbial Diversity Patterns from the Amazon to the Andes. *Bull Ecol Soc Am* 100(1):e01452. <https://doi.org/10.1002/bes2.1452>

Photo 1. The Kosñipata Valley, Peru. By studying this Andes-to-Amazon transect traversing 3.5 km in elevation, we provide evidence of co-ordinated temperature-driven patterns in the diversity and distribution of all three major biotic groups in tropical ecosystems: soil bacteria, fungi, and plants. (Photo credit: A. Nottingham)

Photo 2. Sunrise and soil samples at the Tres Cruces site (3,600 m asl) in Puna grassland, situated at the top of the 3.5 km elevation gradient from the Andes to the Amazon in Peru. (Photo credit: P. Meir)

Photo 3. Soil profile in lowland tropical forest (site TAM-05 at 210 m asl; left) and in upper montane forest (site TRU-02 at 3,200 m asl; right) situated along the 3.5 km elevation gradient from the Andes to the Amazon in Peru. (Photo credit: A. Nottingham)

These photographs illustrate the article “Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes” by Andrew T. Nottingham, Noah Fierer, Benjamin L. Turner, Jeanette Whitaker, Nick J. Ostle, Niall P. McNamara, Richard D. Bardgett, Jonathan W. Leff, Norma Salinas, Miles Silman, Loeske E. B. Kruuk, and Patrick Meir published in *Ecology*. <https://doi.org/10.1002/ecy.2482>